3 第二章 聚合物共混改性基本原理

合集下载

2第二章聚合物共混改性基本原理

2第二章聚合物共混改性基本原理

2第二章聚合物共混改性基本原理聚合物共混改性是指将不同种类的聚合物混合在一起,通过相互作用、相互渗透以及相互分散,来改善聚合物材料的性能。

聚合物共混改性的基本原理涉及到相互作用、相容性、相互渗透、相互分散等多个方面。

首先是相互作用。

不同种类的聚合物在混合过程中,由于存在不同的结构和功能团,会产生各种相互作用力,如范德华力、静电作用力、水力作用力等。

这些相互作用力可以在分子层面上改变聚合物链的结构,从而改变聚合物材料的性能。

其次是相容性。

在聚合物共混改性中,相容性是一个重要的问题。

如果两种聚合物具有相似的结构和化学性质,则有可能发生物理和化学上的相容作用,使得共混体系更为稳定。

相反,如果两种聚合物的结构差异较大,则相互之间会出现相容性问题,容易导致相互分相和相互分离。

因此,相容性是影响聚合物共混改性的一个重要因素。

其次是相互渗透。

相互渗透是指在共混体系中,两种聚合物在分子层面上相互渗透的现象。

当两种聚合物具有适当的相互作用力和相容性时,可以实现相互渗透,从而改善材料的性能。

相互渗透可以改变聚合物的链结构和比例,提高聚合物的拉伸、弯曲和抗冲击性能等。

最后是相互分散。

相互分散是指在共混体系中,两种或多种聚合物能够均匀分布在整个材料中。

相互分散的好坏直接影响着材料的性能。

当聚合物分子链之间有较好的相容性和相互作用力时,可以实现较好的相互分散,从而提高材料的强度、硬度和耐热性等。

除了上述基本原理外,还有其他一些影响共混改性的因素,如共混体系的配比、共混过程的温度和压力等。

通过合理的配比和控制共混条件,可以进一步改善共混体系的性能。

总之,聚合物共混改性是通过相互作用、相容性、相互渗透和相互分散等多种机制来改善材料性能的一种方法。

通过合理选择和操控不同种类聚合物的相互作用,可以实现在材料中形成一种新的有机整体,从而提高材料的性能和应用范围。

第2章-共混改性基本原理1

第2章-共混改性基本原理1

共混物形态


——相关研究非常重要,其与共混物的性能密 切相关 ——受共混工艺条件和共混物组分配方的影响
基本类型 A、均相体系 定义:一种共混物具有类似于均相材料所具有 的性能。 ——数量少,共混物的性能介于单一组份之间。


结构和“海-海”结构 ——数量较多,性能可远高于单一聚合物 ——与均相体系相比,更为重要
相容性



定义:指两种共混物的各组分彼此之间相互容 纳,形成宏观均匀材料的能力。 三种形式: A+B C 1)、完全相容 TMA曲线只出现单一的Tg点。 ——A和B的Tg点消失,出现新相C的Tg点 2)、部分相容 出现具有双峰(双Tg)的曲线 ——A和B的Tg点相互靠拢 3)、不相容 出现两个单独的Tg点 ——A和B的Tg点在原位置保持不变
第2章
共混改性基本原理
2.1 基本概念




聚合物共混 ——两种或两种以上聚合物经混合制成宏观均 匀物质的过程,其产物称为聚合物共混物。 ——本章内容限定 狭义上的共混,不包括无机 粒子或纤维与聚合物等广义上的共混。 ——与高分子合金的区别: 高分子合金是指含多种组分的聚合物均相或多 相体系,包括聚合物共混物和嵌段、接枝共聚 物。其特点是具有较高的力学性能,可用作工 程塑料
共混改性的主要方法:



1、熔融共混:将聚合物组分加热到熔融状态 后进行共混。 ——是一种机械共混方法,可采用挤出机、密 炼机、开炼机等完成; ——应用极为广泛、最具工业价值。 ——也是本章讨论的重点。
共混改性的主要方法:





2、溶液共混:将聚合物组分溶于一定的溶剂 后进行共混。 ——具有简单易行、用料量少等特点,特别适 合于实验室中进行。 ——其试样的形态和性能与熔融共混的样品有 较大差异。 3、乳液共混:将两种或两种以上的聚合物乳 液进行共混的方法。 ——可用于橡胶共混改性。

第二章 聚合物共混改性原理

第二章 聚合物共混改性原理
论认为,对于含有分散粒子的复合物在拉伸过程中,由于 分散相的刚性球端(E2,v2)和基体(E1,v1)的杨氏模量和 泊松比之间的差别而在分散相的赤道面上产生一种较 高的静压强,当作为分散相的刚性颗粒受到的静压强大 到一定数值时,其易屈服而产生冷拉,发生大的塑性转变, 从而吸收大量的冲击能量,使材料的韧性以提高,对非弹 性体共混体系而言,在拉伸时,当作用在刚性分散相粒子 赤道面上的静压力大于刚性粒子形变所需的临界静压 力Re时,粒子将发生塑性形变而使材料增韧,这就是非弹 性体增韧的冷拉机理,脆性材料开始发生塑性形变的临 界静压力Re可用来判断分散相粒子是否屈服。
投资少、效益高 品种繁多、可制备功能化高分子材料 改善加工性能
2020/4/7
4
三、共混的方法(1)
物理方法: 机械混合 溶液混合 胶乳混合 粉末混合
20世纪40-50年代,以次价力结合为主,如 NBR/PVC共沉胶
2020/4/7
5
共混的方法(2)
化学方法:接枝共聚(组分间有化学反应) 嵌段共聚(组分间有化学反应) 互穿网络(组分间没有化学反应) 渐变处理(组分间没有化学反应)
2020/4/7
16
2020/4/7
17
总之,有机刚性粒子对塑料增韧作用,是通过自身的 屈服变形(冷拉)过程吸收能量的,可见刚性颗粒只有 发生屈服变形才有助于合金体系韧性的提高。
2020/4/7
18
2.2 无机刚性粒子对塑料的增韧机理
近年来的研究发现只要处理得当,无机刚性颗粒对塑料也可达 到既增韧又增强的目的。李东明等用断裂力学的方法分析了 增韧塑料在断裂过程中能量损耗的途径,提出了填充增强增韧 的概念,他们指出了刚性无机颗粒加入聚合物时基体中的应力 集中发生了变化他们将无机颗粒看作球状颗粒,描述了形变初 始阶段单个颗粒周围的应力集中情况。并认为基体对颗粒的

3 第二章 聚合物共混改性基本原理

3 第二章  聚合物共混改性基本原理
(2)破碎能
Edb Edk Edf
分散相物料宏观破碎能Edk←取决于颗粒内部阻碍变 形和破碎的因素,即熔体黏度、熔体弹性等。 分散相物料表面能Edf←取决于界面张力
S 3 Edf Vd R
2013-7-28 31
第四节 混合过程的理论模型
五、分散相的分散与集聚 2. 破碎过程的影响因素 剪切能E← E 2 m
y Ky0 1 y 0

K值超过某个临界值时,粒子破碎。 双小球模型 液滴模型
6R m 6R K Fr Fr
mR R We
K决定于——外力,内力 剪切应力(外力)、分散相内力与分散相颗粒破碎 分散密切相关。增大τ或降低Fr可以促进分散相颗粒 的破碎。
2013-7-28
12
第四节 混合过程的理论模型
二、作用于分散相粒子上的力
F1 6Rmy cos F2 6Rmysin
α
F1 F
F2
处于连续相流体剪切力场中的分散相粒子,首先会 在F2的作用下发生转动,与此同时F1也逐渐增大, 分散相粒子在F1作用下发生伸长变形。当分散相粒 子的取向与流体速度场的夹角为45°时,F1达到最 大,这时,最有利于分散相粒子的破碎分散。 共混设备施加给共混体系的作用力方向应该不断地 或周期地变化。
2013-7-28 6
第四节 混合过程的理论模型
一、液滴模型 2. 影响液滴形变的因素
连续相黏度:ηm↑ → We ↑ → D ↑ 界面张力: σ ↓ → We ↑ → D ↑ 熔体弹性:
mR R We
流动场:对于牛顿流体,拉伸流动比剪切流动更能 有效地促使液滴破裂。 ηm<<ηd,拉伸流动起主导作用。 d 两相粘度比: m

(完整版)聚合物共混改性

(完整版)聚合物共混改性

聚合物共混改性原理与应用 第二章 聚合物共混的基本概念1.试述聚合物共混改性的目的:获得预期性能的共混物。

2.试述共混改性的方法:1.熔融共混;2.溶液共混;3.乳液共混;4.釜内共混。

1、共混物形态的三种基本类型(1)均相体系 (2)两相体系①海—岛结构 ②海—海结构 其一是均相体系;其二被称为“海-岛结构”,这是一种两相体系,且一相为连续相,一相为分散相,分散相分散在连续相中,就好像海岛分散在大海中一样;其三被称为“海-海结构”,也是两相体系,但两相皆为连续相,相互贯穿。

2、均相体系的判定如果一种共混物具有类似于均相材料所具有的性能,这种共混物就可以认为是具有均相结构的共混物.在大多数情况下,可以用玻璃化转变温度(Tg)作为判定的标准。

①如果两种聚合物共混后,形成的共混物具有单一的Tg,则就可以认为该共混物为均相体系. ②部分相容性的聚合物为两相体系,两种聚合物的共混物具有两个Tg,且两个Tg 峰较每一种聚合物自身的Tg 更为接近。

③不相容的聚合物的共混物有两个Tg 峰,其位置与每一种聚合物的Tg 峰基本相同。

第三章 聚合物共混过程及其调控3、简述分布混合与分散混合的概念分布混合:又称分配混合,是混合体系在应变作用下置换流动单元位置而实现的.分散混合:既增加分散相空间分布的随机性,又减小分散相粒径,改变分散相粒径分布过程. 4、简述分散相颗粒分散过程的两种主要机理 P17—18①液滴分裂机理:在分散相颗粒的分散过程中,一个分散相大粒子(大液滴)分裂成两个较小的粒子(小液滴),较小的粒子再进一步分裂。

展示的分散过程是逐步进行的重复破裂过程。

②细流线破裂机理:分散相大粒子(大液滴)先变为细流线,细流线再在瞬间破裂成细小的粒)(毛细管不稳定现象)。

其展示的分散过程是在瞬间完成的。

5、影响共混过程的5个主要因素是什么?a.聚合物两相体系的熔体黏度(特别是黏度比值)以及熔体弹性: 调控共混温度,改变剪切应力,助剂调节,改变分子量.b.聚合物两相体系的界面能(界面张力)及相容剂:降低界面张力使分散相粒径变小;添加相容剂改善相容性降低界面张力是分散相粒径变小.c.聚合物两相体系的组成含量配比以及物料的初始状态;d.流动场的形式(剪切流动、拉伸流动)和强度(如剪切流动中的剪切速率);e.共混时间:分散粒径随时间增加而降低,粒径更均匀。

2.共混改性基本原理

2.共混改性基本原理


(3) 与形态有关的其他概念 A. 分散度 “海-岛”结构两相体系中分散相物料的破碎程度. 可用分散相的颗粒的平均粒径和粒径分布来表征. B. 均一性 分散相物料分散的均匀程度,或分散相浓度起伏大小. 可借助数理统计方法进行定量表征.
两种样品均一性与分散度的对比示意图
C.相界面 两相体系中分散相与连续相之间的交界面. 不相 容或 共混物相界面的形态
2.2 聚合物共混形态的研究


研究形态内容包括:
1.两相中哪一相为连续相,哪一相是分散相; 2.分散相颗粒分散的均匀性; 3.分散相的粒径及粒径的分布; 4. 两相界面的结合
1.
连续相与分散相 主要讨论单相连续结构

2. 分散相分散状态的表征 采用均一性、分散度进行研究 (1)均一性的表征 均一性 分散相浓度起伏大小 表征方法:

5. 聚合物共混物的分类 (1)形态 均相;“海-岛”结构;“海-海”结构
(2)共混方法 熔融共混物;溶液共混物;乳液共混物
(3)改善性能或用途 混抗静电材料;共混电磁屏蔽材料
(4)聚合物档次 通用塑料/通用工程塑料共混物 通用工程塑料/通用工程塑料共混物 通用工程塑料/特种工程塑料共混物 (5)主体聚合物 PA合金;聚酯合金;PPO合金; PC合金;POM合金;PPS合金
I越接近1,越均匀.
q: 一个粒子在分散相中出现的 概率 N: 每个样本中的粒子总数

B. 用“不均一系数”Kc表征
S K c 100 c
不均一系数越小,表示分散相分散的均一性越高

(2)分散度的表征
分散度以分散相的平均粒径来表征: 平均算术直径dn
dn nd n
i i i

聚合物改性第二章共混改性基本原理

聚合物改性第二章共混改性基本原理

聚合物改性第二章共混改性基本原理共混改性是指将两种或多种不相溶的聚合物在液态或熔融状态下混合,并在适当的条件下加工成形,以获得具有新特性和性能的材料。

共混改性的基本原理是在两种或多种聚合物之间形成相容子,使它们能够相互溶解和交互作用。

这种相容子可以是物理上的相互作用,也可以是化学上的相互作用。

在共混改性的过程中,相容子的形成是关键步骤。

相容子的形成可以通过以下几种方式实现:1.极性相互作用:聚合物分子中的极性基团可以与另一种聚合物中的极性基团相互作用,从而形成相容子。

这种相互作用可以是氢键、离子键或极性键等。

2.分子间键合:两种聚合物分子可以通过化学键合形成相容子,例如共聚反应或化学交联等。

3.混合体积效应:当两种聚合物的分子量相近并具有相似的化学结构时,它们可以通过混合体积效应形成相容子。

这是由于相似的分子量和化学结构使两种聚合物的互溶性增加。

共混改性的基本原理还涉及相分离和相互作用的平衡。

在相互溶解体系中,聚合物分子之间存在相互吸引和排斥的力量。

当相互作用力足够强时,聚合物分子会相互混合形成均一的相。

而当相互作用力不足以克服排斥力时,聚合物分子会相互聚集形成分散的相。

相分离的程度与聚合物之间的亲疏水性、极性和分子量等因素有关。

共混改性的过程还受到加工温度和时间、共混物组成比例等因素的影响。

适当的加工温度和时间可以促进相容子的形成和相分离的平衡。

共混物中不同聚合物的组成比例也会影响相容性和相分离的程度。

共混改性可以使两种或多种聚合物的性能相互补充和提高,如强度、韧性、耐热性、耐化学性等。

共混改性材料在各个领域有广泛的应用,例如塑料、橡胶、涂料、粘合剂等。

总之,共混改性是将不相溶的聚合物通过形成相容子相互溶解和交互作用,从而获得具有新特性和性能的材料的过程。

它的基本原理包括相容子的形成、相分离和相互作用的平衡。

共混改性材料具有广泛的应用前景。

2 第二章 聚合物共混改性基本原理

2 第二章  聚合物共混改性基本原理
2013-7-15 10
第一节 聚合物共混的基本概念
二、聚合物共混物及多元体系 1. 聚合物共混物与高分子合金 高分子合金 VS 聚合物共混物 高分子合金也是聚合物共混改性中一个常 用的术语。但是,高分子合金的概念并不 完全等同于聚合物共混物。
2013-7-15
11
第一节 聚合物共混的基本概念
狭义的概念: 物理共混范畴之内,是指两种或两种以上聚合物 经混合制成宏观均匀物质的过程。共混的产物称为 聚合物共混物。
2013-7-15
6
第一节 聚合物共混的基本概念
一、聚合物共混的定义 2.聚合物共混
广义的概念: 聚合物共混的概念扩展到附属于物理共混的 物理/化学共混——反应共混、 共聚共混——化学共混的范畴。更广义的共混还包 括以聚合物为基体的无机填充共混物。此外,聚合 物共混的涵盖范围还可以进一步扩展到短纤维增强 聚合物体系。
2013-7-15 23
第一节 聚合物共混的基本概念
复数功能 复数材料 分散型 积层型· 结合 型 复合 化
无 境 界 化
梯度化设计
非 均 一 化
物理调制手法
梯度化工程
化学调制手法
StepGrຫໍສະໝຸດ dient梯度功能材料Hierarchical Structures
机 轻 质 ・ 高 强 度 械 的 抑 振性 功 自 润滑 性 能 热 应 力 物 平 板 透 镜 高 速 光 纤 理 的 热 传 导 性 功 电 磁 屏 蔽 材 能 有 机 光 电 组 件 化 粘 合 剂 ・ 涂 料 学 的 分 离 膜 功 蓄 光 材 料 能 仿 生 材 料
均相体系:热力学相容体系。各相同性材料,性 能往往介于各组分聚合物性能之间。 二相体系 聚合物A 海-岛结构 海-海结构 聚合物B 两相互锁或交错结构 梯度结构 均相结构 Homogeneous phase 阶跃结构

聚合物共混改性基础原理及应用

聚合物共混改性基础原理及应用

聚合物共混改性基础原理及应用共混改性的基础原理主要包括以下几个方面:1.互溶性原理:共混改性的基础是要求两种或更多种聚合物在分子水平上具有一定的互溶性。

互溶性可以通过调节聚合物的相似性和相互作用力来实现。

例如,可以选择相互接近的聚合物,使它们能够在分子级别上相互扩散和混合。

2.相容性原理:除了互溶性外,聚合物之间还需具有相容性。

相容性是指两种或更多种聚合物能够形成均匀的相,而不是分散相或相分离。

相容性可以通过调节聚合物的结构、化学性质和分子间相互作用来实现。

3.结晶行为原理:聚合物的结晶行为和物理性能密切相关。

在共混改性中,聚合物的结晶行为会受到另一种或多种聚合物的影响。

通过调节共混体系中各个聚合物的结晶行为,可以改变材料的硬度、韧性、透明度等性质。

4.分散相原理:在共混改性中,往往会形成一个或多个分散相。

分散相是指在主体聚合物中分散着的细小聚合物颗粒。

通过控制分散相的分散度和分散尺寸,可以调节材料的力学性能和导电性能等。

共混改性的应用主要包括以下几个方面:1.改善力学性能:通过在聚合物中添加其他聚合物,可以改善材料的强度、韧性和抗冲击性能。

例如,聚丙烯和丙烯腈-丁二烯橡胶的共混改性可以提高材料的抗冲击性。

2.调节透明度和光学性能:共混改性可以在聚合物基体中形成透明的分散相,改善材料的透明度和光学性能。

例如,聚碳酸酯和聚甲基丙烯酸甲酯的共混改性可以获得高透明度的材料。

3.增强导电性能:通过共混改性,可以将导电性聚合物或导电颗粒添加到非导电聚合物中,从而实现材料的导电性能。

这在电子器件领域具有潜在的应用前景。

4.改善热稳定性和耐老化性:共混改性可以通过添加稳定剂或改变聚合物分子结构来改善材料的热稳定性和耐老化性能。

这对于高温应用和长期使用的材料非常重要。

总之,聚合物共混改性通过将不同的聚合物混合在一起,可以改善材料的性能和性质。

共混改性的基础原理涉及聚合物的互溶性、相容性、结晶行为和分散相等方面。

聚合物共混改性原理第二章课件

聚合物共混改性原理第二章课件
.
第2章 聚合物共混物相容性
2.2.3.1.3 Flory—Huggins理论的缺陷
实验证明F-H 模型过分简化,不能解释大多数聚合物溶液和聚合物共混物的普遍特点:相容的聚合物共混物随着温度升高发生相分离;甚至不能定性解释,对浓度依赖的物理意义因为 F-H 理论在推导过程中作了如下假设:
.
第2章 聚合物共混物相容性
2、共聚物的组成
对于均聚物/共聚物体系,相容性与共聚物的组成有关。NBR的 与AN含量有关。用气体作探针表明,AN含量20一40% 时NBR/PVC的相容性不断增加。由电镜和Tg表明,NBR-18和AN含量26%的NBR-26与PVC只是有限相容,两相界面模糊,仅AN含量40%的NBR一40与PVC溶液共混时才是均相,只有一个Tg。在PVC/EVA中相容性随醋酸乙烯(VAC)含量的增加而增加,VAC含量为65-70%时共混物为单相,45%时为两相。对氯苯乙烯—邻氯苯乙烯共聚物与PPO共混时,在对氯苯乙烯含量23—64%范围内,用量热法观察到单一的Tg。苯乙烯(St)与AN的无规共聚物(SAN)与PMMA共混时,AN含量在9—27%范围内时,电镜和力学性能表明二者相容。
.
第2章 聚合物共混物相容性
2.2.3 聚合物—聚合物共混体系相容性的热力学理论
2.2.3.1 Flory—Huggins理论
2.2.3.1.1 基本理论
式中 为混合的吉布斯(Gibbs)自由能; 为混合焓; 为混合熵; T 为热力学温度。
但是,也有例外,极性高分子共混时也会不相容,如PVC/CR,PVC/CPE;非(弱)极性高分子共混时也会相容,如 PS/PPO。
.
第2章 聚合物共混物相容性
熔融共混物,与乳状液相似,其稳定性及分散度由界面两相的表面张力决定。对于高分子,当两相的接触角为零时,其界面张力 可用下式表示:

第二章 聚合物共混改性原理

第二章 聚合物共混改性原理

均一性的表征
混合指数
2
I
S2
不均一系数
K
c
S 100
c0
分散度的表征
平均粒径 平均表面直径
d
n
ni d i
ni
d
n
ni ni
d d
3 i 2 i
2021/8/15
28
十、共混物对分散相粒径及粒径 分布的要求
存在一个最佳值
2021/8/15
29
十一、共混物的相界面及其相界 面效应
相界面:两相或多相共混体系相与相间 的交界面
投资少、效益高 品种繁多、可制备功能化高分子材料 改善加工性能
2021/8/15
4
三、共混的方法(1)
物理方法: 机械混合 溶液混合 胶乳混合 粉末混合
20世纪40-50年代,以次价力结合为主,如 NBR/PVC共沉胶
2021/8/15
5
共混的方法(2)
化学方法:接枝共聚(组分间有化学反应) 嵌段共聚(组分间有化学反应) 互穿网络(组分间没有化学反应) 渐变处理(组分间没有化学反应)
生长以及只有小尺寸银纹对材料的增韧起作用仍存在 着争论。
2021/8/15
14
1.2 银纹-剪切带理论
Bucknall等人的研究表明,在塑料和橡胶 的复合物中,剪切屈服和银纹化同时存在, 并且剪切带还可终止银纹,阻止其扩展成 为裂纹。目前人们普遍接受这一理论。
2021/8/15
15
2 非弹性体增韧机理 2.1 刚性有机粒子(ROF)增韧冷拉机理 Kuraucki和Ohta首次提出了非弹性体增韧理论。该理
2021/8/15
32
1 共混物性能与单组分性能关系

第二章聚合物共混改性原理

第二章聚合物共混改性原理

2020/8/1
10
纳米碳酸钙/HDPE PP/POE共混物常温下冲击断面SEM照片
2020/8/1
11
例子:PPC/PBS(聚丁二酸丁二醇酯)共混物
PBS热性能、加工性能 和机械性能优越,降解 性好、价格低廉。可以 改善PPC的耐热性能、 机械强度和加工性能。
断面照片:共混体 系为典型的“海-岛” 两相结构,分散相以 球形的形状分散,随 分散相含量的增多, 尺寸变大。当分散相 达到50%时,为双 连续体系。
2020/8/1
36
聚合物相容性的判据
H)反相色谱法 主要测定共混组分的相分离行为。一般无法用浊点法测定的
1、共混物的形态: 形态研究的重要性 形态的三种类型(均相、海-岛和海-海结构) 与形态有关的要素:分散度、均一性,相界面
2、相容性的概念相容性的判据 概念: 判据:溶度参数相近原则、 共同溶剂法则、 浊点法则
2020/8/1
27
聚合物相容性的判据
D)薄膜法 不同的聚合物折射率不同,将共混物制成溶液后制
6
溶液共混的说明
溶液共混:用于基础研究领域 优点:量少,小试样产物精细结构良好 缺点:有一定的污染(大量溶剂的使用),操作麻烦,小量研究结果和大
批量生产时相差比较大。 实施方法: 1)组分A单体溶液+组分B单体溶液,加入各自引发剂后原位聚合共混 2)A单体溶液+填料,引发剂后原位聚合共混单体 3)聚合物A的溶液+填料,经搅拌、除溶剂等工序实现。
2020/8/1
2
教学目的和要求
共混物中各种组分的最终结局如何? 它们分散程度如何? 这些组分自身怎样分布? 加工过程对结构的影响如何? 微结构对材料性能有何影响?

2.共混改性基本原理

2.共混改性基本原理
特殊光学性能 的材料. C. 诱导效应 相界面具有诱导效应. 如诱导结晶.
4.关于相容性的基本概念
相容性
各组分彼此相互容纳,形成宏观均匀材料能力
(1)完全相容: (2)部分相容:
(3)不相容:
聚合物只有一个Tg 共混物有两Tg,且Tg峰较每一种 聚合物自身的Tg峰更为接近. 不相容的共混物具有两个Tg,且 两个Tg峰的位置与每一种聚合物 自身的Tg峰是基本相同.
B是取决于各组分性能及KE的参数:
B
P2—分散相的性能 为对比黏度,是最大堆砌密度m的函数
P 2 1 P 1 P 2 A P 1
1 m 1 ( 2 )2

m
m= 分散相粒子的真体积 / 分散相粒子的堆砌体积 m这一因子所反映的是分散相粒子某一种特定的存在 状况的空间特征。
2.2 聚合物共混形态的研究


研究形态内容包括:
1.两相中哪一相为连续相,哪一相是分散相; 2.分散相颗粒分散的均匀性; 3.分散相的粒径及粒径的分布; 4. 两相界面的结合
1.
连续相与分散相 主要讨论单相连续结构

2. 分散相分散状态的表征 采用均一性、分散度进行研究 (1)均一性的表征 均一性 分散相浓度起伏大小 表征方法:
G
G: 结晶聚合物的剪切模量; G1,G2分别为晶相和非晶相剪切模量; Φ 1,Φ 2分别为晶相与非晶相的体积分数
1 5
G1 1 G2 2
1 5
1 5

2.4.2 共混物熔体的流变性能 1. 共混物熔体粘度与剪切速率的关系 共混物熔体的剪切力与剪切速率之间的关系如下: =Kn n K — — — — 剪切应力; 剪切速率; 非牛顿指数; 稠度系数; = Kn-1

第2章 聚合物共混改性原理

第2章 聚合物共混改性原理

2017/7/5
17
2017/7/5
18

2.2.3.2 相界面的效应 (1)力的传递效应,(2)光学效应,(3)诱导效应。 2.2.3.3 界面自由能与共混过程的动态平衡
2017/7/5
19

2.2.3.4 聚合物表面自由能的测定
2017/7/5
20

2.2.4 影响聚合物共混物形态的因素 “海-岛结构”两相体系共混物的形态,包括两相之中 哪一相为连续相,哪一相为分散相;分散相的粒径及 粒径分布;以及两相之间的界面结合,等等。影响共 混物形态的因素很多,主要的影响因素有两相组分的 配比、两相组分的黏度,以及共混设备及工艺条件 (时间、温度)等等。
2017/7/5
2
2.1.2共混改性的主要方法
2.1.2.1 熔融共混 熔融共混是将聚合物组分加热到熔融状态后进行共混,是应用 极为广泛的一种共混方法,是最具工业应用价值的共混方法。 2.1.2.2溶液共混 溶液共混是将聚合物组分溶于溶剂后,进行共混,它主要应用 于基础研究领域。 2.1.2.3 乳液共混 乳液共混是将两种或两种以上的聚合物乳液进行共混的方法。 在橡胶的共混改性中,可以采用两种胶乳进行共混。
2017/7/5
7
2.1.5 聚合物共混物的分类 2.1.5.1 按共混物形态分类
均相体系和两相体系,其中,两相体系又可分为 “海-岛结构” 两相体系和“海-海结构”两相体系。 “海-岛结构”两相体系在聚合物共混物中是普遍存在 的。工业应用的绝大多数聚合物共混物都属“海-岛结 构”两相体系。 “海-海结构”两相体系,可见诸于聚合物互穿网络 (IPN)之中。此外,机械共混亦可得到具有“海-海 结构”的共混物。
2017/7/5
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014-10-17
5
2.4 混合过程的理论模型
一、液滴模型
液滴模型研究的是剪切力作用下的变形,以悬浮液 中的液滴(牛顿流体体系)在剪切力(外力)作用 下的变形与破碎行为为研究对象。 适用于“海-岛结构”聚合物两相体系。
2014-10-17
6
2.4 混合过程的理论模型
一、液滴模型 1. 液滴的形变
x r y Fy Fr sin Fr r Fx Fr cos Fr
2014-10-17
dx x ) Fr dt r dy y 6R m Fr dt r 6R m (y
令:
6R m 6R K Fr Fr
20
2.4 混合过程的理论模型
三、双小球模型
2014-10-17
28
2.4 混合过程的理论模型
四、毛细管不稳定模型
“细流线破裂机理”的模型。 分散相大粒子,在拉伸应力作用下先变形为细线, 再瞬间破裂成细小的粒子(液滴)。
PA-6细丝在PS基体中受扰破裂 PS细丝在HDPE基体中受扰破裂
2014-10-17
29
2.4 混合过程的理论模型
2014-10-17 30
2.4 混合过程的理论模型
四、毛细管不稳定模型
当扰动振幅α=0.8R0时,“细流线”可以断裂。
“细流线”破裂的时间tb:决定于界面张力γ 、分散相与连续相的黏度比λ、细流线的直径等 。
1 0.8R0 t b ln 0 q
2014-10-17
一、液滴模型 二、作用于分散相粒子上的力 三、双小球模型
四、毛细管不稳定模型
五、相的分散与归并
2014-10-17 4
2.4 混合过程的理论模型
一、液滴模型
分散相的分散状态(粒径)是共混物形态结构的要 素之一,研究分散相的破碎过程具有重要意义。 分散相的破碎过程就是分散相在剪切力作用下的变 形、分裂的过程。 分散相的变形决定了相态的形成及最终的相态结构 。 因而,通过建立数学模型(液滴模型)来模拟分散 相的破碎分散过程,分析影响相态结构的因素。
2014-10-17
x y y0 y e x y 0 0
y Ky 0 1 y 0

24
2.4 混合过程的理论模型
三、双小球模型 K值的影响
x y y0 y e x y 0 0
d
We
m R R
2.4 混合过程的理论模型
一、液滴模型 R R We 2. 影响液滴形变的因素 剪 切 速率: ↑ → We ↑ → D ↑。
d
m
m

粒 径: 大粒子易变形。 连续相黏度:ηm↑→We↑→D↑ 界 面 张力: γ↓ → We ↑ → D ↑ 熔 体 弹性: R (G - G )
讨论分散相颗粒破裂成两个小颗粒的条件和规律。 是“液滴分裂机理”的模型。 假定:1、一个分散相颗粒中,有两个假想的球形 粒子;2、两个假想的球形粒子处于运动中的连续 相流体中,3、粒子处于恒定剪切速度场中。
r x2 y2
2014-10-17
18
2.4 混合过程的理论模型
三、双小球模型
2014-10-17
10
2.4 混合过程的理论模型
一、液滴模型 2. 影响液滴形变的因素

d
m R R We m

液滴破碎的判据:
19 16 16 1 R
2014-10-17 11
2.4 混合过程的理论模型
二、作用于分散相粒子上的力
x y y0 y e x y 0 0
y Ky 0 1 y 0

K≥4
2014-10-17 23
2.4 混合过程的理论模型
三、双小球模型 实例2
初始位置(0,4R) r*=3 R=0.5 K=0.5 K=1 K≥2
y Ky 0 1 y 0

K值超过某个临界值时,粒子破碎。 双小球模型 液滴模型
6R m 6R K Fr Fr
R R m We
K取决于——外力,内力 剪切应力(外力)、分散相内力与分散相颗粒破碎 分散密切相关。增大τ或降低Fr可以促进分散相颗粒 的破碎。
31
2.4 混合过程的理论模型
五、相的分散与归并
聚合物的共混过程是一个“分散”与“集聚归并” 的动态过程。 大颗粒→小粒子

Weber数: m We增大时,液滴的形变D也相应增大。 We很小时, D 小,γ占据主导作用,形成稳定 的液滴。 “液滴模型”认为,对于特定的体系和在一定条件 下,We可以有特定的Wecrit, 当We < Wecrit,液滴稳定; We>Wecrit,液滴会变得不稳定,进而破裂。
2014-10-17 8
粒子在内外力的作用下运动。 F dx/dt r>r*时,粒子被破碎。 连续相运动速度u y u 粒子所受到得外力——黏滞阻力(Stokes公式)
F 6Rm v
dy/dt
v ——连续相流体与球形粒子的相对速度
2014-10-17
19
2.4 混合过程的理论模型
三、双小球模型
2014-10-17
12
2.4 混合过程的理论模型
二、作用于分散相粒子上的力
假定:1、一个分散相颗粒中,有两个假想的球形 粒子;2、其一在原点,第二个小球在某一时间处 于某一固定位置,3、粒子处于恒定剪切速度场中 。 小球受到的外力F F1 按Stokes方程
F 6Rm v
α F2
共混设备施加给共混体系的作用力方向应该不断地 或周期地变化。
2014-10-17 16
2.4 混合过程的理论模型
二、作用于分散相粒子上的力
小球受到的内力Fr: 黏滞力 弹性力 界面张力等 阻碍分散相破碎分散的力。
Fr α
2014-10-17
17
2.4 混合过程的理论模型
三、双小球模型
四、毛细管不稳定模型
“细流线”受到外界扰动时,柱状流线逐渐发生正弦 式的变形,其振幅α受到扰动的波长、界面张力γ 、 分散相与连续相的黏度比λ、细流线的初始半径R0等 影响。 在一定条件下,振幅α随时间t 发生指数式增长。
0e
qt
α—— 在时间t 的扰动振幅。 波长 α0—— 扰动的初始振幅。 q —— 扰动增长速率,决定于扰动的波长、分散相与连续相 的黏度比λ、界面张力γ等。 t —— 时间。
其中
2014-10-17
m 6R 6R K Fr Fr
21
2.4 混合过程的理论模型
三、双小球模型
x y y0 y e x y 0 0
y Ky 0 1 y 0
Fr
dy/dt F dx/dt
2014-10-17
15
2.4 混合过程的理论模型
二、作用于分散相粒子上的力
y cos F1 6Rm ysin F2 6Rm
α
F1 F
F2
处于连续相流体剪切力场中的分散相粒子,首先会 在F2的作用下发生转动,与此同时F1也逐渐增大, 分散相粒子在F1作用下发生伸长变形。当分散相粒 子的取向与流体速度场的夹角为45°时,F1达到最 大,这时,最有利于分散相粒子的破碎分散。
2014-10-17 26
2.4 混合过程的理论模型
三、双小球模型 初始位置(分散相粒径)的影响
初始距离(粒径)大,易于破碎。 分散相颗粒的破碎分散过程,亦是分散相粒径自动 均化过程。亦即破碎分散和粒径均化是同时进行的 。
2014-10-17 27
2.4 混合过程的理论模型
四、毛细管不稳定模型
2014-10-17 25
2.4 混合过程的理论模型
三、双小球模型 r*值的影响
r*取决于分散相熔体颗粒的伸长变形能力,即分散相 聚合物的性能,与共混时熔体温度有关。
在分散过程中,分散相颗粒会发生伸长变形和转动。 当伸长变形的颗粒转动到与剪切应力平行的方向时, 破碎不能进行。 为促进分散相的破碎分散,应使剪切应力周期性发生 变化,以便使不同方位的分散相颗粒都能受到有效的 剪切应力τ作用。
F
连续相与第二个小球的相对速度 y v u
2014-10-17 13
2.4 混合过程的理论模型
二、作用于分散相粒子上的力
沿小球中心连线的分力F1:
y cos F1 F cos 6Rm
α
F1 F
F2
α=0° 时,y=0, F1=0;两小球无法分开; α=90°时,cos=0, F1=0;两小球无法分开; α=45°时,促使两小球分离的力 F1最大;分散相 获得最大的分散破碎力; 分散相粒子的方位对分散破碎有重要意义。
eff 12
6
d
m
2014-10-17
9
2.4 混合过程的理论模型
一、液滴模型 2. 影响液滴形变的因素
d
m R R We
两相粘度比: ↑→D↓ m 流 动 场:对于牛顿流体,拉伸流动比剪 切流动更能有效地促使液滴破裂。 ηm<<ηd,拉伸流动起主导作用。
F 6Rm v
v的分速度—vx , vy
dx v x y dt dy vy dt
Fr
dy/dt F dx/dt
F的分力 ——Fx , Fy
dx y Fx 6R m v x 6R m ( ) dt dy Fy 6R m v y 1 19 We
相关文档
最新文档