勾股定理的应用(折叠和展开问题)课件

合集下载

勾股定理数学优秀ppt课件

勾股定理数学优秀ppt课件
实际应用
在建筑、工程等领域,经常需要利用勾股定理求解直角三角形的边长问题,如计算梯子抵墙 时的长度等。
判断三角形类型问题
判断是否为直角三角形
01
若三角形三边满足勾股定理公式,则该三角形为直角三角形。
判断直角三角形的直角边和斜边
02
在直角三角形中,斜边是最长的一边,通过勾股定理可以判断
哪条边是斜边,哪条边是直角边。
06
总结回顾与展望未来
关键知识点总结回顾
勾股定理的定义和表达式
在直角三角形中,直角边的平方和等于斜边的平方,即a²+b²=c²。
勾股定理的证明方法
通过多种几何图形(如正方形、梯形等)的面积关系来证明勾股定 理。
勾股定理的应用场景
在几何、三角学、物理学等领域中广泛应用,如求解三角形边长、 角度、面积等问题。
勾股定理与其他数学定理关系探讨
与三角函数关系
勾股定理是三角函数的基础,通 过勾股定理可以推导出正弦、余 弦、正切等三角函数的基本关系。
与向量关系
在向量空间中,勾股定理可以表示 为两个向量的点积等于它们模长的 平方和,这进一步揭示了勾股定理 与向量的紧密联系。
与几何图形关系
勾股定理在几何图形中有着广泛的 应用,如求解直角三角形、矩形、 菱形等图形的边长、面积等问题。
勾股定理是数学中的基本定理之一, 也是几何学中的基础概念,对于理 解三角形、圆等几何形状的性质具 有重要意义。
历史发展及应用
历史发展
勾股定理最早可以追溯到古埃及时期,但最为著名的证明是由 古希腊数学家毕达哥拉斯学派给出的。在中国,商高在周朝时 期就提出了“勾三股四弦五”的勾股定理的特例。
应用
勾股定理在几何、三角、代数、物理等多个领域都有广泛应用, 如求解三角形边长、角度、面积等问题,以及力学、光学等领 域的计算。

利用勾股定理解决折叠问题—课件

利用勾股定理解决折叠问题—课件

8
x
6
4
10
知识讲解
变式1.已知长方形ABCD在平面直角坐标系中,A (0,8)D(10,8),如图AD沿着AE翻折后点D落在 BC上,求点E的坐标.
E(10,3)
10
8 10
8-x
8 8-x x
6
4
10
知识讲解
变式2.在长方形ABCD中,AB=8,AD=10, 如图AD沿着AC翻折, 求CE的长.
10
8x
8
x
10-x
8
10
课堂练习
变式3.在长方形ABCD中,AB=8,AD=10,如
图,翻折长方形ABCD,使点D与点B重合,
求 折痕EAFE 的长.
x 10G10-x
8 10-x
小结
利用勾股定理解决折叠问题的基本步骤: (1)标出已知和问题,明确目标在哪个直角三 角形中,设适当的未知数x; (2)利用折叠找全等; (3)将已知边和未知边(用含x的代数式表示), 转化到同一个直角三角形中表示出来; (4)利用勾股定理列方程,解方程,得解。
知识ห้องสมุดไป่ตู้解
类型一、直角三角形的折叠
例1.如图,一块直角三角形的纸片,两直角边 AC=6,BC=8,现折叠纸片使A与B重合,折痕为DE, 求CD的长.
解: ∵Rt△ABC,AC=6,BC=8
设观C察D为、x思,考则BD=8-x
由1折.题叠中的已性知质可什得么,求的是什么?
2∴.D折B叠=A过D=程8中-x 你发现了什么?
在3R.观t △察BCDDE在中哪,一由个勾直股定角理三得角形中,
你能x2表6示2 出(这8 个x直)2角三角形的每
解得条x边= ?7
6 8-x

勾股定理的应用-课件

勾股定理的应用-课件
02
在实际应用中,可以利用勾股定 理来检验一个三角形是否为直角 三角形,从而确定角度和边长之 间的关系。
勾股定理的逆定理
勾股定理的逆定理是:如果一个三角 形的一组边长满足勾股定理,则这个 三角形一定是直角三角形。
通过勾股定理的逆定理,可以用来判 断一个三角形的角度和边长是否满足 直角三角形的条件,从而确定其是否 为直角三角形。
如何进一步推广和应用勾股定理
跨学科应用
01
鼓励将勾股定理应用于其他学科,以促进跨学科的学习和理解

创新教学方法
02
通过创新教学方法,例如使用数字化工具和互动游戏,提高学
生对勾股定理的兴趣和参与度。
实际应用
03
鼓励学生将勾股定理应用于实际问题解决中,例如在建筑、工
程和科学实验等领域。
THANKS
感谢观看
确定直角三角形
勾股定理可以用来确定一个三角形是 否为直角三角形,只需验证三边关系 是否满足勾股定理即可。
计算直角三角形边长
判断三角形的稳定性
勾股定理的应用可以帮助我们判断三 角形的稳定性,因为只有直角三角形 满足勾股定理,所以只有直角三角形 是稳定的。
已知直角三角形两条边的长度,可以 使用勾股定理计算第三边的长度。

在气象学中,勾股定理也被用于 计算气象气球上升的高度和速度 ,以了解大气层的结构和变化。
05
勾股定理的未来发展
勾股定理在现代数学中的应用
代数证明
勾股定理可以通过代数方法进行证明,这有助于学生更好地理解 代数和几何之间的联系。
三角函数
勾股定理与三角函数密切相关,通过应用勾股定理,可以解决一些 与三角函数相关的问题。
在海上导航中,勾股定理也用于确定船只的经度和纬度,以确保航行安全和准确 到达目的地。

专题训练二--利用勾股定理解决折叠问题(共13张PPT)

专题训练二--利用勾股定理解决折叠问题(共13张PPT)
长风破浪会有时,直挂云帆济沧海。努力,终会有所收获,功夫不负有心人。以铜为镜,可以正衣冠;以古为镜,可以知兴替;以人为镜,可以明得失。前进的路上 照自己的不足,学习更多东西,更进一步。穷则独善其身,达则兼济天下。现代社会,有很多人,钻进钱眼,不惜违法乱纪;做人,穷,也要穷的有骨气!古之立大 之才,亦必有坚忍不拔之志。想干成大事,除了勤于修炼才华和能力,更重要的是要能坚持下来。士不可以不弘毅,任重而道远。仁以为己任,不亦重乎?死而后已, 理想,脚下的路再远,也不会迷失方向。太上有立德,其次有立功,其次有立言,虽久不废,此谓不朽。任何事业,学业的基础,都要以自身品德的修炼为根基。饭 而枕之,乐亦在其中矣。不义而富且贵,于我如浮云。财富如浮云,生不带来,死不带去,真正留下的,是我们对这个世界的贡献。英雄者,胸怀大志,腹有良策, 吞吐天地之志者也英雄气概,威压八万里,体恤弱小,善德加身。老当益壮,宁移白首之心;穷且益坚,不坠青云之志老去的只是身体,心灵可以永远保持丰盛。乐 其乐;忧民之忧者,民亦忧其忧。做领导,要能体恤下属,一味打压,尽失民心。勿以恶小而为之,勿以善小而不为。越是微小的事情,越见品质。学而不知道,与 行,与不知同。知行合一,方可成就事业。以家为家,以乡为乡,以国为国,以天下为天下。若是天下人都能互相体谅,纷扰世事可以停歇。志不强者智不达,言不 越高,所需要的能力越强,相应的,逼迫自己所学的,也就越多。臣心一片磁针石,不指南方不肯休。忠心,也是很多现代人缺乏的精神。吾日三省乎吾身。为人谋 交而不信乎?传不习乎?若人人皆每日反省自身,世间又会多出多少君子。人人好公,则天下太平;人人营私,则天下大乱。给世界和身边人,多一点宽容,多一份担 为生民立命,为往圣继绝学,为万世开太平。立千古大志,乃是圣人也。丹青不知老将至,贫贱于我如浮云。淡看世间事,心情如浮云天行健,君子以自强不息。地 载物。君子

人教版数学八年级下册17.1.2勾股定理应用-折叠问题 课件(共16张PPT)

人教版数学八年级下册17.1.2勾股定理应用-折叠问题 课件(共16张PPT)

6
4
6 (E)
F
8
10
E
6
10
(F)
课堂小结
❖ 1、标已知; ❖ 2、找相等; ❖ 3、设未知,利用勾股定理,列方程; ❖ 4、解方程,得解。
我的感悟我的收获
(1)折叠过程实质上是一个轴对称变换,折痕就是 对称轴,变换前后两个图形全等。
(2)在矩形的折叠问题中,若有求边长问题,常设未 知数,找到相应的直角三角形,用勾股定理建立方程, 利用方程思想解决问题。
B
即x²+4²=(8-x)²,x=3cm,
∴EC的长为3cm。
D
E
F
C
解题步骤
1、标已知,标问题,明确目标在哪个直角三 角形中,设适当的未知数x;
2、利用折叠,找全等。
3、将已知边和未知边(用含x的代数式表示) 转化到同一直角三角形中表示出来。
4、利用勾股定理,列出方程,解方程,得解。
探究活动
探究三:如图,矩形纸片ABCD中,AB=8cm,AD=12cm,
使C点落在对角线BD上的点E处,此时折痕DF的
长是多少?
A
D
6
4x
6
B 8-x
xC
探究活动
如图,矩形纸片ABCD中,AB=6cm,AD=8cm,
探究二:把矩形沿对角线BD折叠,点C落在
C′处。猜想重叠部分△BED是什么三角形?
说明你的理由.
C′
求能角重得平叠到分等部线腰分与三△平角B行形E线D的组面合积时,。 A E
课后作业
3、 如图,矩形纸片ABCD中,AB=3厘米,BC=4厘
米,现将A、C重合,再将纸片折叠压平,
(1)找出图中的一对全等三角形,并证明;

勾股定理的应用课件

勾股定理的应用课件
利用勾股定理确定卫星轨 道参数,提高卫星通信的 覆盖范围和信号质量。
广播信号
在广播信号传输中,勾股 定理用于优化信号传输路 径,提高广播信号的覆盖 范围和清晰度。
勾股定理在日常生活中的应用
航海
在航海中,勾股定理用于确定航行方向 和距离,保证船舶能够准确到达目的地 。
VS
测量
在日常生活中,勾股定理用于测量物体的 高度、长度等参数,方便人们进行各种实 际操作。
勾股定理的应用 ppt课件
目 录
• 勾股定理的介绍 • 勾股定理的应用场景 • 勾股定理的实际应用案例 • 勾股定理的扩展应用 • 总结与展望
01
勾股定理的介绍
勾股定理的定义
勾股定理是几何学中的基本定理之一 ,它描述了直角三角形三边的关系。 具体来说,在一个直角三角形中,直 角边的平方和等于斜边的平方。
导航系统
利用勾股定理计算飞行器的位置和速 度,提高航空和航天导航的精度和可 靠性。
航天器设计
在航天器设计中,勾股定理用于确定 火箭的发射角度和卫星轨道的参数, 以确保航天器能够成功进入预定轨道 。
通信工程中的应用
电波传播
在通信工程中,勾股定理 用于计算电波传播的距离 和范围,优化信号传输质 量。
卫星通信
02
勾股定理的应用场景
几何学领域
确定直角三角形
勾股定理是确定直角三角形的重 要工具,通过已知的两边长度, 可以判断是否为直角三角形,并 进一步求出第三边的长度。
解决几何问题
勾股定理在解决几何问题中有着 广泛的应用,如求三角形面积、 判断三角形的形状、计算最短路 径等。
物理学领域
力的合成与分解
在物理学中,勾股定理常用于力的合 成与分解,特别是在分析斜面上的物 体受力情况时,通过勾股定理可以确 定力的方向和大小。

初二数学《勾股定理》课件

初二数学《勾股定理》课件
18世纪,欧拉证明了任意三角形的三 条边长都可以用三种不同的实数来表 示,这三种实数之和等于另外三种实 数的平方和。
勾股定理的重要性
勾股定理是几何学中的重要定理 之一,它揭示了直角三角形三边 之间的关系,是解决几何问题的
重要工具。
勾股定理在数学、物理、工程等 领域都有广泛的应用,如物理中 的力学、光学、声学等都涉及到
06
思考题
总结词:拓展思维
你能举出一些生活中应用 勾股定理的实际例子吗?
你认为勾股定理在现代科 技中有哪些应用?
列举
如何理解勾股定理在数学 中的地位和意义?
如何通过勾股定理来探索 和研究更复杂的几何问题

THANKS.
勾股定理在复数域的应用
勾股定理在复数域的应用
勾股定理可以在复数域中找到应用,例如在量子力学和信号处理等领域。
应用实例
在量子力学中,勾股定理可以用于描述粒子在三维空间中的运动状态;在信号处理中,勾股定理可以 用于计算信号的能量或功率等。
练习与思考
05
基础练习题
总结词:巩固基础
01
02
列举
勾股定理的基本形式是什么?
总结词
利用相似三角形证明勾股定理
详细描述
欧几里得通过构造两个相似三角形,利用相似三角形的性质,推导出直角三角 形两条直角边的平方和等于斜边的平方,从而证明了勾股定理。
赵爽的证法
总结词
利用面积证明勾股定理
详细描述
赵爽通过将直角三角形转化为矩形,利用面积关系,推导出直角三角形两条直角 边的平方和等于斜边的平方,从而证明了勾股定理。
勾股定理在解决与自然界的规律、现象等相关的问题时也 有着广泛的应用。例如,在解决与地球的自转、公转、太 阳系行星运动等相关的问题时,勾股定理可以提供重要的 思路和方法。

华东师大版八年级数学上册第14章勾股定理折叠问题中的勾股定理课件

华东师大版八年级数学上册第14章勾股定理折叠问题中的勾股定理课件

A
D
B
G
EC
概括:找出图中的直角三角形,用勾股定理求出 未知边。 怎么求EF?做垂线,构造直角三角形。
总结:怎么应用勾股定理解决折叠问题?
1.抓住折叠前后的图形是全等形,找出图 中的直角三角形(可做垂线段构造直角三角 形)。
2.设未知数,找等量关系,根据直角三角形 的三边关系列方程(组)。
课堂练习:
折叠问题中的勾股定理
引入:
勾股定理反应的是直角三角形三边 的关系。应用勾股定理由已知边求出 未知边。
这节课应用勾股定理来解决折叠中 的诸多问题
请按下列要求折叠矩形纸片ABCD 并画出折叠后的几何图形
• 1:把矩形边AB折在边AD上。 • 2:把矩形ABCD边AB 折在对角线AC上。 • 3:把矩形ABCD沿对角线AC对折。 • 4: 使矩形的顶点B恰好与点D重合。
D1E的长。 (3)求四边形ABCE的面积。




D1

AB=AB1=CD=BE=6, B1D=EC=2,
A
B1
D
AE2=AB2+BE2 =62+62=72
AE= 72
B
E
C
问题2:边AB落在AC上,你能提出哪 些问题?你能求出哪些线段长?
A
提示:ΔABE折叠到哪?AB折 在何处?
Dபைடு நூலகம்B1
∠B折在何处?图中又产生哪
些直角三角形?
B
C
E
思考:在哪个直角三角形中,有已知边,且 未知边之间有数量关系,可利用勾股定理求 出未知边呢?
x2+42=(8-x)2
得x=3.
∴DB=5
课后作业:
1,如图,在长方形纸片ABCD中,AB= 12,BC=5,点E在AB上将ΔADE沿 DE折叠,使点A落在对角线BD上的点A1 处,则AE的长为多少?

勾股定理的应用课件(共26张PPT)

勾股定理的应用课件(共26张PPT)

OB ________2_.7__5___1_._6_5_8_____.
C
在Rt△COD中, OD2 _C__D_2___O_C__2___3_2 __2_2___5___,
OD ________5_____2__.2__3_6_____.
O
B
D
BD _O_D_-__O_B__=__2_._2_3_6_-__1_._6_5_8__≈_0_._5_8___ .
(2)、(3)两题结果精确到0.1
ac
b
C
a2 b2 c2
A
小试身手 :☞
如图,学校有一块长方形花园,有极少 数人为了避开拐角走“捷径”,在花园内走 出了一条“路”,仅仅少走了________步路, 却踩伤了花草。 (假设1米为2步)
小试身手 :☞
如图,学校有一块长方形花圃,有极少 数人为了避开拐角走“捷径”,在花圃内走 出了一条“路”,仅仅少走了________步路, 却踩伤了花草。 (假设1米为2步)
勾股定理的应用
知识回忆 :☞
勾股定理及其数学语言表达式:
直角三角形两直角
边a、b的平方和等于斜
B
边c的平方。
ac
b
C
a2 b2 c2
A
知识回忆 :☞
在△ABC中,∠C=90°.
(1)若b=8,c=10,则a= 6
;
(2)若a=5,b=10,则c = 11.2 ;
B
(3)若a=2,∠A=30° ,则 b = 3.5 ;
C
:BC
:AB=
1:1:√2 . 若AB=8则AC= 4 2 .
又若CD⊥AB于D,则CD= 4√2 .
B
D

勾股定理在折叠问题和最短路径中的应用(精品)-完整版PPT课件

勾股定理在折叠问题和最短路径中的应用(精品)-完整版PPT课件

R
D A
S
F
C
B
小 结: 把几何体适当展开成平面图形, 再利用“两点之间线段最短”, 或点到直线“垂线段最短”等性
质来解决问题。
走的最短路程是多少?
F
3 2
A2
四、节节高升
例4、如图,长方体的长为15cm,宽为10cm,高为 20cm,点B到点C的距离为5cm,一只蚂蚁如果要沿 着长方体的表面从A点爬到B点,需要爬行的最短距
离是多少?
B C 20
分析 根据题意分析蚂蚁爬行的路线有 两种情况如图①② ,由勾股定理可求
得图1中AB最短
B
A
A
2 如图,一个圆柱的底面周长为60cm,高AB =18cm, AF=1cm,CD=1cm,蚂蚁从C点爬行到F点的最短路程
是多少?
A E
F.
.C D
三、长方体中的最值问题
例3、如图,一只蚂蚁从实心长方体的顶点A出发, 沿长方体的表面爬到对角顶点C1处(三条棱长如图 所示),问怎样走路线最短?最短路线长为多少?
2点的对称性:对称点连线被对称轴(折痕)垂直平分
全等性

轴对称 本 质 折叠问题
对称性
重结果 叠
精 髓
利用方程思想
折叠问题
1、两手都要抓:重视“折”,关注“叠” 2、本质:轴对称(全等性,对称性) 3、关键:根据折叠实现等量转化 4、基本方法:构造方程:
(1)根据勾股定理得方程。 (2)根据相似比得方程。 (3)根据面积得方程。
D1 A1 D
A
4
C1
B1
1 C
2 B
分析: 根据题意分析蚂蚁爬行的路线有三种情 况如图①②③ ,由勾股定理可求得图1中AC1爬

北师大八年级数学上册《勾股定理的应用》课件(24张PPT)

北师大八年级数学上册《勾股定理的应用》课件(24张PPT)

B
① A′

B′
A
B A′
③Aຫໍສະໝຸດ (2)路线①,②,③中最短路线是哪条?

3
B
① A′
B
A′
12

B′ ②
AA
(3)若圆柱的高为12,底面半径为3时,3条路线分别多 长?(π取3)
做一做
Br
① A′
B
A′
h

B′②
h=12,r=3 h=3.75,r=3 h=2.625,r=3
A A
路线① 路线② 路线③ 最短
最短时: x 1.5,
所以最短是1.5+0.5=2(m).
答:这根铁棒的长应在2~3 m之间.
3.如图,在棱长为10 cm的正方体的一个顶点A处有一 只蚂蚁,现要向顶点B处爬行,已知蚂蚁爬行的速度是 1 cm/s,且速度保持不变,问蚂蚁能否在20 s内从A爬 到B?
B
A
B B
A
【解析】因为从A到B最短路径AB满足 AB2=202+102=500>400,所以不能在20 s内从A爬 到B.
【规律方法】将立体图形展开成平面图形,找出两点间的最 短路径,构造直角三角形,利用勾股定理求解.
运用勾股定理解决实际问题时,应注意: 1.没有图的要按题意画好图并标上字母. 2.有时需要设未知数,并根据勾股定理列出相应的方程 来解.
数学是无穷的科学.
——赫尔曼外尔
1、书籍是朋友,虽然没有热情,但是非常忠实。2022年4月21日星期四2022/4/212022/4/212022/4/21 2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年4月2022/4/212022/4/212022/4/214/21/2022 3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/4/212022/4/21April 21, 2022

勾股定理的应用(习题课)课件

勾股定理的应用(习题课)课件
一般三角形是指三边长度都不相等的三角形。
在一般三角形中,勾股定理可以用于确定三角形的三边 关系,但需要满足一定的条件。
在一般三角形中,勾股定理的应用相对较少,但仍然有 一些特殊情况可以使用勾股定理。
勾股定理在一般三角形中可以用于解决一些特殊问题, 如判断三角形的形状、求边长等。
03 勾股定理在日常生活中的 应用
在建筑学中的应用
01
02
03
建筑设计
勾股定理在建筑设计中应 用广泛,如确定建筑物的 垂直角度、计算建筑物的 斜率等。
结构分析
勾股定理用于分析建筑物 的结构稳定性,确保建筑 物在各种受力情况下都能 保持安全。
施工测量
利用勾股定理进行施工测 量,确保建筑物的各个部 分按照设计要求进行施工 。
在物理学中的应用
勾股定理的应用(习题课)课件
目 录
• 勾股定理的基本概念 • 勾股定理在几何图形中的应用 • 勾股定理在日常生活中的应用 • 勾股定理习题解析 • 勾股定理的应用练习
01 勾股定理的基本概念
勾股定理的定义
勾股定理定义
勾股定理是几何学中一个重要的定理 ,它描述了直角三角形三边的关系。 具体来说,在一个直角三角形中,直 角边的平方和等于斜边的平方。
力学分析
在物理学中,勾股定理常用于解 决与力矩、扭矩和弹性形变有关
的问题。
光学问题
在光学问题中,勾股定理可以用于 计算折射角、反射角等角度问题。
电磁学
在电磁学中,勾股定理可用于计算 电场强度、磁场强度等物理量。
在其他领域的应用
航海学
在航海学中,勾股定理可 用于计算航程、确定航向 等。
地理学
在地理学中,勾股定理可 用于计算地球上两点之间 的距离和纬度差等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

∴X+1=12+1=13(米)
答:水池的深度为12米,芦苇高为13米.
(3)有一个边长为50dm 的正方形洞口, 想用一个圆盖去盖住这个洞口,圆的直径 至少多长?(结果保留整数)
∵木板的宽2.2米大于1米,
∴ 横着不能从门框C通过;
∵木板的宽2.2米大于2米,
∴竖着也不能从门框通2过m.
∴ 只能试试斜着能否通过,
对 要角 求线 出AACC的 的A长 长1最 ,m大 怎, 样B因 求此呢需?
想一想
例1 一个门框的尺寸如图所示,一块长3 m,宽 2.2 m的长方形薄木板能否从门框内通过?为什么?
解得x 9
B
x D14-x C 14
AD AB2 BD2 152 92 12
1
1
SABC
BC 2
AD 1412 84 2
练习1:
蚂蚁从A点经B到C点的最少要爬了多少厘米?
A 4G
3
5B
12
E
5 13
C
(小方格的边长为1厘米)
练习2:
小明在平坦无障碍物的草地上,从A地向东走 3 m ,
302 x2 202 (50 x)2 解得x 20 (尺)
30 x
20 50-x
练习&1 ☞
小明想知道学校旗杆的高,他发现旗杆顶端的绳子 垂到地面还多1米,当他把绳子的下端拉开5米后, 发现下端刚好接触地面,求旗杆的高度。
x2 52 ( x 1)2 x2 52 x2 2x 1
在水池的中央有一根新生的芦苇,它高出水面1尺,如果把这根芦
苇拉向岸边,它的顶端恰好到达岸边的水面,问这个水池的深度
和这根芦苇的长度各是多少?
D
解:设水池的深度AC为X米,
C
B
则芦苇高AD为 (X+1)米.
根据题意得: BC2+AC2=AB2
∴52+X2 =(X+1)2
25+X2=X2+2X+1
A
X=12
解:设竹竿高X尺,则门高为 (X-1)尺. 根据题意得: 42+ (X-1) 2 =X2 16+X2 -2X+1=X2 17 -2X=0 2X=17
X=8.5
答:竹竿高8.5尺, 门高为 7.5尺.
例3:在我国古代数学著作《九章算术》中记载了一道有趣的问题
这个问题意思是:有一个水池,水面是一个边长为10尺的正方形,
解:设竹竿长X米,则城门高为 (X-1)米.
根据题意得: 32+ (X-1) 2 =X2
9+X2 -2X+1=X2 10 -2X=0 2X=10
X=5 答:竹竿长5米
有一个小朋友拿着一根竹竿要通过一个长方形的 门,如果把竹竿竖放就比门高出1尺,斜放就恰 好等于门的对角线,已知门宽4尺,求竹竿高与 门高.
2x 25 1 x 12
x+1
x
方程思想
5
1
方程思想 面积法
2.在△ABC中,AB=15,BC=14,AC=13,
求(1) △ABC的面积; (2)求腰AC上的高
152 x2 132 (14 x)2 152 132 x2 (14 x)2
A
15
E 12 13
28 2 14(2x 14)
再向北走 2 m ,再向西走 1 m ,再向北走 6 m ,最后
向东走 4 m 到达 B 地 ,求 A、B 两地的最短距离
是多少?
4 B
AB 62 82 100
10
6
答:A、B 两地的最短距离
10
8
是10 米.
1
2
A
36
c
议 一 议
小明的妈妈买了一部29英寸(74厘 米)的电视机。小明量了电视机的屏 幕后,发现屏幕只有58厘米长和46厘 米宽,他觉得一定是售货员搞错了。
你能解释这是为什么吗?
我们通常所说的29 英寸或74厘米的电视 机,是指其荧屏对角 线的长度
46
58
∵ 582 462 5480 742 5476
荧屏对角线大约为74厘米 ∴售货员没搞错
议一议
以直角三角形三边为边作等边三角形, 这3个等边三角形的面积之间有什么关系?
F
A
D
C
B
E
(2)在长方形ABCD中,宽AB为1m,长BC为 2m ,求AC长.
zxxkw
学科网
c b
学.科.网
a2+b2=c2
a
八年级下册
勾股定理---运用
12.如图,△ABC中,∠A=45°, ∠B=30°,BC=8. 求 AC的长.
C
8
4
A
4
B
D
42
练习&2 ☞
1.在ABC中, ∠C=90°,AC=6,CB=8,则 ABC面积为__2_4__,斜边为上的高为__4_.8___.
A
面积法
D
C
B
1、已知:Rt△ABC中,AB=4,AC=3,则BC
5 或 7 的长为 zxxkw
.
B
B 分类讨论

4
C3 A
A3 C
2.三角形ABC中,AB=10,AC=17,BC边上 的高线AD=8,求BC
zxxkw
分类讨论
A
8
17 10
B
C
方程思想
1.小溪边长着两棵树,恰好隔岸相望,一棵树高30 尺,另外一棵树高20尺;两棵树干间的距离是50尺,每 棵树上都停着一只鸟,忽然两只鸟同时看到两树间水面 上游出一条鱼,它们立刻以同样的速度飞去抓鱼,结果 同时到达目标。问这条鱼出现在两树之间的何处?
A
D
1m
B
2m
C
在Rt△ ABC中,∠B=90°,由勾股定理可知:
AC AB2 BC2 12 22 5
活动2 问题
(1)在长方形ABCD中AB、BC、AC大小关系?
D
C
AB<BC<AC
AC 2 AB2 BC 2
A
B
八年级下册
勾勾股股定定理理---运用
1.在长和宽分别是40cm,30cm的文具盒中,能
放进一支长为48cm的铅笔吗?
分析:根据题意,关键是
求对角线的长度。 解:设对角线长为xcm
30cm
x
由勾股定理得:302+402=x2 x2 =2500 解得:x=50
∵50>48
40cm
∴该文具盒能放进一支长为48cm的铅笔z.xx.k
活动2
(2)一个门框尺寸如下图所示.
①若有一块长3米,宽0.8米的薄木板,问怎样从门框通过? ②若薄木板长3米,宽1.5米呢? ③若薄木板长3米,宽2.2米呢?为什么?
解:在Rt△ABC中,根据勾股 定理,得 AC2=AB2+BC2=12+22=5.
AC= 5 ≈2.24. 因为 5大于将实木际板问的题宽转2化.2为m数,学问所以 木板能题从,门建框立内几通何模过型.,画出图形,分
析已知量、待求量,让学生掌握解 决实际问题的一般套路.
D
C
A
B
1m
2m
小东拿着一根长竹竿进一个宽为3米的城门,他 先横着拿不进去,又竖起来拿,结果竹竿比城门 高1米,当他把竹竿斜着时,两端刚好顶着城门 的对角,问竹竿长多少米?
相关文档
最新文档