弹力胡克定律典型例题
胡克定律及其应用练习
胡克定律及其应用练习学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图所示,A、B两弹簧测力计和细线的重力及一切摩擦力不计,物重G=1N,A、B劲度系数均为100N/m,则A和B的弹簧伸长量分别为()A.1cm,0B.0,1cm C.1cm,2cm D.1cm,1cm2.关于物理学史实,下列说法正确的是()A.胡克首先把实验和逻辑推理结合起来,开创了一套新的科学研究方法B.平均速度、瞬时速度、加速度的概念是由牛顿首先提出来的C.伽利略发现了弹簧的弹力和形变量成正比D.亚里士多德认为物体下落的快慢由它们的重量决定3.如图所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F 的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上;②中弹簧的左端也受大小为F 的拉力作用;③中弹簧的左端拴一小物块,小物块在光滑的桌面上滑动;④中弹簧的左端拴一小物块,小物块在粗糙的桌面上滑动。
若认为弹簧的质量都为零,以l 1、l 2、l 3、l 4依次表示四个弹簧的伸长量,则有()A .l 1>l 2B .l 2>l 3C .l 3>l 4D .l 1=l 2=l 3=l 44.如图所示,A 、B 两木块质量均为m ,1、2两轻弹簧的劲度系数均为k ,弹簧与木块、弹簧与地面均拴接在一起,整个系统静止。
现用力向上缓慢提A 木块,直到2弹簧弹力大小变为原来的一半为止,在这一过程中A 木块移动的距离为()A .3mgk B .4mgk C .6mgk D .8mgk5.如图甲所示,力F (未画出)变化时弹簧长度不断变化,取水平向左为正方向,得外力F 与弹簧长度的关系如图乙所示,则下列说法正确的是()A .弹簧原长为5cmB .弹簧的劲度系数为400N/mC .l=10cm 时,弹簧对墙壁的弹力方向水平向右D .l=10cm 时,弹簧对墙壁的弹力大小为20N6.如图所示,质量为m 的物体与A 、B 两个弹簧相连,其劲度系数分别为1k 和2k ,B弹簧下端与地相连。
胡克定律练习
胡克定律练习胡克定律:弹力的大小跟形变的大小有关系,形变越大,弹力也越大,形变消失,弹力随着消失。
实验表明,弹簧发生弹性形变时,弹力的大小F跟弹簧伸长(或缩短)的长度x成正比,即F=kx。
式中的k称为弹簧的劲度系数。
单位是牛顿每米,单位的符号是N/m。
弹簧“硬”或“软”,指的就是它们的劲度系数不同。
这个规律是英国科学家胡克发现的,叫做胡克定律胡克定律1.内容:在弹性限度内,弹簧的弹力F的大小与弹簧的伸长量(或压缩量)x成正比。
2.公式:F=kx (k 称为弹簧的劲度系数,单位为N/m)在F—x图象中k是直线的斜率。
x为弹簧在拉力F作用下的伸长量或压缩量。
练习1:有一根弹簧的长度是15cm,在下面挂上0.5kg的重物后长度变成了18cm,求弹簧的劲度系数。
练习2:竖直悬挂的弹簧下端,挂一重为4N的物体时弹簧长度为12cm;挂重为6N物体时弹簧长度为13cm,则弹簧原长为多少厘米,劲度系数为多少?3.在一根长l0=50cm的轻弹簧下竖直悬挂一个重G=100N的物体,弹簧的长度变为l=70cm(则原来弹簧中长l'=10cm的这一小段产生的弹力等于______,它伸长了______。
4.一根弹簧受到30N的拉力时,长度为20cm,受到30N的压力时,长度为14cm,则该弹簧的原长等于多少,5.一弹簧受到80牛的拉力作用时弹簧伸长为14?,弹簧受到40牛的压力作用时,弹簧长度为8?,试求该弹簧的劲度系数与原长(6、一根长6cm的橡皮条上端固定,下端挂0.5N物体时长度为8cm,要再拉长1cm则再挂多重物体,劲度系数是多少,1实验:探究弹力和弹簧伸长的关系1、实验目的(1).探究弹力和弹簧伸长量之间的关系. (2).学会利用图象法处理实验数据.2、实验器材铁架台、弹簧、毫米刻度尺、钩码若干、三角板、坐标纸、重垂线、铅笔.3、实验原理(1).如图实,1,1所示,在弹簧下端悬挂钩码时弹簧会伸长,平衡时弹簧产生的弹力与所挂钩码的重力大小相等.(2).弹簧的长度可用刻度尺直接测出,伸长量可以由拉长后的长度减去弹簧原来的长度进行计算. 这样就可以研究弹簧的弹力和弹簧伸长量之间的定量关系4、实验步骤 (1).将弹簧的一端挂在铁架台上,让其自然下垂,用刻度尺测出弹簧自然伸长状态时的长度,即原长.(2).如图实,1,2所示,将已知质量的钩码挂在弹簧的下端,在平衡时测量弹簧的总长并测出钩码的重力,填写在记录表格里.(3).改变所挂钩码的质量,重复前面的实验过程多次.(4).以弹力F(大小等于所挂钩码的重力)为纵坐标,以弹簧的伸长量x为横坐标,用描点法作图.按照图中各点的分布与走向,尝试作出一条平滑的曲线(包括直线),所画的点不一定正好都在这条曲线上,但要注意使曲线两侧的点数大致均匀.(5).以弹簧的伸长量为自变量,写出曲线所代表的函数.首先尝试一次函数,如果不行则考虑二次函数. (6).得出弹力和弹簧伸长量之间的定量关系,解释函数表达式中常数的物理意义. 5、注意事项(1).所挂钩码不要过重,以免弹簧被过分拉伸,超出它的弹性限度.(2).每次所挂钩码的质量差尽量大一些,从而使坐标系上描的点尽可能远,这样作出的图线精确. (3).测弹簧长度时,一定要在弹簧竖直悬挂且处于平衡状态时测量,以免增大误差. (4).描点画线时,所描的点不一定都落在一条曲线上,但应注意一定要使各点均匀分布在曲线的两侧. (5).记录数据时要注意弹力及弹簧伸长量的对应关系及单位.6、误差分析(1).本实验误差的主要来源为读数和作图时的偶然误差.(2).弹簧竖直悬挂时,未考虑弹簧自身重力的影响.(3).为了减小误差,要尽量多测几组数据.7、实验改进在“探究弹力和弹簧伸长的关系”的实验中,也可以不测量弹簧的自然长度,而以弹簧的总长作为自变量,弹力为函数,作出弹力随弹簧长度的关系图线.这样可避免因测弹簧的自然伸长而带来的误差.2实验:探究弹力和弹簧伸长的关系1(在“探究弹力与弹簧伸长量的关系”的实验中,如何保证刻度尺竖直( ) A(使用三角板 B(使用重垂线C(目测 D(不用检查解析:使用重垂线可保证刻度尺竖直,故B正确(A、C不准确,不合题意,D是错误的( 答案:B2.某同学做“探究弹力和弹簧伸长量的关系”实验,他先把弹簧平放在桌面上使其自然伸长,用直尺测出弹簧的原长L0,再把弹簧竖直悬挂起来,挂上砝码后测出弹簧伸长后的长度L,把L,L0作为弹簧的伸长量x,这样操作,由于弹簧自身重力的影响,最后画出的图线可能是下图中的哪一个( )3.某同学在做“研究弹簧的形变量与外力的关系”实验时,将一轻弹簧竖直悬挂让其自然下垂,测出其自然长度;然后在其下部施加外力F,测出弹簧的总长度L,改变外力F的大小,测出几组数据,作了外力F与弹簧总长度L的关系图线如图5所示((实验过程是在弹簧的弹性限度内进行的)• 由图可知该弹簧的自然长度为________cm;• 该弹簧的劲度系数为________N/m.3限时训练:(10分钟)1(产生弹力的条件是______________.接触并且有形变2(弹力的大小与发生形变的物体的________有关,还与形变的_____有关;对于发生弹性形变的弹簧而言,弹力与弹簧的形变量(伸长或缩短的长度)成______.一弹簧的劲度系数为500N/m,它表示_______________________________,若用200N 的力拉弹簧,则弹簧的伸长量为_____m. 3.关于弹性形变的概念,下列说法中正确的是( )A.物体形状的改变叫弹性形变B.物体在外力停止作用后的形变,叫弹性形变C.一根铁杆用力弯折后的形变就是弹性形变D.物体在外力停止作用后,能够恢复原来形状的形变,叫弹性形变4(如图3,2,5所示,物体A静止在斜面B上.下列说法正确的是( )A.斜面B对物块A的弹力方向是竖直向上的B.物块A对斜面B的弹力方向是竖直向下的C.斜面B对物块A的弹力方向是垂直斜面向上的D.物块A对斜面B的弹力方向跟物块A恢复形变的方向是相同的5.如图3,2,6所示,小球A系在坚直拉紧的细绳下端,球恰又与斜面接触并处于静止状态,则小球A所受的力是( )A.重力和绳对它的拉力重力、绳对它的拉力和斜面对它的弹力 B.C.重力和斜面对球的支持力D.绳对它的拉力和斜面对它的支持力高考链接:1(在一根长L=50cm的轻弹簧下竖直悬挂一个重G=100N的物体,弹簧的长度变为L' =70cm(则原来弹簧中长为10cm的一小段产生的弹力等于______,它伸长了______(2(两长度相同的轻弹簧,其劲度系数分别为k1=1500N,m,k2=2000N,m(图1,25),在它们下面挂上同样重物时,它们的伸长量之比x1?x2=______;当它们伸长同样长度时,所挂重物的重力之比G1?G2,______( 3(由实验测得某弹簧的弹力F与长度L的关系如图1,26所示(则该弹簧的原长L0=______,劲度系数k=______(4。
课时作业2:3.1 第2课时 弹力有无的判断 胡克定律
3.1 重力与弹力第2课时弹力有无的判断胡克定律1.图中各物体均处于静止状态。
图中画出了小球A所受弹力的情况,其中正确的是( )2.(多选)一弹簧原长15cm,受10N拉力作用时长度变为17cm,若作用在弹簧上的拉力大小变为20N且弹簧仍然在弹性限度内,则下列说法正确的是( )A.弹簧长度变为0.19m B.弹簧长度变为0.24mC.弹簧的劲度系数为5N/m D.弹簧的劲度系数为500N/m3.一根弹簧挂0.5N的物体时长12cm,挂1N的物体时长14cm,则弹簧劲度系数为()A.18N/m B.20N/m C.25N/m D.30N/m4.一弹簧的两端各用10N的外力向外拉伸,弹簧伸长了6cm.现将其中一端固定于墙上,另一端用5N的外力来拉伸它,则弹簧的伸长量应为()A.6cm B.3cm C.1.5cm D.0.75cm5.在半球形光滑容器内放置一细杆,如图所示,细杆与容器的接触点分别为A、B两点,则容器上A、B两点对细杆的作用力方向分别为A.均竖直向上B.均指向球心C.A点处指向球心,B点处竖直向上D.A点处指向球心,B点处垂直于细杆向上6.一根轻质弹簧原长10cm,悬挂钩码静止后,弹簧长度变为12cm。
已知该弹簧的劲度系数为1N/cm,则钩码重为()A.22 N B.12 N C.10 N D.2 N7.如图所示的装置中,小球的质量均相同,弹簧和细线的质量均不计,一切摩擦忽略不计,平衡时各弹簧的弹力分别为F1、F2、F3,其大小关系是()A.F1=F2=F3B.F1=F2<F3C.F1=F3>F2D.F3>F1>F28.静止的车厢顶部用细线竖直悬挂一小球,如图所示,小球下方与一光滑斜面接触.关于小球的受力,下列说法正确的是A.细线对它一定有拉力作用B.细线可能对它没有拉力作用C.斜面对它可能有支持力作用D.斜面对它一定有支持力作用9.如图所示,一轻质弹簧测力计,弹簧劲度系数为k,弹簧测力计上端固定于天花板上的O 点,下端悬挂一个光滑的轻质定滑轮。
高频考点解密物理——力与物体的平衡考点胡克定律
1.胡克定律在弹簧的弹性限度内,弹簧上的弹力F与弹簧的形变量Δx成正比,如图,斜率为弹簧劲度系数。
2.弹簧的串并联(1)两弹簧(k1、k2)串联时,两弹簧上的弹力大小相等,有F=k1Δx1=k2Δx2等效为一个弹簧时,有F=kΔx=k(Δx1+Δx2),可得1k =11k+21k(2)两弹簧(k1、k2)并联时,两弹簧的形变量大小相等,有F1=k1Δx,F2=k2Δx等效为一个弹簧时,有F=F1+F2=kΔx,可得k=k1+k2(2015·海南卷)如图所示,物块a、b和c的质量相同,a和b、b 和c之间用完全相同的轻弹簧S1和S2相连,通过系在a上的细线悬挂于固定点O;整个系统处于静止状态;现将细绳剪断,将物块a 的加速度记为a1,S1和S2相对原长的伸长分别为Δl1和Δl2,重力加速度大小为g,在剪断瞬间A.a1=3g B.a1=0C.Δl1=2Δl2D.Δl1=Δl2【参考答案】AC【试题解析】设物体的质量为m,剪断细绳的瞬间,绳子的拉力消失,弹簧的长度变化不能立刻消失,弹簧的弹力不会发生突变,所以剪断细绳的瞬间,a受到重力和弹簧S1的拉力F1,剪断前对b、c 和弹簧S2整体,有F1=2mg,故剪断细绳的瞬间,a受到的合力大小为F=mg+F1=3mg,故加速度a1=F=3g,A正确,B错误;弹簧S2的拉m力F2=mg,根据胡克定律F=kΔx,可得Δl1=2Δl2,C正确,D错误。
【思维拓展】绳和杆可认为是劲度系数非常大的弹簧,所以绳和杆受力时发生的形变非常小,当撤去外力时,绳和杆的微小形变立刻就能恢复,其上的弹力很快减小为零,可认为发生了力的突变。
1.如图所示,轻弹簧的两端均被5 N的拉力作用,弹簧伸长了10 cm (在弹性限度内),则下列说法中正确的是A.此时弹簧所受的合力为零B.此时弹簧的弹力为10 NC.该弹簧的劲度系数为50N/mD .该弹簧的劲度系数为100 N/m2.如图所示的装置中,小球的质量均相同,弹簧和细线的质量均不计,忽略一切摩擦,平衡时各弹簧的弹力大小分别为F 1、F 2、F 3,其大小关系是A .F 1=F 2=F 3B .F 1=F 2〈F 3C .F 1=F 3〉F 2D .F 3>F 1〉F 23.一根轻质弹簧一端固定,用大小为F 1的力压弹簧的另一端,平衡时长度为l 1;改用大小为F 2的力拉弹簧,平衡时长度为l 2,弹簧的拉伸和压缩都在弹性限度内,则该弹簧的劲度系数为A .2121F F l l --B .2121F F l l ++C .2121F F l l +-D .2121F F l l -+ 4.一长度为L 的轻弹簧上端固定,下端挂一质量为m 的小球时,弹簧的总长度变为2L .现将两个这样的弹簧按如图所示方式连接,A 、B 两小球的质量均为m ,则两小球平衡时B 小球到悬点O 的距离为(忽略小球的大小,且弹簧都在弹性限度内)A .3LB .4LC .5LD .6L5.S1和S2分别表示劲度系数为k1和k2的两根弹簧,且k1>k2。
高一物理弹力试题答案及解析
高一物理弹力试题答案及解析1.一根轻质弹簧一端固定,用大小为的力压弹簧的另一端,平衡时长度为;改用大小为的力拉弹簧,平衡时长度为.弹簧的拉伸或压缩均在弹性限度内,该弹簧的劲度系数为A.B.C.D.【答案】C【解析】由胡克定律得 F=kx,式中x为形变量,设弹簧原长为l0,则有F1=k(l-l1),F2=k(l2-l),联立方程组可以解得。
所以C项正确【考点】本题考查了胡可定律。
2.关于力的概念,下列说法正确的是()A.一个力必定联系着两个物体,其中每个物体既是受力物体,又是施力物体B.放在桌面上的木块受到桌面对它向上的弹力,这是由于木块发生微小形变而产生的C.压缩弹簧时,手先给弹簧一个压力F,等弹簧再压缩x距离后才反过来给手一个弹力D.根据力的作用效果命名的不同名称的力,性质可能也不相同【答案】AD【解析】力是物体间的相互作用,受力物体同时也是施力物体,施力物体同时也是受力物体,所以A正确;产生弹力时,施力物体和受力物体同时发生形变,但弹力是由施力物体形变引起的,反作用力是由受力物体形变引起的,放在桌面上的木块受到桌面给它向上的弹力,这是由于桌面发生微小形变而产生的,故B不正确;力的作用是相互的,作用力和反作用力同时产生、同时消失,故C选项错误;根据力的作用效果命名的力,性质可能相同,也可能不相同,如向心力,可以是绳子的拉力,也可以是电场力,还可以是其他性质的力,D选项正确.3.如图所示,劲度系数为K2的轻质弹簧,竖直放在桌面上,上面压一质量为m的物块,劲度系数为K1的轻质弹簧竖直地放在物块上面,其下端与物块上表面连接在一起,现想使物块在静止时,下面弹簧承受物重的2/3,应将上面弹簧的上端A竖直向上提高的距离。
【答案】【解析】末态时物块受力分析,其中F1′与F2′分别是弹簧k1、k2的作用力,物块静止有F1′+F2′=mg初态时,弹簧k2(压缩)的弹力F2=mg末态时,弹簧k2(压缩)的弹力F2′=mg弹簧k2的长度变化量△x2==由F1′+F2′=mg,F2′=mg 得F1′=mg初态时,弹簧k1(原长)的弹力F1=0末态时,弹簧k1(伸长)的弹力F1′=mg弹簧k1的长度变化量△x1==所求距离为△x1+△x2=【考点】本题考查胡克定律。
初二物理弹力练习题及答案
初二物理弹力练习题及答案1.问题描述:在一平衡状态下的悬挂弹簧上,悬挂着一个质量为2kg的物体,该物体离开平衡位置后产生的位移为4cm,弹簧的弹性系数为80N/m。
求物体的重力和弹簧对物体的弹力大小。
解答:根据题意,可以得到如下已知条件:质量(m)= 2kg位移(Δx)= 4cm = 0.04m弹性系数(k)= 80N/m根据胡克定律,弹簧的弹力(F)与位移(Δx)的关系为:F = kΔx代入已知条件,可以得到:F = 80N/m * 0.04mF = 3.2N物体的重力(G)可以通过重力公式计算:G = mg代入已知条件,可以得到:G = 2kg * 9.8m/s²G = 19.6N所以物体的重力大小为19.6N,弹簧对物体的弹力大小为3.2N。
2.问题描述:一个质量为0.5kg的物体悬挂在一根弹性系数为160N/m的弹簧下方,当该物体离开平衡位置并下落2cm时,弹簧开始发挥作用。
求物体运动的位移,以及落地时物体的速率。
解答:根据题意,可以得到如下已知条件:质量(m)= 0.5kg位移(Δx)= 2cm = 0.02m弹性系数(k)= 160N/m根据胡克定律,弹簧的弹力(F)与位移(Δx)的关系为:F = kΔx代入已知条件,可以得到:F = 160N/m * 0.02mF = 3.2N物体的重力(G)可以通过重力公式计算:G = mg代入已知条件,可以得到:G = 0.5kg * 9.8m/s²G = 4.9N由于物体开始下落时,重力大于弹簧弹力,所以物体会继续向下运动。
当物体落地时,重力与弹簧弹力相等。
突破点:在小于或等于原长的位置停了下来,然后再上升。
解:F = kΔxF = GkΔx = mgΔx = mg/kΔx = (0.5kg * 9.8m/s²) / 160N/mΔx ≈ 0.030625m所以物体的运动位移约为0.030625m,落地时物体的速率为0m/s。
胡克定律图像练习题
胡克定律图像练习题胡克定律是关于弹性力和弹性形变之间关系的物理定律。
它描述了弹性体在受力作用下的形变情况。
本文将通过三个图像练习题来深入理解和应用胡克定律。
练习题一:一根弹簧的弹性常数为k,原长为L0。
如果一物体以速度v向右运动并与该弹簧相连,在相连的瞬间,该物体停止并产生最大压缩形变x。
弹簧与物体共同形成一个振动系统。
1. 请在坐标-时间图上画出物体与时间的关系图像。
2. 请在坐标-时间图上画出弹簧与时间的关系图像。
3. 请解释上述两个图像的物理意义。
练习题二:一根弹性系数为k,原长为L0的弹簧两端分别固定在支架上。
一个质量为m的物体静止地悬挂在弹簧下。
现将该物体向下拖动一段距离,然后释放。
1. 请画出物体与时间的位移-时间图像。
2. 请画出物体与时间的速度-时间图像。
3. 请解释上述两个图像的物理意义。
练习题三:有一铅直悬挂的质量为m的弹簧,下端连接一质量为M的物体。
整个装置在水平地面上。
现将物体向下拉一段距离h,然后将物体释放。
1. 请画出物体与时间的位移-时间图像。
2. 请画出物体与时间的速度-时间图像。
3. 请解释上述两个图像的物理意义。
结论:通过以上三个练习题,我们深入探讨了胡克定律在不同情况下的图像表现。
根据练习题的图像结果,我们可以得出以下结论。
首先,在练习题一中,物体与时间的关系图像呈现出周期性的振荡。
当物体受到弹簧的压缩形变时,物体会产生反向力,使得物体再次加速朝相反方向运动,最终再次到达最大压缩形变x的位置。
弹簧与时间的关系图像也呈现出周期性的振荡,体现了弹簧具有恢复力的特性。
在练习题二中,物体与时间的位移-时间图像呈现出正弦形状的曲线。
弹簧的恢复力会使物体产生振动,来回运动。
随着时间的推移,物体的速度也会周期性地变化。
位移-时间和速度-时间图像的波峰和波谷分别对应物体的最大位置和最大速度。
在练习题三中,物体与时间的位移-时间图像呈现出指数衰减的曲线。
物体在受到一定高度的拉力后会产生振动,但随着时间的推移,振动逐渐减弱,直到停止。
高一物理:一道关于弹簧弹力的提高训练题(胡克定律)
高一物理:一道关于弹簧弹力的提高训练题(胡克定律)
胡克定律的内容是:弹簧上的力与弹簧的形变量成正比。
关于弹簧上的力,是一种习惯的说法,指的是弹簧对它两端的物体的拉力或支持力。
关于形变量,如果弹簧拉伸,形变量是现在的长度减去原长度;如果弹簧压缩,形变量是原长度减去现在的长度。
分析弹簧弹力问题的时候,要仔细研究弹簧长度的变化过程,初学阶段,最好借助于草图,画出弹簧长度的变化图。
熟练以后,就可以在头脑中闪现了。
下面通过一道题目,结合物体受力分析,来强化一下认识。
先画出弹簧长度的变化过程
原长状态是出于解题的需要加入进去的,作为长度变化的一个参照。
从弹簧长度的变化过程中,可以很容易看出,物体A上升的高度等于弹簧在初始状态的压缩量加上B脱离地面时弹簧的伸长量。
弹簧弹力---胡克定律
弹簧弹力-胡克定律【例1】一根弹簧受到30N的拉力时,长度为20cm,受到30N的压力时,长度为14cm,则该弹簧的原长L和劲度系数k分别()A.L= 17cm k=1000N/mB.L= 10cm k=1.5N/mC.L= 17cm k= 10 N/mD.L= 10cm k=150N/m【例2】一个长度为L的轻弹簧,将其上端固定,下端挂一个质量为m的小球时,弹簧的总长度变为2L。
现将两个这样的弹簧按如图所示方式连接,A、B两小球的质量均为m,则两小球平衡时,B小球距悬点O的距离为(不考虑小球的大小,且弹簧都在弹性限时两根轻弹簧总长为l.若将两个物体按图乙所示方法挂在两轻弹簧上,则两根轻弹簧的总长为多少?【例3】如图所示,两木块的质量分别为m1和m 2,两轻质弹簧的劲度系数分别为k1和k 2,上面木块压在上面弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面的弹簧.在这个过程中, ①下面木块移动的距离为( )A.m 1g k 1B.m 2g k 2C.m 1g k 2D.m 2g k 1②在这个过程中木块m1移动的距离为( )A. B.B.C .D.实验探究弹力弹簧和伸长量的关系◆实验目的1.探究弹力和弹簧伸长的定量关系。
2.学会用列表法和图象法处理实验数据。
◆实验器材铁架台、毫米刻度尺、弹簧、钩码若干、三角板、铅笔、重垂线、坐标纸。
◆实验原理1.在弹簧下端悬挂钩码时弹簧会伸长,平衡时弹簧产生的弹力与所挂钩码的重力大小相等。
2.弹簧的长度可用刻度尺直接测出,伸长量可以由拉长后的长度减去弹簧原来的长度进行计算。
这样就可以研究弹簧的弹力和弹簧伸长量之间的定量关系了。
3.测量与记录(1)记下弹簧下端不挂钩码时所对应的刻度l0,即弹簧的原长。
(2)在弹簧下端挂上钩码,待钩码静止时测出弹簧的长度l,求出弹簧的伸长量x和所受的外力F(等于所挂钩码的重力)。
(3)改变所挂钩码的数量,重复上述实验,要尽量多测几组数据,将所测数据填写在下列表格中。
弹力和胡克定律
弹力胡克定律例题分析:例1、沿竖直墙面自由下滑的物体,只是跟墙面接触,并没有发生挤压,物体和墙都没有发生形变,所以墙对物体没有支持力的作用。
(如下左图)例2、静止在斜面上的物体,斜面对物体的支持力垂直斜面向上。
(如下右图)例3、筷子放在半球形的碗里,分析筷子受到的弹力(如图所示)说明:其中O点为圆心。
例4、分析光滑球受到的弹力。
例5、画出以下各物体A受到的弹力并指出施力物体。
施力物体:斜面施力物体:球和地面施力物体:水平地面例6、一根弹簧原长为10cm,下端挂一个40N的重物,平衡时其长度为12cm。
那么当弹簧受到多大的拉力时,它的长度为13cm?解答:设所受拉力为F2∵物体平衡∴弹簧的弹力F1和重物重力G大小的关系为F1=G∴ F1=kx1=k(l1- l)=GF2=kx2=k(l2- l)两式相除F2=60N练习题1.(1)_______________叫做弹力,弹力产生的条件是__________,弹力的大小与____________有关,方向指向______________。
(2)研究弹簧弹力大小的胡克定律的内容是_________________.它的数学表达式为____________________。
2.有一条弹簧原长10cm,挂上重20N的砝码时长11cm,当弹簧长13cm时,弹簧受到的拉力是多大?3.某弹簧的劲度系数k=5×103N/m,当它伸长2.5cm时,产生的弹力是多大?在受到100N 的拉力作用时,它要伸长多少?4.某弹簧原长10cm,作用力是10N时长12cm,求这弹簧的劲度系数。
5.有一条弹簧的劲度系数是50N/m,要使它伸长4cm,需要加多大的作用力?当拉力是8N时,弹簧伸长多少?要使弹簧伸长30cm,需要加多大的拉力?参考答案:1.(1)发生形变的物体,由于要恢复原状,对跟它接触的物体会产生的力的作用、接触并发生形变、形变大小、与形变方向相反(2)弹簧弹力的大小跟弹簧弹性形变成正比,F=kx.2.60N,3.125N; 2cm4.5N/cm5.2N; 16cm; 15N.。
弹力的大小、胡克定律
弹力的大小、胡克定律
【解析】
因平衡时弹簧产生的弹力与外加拉力相等,由胡克定律
f2 F2 L2 L0 f1 F1 L1 L0
弹力的大小、胡克定律
【四、典型例题】
一个弹簧原长8cm,下端悬挂4N的重物,静止时,弹簧的 长度为10cm,此弹簧的劲度系数多大?
解:由 F=kx 得 4 N K ( 0 .1 0 .0 8 ) m
K200N/m
弹力的大小、胡克定律
【五、变式训练】
健身用的拉力器弹簧,设每根长0.5m,把它拉至1.0m长时 需拉力100N 。若在拉力器上并列装了5根这样的弹簧,把 它拉到1.7m长时需要多少拉力?假设弹簧在弹性限度内。
F f k x ( k L 2 L 0 ) 1 0 0 0 ( 1 . 7 0 . 5 ) N 1 2 0 0 N
所以弹簧并接起来后,等效劲度系数增大,即越难伸长(或压缩)。 同理可知,弹簧串接起来后,等效劲度系数必减小,即越易伸长(或 压缩)。
ห้องสมุดไป่ตู้
得第二次的拉力
F 2L L 1 2 L L 0 0F 1 1 1 ..7 0 0 0 ..5 5 1 0 0 N 2 4 0 N
所以将5根并列的弹簧同时伸长到1.7m时所需拉力
F 5 F 2 5 2 4 0 N 1 2 0 0 N
弹力的大小、胡克定律
【说明】
如果把5根并列的弹簧等效成一根弹簧,只需求出这根等效弹簧的劲度 系数k,在已知伸长量的情况下,立即可求出总的拉力。 因为题中拉力器一根弹簧的劲度系数
第7题-胡克定律
第7题-胡克定律一.选择题(共40小题)1.如图所示,放在光滑地面上的轻质弹簧。
当在弹簧两端施加大小为F的拉力时,弹簧的长度为L1;当在弹簧两端施加大小为F的压力时,弹簧的长度为L2.则该弹簧的劲度系数为()A.B.C.D.2.如图所示,质量为m的小圆板与轻弹簧相连,把轻弹簧的另一端固定在内壁光滑的圆筒底部,构成弹簧弹射器。
第一次用弹射器水平弹射物体,第二次用弹射器竖直弹射物体,关于两次弹射时情况的分析,正确的是()A.两次弹射瞬间,小圆板受到的合力均为零B.水平弹射时弹簧处于原长,竖直时弹簧处于拉伸状态C.水平弹射时弹簧处于原长,竖直时弹簧处于压缩状态D.两次弹射瞬间,弹簧均处于原长3.如图所示,A、B是两个相同的弹簧,原长x0=10cm,劲度系数k=500N/m,如果图中悬挂的两个物体均为m=1kg,则两个弹簧的总长度为()A.22cm B.24cm C.26cm D.28cm4.三个木块a、b、c和两个劲度系数均为500N/m的相同轻弹簧p、q用轻绳连接如图,放在光滑水平桌面上,a、b质量均为1kg,c的质量为2kg.开始时p弹簧处于原长,木块都处于静止。
现用水平力缓慢地向左拉p弹簧的左端,直到c木块刚好离开水平地面为止,g取10m/s2,该过程p弹簧的左端向左移动的距离是()A.12cm B.10cm C.8cm D.6cm5.如图将轻质弹簧上端固定在天花板上,下端悬挂木块A,A处于静止状态,此时弹簧的伸长量为L(弹簧的形变在弹性限度内).已知木块A的质量为m,重力加速度为g,则此弹簧的劲度系数为()A.B.C.mgL D.6.如图所示,A、B是两个相同的弹簧,原长x0=10cm,劲度系数k=500N/m,如果图中悬挂的两个物体均为m=1kg,则两个弹簧的总长度为()A.22 cm B.24 cm C.26 cm D.28 cm7.弹簧秤不测力时弹簧长4cm,当它两侧如图各挂一个100g的砝码时,弹簧长8cm,要使弹簧秤的弹簧伸长为12cm,则应该()(始终在弹性限度内)A.在右侧再加挂一个100g的砝码B.在右侧再加挂一个200g的砝码C.在左右两侧各再加挂一个100g的砝码D.在左右两侧各再加挂一个200g的砝码8.在轻质弹簧下端悬挂一质量为0.6kg的物体,当物体静止后,弹簧伸长了2cm。
胡克定律公式举例
胡克定律公式举例胡克定律(Hooke's Law)是描述弹簧弹性变形的力学定律,它指出,弹性体的变形量与作用在其上的恢复力成正比。
以下是10个符合要求的例子:1. 弹簧拉伸:当我们用力拉伸一根弹簧时,根据胡克定律,弹簧的伸长量与施加的拉力成正比。
2. 弹簧压缩:同样地,当我们用力压缩一根弹簧时,胡克定律也适用,弹簧的压缩量与施加的压力成正比。
3. 弹簧振动:当弹簧被拉伸或压缩后释放,它会产生振动。
胡克定律描述了弹簧振动的特性,振动频率与弹簧的劲度系数和质量有关。
4. 弹簧秤:弹簧秤是一种常见的测量重量的工具。
胡克定律被应用于弹簧秤的设计中,通过测量弹簧的伸缩量来确定物体的重量。
5. 悬挂吊车:悬挂吊车使用了胡克定律的原理。
吊车上的钢索被拉伸以支撑物体的重量,根据胡克定律,钢索的伸长量与物体的重量成正比。
6. 弹簧悬挂系统:许多车辆和交通工具使用弹簧悬挂系统来提供舒适的乘坐体验。
胡克定律用于设计和调整弹簧的刚度,以使悬挂系统能够承受不同道路条件下的冲击力。
7. 弹簧床垫:弹簧床垫使用了胡克定律的原理。
当我们躺在床垫上时,床垫中的弹簧会根据我们的体重产生不同程度的压缩,以提供舒适的支撑。
8. 弹力球:弹力球是一种玩具,它利用了胡克定律的原理。
当我们挤压弹力球时,球体会产生变形,胡克定律描述了球体恢复原状的力量。
9. 弹簧门闩:弹簧门闩是一种常见的锁具。
弹簧门闩的设计使用了胡克定律,门闩的弹性变形与施加在其上的力量成正比,以保持门的牢固关闭。
10. 弹簧挂钟:弹簧挂钟使用了胡克定律来驱动钟摆的摆动。
胡克定律描述了弹簧的恢复力与钟摆的摆动频率成正比,从而实现了准确的时间测量。
通过以上例子,我们可以看到胡克定律在日常生活和工程应用中的广泛应用。
胡克定律不仅帮助我们理解弹簧的力学性质,还为各种设计和测量提供了基础。
了解胡克定律的应用可以帮助我们更好地理解和解决与弹性变形相关的问题。
胡克定律练习题
胡克定律练习题胡克定律是描述弹性体变形的一个基本定律,它表明弹性体的变形与所施加的外力成正比。
根据胡克定律,我们可以求解一些实际问题,下面是一些胡克定律的练习题。
1. 弹簧的弹性系数问题:假设有一根弹簧,其劲度系数为 k,现在该弹簧悬挂质量 m。
求解弹簧的伸长长度?解析:根据胡克定律,我们可以得到公式 F = kx,其中 F 为弹簧受到的力,x 为弹簧的伸长长度。
在这个问题中,受力 F 为弹簧所受的重力,即 F = mg。
代入胡克定律的公式,我们可以得到 mg = kx,从而求解出弹簧的伸长长度。
2. 弹簧组合问题:现有两根弹簧 A 和 B,其劲度系数分别为 k1 和 k2。
当它们按并联连接时,求解整个弹簧系统的劲度系数 k?解析:并联连接的弹簧系统,在受力时是两个弹簧同时受力。
根据胡克定律,我们可以得到 F = kx,其中 F 为受力,x 为伸长长度。
在这个问题中,整个弹簧系统的受力为 F,伸长长度为 x。
根据胡克定律的性质,我们可以得到 F = F1 + F2,即受力等于两个弹簧单独受力的和。
同样地,伸长长度也是 x = x1 + x2,即伸长长度是两个弹簧单独伸长长度的和。
代入胡克定律的公式,我们可以得到 F1 + F2 = k1x1 + k2x2,从而求解出整个弹簧系统的劲度系数 k。
3. 弹性体变形问题:假设有一根长度为 L 的金属杆,其弹性系数为 E,悬挂质量为 m。
当金属杆受到不同外力作用时,求解其伸长长度和弯曲角度。
解析:对于金属杆的伸长长度,我们可以根据胡克定律和杨氏模量之间的关系来求解。
根据胡克定律 F = kx,可以将弹性系数 E 替换成弹簧的劲度系数 k。
同时,根据杨氏模量的定义E = F/A * L/ΔL,可以得到弹性系数E 与金属杆的截面积A、长度L 以及伸长长度ΔL 之间的关系。
通过解方程,我们可以求解出金属杆的伸长长度。
对于金属杆的弯曲角度,我们可以运用弯曲力矩和转动惯量之间的关系来求解。
胡克定律(解析版)-2025年新高考物理考点精练
专题 胡克定律1 . (2024江西赣州3月质检)两根劲度系数分别为k 和2k 的轻质弹簧a 、b 串接在一起,a 弹簧的一端固定在墙上,如图所示。
开始时弹簧均处于原长状态,现用水平力作用在b 弹簧的P 端向右缓慢拉动弹簧,使a 弹簧的伸长量为L ,未超出弹性限度,则此时()A.b 弹簧的伸长量也为LB.b 弹簧的伸长量为L 2C.水平力大小为2kLD.水平力大小为3kL【参考答案】B【名师解析】由题意知,两根轻弹簧串接在一起,则两弹簧弹力大小相等,根据胡克定律F =kx 得,x 与k 成反比,则得b 弹簧的伸长量为kL 2k=L2故A 错误,B 正确;水平力大小为F =2k ⋅L2=kL ,故CD 错误。
2(2024黑龙江哈尔滨重点高中质检)如图甲所示,一轻质弹簧下端固定在水平面上,上端放一个质量为3m 的物块A ,物块A 静止后弹簧长度为l 1;若在物块A 上端再放一个质量为m 的物块B ,静止后弹簧长度为l 2,如图乙所示。
弹簧始终处于弹性限度范围内,则()A.弹簧的劲度系数为2mgl 2-l 1B.弹簧的劲度系数为3mg l 1C.弹簧的原长为4l 1-3l 2D.弹簧的原长为3l 1-2l 2【参考答案】C【名师解析】.设弹簧的劲度系数为k ,根据题意,当A 静止时,在物块A 上端再放一个质量为m 的物块B ,弹簧的压缩量增加了Δx =l 1-l 2则有mg =k l1-l 2解得k =mgl 1-l 2故AB 错误;设弹簧的原长为l ,则根据题意有3mg =k l -l 1 ,4mg =k l -l 2联立解得l =4l 1-3l 2故C 正确,D 错误。
3(2024浙江舟山期末)如图所示,弹簧一端固定在墙壁上,另一端与物块相连接。
为使物块能在粗糙水平面上保持静止,弹簧的最大长度为l 1,最小长度为l 2。
由此可知弹簧的原长是()A.l 1-l 22B.l 1+l 22C.l 2+l 12D.l 1-l 22【参考答案】B【名师解析】设弹簧的原长为L ,则有k (l 1-L )=f max ,k (L -l 2)=f max联立可得L =l 1+l 22故选B4 . (2024安徽芜湖3月质检)如图所示,在水平面上有三个质量分别为m 1、m 2、m 3的木块,木块1和2、2和3间分别用一原长为L 、劲度系数为k 的轻弹簧连接起来,木块1、2与水平面间的动摩擦因数为μ,木块3和水平面间无摩擦力。
橡皮条满足胡克定律典型例题
橡皮条满足胡克定律典型例题
在“探究合力与分力的关系”的实验中,已知用到的橡皮筋满足胡克定律.
(1)先用一个弹簧测力计使橡皮筋结点拉到O点,此时拉力F=4N,橡皮筋伸长了X=4cm,则橡皮筋的劲度系数K=______N/m (2)再用两个弹簧测力计互成角度拉到同样的O点,记下______,然后作图______.
答案
(1)由胡克定律得,F=kx,k=Fx=44×10-2N/m=100N/m.
(2)根据本实验采用的是作力的图示的方法,所以要记录两个
弹簧测力计的示数和两条绳子的方向.然后作出合力与两个分力的图示,将合力与两个分力的端点连拉起来,分析它们之间存在的规律.所以要记下两个弹簧测力计的示数和两条绳子的方向,然后作图出两分力和合力的图示.
故答案是:(1)100N/m.
(2)两个弹簧测力计的示数和两条绳子的方向,作出合力的理
论值与合力的实际值比较.。
高中物理第3章相互作用.胡克定律练习含解析鲁科版第一册
第2节科学探究:弹力课时2 胡克定律考点1胡克定律及应用1.(2019·安徽芜湖月考)如图3—2—2-1所示的装置中,弹簧的原长和劲度系数都相等,小球的质量均相同,弹簧和细线的质量均不计,一切摩擦忽略不计.平衡时各弹簧的长度分别为L1、L2、L3,其大小关系是()。
图3—2-2—1A.L1=L2=L3B.L1=L2〈L3C。
L1=L3〉L2D。
L3>L1〉L2答案:A解析:根据二力平衡知,弹簧受到的拉力大小等于小球的重力,再根据胡克定律F=kx知各弹簧的长度相等,选项A正确。
2。
(2019·山东东营一中月考)一根轻质弹簧一端固定,用大小为F1的力压弹簧的另一端,平衡时长度为L1;改用大小为F2的力拉弹簧,平衡时长度为L2。
弹簧的拉伸或压缩均在弹性限度内,该弹簧的劲度系数为()。
A.F2-F1F2-F1B.F2+F1F2+F1C.F2+F1F2-F1D.F2-F1F2+F1答案:C解析:设弹簧的原长为L0,由胡克定律可得F1=k (L0-L1),F2=k(L2-L0),联立解得k=F2+F1F2-F1,故C正确。
3。
(2019·江苏盐城月考)一根长度为L的轻弹簧,将其上端固定,下端挂一个质量为m的小球时,弹簧的总长度变为2L.现将两根这样的弹簧按如图3—2-2—2所示方式连接,A、B两小球的质量均为m,则两小球平衡时,B小球距悬点O的距离为(不考虑小球的大小,且弹簧都在弹性限度范围内)()。
图3—2—2—2A。
3L B.4L C。
5L D。
6L答案:C解析:由题意可知,kL=mg,当用两根相同的弹簧按题图所示悬挂时,下面弹簧弹力大小为mg,伸长量为L,而上面弹簧的弹力为2mg,由kx=2mg可知,上面弹簧伸长量为x=2L,故B球到悬点O的距离为L+L+L+2L=5L,C正确。
4。
(2019·江苏天一中学月考)如图3-2—2-3所示,A、B两个物块的重力分别是G A=3 N、G B=4 N,弹簧的重力不计,整个装置处于静止状态,这时弹簧的弹力F=2 N,则天花板受到的拉力和地板受到的压力,有可能是().图3—2-2-3A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弹力胡克定律典型例题集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-
弹力、胡克定律典型例题[例1]按下列要求画出弹力的方向:
(1)搁在光滑竖直墙与水平地面间的棒在A,B两处受到的弹力(图1);
(2)搁在光滑半球形槽内的棒在C,D两处受到的弹力(图2);
(3)用细绳悬挂、靠在光滑竖直墙上的小球受到的弹力(图3);
[分析](1)棒在重力作用下对A,B两处都有挤压作用,因A,B两处的支持物都为平面,所以其弹力垂直平面分别向上和向右.
(2)棒对C,D两处有挤压作用,因C处为曲面,D处为支承点,所以C处弹力垂直其切平面指向被支持的物体——沿球半径指向球心;D处弹力垂直跟它接触的平面指向被支持的物体——垂直棒斜向上.
(3)球在重力作用下挤压墙壁,拉引绳子,所以墙产生的弹力垂直墙面指向球;绳子产生的弹力沿着绳子向上.
[解](1)A,B两处弹力方向如图4所示;
(2)C,D两处弹力方向如图5所示;
(3)小球受到的弹力方向如图6所示.
[说明]有些学生常把(1)、(2)两题中A点与C点的弹力画成沿着棒的方向(图7),这是不正确的.因为弹力是被动力,它是在受到外力作用形变后产生的.在图中A,C两处使它形变的压力分别是垂直向下压向地面和沿半径方向压向槽壁的.
[例2]一根弹簧原长L0=10cm,若在下面挂重为G1=4N的物体时,弹簧长
L1=12cm,则在它下面挂重为G2=3N的物体时,弹簧长多少?
[分析]弹簧挂上重物后,平衡时弹簧产生的弹力大小等于物重.根据胡克定律,弹力与弹簧的伸长成正比,即可得解.
[解]当弹力f1=G1=4N时,弹簧伸长x1=L1-L0=(12-10)cm=2cm,据胡克定律有:
所以挂上重为3N的物体时,弹簧长为:
L2=L0+x2=(10+1.5)cm=11.5cm.
[说明]课本中没有介绍劲度系数k的单位,只需用比例法求解.若熟悉劲度系数单位后,也可先由弹力f1=G1=4N和伸长x1=2cm算出k值,即
当弹力为f2=G2=3N时,弹簧伸长
同样得弹簧长L2=L0+x2=11.5cm.
[例3]健身用的拉力器弹簧,设每根长0.5m,把它拉至1.0m长时需拉力
100N.若在拉力器上并列装了5根这样的弹簧,把它拉到1.7m长时需要多少拉力?假设弹簧在弹性限度内.
[分析]根据一根弹簧从0.5m伸长到1.0m时所需要的拉力,利用胡克定律,可求出使一根弹簧从0.5m伸长到1.7m时的拉力,从而也就可求得使5根弹簧一齐伸长到1.7m时的拉力.
[解]设L0=0.5m,L1=1.0m,L2=1.7m,因平衡时弹簧产生的弹力与外加拉力相等,由胡克定律
得第二次的拉力
所以将5根并列的弹簧同时伸长到1.7m时所需拉力
F=5F2=5×240N=1200N.
[说明]如果把5根并列的弹簧等效成一根弹簧,只需求出这根等效弹簧的劲度系数k,在已知伸长量的情况下,立即可求出总的拉力.
因为题中拉力器一根弹簧的劲度系数
使同样的5根弹簧并列起来后也从L0=0.5m伸长到L1=1.0m,弹力应为
5f1=500N,可见5根并列弹簧的等效劲度系数为1根弹簧的5倍,即
k=5k1=1000N/m.
于是由胡克定律立即可得总的拉力
F=f=kx=k(L2-L0)=1000×(1.7-0.5)N,
=1200N.
所以,弹簧并接起来后,等效劲度系数增大,即越难伸长(或压缩).同理可知,弹簧串接起来后,等效劲度系数必减小,即越易伸长(或压缩).[例4]如图1所示,重G=10N的光滑小球与劲度系数均为k=1000N/m的上、下两轻弹簧相连,并与AC、BC两光滑平板相接触.若弹簧CD被拉伸、EF被压缩的量均为x=1cm,指出小球受到几个力,并画出受力图.
[分析]研究对象为小球,与小球相关联的物体有地球、上下两弹簧、左右两平板,容易判断的是小球受到的重力和上、下两弹簧的弹力T1、T2,两个弹力的方向都是竖直向上的.由于两弹力之和
T1+T2=2kx=2×1000×1×10-2N=20N>G,
因此,小球将挤压左、右两平板,两平板对球产生垂直于板面的弹力N1、N2.因球与板面接触处均光滑,不存在摩擦力.
[答]小球共受到五个力作用:重力G,竖直向下;两弹簧弹力T1、T2,竖直向上;两平板压力(弹力)N1、N2,垂直接触处的板面指向球心.小球的受力图如图2所示.
[说明]上述小球与左、右两板接触处的弹力就需结合小球的力平衡条件判定.若上、下两弹簧被拉伸与压缩的量均为x=0.5cm,则上、下两弹力之和
此时小球与两板虽接触但无挤压趋势,两平板就不会对球产生弹力.。