初三数学期末测试题及答案

合集下载

山东省烟台市初三数学第一学期期末考试真题及答案解析

山东省烟台市初三数学第一学期期末考试真题及答案解析

山东省烟台市初三数学第一学期期末考试真题及答案解析(第一部分:基础演练,满分120分)一、 选择题(3′×12=36′)1、 下列智能手机的功能图标中,是中心对称图形但不是轴对称图形的有( )A. 1个B. 2个C. 3个D. 4个2、 下列各式从左到右的变形属于因式分解的是( )A.(m -2)(m -3)= (2-m ) (3-m )B. 3a -6b +3=3(a -2b )C. (x +1)(x -1)=x 2-1D. x 2-7x +12=(x -4)(x -3) 3、下列对代数式12---x x 的变形,不正确的是( )A. 1-2--x x B. xx -1-2 C. 12--x x D. xx -12--4、使分式23422++-x x x 的值为零的x 的值是( ) A . x =2 B . x = -2或x =-1 C . x =±2 D . x = -2 5、下列命题中,正确的命题是( )A. 有一个角是直角的四边形是矩形B. 对角线互相垂直的四边形是菱形C. 对角线互相垂直平分的四边形是正方形D. 对角线互相平分的四边形是平行四边形6、小亮根据演讲比赛中九位评委所给的分数制作了如下表格: 如果要去掉一个最高分和一个最低分,则表中数据一定不发生变化的是( )A. 平均数B. 众数C. 方差D. 中位数7、在俄罗斯方块游戏中,所有出现的方格体自由下落,如果一行中九个方格齐全,那么这一行会自动消失.已拼好的图案如图所示,现又出现一小方格体,必须进行以下哪项操作,才能拼成一个完整图案,使其全部自动消失( ) A .顺时针旋转90°,向下平移 B .逆时针旋转90°,向下平移 C .顺时针旋转90°,向右平移 D .逆时针旋转90°,向右平移8、如图所示,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,E ,F 是对角线AC 上的两点,当E ,F 满足下列哪个条件时,四边形DEBF 不一定是平行四边形( )A. OE=OFB. ∠ADE=∠CBFC. DE=BFD. ∠ABE=∠CDF 9、如图,在平行四边形ABCD 中,∠A=47°,将平行四边形折叠,使点D ,C 分别落在点F ,E 处(点F ,E 都在AB 所在的直线上),折痕为MN ,则∠AMF 等于( ) A. 47° B. 86° C. 90° D. 94° 10、如图,在菱形ABCD 中,M ,N 分别在AB ,CD 上,且AM=CN ,MN 与AC 交于点O ,连接BO.若∠DAC=29°,则 ∠OBC 的度数为( ) A. 29° B. 58° C. 61° D. 71°11、 某次列车平均提速20km/h ,用相同的时间,列车提速前行驶400km ,提速前比提速后多行驶100km ,平均数 中位数 众数 方差 8.5 8.3 8.1 0.15A. 20100400400-+=x xB. 20100400400++=x xC. 20100400400+-=x xD. 20100400400--=x x12、如图,平行四边形ABCD 中,AB=10cm ,AD=15cm ,点P 在AD 边上以每秒1cm 的速度从点A 向点D 运动,点Q 在BC 边上,以每秒3cm 的速度从点C 出发,在CB 间往返运动,两个点同时出发,点P 到达点D 时停止(同时点Q 也停止运动),在运动以后,当以点P 、D 、Q 、B 为顶点组成平行四边形时,运动时间t 为( ) A. 6秒 B. 6.5秒 C. 7.5秒 D. 15秒 二、填空题(3分×6=18分)13、若关于x 的分式方程33122x m x x +-=--有增根,则m = . 14、用一条宽度相等的足够长的纸条打一个结(如图1所示)然后轻轻拉紧、压平就可以得到如图2所示的正五边形ABCDE.图中,∠BAC= .15、如图,四边形ABCD 是菱形,点O 是对角线的交点,三条直线都经过点O ,图中阴影面积为24cm 2,其中一条对角线长为6cm ,则另一条对角线长为 cm.16、如图,将△ABC 沿射线BC 方向移动,使点B 移动到点C ,得到△DCE ,连接AE ,若△ABC 的面积为4,则△ACF 的面积为 .17、如图所示,在△ABC 中,M 是BC 的中点,AN 平分∠BAC ,BN ⊥AN.若AB=14,AC=19,则MN 的长为 . 18、如图,正方形ABCD 的边长为6,E 为BC 上的一点,BE=1,F 为AB 上的一点,AF=3,P 为AC 上一点,则PF+PE 的最小值为 . 三、解答题(66分)19、(12分)先化简,再求值:(1) 2222a b ab b b aab⎛⎫+--÷ ⎪⎝⎭,已知a =b -8.(2)先化简:⎪⎭⎫ ⎝⎛--÷+-+x x x x x x 1121222,再从-2≤x <3的范围内选取一个适合的整数代入求值.20、(10分)如图,等边△ABC 的边长是4,D 、E 分别为AB 、AC 的中点,延长BC 至点F ,使CF=21BC ,连接CD 和EF.(1)求证:DE=CF ; (2)求EF 的长.21、(10分)如图,△ABC 三个顶点的坐标分别为A (1,1),B (4,2),C (3,4). (1)画出△ABC 向下平移5个单位长度后得到的△A 1B 1C 1; (2)画出△ABC 关于原点对称的△A 2B 2C 2; (3)画出△ABC 绕点A 逆时针旋转90°后得到的△AB 3C 3;(3)在x 轴上求作一点P ,使△P AB 的周长最小,画出△P AB ,并直接写出点P 的坐标.22、(12分)某学校在初三级部举行了全员参加的数学运算能力竞赛,试卷题目共10题,每题10分.现分别从三个班中各随机取10名同学的成绩(单位:分),收集数据如下: 整理数据: 分析数据:根据以上信息回答下列问题:(1)a = ,b = ,c = ,d = ;(2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好,请说明理由; (3)已知三班方差为S 32=141,请计算1班方差S 12并判断1班,3班哪个班的成绩比较稳定;(4)为了让学生重视数学运算学习,学校将给竞赛成绩满分的同学颁发奖状,该校初三共1200人,试估计需要准备多少张奖状?23、(10分)先阅读下面的内容,再解决问题. 例题:若m 2+2mn +2n 2-4n +4=0,求m 和n 的值. 解:∵m 2+2mn +2n 2-4n +4=0 ∴m 2+2mn +n 2+n 2-4n +4=0 ∴(m+n )2+(n -2)2=0 ∴m+n =0,n -2=0 ∴m = -2,n =2.问题解决:(1)若x 2+2y 2-2xy +6y +9=0,求x y 的值;(2)已知a ,b ,c 是△ABC 的三边长,满足a 2+b 2=8a +6b -25,且c 是△ABC 中最长的边,求c 的取值范围. 班 数 人数 分数 60 70 80 90 100 1班 0 1 6 2 1 2班 1 1 3 a 1 3班 1 1 4 2 2 平均数 中位数 众数 1班 83 80 80 2班 83 c d 3班 b 80 8024、(12分)为落实大美福山“七纵十横”的城区路网大框架,区政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的1.5倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?(第二部分:能力挑战,满分30分)四、附加题25、(14分)某校八年级学习小组在探究学习过程中,用两块完全相同的且含60°角的直角三角板ABC 与AFE按如图1所示位置放置,∠A=90°,现将Rt△AEF绕A点按逆时针方向旋转角α(0°<α<90°),如图2,AE与BC交于点M,AC与EF交于点N,BC与EF交于点P.(1)求证:AM=AN;(2)当旋转角α=30°时,四边形ABPF是什么样的特殊四边形?并说明理由.26、(16分)如图1,已知点E,F分别为正方形ABCD的边BC,CD上的点,AF,DE相交于点G,当E,F分别为边BC,CD的中点时,有:①AF=DE;②AF⊥DE成立.试探究下列问题:(1)如图1,若点E不是边BC的中点,F不是边CD的中点,且CE=DF,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”),不需要证明)(2)如图2,若点E,F分别在CB的延长线和DC的延长线上,且CE=DF,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;(3)如图3,在(2)的基础上,连接AE和EF,若点M,N,P,Q分别为AE,EF,FD,AD的中点,请判断四边形MNPQ是“矩形、菱形、正方形”中的哪一种,并证明你的结论.初三数学试题参考答案及评分建议(如有错误请组长及时更正)一、选择题(每小题3分,满分36分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BDAADDCCBCBC二、填空题(每小题3分,满分18分)13. 3 14.36° 15.16 16.2 17.2.5 18.40(102或) 三、解答题(满分66分)19.(本题共2个小题,满分12分)解:(1)原式222=()22()a b ab ab a a b a b +-⋅-2()2a b a a a b-=⋅-………………2分2a b -=. ………………3分 ∵8a b =-,∴a -b =-8.………………4分∴原式=-4. ……………6分(2)原式=2(1)2(1)(1)(1)x x x x x x x +--÷-- =2(1)(1)(1)1x x x x x x +-⋅-+…………2分 =21x x - ……………3分∵x ≠-1,0,1,∴当x =2时,…………4分 原式=21x x -=2221-=4.…………6分(或当-2x =时,原式=34-……6分) 20. (本题满分10分)解:(1)∵ D ,E 分别是AB ,AC 中点 ∴DE 是△ABC 的中位线…………2分∴DE =21BC ,DE ∥BC ∵ CF =21BC ∴DE =CF ……………………5分 (2)∵ DE =CF DE ∥CF ∴四边形EDCF 是平行四边形 ∴EF =CD …………7分 ∵ D 是AB 的中点,等边△ABC 的边长为4∴CD =32 …………9分∴FE =CD =32 …………10分 21.(本题共10分,每小题画图各2分) (1)△111C B A 如图; ………………2分 (2)△222C B A 如图;………………4分(3)△33C AB 如图,3C 的坐标是(-2,3);.…………7分 (4)点P 和△P AB 如图,点P 的坐标是(2,0)…………10分22. (本题满分12分)解:(1)设乙工程队每天能改造道路的长度为x 米,则甲工程队每天能改造道路的长度为23x 米,…1分 根据题意得:323360360=-x x ………3分 解得:x =40,…………4分 经检验,x =40是原分式方程的解,且符合题意,…………5分 ∴23x =23×40=60. …………6分 答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.………7分 (2)设安排甲队工作m 天,则安排乙队工作4060-1200m天,………………8分根据题意得:7m +5×4060-1200m≤145, …………10分解得:m ≥10. …………11分答:至少安排甲队工作10天。

九年级数学期末模拟精品测试题及答案,精品3套

九年级数学期末模拟精品测试题及答案,精品3套

(第2题)(第3题)(第6题)九年级数学期末模拟精品测试题及答案,精品3套九年级上全册精品试卷(满分:150分)一、选择题。

(本题共10个小题,每小题4分,共40分)1、2010上海世博会刚刚圆满闭幕,下列各图是选自历届世博会徽中的图案,其中是中心对称图形的是()A、 B、 C、 D、2、如图,AB与⊙O切于点B,AO=6cm,AB=4cm,则⊙O•的半径为()A、、、cm3、图中∠BOD的度数是()A、55°B、110°C、125° D.150°4、若x<0,则xxx2-的结果是()A.0 B.-2 C.0或-2 D.25、下列各式中,最简二次根式是()A、32B、22+a C、a8 D、23a6、我们知道,“两点之间线段最短”,“直线外一点与直线上各点连线的所有线段中,垂线段最短”在此基础上,人们定义了点与点的距离,•点到直线的距离.类似地,如图,若P是⊙O外一点,直线PO交⊙O 于A、B两点,PC•切⊙O于点C,则点P到⊙O的距离是()A、线段PO的长度B、线段PA的长度C、线段PB的长度 D、线段PC的长度7、下列命题错误..的是()A、经过三个点一定可以作圆B、三角形的外心到三角形各顶点的距离相等C、同圆或等圆中,相等的圆心角所对的弧相等D、经过切点且垂直于切线的直线必经过圆心8、如图,△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C恰好在AB上,(第8题)(第14题)(第15题)(第16题)∠AOD =90°,则∠B 的度数是( )A 、500B 、400C 、450D 、6009、已知一元二次方程230x px ++=的一个根为3-,则p 的值为( )A .1B .2C .3D .410、若m,n 是方程020102=--x x 的两根,则代数式)20102()20102(22++-⨯--n n m m 的值为( ).A .-2010 B.2010 C.0 D.1二、填空题。

2022-2023学年北京东城区初三第一学期数学期末试卷及答案

2022-2023学年北京东城区初三第一学期数学期末试卷及答案

2022-2023学年北京东城区初三第一学期数学期末试卷及答案一、选择题(每题2分,共16分)1. 若关于的一元二次方程有一个根为,则的值为( ) x 220x x m -+=0m A. 2 B. 1C. 0D.1-【答案】C 【解析】【分析】将代入方程,即可求解.0x =220x x m -+=【详解】解:∵关于的一元二次方程有一个根为, x 220x x m -+=0∴, 0m =故选:C .【点睛】本题考查了一元二次方程的解的定义,将代入方程是解题的关键. 0x =2. 下列图形中是中心对称图形的是( ) A. 正方形 B. 等边三角形C. 直角三角形D. 正五边形 【答案】A 【解析】【分析】根据中心对称图形的概念求解即可. 【详解】解:A 、是中心对称图形,本选项正确; B 、不是中心对称图形,本选项错误; C 、不是中心对称图形,本选项错误; D 、不是中心对称图形,本选项错误. 故选A .【点睛】本题考查了中心对称图形的概念.中心对称图形是要寻找对称中心,绕对称中心旋转180度后与原图形重合.3. 关于二次函数的最大值或最小值,下列说法正确的是( ) 22(4)6y x =-+A. 有最大值4 B. 有最小值4C. 有最大值6D. 有最小值6 【答案】D 【解析】【分析】根据二次函数的解析式,得到a 的值为2,图象开口向上,函数22(4)6y x =-+有最小值,根据定点坐标(4,6),即可得出函数的最小值.【详解】解:∵在二次函数中,a=2>0,顶点坐标为(4,6), 22(4)6y x =-+∴函数有最小值为6. 故选:D .【点睛】本题主要考查了二次函数的最值问题,关键是根据二次函数的解析式确定a 的符号和根据顶点坐标求出最值.4. 一只不透明的袋子中装有3个黑球和2个白球,这些除颜色外无其他差别,从中任意摸出3个球,下列事件是确定事件的为( ) A. 至少有1个球是黑球 B. 至少有1个球是白球 C. 至少有2个球是黑球 D. 至少有2个球是白球【答案】A 【解析】【分析】列出摸出的三个球的颜色的所有可能情况即可.【详解】根据题意可得,摸出的三个球的颜色可能为:两个白球,一个黑球;一个白球,两个黑球;三个黑球,则可知摸出的三个球中,至少有一个黑球, 故必然事件是至少有一个黑球, 故选:A .【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5. 某厂家2020年1~5月份的口罩产量统计如图所示.设从2月份到4月份,该厂家口罩产量的平均月增长率为x ,根据题意可得方程( )A. 180(1﹣x)2=461B. 180(1+x )2=461C. 368(1﹣x)2=442D. 368(1+x )2=442【答案】B 【解析】【分析】本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设这个增长率为x ,根据“2月份的180万只,4月份的产量将达到461万只”,即可得出方程. 【详解】解:从2月份到4月份,该厂家口罩产量的平均月增长率为x ,根据题意可得方程:180(1+x )2=461, 故选:B .【点睛】本题考查了一元二次方程的实际应用,理解题意是解题关键.6. 如图,在中,是直径,弦的长为5,点D 在圆上,且, 则O AB AC 30ADC ∠=︒O 的半径为( )A. B. 5C. D.2.57.510【答案】B 【解析】【分析】连接,由题意易得,在中解三角形求解. BC 30ABC ADC ∠=∠=︒Rt ACB 【详解】连接,BC30ABC ADC ∴∠=∠=︒在中,是直径, O AB ,90ACB ∴∠=︒在中,Rt ACB ,,90ACB ∠=︒30ABC ∠=︒5AC =210AB AC ==5OA =故选:B .【点睛】本题主要考查圆周角定理及含直角三角形的性质;熟练掌握圆周角定理及含30︒直角三角形的性质是解题的关键.30︒7. 抖空竹在我国有着悠久的历史,是国家级的非物质文化遗产之一.如图,AC ,BD 分别与⊙O 切于点C ,D ,延长AC ,BD 交于点P .若,⊙O 的半径为6cm ,则图中的120P ∠=︒ CD长为( )A. π cmB. 2π cmC. 3π cmD. 4π cm【答案】B 【解析】【分析】连接OC 、OD ,利用切线的性质得到,根据四边形的内角和90OCP ODP ∠=∠=︒求得,再利用弧长公式求得答案. 60COD ∠=︒【详解】连接OC 、OD ,分别与相切于点C ,D ,,AC BD Q O ∴,90OCP ODP ∠=∠=︒,120360P OCP ODP P COD ∠=︒∠+∠+∠+∠=︒, ∴,60COD ∠=︒的长, CD∴6062(cm)180ππ⨯==故选:B【点睛】此题考查圆的切线的性质定理,四边形的内角和,弧长的计算公式,熟记圆的切线的性质定理及弧长的计算公式是解题的关键.8. 如图,正方形和的周长之和为,设圆的半径为,正方形的边长为ABCD O 20cm cm x ,阴影部分的面积为.当x 在一定范围内变化时,y 和S 都随x 的变化而变化,cm y 2cm S 则y 与x ,S 与x 满足的函数关系分别是( )A. 一次函数关系,一次函数关系B. 一次函数关系,二次函数关系 C .二次函数关系,二次函数关系D. 二次函数关系,一次函数关系【答案】B 【解析】【分析】根据圆的周长公式和正方形的周长公式先得到,再根据152y x π=-+得到,由此即可得到答案.S S S =-阴影正方形圆2215254S x x πππ⎛⎫=--+ ⎪⎝⎭【详解】解:∵正方形和的周长之和为,圆的半径为,正方形的边ABCD O 20cm cm x 长为, cm y ∴, 4220y x π+=∴, 152y x π=-+∵,S S S =-阴影正方形圆∴,22222211552524S y x x x x x ππππππ⎛⎫⎛⎫=-=-+-=--+ ⎪ ⎪⎝⎭⎝⎭∴y 与x ,S 与x 满足的函数关系分别是一次函数关系,二次函数关系, 故选B .【点睛】本题考查二次函数与一次函数的识别、正方形的周长与面积公式,理清题中的数量关系,熟练掌握二次函数与一次函数的解析式是解答的关键. 二、填空题 (每题2分,共16分)9. 在平面直角坐标系中,抛物线与y 轴交于点C ,则点C 的坐标为xOy 245y x x =-+_________. 【答案】 (0,5)【解析】【分析】令,代入抛物线,得到点C 的纵坐标,即可得解. 0x =245y x x =-+【详解】解:依题意,令,得到,0x =5y =故抛物线与y 轴交于点C 的坐标为, 245y x x =-+(0,5)故答案为 :(0,5)【点睛】本题考查了二次函数与y 轴交点问题,令,即可得到抛物线与y 轴交点的纵0x =坐标. 10. 把抛物线向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线2112y x =+的解析式为_______. 【答案】 21(1)22y x =+-【解析】【分析】直接根据“上加下减,左加右减”进行计算即可. 【详解】解:抛物线, 2112y x =+向左平移1个单位长度,再向下平移3个单位长度, 得到 ()211132y x =++-即 ()21122y x =+-故答案为:. ()21122y x =+-【点睛】本题主要考查函数图像的平移;熟记函数图像的平移方式“上加下减,左加右减”是解题的关键.11. 请写出一个常数c 的值,使得关于x 的方程有两个不相等的实数根,则220x x c ++=c 的值可以是____________.【答案】0,(答案不唯一,即可). 1c <【解析】【分析】利用一元二次方程根的判别式求出c 的取值范围即可得到答案. 【详解】解:因为方程有两个不相等的实数根, 220x x c ++=所以 2Δ240c =->解得1c <故答案为:0,(答案不唯一,即可)1c <【点睛】本题主要考查了一元二次方程根的判别式;熟知一元二次方程根的判别式是解题的关键.12. 2022年3月12日是我国第44个植树节,某林业部门为了考察某种幼树在一定条件下的移植成活率,在同等条件下,对这种幼树进行大量移植,并统计成活情况,下表是这种幼树移植过程中的一组统计数据:幼树移植数(棵)100 1000 5000 8000 10000 15000 20000 幼树移植成活数(棵)87 893 4485 7224 8983 13443 18044 幼树移植成活的频率0.870 0.893 0.897 0.903 0.898 0.896 0.902 估计该种幼树在此条件下移植成活的概率是______.(结果精确到0.1)【答案】0.9【解析】【分析】大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.【详解】∵幼树移植数20000时,幼树移植成活的频率是0.902,∴估计该种幼树在此条件下移植成活的概率为0.902,精确到0.1,即为0.9,故答案为:0.9.【点睛】本题考查了用大量试验得到的频率可以估计事件的概率,大量反复试验下频率稳定值即概率.13. 以▱ABCD对角线的交点O为原点,平行于BC边的直线为x轴,建立如图所示的平面直角坐标系.若A点坐标为(﹣2,1),则C点坐标为_____.【答案】(2,﹣1)【解析】【分析】根据平行四边形是中心对称图形,再根据▱ABCD对角线的交点O为原点和点A的坐标,即可得到点C的坐标.【详解】解:∵▱ABCD对角线的交点O为原点,A点坐标为(﹣2,1),∴点C的坐标为(2,﹣1),故答案为:(2,﹣1).【点睛】此题考查中心对称图形的顶点在坐标系中的表示.14. 如图,在⊙O中,AB切⊙O于点A,连接OB交⊙O于点C,过点A作AD∥OB交⊙O于点D ,连接CD .若∠B=50°,则∠OCD 的度数等于___________.【答案】20°##20度 【解析】【分析】连接OA ,如图,根据切线的性质得到∠OAB=90°,则利用互余可计算出∠AOB=40°,再利用圆周角定理得到∠ADC=20°,然后根据平行线的性质得到∠OCD 的度数.【详解】解:连接OA ,如图,∵AB 切⊙O 于点A , ∴OA⊥AB, ∴∠OAB=90°, ∵∠B=50°,∴∠AOB=90°-50°=40°, ∴∠ADC=∠AOB=20°, 12∵AD∥OB,∴∠OCD=∠ADC=20°. 故答案为:20°.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理.15. 《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章计算弧田面积所用的经验公式是:弧田面积(弦×失+失²).弧田(图中阴影部分)由圆弧和其所对的弦所12=围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.现有圆心角为,半径等于4米的弧田,按照上述公式计算出弧田的面积约为______ 米120︒.)21.73≈【答案】 8.92【解析】【分析】由题意可知于D ,交圆弧于C ,由题意得米,解得OC AB ⊥4AO =120AOB ∠=︒米,再求出,最后由勾股定理得到,由垂径定理求出即可得122OD OA ==CD AD AB 出结果.【详解】解:如图,由题意可知,,,(米),120AOB ∠=︒AB CD ⊥4OA OB ==, 30,90DAO ADO ∴∠=︒∠=︒12AD BD AB ==(米)122OD OA ∴==(米)422CD OC OD ∴=-=-=AD ∴===(米)2AB AD ∴==弧田面积 ∴()212AB CD CD =⨯+()21222=⨯+2=+(平方米)8.92≈故答案为:8.92【点睛】本题考查了勾股定理以及垂径定理的应用;熟练掌握垂径定理是解答本题的关键.16. 我们给出如下定义:在平面内,点到图形的距离是指这个点到图形上所有点的距离的最小值.在平面内有一个矩形,中心为O ,在矩形外有一点P ,,,4,2ABCD AB AD ==3OP =当矩形绕着点O 旋转时,则点P 到矩形的距离d 的取值范围为__________.【答案】 32d ≤≤【解析】【分析】根据题意分别求出当过的中点E 时,此时点P 与矩形上所有点的OP AB ABCD 连线中,;当过顶点A 时,此时点P 与矩形上所有点的连线中,;d PE =OP ABCD d PA =当过顶点边中点F 时,此时点P 与矩形上所有点的连线中,,即OP AD ABCD d PF =可求解.【详解】解:如图,当过的中点E 时,此时点P 与矩形上所有点的连线中,OP AB ABCD ,, d PE =112OE AD ==∴;2d PE OP OE ==-=如图,当过顶点A 时,此时点P 与矩形上所有点的连线中,,OP ABCD d PA =矩形,中心为O ,,4,2ABCD AB AD ==∴,2,90BC AD B ==∠=︒∴, AC ==∴ 12OA AC ==∴;3d AP OP OA ==-=-如图,当过顶点边中点F 时,此时点P 与矩形上所有点的连线中,OP AD ABCD ,, d PF =122OF AB ==∴;1d PF OP OF ==-=综上所述,点P 到矩形的距离d 的取值范围为.32d ≤≤故答案为:32d ≤≤【点睛】本题考查矩形的性质,旋转的性质,根据题意得出临界点时点d 的值是解题的关键.三、解答题(共68分,17-22题,每题5分,23-26题,每题6分,27-28题,每题7分)17. 下面是小美设计的“过圆上一点作圆的切线”的尺规作图过程.已知:点A 在上.O 求作:的切线.O AB作法: ①作射线;OA ②以点A 为圆心,适当长为半径作弧,交射线于点C 和点D ;OA ③分别以点C ,D 为圆心,大于长为半径作弧,两弧交点B ; 12CD ④作直线.AB 则直线即为所求作的的切线.AB O 根据小美设计的尺规作图过程,解决下面的问题:(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:连接,.BC BD 由作图可知,, .AC AD =BC =∴ .BA OA ∵ 点A 在上,O ∴直线是的切线( ) (填写推理依据) .AB O 【答案】(1)见解析;(2);;经过半径的外端并且垂直于这条半径的直线是圆的切线.BD ⊥【解析】【分析】(1)依据题意,按步骤正确尺规作图即可;(2)结合作图,完成证明过程即可.【小问1详解】补全图形如图所示,【小问2详解】证明:连接,.BC BD由作图可知,,.AC AD =BC BD =∴,BA OA ⊥∵ 点A 在上,O ∴直线是的切线(经过半径的外端并且垂直于这条半径的直线是圆的切线,AB O 故答案为:;;经过半径的外端并且垂直于这条半径的直线是圆的切线BD ⊥【点睛】本题考查了尺规作图能力和切线的证明;能够按要求规范作图是解题的关键.18. 如图,是的直径,弦于点E ,,若,求的AB O CD AB ⊥2CD OE =4AB =CD 长.【答案】.CD =【解析】【分析】由垂径定理得到,推出,在中,利用勾股定理即CE DE =CE OE =Rt COE △可求解.【详解】解:如图,连接. OC∵是的直径,弦于点E ,AB O CD AB ⊥∴.CE DE =又∵,2CD OE =∴.CE OE =∵,4AB =∴.2OC =在中,,Rt COE △222CE OE OC +=∴CE =∴.CD =【点睛】本题考查了垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦是解题的关键.19. 下面是小聪同学用配方法解方程:的过程,请仔细阅读后,2240x x p --=()0p >解答下面的问题.2240x x p --=解:移项,得:.①224x x p -=二次项系数化为1,得:.② 222p x x -=配方,得.③ 2212p x x -+=即. 2(1)2p x -=∵,0p >∴ 1x -=∴ 11x =+11x =(1)第②步二次项系数化为1的依据是什么?(2)整个解答过程是否正确?若不正确,说出从第几步开始出现的错误,并直接写出此方程的解.【答案】(1)等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等(2)不正确,解答从第③步开始出错, 1x =2x =【解析】【分析】(1)根据等式的性质2即可写出依据;(2)根据配方法解一元二次方程的步骤即可求解. 【小问1详解】等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等;【小问2详解】不正确,解答从第③步开始出错,正确的步骤为:配方,得.③ 22112p x x -+=+即 22(1)2p x +-=∵,0p >∴.④ 1x -=∴.⑤ 1x =2x =此方程的解为. 1x =2x =【点睛】本题考查等式的性质和解一元二次方程,解题的关键是读懂材料,明确每一步的做题依据.20. 如图,已知抛物线L :y =x 2+bx+c 经过点A(0,﹣5),B(5,0).(1)求b ,c 的值;(2)连结AB ,交抛物线L 的对称轴于点M .求点M 的坐标;【答案】(1),;(2)交点M 的坐标为(2,-3).4b =-5c =-【解析】【分析】(1)将点A 、点B 坐标代入函数解析式,求解方程组即可;(2)设直线AB 的解析式为:,将点A 、点B 坐标代入函数解析式求解确()0y kx b k =+≠定解析式,然后根据(1)中确定二次函数解析式,求出其对称轴,求两条之间交点即可确定点M 的坐标.【详解】解:(1)将点A 、点B 坐标代入函数解析式可得:, 50255c b c -=⎧⎨=++⎩解得:, 45b c =-⎧⎨=-⎩∴,;4b =-5c =-(2)设直线AB 的解析式为:,()0y kx b k =+≠将点A 、点B 坐标代入函数解析式可得:, 505b k b-=⎧⎨=+⎩解得:, 15k b =⎧⎨=-⎩∴一次函数解析式为:,5y x =-由(1)得二次函数解析式为:,245y x x =--对称轴为:, 22b x a=-=直线与的交点为M ,5y x =-2x =∴当时,,2x ==3y -∴交点M 的坐标为(2,-3).【点睛】题目主要考查利用待定系数法确定二次函数与一次函数解析式,两条直线的交点问题,二次函数的基本性质,理解题意,熟练运用待定系数法确定解析式是解题关键.21. 如图,在边长均为1个单位长度的小正方形组成的网格中,点,,均为格点(每A B O 个小正方形的顶点叫做格点).(1)作点关于点的对称点;A O 1A (2)连接,将线段绕点顺时针旋转得到线段,点的对应点为,1AB 1A B 1A 90︒11A B B 1B 画出旋转后的线段;11A B (3)连接,,求出的面积(直接写出结果即可).1AB 1BB 1ABB 【答案】(1)见解析 (2)见解析(3)8【解析】【分析】(1)根据网格的特点作出点关于点的对称点;A O 1A(2)根据题意,画出旋转后的线段,即可求解;11A B (3)根据网格的特点,以及三角形面积公式求得面积即可求解.【小问1详解】解:如图所示,点即为所求;1A 【小问2详解】解:如图所示,线段即为所求;11A B 【小问3详解】解:如图所示,. 118282ABB S =⨯⨯= 【点睛】本题考查了画中心对称图形,画旋转图形,网格中求三角形面积,数形结合是解题的关键.22. 2022年3月23日,“天宫课堂”第二课在中国空间站开讲,神舟十三号飞行乘组航天员翟志刚、王亚平、叶光富讲了又一堂精彩的太空科普课.这场充满奇思妙想的太空授课,让科学的种子在亿万青少年的心里生根发芽.小明和小亮对航天知识产生了极大兴趣,他们在中国载人航天网站了解到,航天知识分为“梦圆天路”、“飞天英雄”、“探秘太空”、“巡天飞船”等模块.他们决定先从“梦圆天路”、“飞天英雄”、“探秘太空”三个模块中随机选择一个进行学习,分别设这三个模块为A ,B ,C ,用画树状图或列表的方法求出小明和小亮选择相同模块的概率. 【答案】 13【解析】【分析】先画出树状图,从而可得所有等可能的结果,再找出小明和小亮选择相同模块的结果,然后利用概率公式计算即可得. 【详解】解:由题意,画树状图如下:由图可知,所有等可能的结果共有9种,其中,小明和小亮选择相同模块的结果有3种. 则小明和小亮选择相同模块的概率为, 3193P ==答:小明和小亮选择相同模块的概率为. 13【点睛】本题考查了利用列举法求概率,正确画出树状图是解题关键.23. 已知关于x 的一元二次方程. ()22120x m x m +++-=(1)求证:无论m 取何值,此方程总有两个不相等的实数根;(2)当该方程的判别式的值最小时,写出m 的值,并求出此时方程的解.【答案】(1)见解析 (2),m =122,1x x =-=【解析】【分析】(1)判断判别式的符号,即可得证;(2)求出判别式的值最小时的m 的值,再解一元二次方程即可.【小问1详解】证明:∵,22(21)4(2)49m m m ∆=+-⨯-=+∵,20m ≥∴.2Δ490m =+>∴无论m 取何值,方程总有两个不相等的实数根.【小问2详解】解:由题意可知,当时,的值最小.0m =249m ∆=+将代入,得0m =2(21)20x m x m +++-=220x x +-=解得:.122,1x x =-=【点睛】本题考查一元二次方程的判别式与根的个数的关系,以及解一元二次方程.熟练掌握判别式与根的个数的关系,以及解一元二次方程的方法,是解题的关键.24. 掷实心球是中考体育考试项目之一,实心球投掷后的运动轨迹可以看作是抛物线的一部分,建立如图所示的平面直角坐标系,从投掷到着陆的过程中,实心球的竖直高度(单位:y m)与水平距离(单位:m)近似满足函数关系.某位同学进行了两x 2()y a x h k =-+(0)a <次投掷.(1)第一次投掷时,实心球的水平距离与竖直高度的几组数据如下:x y 水平距离x/m 0 2 4 6 8 10竖直距离y/m 1.67 2.632.95 2.63 1.670.07根据上述数据,直接写出实心球竖直高度的最大值,并求出满足的函数关系;2()y a x h k =-+(0)a <(2)第二次投掷时,实心球的竖直高度y 与水平距离近似满足函数关系x .记实心球第一次着地点到原点的距离为,第二次着地点到原点20.09( 3.8) 2.97y x =--+1d 的距离为,则_____ (填“>”“=”或“<”).2d 1d 2d 【答案】(1),2.9520.08(4) 2.95y x =--+(2)>【解析】【分析】(1)先根据表格中的数据找到顶点坐标,即可得出实心球竖直高度的最大值,并利用待定系数法得到抛物线解析式;(2)设着陆点的纵坐标为0,分别代入第一次和第二次的函数关系式,求出着陆点的横坐标即为 和,然后进行比较即可.1d 2d 【小问1详解】解:由表格数据可知,抛物线的顶点坐标为, (42.95),所以实心球竖直高度的最大值为,2.95设抛物线的解析式为:,2(4) 2.95y a x =-+将点代入,得, (01.67),1.67162.95a =+解得,0.08a =-∴抛物线的解析式为:;20.08(4) 2.95y x =--+【小问2详解】解:第一次抛物线解析式为,20.08(4) 2.95y x =--+令,得到(负值舍去), 0y =4x =+第二次抛物线的解析式为,20.09( 3.8) 2.97y x =--+令,得到(负值舍去)0y = 3.8x =+, 4 3.8+>+ ,12d d ∴>故答案为:>【点睛】本题主要考查了二次函数的应用,待定系数法求函数关系式,解题的关键是读懂题意,列出函数关系式.25. 如图,点在以为直径的上,平分交于点D ,交于点E ,C AB O CD ACB ∠O AB 过点D 作交F .DF AB CO(1)求证:直线是的切线;DF O(2)若°,DF 的长.30A ∠=AC =【答案】(1)见解析 (2) FD =【解析】【分析】(1)连接,证明可得结论;OD DF OD AB OD ⊥⊥,,(2)再中,,,得到,,再在Rt ACB △30A ∠=︒AC =4AB =2OD =Rt ODF △中,由,继而求得;60F ∠=︒FD 【小问1详解】证明:连接. OD∵ 是的直径,平分,AB O CD ACB ∠ AD DB∴=∴ .90AOD BOD ∠=∠=︒又∵ ,FD AB ∥∴ .90ODF BOD ∠=∠=︒即 .OD DF ⊥∴ 直线为的切线.DF O 【小问2详解】解:∵ 是的直径,AB O ∴.90ACB ∠=︒又∵,,30A ∠=︒AC =∴ .4AB =∴ .2OD =∵ ,AO CO =30ACO A ∴∠=∠=︒∴ .60COB A ACO ∠=∠+∠=︒∵ ,DF AB ∴ ,60F ∠=︒,30FOD ∴∠=︒设则,,FD x =22OF FD x ==又,2OD =在中,由勾股定理得:,Rt ODF △22224x x +=解得:, x =故 FD =【点睛】本题属于圆综合题,考查了垂径定理,圆周角定理,平行线的判定,特殊角的直角三角形性质,等知识,解题的关键是学会添加常用辅助线解决问题.26. 已知二次函数. ()2430y ax ax a =-+≠(1)求该二次函数的图象与y 轴交点的坐标及对称轴.(2)已知点都在该二次函数图象上,()()()()12343,1,12,,,,,y y y y --①请判断与的大小关系: (用“”“”“”填空);1y 2y 1y 2y >=<②若,,,四个函数值中有且只有一个小于零,求a 的取值范围.1y 2y 3y 4y 【答案】(1)抛物线与y 轴交点的坐标为,对称轴()0,32x =(2)①; ② =3154a -≤<-【解析】【分析】(1),可得抛物线与y 轴交点的坐标,再根据抛物线对称轴公式解答,即可0x =求解;(2)①根据题意可得点关于直线对称,即可求解;②根据题意可得点()()12,3,1,y y 2x =在对称轴的左侧,点在对称轴的右侧,然后分两种情况:()()()2341,,,1,2,y y y --()13,y 当时,当时,即可求解.0a >a<0【小问1详解】解:令,则,0x =3y =∴抛物线与y 轴交点的坐标为 .()0,3对称轴. 422a x a-=-=【小问2详解】解:① ∵函数图象的对称轴为直线,2x =∴点关于直线对称,()()12,3,1,y y 2x =∴,12y y =故答案为:;=②∵函数图象的对称轴为直线,,2x =3112>>->-∴点在对称轴的左侧,点在对称轴的右侧.()()()2341,,,1,2,y y y --()13,y 当时,在对称轴的左侧,y 随x 的增大而减小,0a >∴,不合题意.1234y y y y =<<当时,在对称轴的左侧,y 随x 的增大而增大,则,a<01234y y y y =>>,,,四个函数值可以满足,1y 2y 3y 4y 12340y y y y >=≥>∴,340,0y y ≥<即当时,,当时,.=1x -3430y a a =++≥2x =-44830y a a =++<解得 . 3154a -≤<-【点睛】本题考查了二次函数图象与性质,掌握二次函数图象与性质是解题的关键.27.如图,是等腰直角三角形,,为延长线上一点,ABC 90ACB AC BC ∠=︒=,D AC 连接,将线段绕点逆时针旋转得到线段,过点作于点,BD BD D 90︒DE E EFAC ⊥F 连接. AE(1)依题意补全图形;(2)比较与的大小,并证明;AF CD (3)连接,为的中点,连接,用等式表示线段之间的数量BE G BE CG CD CG BC ,,关系,并证明.【答案】(1)见解析 (2),见解析AF CD =(3),见解析BC CD =【解析】【分析】(1)根据旋转的性质画图即可;(2)根据旋转的性质以及等腰直角三角形可以得到全等三角形,再根据全等三角形的性质即可求出结论;(3)根据题意画出已知图形,再根据图形得到全等三角形,利用全等三角形的性质和等腰直角三角形的性质即可求出结论.【小问1详解】解:补全图形如图所示【小问2详解】解:,理由如下:AF CD =∵EF AD ⊥∴90EFD ∠=︒∵90ACB ∠=︒∴EFD BCD ∠=∠∵90ACB ∠=︒∴90CBD CDB ∠∠=︒+由题意可知,90BDE ∠=︒∴90EDF BDC ∠∠=︒+∴EDF CBD ∠=∠在和中EFD △DCB △EDF CBD EFD DCB ED BD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴≌EFD △()AAS DCB ∴EF CD DF BC ==,∵BC AC =∴AC DF =∴AF CD =【小问3详解】解: 理由如下:BC CD =连接,DGFG∵ ,为的中点,DE BD =G BE 90BDE ∠=︒∴EG BG DG ==,90DGB ∠=︒∵90EFD DGE ∠=∠=︒∴GEF CDG ∠=∠在和中EFG DCG △EF DC GEF CDG EG DG =⎧⎪∠=∠⎨⎪=⎩∴≌ EFG SAS DCG ()∴,FG CG =EGF DGC ∠=∠∴90EGF EGC DGC EGC ∠+∠=∠+∠=︒即90CGF ∠=︒∴为等腰直角三角形CGF △∴CF =∵ ,BC AC AF CF ==+AF CD =∴BC CD =+【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质等相关知识点,掌握全等三角形的性质和旋转的性质是解题的关键.28. 在平面直角坐标系中,我们给出如下定义:将图形M 绕直线上某一点P 顺时xOy 3x =针旋转,再关于直线对称,得到图形N ,我们称图形N 为图形M 关于点P 的二次90︒3x =关联图形.已知点.()0,1A (1)若点P 的坐标是,直接写出点A 关于点P 的二次关联图形的坐标________;()3,0(2)若点A 关于点P 的二次关联图形与点A 重合,求点P 的坐标(直接写出结果即可);(3)已知的半径为1,点A 关于点P 的二次关联图形在上且不与点A 重合. O O 若线段,其关于点P 的二次关联图形上的任意一点都在及其内部,求此时 P 点1AB =O 坐标及点B 的纵坐标的取值范围.B y 【答案】(1)()2,3(2)()3,2-(3),, ()3,3-12102B y ≤≤【解析】【分析】(1)根据二次关联图形的定义分别找到和,过点作轴于点D ,可A 'A ''A 'A D x '⊥证得,从而得到,即可求解;AOP PDA ' ≌1,3OA PD OP A D '====(2)根据题意得:点P 位于x 轴的下方,设点P 的纵坐标为m ,过点P 作轴于点PE y ⊥E ,过点作轴交延长线于点F ,坐标为m ,表达点的坐标,可得出结论;A 'A F x '⊥EP A '(3)由(2)可知,点的坐标,由A 关于点P 的二次关联图形在上且不与点A 重合A ''O 可得出点的坐标,由线段,其关于点P 的二次关联图形上的任意一点都在及A ''1AB =O 其内部,找到临界点,可得出的坐标,进而可得出点B 的坐标,即可得出的取值B ''B ''B y 范围.【小问1详解】如图1,根据二次关联图形的定义分别找到和,过点作轴于点D ,A 'A ''A 'A D x '⊥∴90A DP AOP '∠=∠=︒由旋转可知,,90,APA AP A P ''∠=︒=∴,90APO A PD A PD PA D '''∠+∠=∠+=︒∴,APO PA D '∠=∠∴,()AAS AOP PDA ' ≌∴,1,3OA PD OP A D '====∴,()4,3A '∵点和关于直线对称,A 'A ''3x =∴点,()2,3A ''即点A 关于点P 的二次关联图形的坐标为;()2,3故答案为:()2,3【小问2详解】解:根据题意得:点P 位于x 轴的下方,设点P 的纵坐标为m ,如图,过点P 作轴于点E ,过点作轴交延长线于点F ,PE y ⊥A 'A F x '⊥EP由(1)得: ,AEP PFA ' ≌∴,1,3AE PF m EP A F '==-==∴,()4,3A m m '-+根据题意得:点A 和点关于直线对称,A '3x =∴,46m -=解得:,2m =-∴点P 的坐标为,()3,2-【小问3详解】解:设点P 的纵坐标为n ,由(2)得:,()4,3A n n '-+∴,()2,3A n n ''++∵在上,A ''O ∴,()()22231n n +++=解得:(舍去)或,2n =-3-∴点P 的坐标为,()3,3-∵,其关于点P 的二次关联图形上的任意一点都在及其内部,1AB =AB O 此时点是一个临界点,连接,如图, B ''OB∵,1OA A B OB ''''''''===∴是等边三角形,OA B '''' 过点作轴于点M ,则, B ''B M x ''⊥12A M OM ''==∴ B M ''=∴, 1,2B ⎛''- ⎝∴, 13,2B ⎛' ⎝∴, 12B ⎫⎪⎭由对称性得:另一个点的坐标为, 12B ⎛⎫ ⎪ ⎪⎝⎭∴的取值范围为. B y 102B y ≤≤【点睛】本题属于新定义类问题,主要考查轴对称最值问题,等边三角形的性质与判定,圆的定义等相关知识,关键是理解给出新定义,画出对应的图形.。

人教版九年级数学期末考试综合复习测试题(含答案)

人教版九年级数学期末考试综合复习测试题(含答案)

人教版九年级数学期末考试综合复习测试题(含答案)一.选择题(共10小题,每小题3分,共30分)1.计算,3(2)a -结果正确的是( )A .32a -B .36a -C .38a -D .38a2.据教育部统计,2022年高校毕业生约1076万人,用科学记数法表示1076万为( )A .4107610⨯B .61.07610⨯C .71.07610⨯D .80.107610⨯3.下列汽车标志中,是中心对称图形的是( ) A . B . C . D .4.如图所示,直线//EF GH ,射线AC 分别交直线EF 、GH 于点B 和点C ,AD EF ⊥于点D ,如果20A ∠=︒,则(ACH ∠= )A .160︒B .110︒C .100︒D .70︒5.如图,已知ABC ADE ∆≅∆,若70E ∠=︒,30D ∠=︒,则BAC ∠的度数是( )A .70︒B .80︒C .40︒D .30︒6.方程2210x x --=实数根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .不能确定7.在平面直角坐标系中,若点(1,)A a b -+与点(,3)B a b -关于原点对称,则点(,)C a b 在( )A .第一象限B .第二象限C .第三象限D .第四象限8.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与ABC ∆相似的是( )A .B .C .D .9.已知正比例函数11(0)y k x k =≠的图象与反比例函数22(0)k y k x =≠的图象交于A ,B 两点,其中点A 在第二象限,横坐标为2-,另一交点B 的纵坐标为1-,则12(k k ⋅= )A .4B .4-C .1-D .110.已知(3,2)A --,(1,2)B -,抛物线2(0)y ax bx c a =++>顶点在线段AB 上运动,形状保持不变,与x 轴交于C ,D 两点(C 在D 的右侧),下列结论:①2c -;②当0x >时,一定有y 随x 的增大而增大;③若点D 横坐标的最小值为5-,则点C 横坐标的最大值为3;④当四边形ABCD 为平行四边形时,12a =. 其中正确的是( )A .①③B .②③C .①④D .①③④二.填空题(共5小题,每小题3分,共15分)11.因式分解:22416x y -= . 12.若2|2|(3)0x y -++=,则2()x y += .13.已知m ,()n m n ≠是一元二次方程220230x x +-=的两个实数根,则代数式22m m n ++的值为 .14.如图,A ,B ,C ,D 是O 上的四点,且点B 是AC 的中点,BD 交OC 于点E ,60OED ∠=︒,35OCD ∠=︒,那么AOC ∠的度数是 .15.如图,E 为正方形ABCD 内一点,5AD =,4AE =,将ADE ∆绕点A 顺时针旋转90︒到ABE ∆',则边DE 所扫过的区域(图中阴影部分)的面积为 .题14图 题15图三.解答题(一)(共3小题,每小题8分,共24分)16.(1)计算:0111(2021)()2cos45221π--++-︒+; (2)先化简,再求值:23210(1)19x x x x --⋅---,其中x 是1、2、3中的一个合适的数.17.如图,DE AB ⊥于E ,DF AC ⊥于F ,若BD CD =,BE CF =.求证:(1)AD 平分BAC ∠;(2)2AC AB BE =+.18.今年,我市某学校举办了为贫困生捐赠书包活动.该学校用2000元在某商店购进一批学生书包,随后发现书包数量不够,于是又购进第二批同样的书包,所购数量是第一批的3倍,每个书包比第一批购买时贵了4元,结果第二批用了6300元.(1)该学校第一批购进的学生书包每个多少元?(2)如果该商店第一批、第二批学生书包每个的进价分别是68元、70元,售给该学校的这些学生书包,该商店盈利多少元?四.解答题(二)(共3小题,每小题9分,共27分)19.某银行柜台在储户人数较多时常开放1、2、3、4号窗口办理日常业务,一般是先到取号机拿号,按顾客“先到达,先服务“的方式服务(1)求某储户在3号窗口办业务的概率是(2)储户乙取号时发现储户甲已办理完业务准备离开(储户甲、乙先后到达银行取号办理业务),请用树状图或列表法求储户甲、乙两人在同一柜台办理业务的概率.20.如图,在平行四边形ABCD 中,BD AB ⊥,延长AB 至点E ,使BE AB =,连接EC .(1)求证:四边形BECD 是矩形.(2)连接AC ,若3AD =,2CD =,求AC 的长.21.Rt ABO ∆的顶点A 是双曲线k y x =与直线(1)y x k =--+在第二象限的交点,AB 垂直x 轴于点B 且32ABO S ∆=. (1)求这两个函数解析式;(2)求AOC ∆的面积;(3)根据图象直接写出不等式(1)k x k x >-+的解集.五.解答题(三)(共2小题,每小题12分,共24分)22.如图,AB 是⊙O 的直径,C 、D 是⊙O 上两点,连接CD ,C 是的中点,过点C 作AD 的垂线,垂足是E .连接AC 交BD 于点F .(1)求证:CE 是⊙O 的切线;(2)求证:△CDF ∽△CAD ;(3)若DF =2,CD =,求AC 值.23.如图,在平面直角坐标系中,抛物线21y ax bx =++交y 轴于点A ,交x 轴正半轴于点(4,0)B ,交直线AD 于点5(3,)2D ,过点D 作DC x ⊥轴于点C . (1)求抛物线的解析式;(2)点P 为x 轴正半轴上一动点,过点P 作PN x ⊥轴交直线AD 于点M ,交抛物线于点N ;若点P 在线段OC 上(不与O 、C 重合),连接CM ,求PCM ∆面积的最大值。

九年级数学第一学期期末考试综合复习测试题(含答案)

九年级数学第一学期期末考试综合复习测试题(含答案)

九年级数学第一学期期末考试综合复习测试题(含答案)一.选择题(共10小题,每小题3分,共30分) 1.2022的相反数是( )A .2022B .2022-C .12022D .2022± 2.若代数式3125m x y -与822m nx y +-是同类项,则( )A .73m =,83n =-B .3m =,4n =C .73m =,4n =- D .3m =,4n =-3.下列四组线段中,能组成直角三角形的是( ) A .1a =,3b =,3c = B .2a =,3b =,4c = C .2a =,4b =,5c =D .3a =,4b =,5c = 4.如图所示,直线//a b ,231∠=︒,28A ∠=︒,则1(∠= )A .61︒B .60︒C .59︒D .58︒5.下列关于事件发生可能性的表述,正确的是( )A .“在地面向上抛石子后落在地上”是随机事件B .掷两枚硬币,朝上面是一正面一反面的概率为13C .在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品D .彩票的中奖率为10%,则买100张彩票必有10张中奖6.某校10名学生参加课外实践活动的时间分别为:3,3,6,4,3,7,5,7,4,9(单位:小时),这组数据的众数和中位数分别为( ) A .9和7 B .3和3 C .3和4.5 D .3和5 7.一个正多边形的每一个内角都是150︒,则它的边数为( ) A .6 B .9 C .12 D .158.若不等式组841x x x m +<-⎧⎨>⎩的解集是3x >,则m 的取值范围是( )A .3m <B .3mC .3m >D .3m9.已知关于x 的一元二次方程22(21)0x m x m --+=有实数根,则m 的取值范围是( ) A .14m 且0m ≠ B .14m C .14m < D .14m >10.如图1,一个扇形纸片的圆心角为90︒,半径为6.如图2,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为( )A .9632π-B .693π-C .91232π-D .94π二.填空题(共5小题,每小题3分,共15分) 11.将数据2022万用科学记数法表示为 .12.已知当3x =时,代数式35ax bx +-的值为20,则当3x =-时,代数式35ax bx +-的值是 .13.将抛物线229y x x =-+-向左平移2个单位,再向上平移1个单位后,得到的抛物线的解析式为 .14.已知ABC ∆中,点O 是ABC ∆的外心,140BOC ∠=︒,那么BAC ∠的度数为 .15.如图,在正方形ABCD 中,顶点(5,0)A -,(5,10)C ,点F 是BC 的中点,CD 与y 轴交于点E ,AF 与BE 交于点G ,将正方形ABCD 绕点O 顺时针旋转,每次旋转90︒,则第2023次旋转结束时,点G 的坐标为 .三.解答题(一)(共3小题,每小题8分,共24分) 16.计算(1)2()(2)x y x y x +--;(2)2219(1)244a a a a --÷--+.17.如图,90ACB ∠=︒,AC AD =.(1)过点D 作AB 的垂线DE 交BC 与点E ,连接AE .(尺规作图,并保留作图痕迹) (2)如果8BD =,10BE =,求BC 的长.18.如图,在四边形ABCD 中,AC 与BD 交于点O ,BE AC ⊥,DF AC ⊥,垂足分别为点E ,F ,且BE DF =,ABD BDC ∠=∠.求证:四边形ABCD 是平行四边形.四.解答题(二)(共3小题,每小题9分,共27分) 19.阳光中学为了丰富学生的课余生活,计划购买围棋和中国象棋供棋类兴趣小组活动使用,若购买3副围棋和5副中国象棋需要98元;若购买1副围棋和2副中国象棋需要36元.(1)求每副围棋和每副中国象棋各多少元;(2)阳光中学决定购买围棋和中国象棋共40副,总费用不超过538元,且围棋的副数不低于象棋的副数,问阳光中学有几种购买方案;(3)请求出最省钱的方案需要多少钱?20.我市某中学举行“中国梦⋅我的梦”的演讲比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整,请你根据统计图解答下列问题.(1)参加比赛的学生人数共有名,在扇形统计图中,表示“D等级”的扇形的圆心角为度,图中m的值为;(2)补全条形统计图;(3)组委会决定从本次比赛中获得A等级的学生中,选出两名去参加市中学生演讲比赛,已知A等级中男生只有1名,请用画树状图或列表的方法求出所选学生恰是一男一女的概率.21.22.某网店专售一款新型钢笔,其成本为20元/支,销售中发现,该商品每天的销售量y与销售单价x(元/支)之间存在如下关系:10400y x=-+,自武汉爆发了“新型冠状病毒”疫情该网店店主决定从每天获得的利润中抽出200元捐赠给武汉,同时又让顾客得到实惠,当销售单价定位多少元时,捐款后每天剩余利润为550元?五.解答题(三)(共2小题,每小题12分,共24分)22.如图,以点O为圆心,AB长为直径作圆,在O上取一点C,延长AB至点D,连接DC,过点A作O的切线交DC的延长线于点E,且DCB DAC∠=∠.(1)求证:CD是O的切线;(2)若6AD=,2:3BC CA=,求AE的长.23.如图,在平面直角坐标系中,直线33y x =--与x 轴交于点A ,与y 轴交于点C .抛物线2y x bx c =++经过A 、C 两点,且与x 轴交于另一点B (点B 在点A 右侧). (1)求抛物线的解析式;(2)若点M 是线段BC 上一动点,过点M 的直线ED 平行y 轴交x 轴于点D ,交抛物线于点E ,求ME 长的最大值及此时点M 的坐标; (3)在(2)的条件下:当ME 取得最大值时,在x 轴上是否存在这样的点P ,使得以点M 、点B 、点P 为顶点的三角形是等腰三角形?若存在,请直接写出所有点P 的坐标;若不存在,请说明理由.答案一.选择题1. B .2. D .3. D .4. C .5. C .6. C .7. C .8. B .9. B .10. C . 二.填空题11. 72.02210⨯.12. 30-.13. 228y x x =---.14. 70︒或110︒.15. (4,3)-. 三.解答题16.解:(1)2()(2)x y x y x +--22222x xy y xy x =++-- 2y =;(2)2219(1)244a a a a --÷--+ 23(3)(3)2(2)a a a a a ---+=÷-- 23(2)2(3)(3)a a a a a --=⋅---+ 23a a -=--. 17.解:(1)如图所示即为所求作的图形. (2)ED 垂直AB , 90ADE EDB ∴∠=∠=︒,在Rt BDE ∆中,22221086DE BE BD =-=-=, 在Rt ADE ∆和Rt ACE ∆中, AC ADAE AE =⎧⎨=⎩, Rt ADE Rt ACE(HL)∴∆≅∆, 6EC ED ∴==, 16BC BE EC ∴=+=.18.证明:ABD BDC ∠=∠, //AB CD ∴.BAE DCF ∴∠=∠.在ABE ∆与CDF ∆中, 90BAE DCF AEB CFD BE DF ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩. ()ABE CDF AAS ∴∆≅∆. AB CD ∴=.∴四边形ABCD 是平行四边形.19.解:(1)设每副围棋x 元,每副中国象棋y 元,根据题意得:3598236x y x y +=⎧⎨+=⎩,∴1610x y =⎧⎨=⎩,∴每副围棋16元,每副中国象棋10元;(2)设购买围棋z 副,则购买象棋(40)z -副, 根据题意得:1610(40)538m m +-,40m z -,2023m ∴,m 可以取20、21、22、23则有:方案一:购买围棋20副,购买中国象棋20副方案二:购买围棋21副,购买中国象棋19副方案:购买围棋22副,购买中国象棋18副方案四:购买围棋23副,购买中国象棋17副由4种方案;(3)由上一问可知共有四种方案:方案一:购买围棋20副,购买中国象棋20副;方案二:购买围棋21副,购买中国象棋19副;方案三:购买围棋22副,购买中国象棋18副;方案四:购买围棋23副,购买中国象棋17副;方案一需要20162010520x x +=; 方案二需要21161910526x x +=; 方案三需要22161810532x x +=; 方案四需要23161710538x x +=; 所以最省钱是方案一,需要520元.20.(1)解:根据题意得:总人数为:315%20÷=(人), 表示“D 等级”的扇形的圆心角为43607220⨯︒=︒;C等级所占的百分比为8100%40% 20⨯=,所以40m=,故答案为:20,72,40.(2)解:等级B的人数为20(384)5-++=(人),补全统计图,如图所示:(3)解:根据题意,列出表格,如下:男女1女2男女1、男女2、男女1男、女1女2、女1女2男、女2女1、女2共有6种等可能结果,其中恰是一男一女的有4种,所以恰是一男一女的概率为42 63 =.21.解:由题意可得(20)(10400)200550x x--+-=解得125x=,235x=因为要让顾客得到实惠,所以25x=答:当销售单价定为25元时,捐款后每天剩余利润为550元.22.(1)证明:连接OC,OE,如图,AB为直径,90ACB∴∠=︒,即190BCO∠+∠=︒,又DCB CAD∠=∠,1CAD∠=∠,1DCB∴∠=∠,90DCB BCO ∴∠+∠=︒,即90DCO ∠=︒, CD ∴是O 的切线;(2)解:EC ,EA 为O 的切线, EC EA ∴=,AE AD ⊥, OC OA =, OE AC ∴⊥,90BAC EAC ∴∠+∠=︒,90AEO EAC ∠+∠=︒, BAC AEO ∴∠=∠, tan tan BAC AEO ∴∠=∠,∴23BC AO AC AE ==, Rt DCO Rt DAE ∆∆∽,∴23CD OC OA DA AE AE ===, 2643CD ∴=⨯=, 在Rt DAE ∆中,设AE x =,222(4)6x x ∴+=+, 解得52x =. 即AE 的长为52.23.解:(1)直线33y x =--与x 轴、y 轴分别交于点A 、C , (1,0)A ∴-,(0,3)C -抛物线2y x bx c =++经过点(1,0)A -,(0,3)C -, ∴103b c c -+=⎧⎨=-⎩,解得23b c =-⎧⎨=-⎩,∴抛物线的解析式为223y x x =--.(2)设(E x ,223)(03)x x x --<<,则(,3)M x x -, 222393(23)3()24ME x x x x x x ∴=----=-+=--+,∴当32x =时,94ME =最大,此时3(2M ,3)2-. (3)存在.如图3,由(2)得,当ME 最大时,则3(2D ,0),3(2M ,3)2-,32DO DB DM ∴===; 90BDM ∠=︒,223332()()222OM BM ∴==+=. 点1P 、2P 、3P 、4P 在x 轴上, 当点1P 与原点O 重合时,则1322PM BM ==,1(0,0)P ; 当2322BP BM ==时,则232632322OP -=-=, 2632(2P -∴,0); 当点3P 与点D 重合时,则3332P M P B ==,33(2P ,0); 当4322BP BM ==时,则432632322OP +=+=, 4632(2P +∴,0). 综上所述,1(0,0)P ,2632(2P -,0),33(2P ,0),4632(2P +,0).。

2023年人教版初中数学九年级(下)期末综合测试卷及部分答案(共五套)

2023年人教版初中数学九年级(下)期末综合测试卷及部分答案(共五套)

人教版初中数学九年级(下)期末综合测试卷及答案(一)一、选择题(每题3分,共30分)1.在双曲线y =1-3mx上有两点A (x 1,y 1),B (x 2,y 2),x 1<0<x 2,y 1<y 2,则m 的取值范围是( ) A .m >13B .m <13C .m ≥13D .m ≤132.若△ABC ∽△A ′B ′C ′,其相似比为3:2,则△ABC 与△A ′B ′C ′的面积比为( ) A .3:2B .9:4C .2:3D .4:93.在Rt △ABC 中,∠C =90°,sin A =23,则tan A 的值为( )A .53B .52 C .32 D .2554.反比例函数y =-m 2-5x的图象位于( )A .第一、三象限B .第二、三象限C .第二、四象限D .无法判断5.如图,电灯P 在横杆AB 的正上方,AB 在灯光下的影子为CD ,AB =1 m ,CD =4 m ,点P 到CD 的距离是2 m ,则点P 到AB 的距离是( ) A .13mB .12m C .23m D .1 m6.如图,反比例函数y 1=k 1x和正比例函数y 2=k 2x 的图象交于A (-1,-3),B (1,3)两点,若k 1x>k 2x ,则x 的取值范围是( ) A .-1<x <0B .-1<x <1C .x <-1或0<x <1D .-1<x <0或x >17.如图,放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20 cm ,到屏幕的距离为60 cm ,且幻灯片中的图形的高度为6 cm ,则屏幕上图形的高度为( ) A .6 cmB .12 cmC .18 cmD .24 cm8.如图,在▱ABCD 中,E 为CD 上一点,连接AE ,BD ,且AE ,BD 交于点F ,S △DEF :S △ABF =4:25,则DE EC =( )A .2:3B .2:5C .3:5D .3:29.如图,在一笔直的海岸线l 上有A ,B 两个观测站,AB =2 km.从A 站测得船C 在北偏东45°的方向,从B 站测得船C 在北偏东22.5°的方向,则船C 离海岸线l 的距离(即CD 的长)为( )A .4 kmB .(2+2)kmC .22kmD .(4-2)km10.如图,边长为1的正方形ABCD 中,点E 在CB 的延长线上,连接ED 交AB 于点F ,AF =x (0.2≤x ≤0.8),EC =y .则在下面函数图象中,大致能反映y 与x 之间函数关系的是( )二、填空题(每题3分,共30分)11.写出一个反比例函数y =k x(k ≠0),使它的图象在每个象限内,y 的值随x 值的增大而减小,这个函数的解析式为____________.12.在△ABC 中,∠B =45°,cos A =12,则∠C 的度数是________.13.如图,AB ∥CD ,AD =3AO ,则OB OC=________.14.在某一时刻,测得一根高为2 m 的竹竿的影长为1 m ,同时测得一栋建筑物的影长为12m ,那么这栋建筑物的高度为________m.15.活动楼梯如图所示,∠B =90°,斜坡AC 的坡度为1:1,斜坡AC 的坡面长度为8 m ,则走这个活动楼梯从A 点到C 点上升的高度BC 为________.16.如图是由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数是________.17.如图,在△ABC 中,DE ∥BC ,分别交AB ,AC 于点D ,E .若AD =1,DB =2,则△ADE 的面积与△ABC 的面积的比是________.18.如图,正方形ABCD 的边长是4,点P 是CD 的中点,点Q 是线段BC 上一点,当CQ =________时,以Q ,C ,P 三点为顶点的三角形与△ADP 相似.19.如图,在平面直角坐标系中,一次函数y =ax +b (a ≠0)的图象与反比例函数y =k x(k ≠0)的图象交于第二、四象限的A ,B 两点,与x 轴交于C 点.已知A (-2,m ),B (n ,-2),tan ∠BOC =25,则此一次函数的解析式为________________.20.如图,在矩形纸片ABCD 中,AB =6,BC =10,点E 在CD 上,将△BCE 沿BE 折叠,点C恰好落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,点A 恰好落在线段BF 上的点H 处,有下列结论:①∠EBG =45°;②△DEF ∽△ABG ;③S △ABG =32S △FGH ;④AG+DF =FG .其中正确的是________(把所有正确结论的序号都填上).三、解答题(21题4分,22题8分,23题10分,26题14分,其余每题12分,共60分) 21.计算:2cos 245°-(tan 60°-2)2-(sin 60°-1)0+(sin 30°)-2.22.如图所示是某几何体的表面展开图.(1)这个几何体的名称是 ________; (2)画出这个几何体的三视图; (3)求这个几何体的体积.(π≈3.14)23.如图,在平面直角坐标系中,▱OABC 的顶点A ,C 的坐标分别为(2,0),(-1,2),反比例函数y =k x(k ≠0)的图象经过点B . (1)求k 的值;(2)将▱OABC 沿x 轴翻折,点C 落在点C ′处,判断点C ′是否在反比例函数y =kx(k ≠0)的图象上,请通过计算说明理由.24.如图,一棵大树在一次强台风中折断倒下,未折断树干AB 与地面仍保持垂直的关系,而折断部分AC 与未折断树干AB 形成53°的夹角.树干AB 旁有一座与地面垂直的铁塔DE ,测得BE =6 m ,塔高DE =9 m .在某一时刻太阳光的照射下,未折断树干AB 落在地面的影子FB 长为4 m ,且点F ,B ,C ,E 在同一条直线上,点F ,A ,D 也在同一条直线上.求这棵大树没有折断前的高度.(结果精确到0.1 m ,参考数据:sin 53°≈0.798 6,cos 53°≈0.601 8,tan 53°≈1.327 0)25.如图①,AB 为半圆的直径,O 为圆心,C 为圆弧上一点,AD 垂直于过C 点的切线,垂足为D ,AB 的延长线交直线CD 于点E . (1)求证:AC 平分∠DAB ;(2)若AB =4,B 为OE 的中点,CF ⊥AB ,垂足为点F ,求CF 的长;(3)如图②,连接OD 交AC 于点G ,若CG GA =34,求sin E 的值.26.已知矩形ABCD 的一条边AD =8,将矩形ABCD 折叠,使得点B 落在CD 边上的点P 处.(1)如图①,已知折痕与边BC 交于点O ,连接AP ,OP ,O A . ① 求证:△OCP ∽△PDA ;② 若△OCP 与△PDA 的面积比为1:4,求边AB 的长.(2)如图②,在(1)的条件下,擦去AO 和OP ,连接BP .动点M 在线段AP 上(点M 不与点P ,A 重合),动点N 在线段AB 的延长线上,且BN =PM ,连接MN 交PB 于点F ,作ME⊥BP 于点E .试问动点M ,N 在移动的过程中,线段EF 的长度是否发生变化?若不变,求出线段EF 的长度;若变化,请说明理由.答案一、1.B 2.B 3.D 4.C 5.B 6.C 7.C 8.A 9.B 10.C 二、11.y =3x (答案不唯一) 12.75° 13.1214.24 15.4 2 m 16.6或7或8 17.1918.1或4 点拨:设CQ =x .∵四边形ABCD 为正方形,∴∠C =∠D =90°.∵点P 为CD 的中点,∴CP =DP =2.当CQ PD =CP AD 时,△QCP ∽△PDA ,此时x 2=24,∴x =1.当CQ AD =CPPD时,△QCP ∽△ADP ,此时x 4=22,∴x =4.19.y =-x +320.①③④ 点拨:∵△BCE 沿BE 折叠,点C 恰好落在边AD 上的点F 处,∴∠1=∠2,CE =FE ,BF =BC =10.在Rt △ABF 中,∵AB =6,BF =10,∴AF =102-62=8,∴DF =AD -AF =10-8=2.设EF =x ,则CE =x ,DE =CD -CE =6-x .在Rt △DEF 中,∵DE 2+DF 2=EF 2,∴(6-x )2+22=x 2,解得x =103,∴DE =83.∵△ABG 沿BG 折叠,点A 恰好落在线段BF 上的点H 处,∴∠BHG =∠A =90°,∠3=∠4,BH =BA =6,AG =HG ,∴∠EBG =∠2+∠3=12∠ABC =45°,∴①正确;HF =BF -BH =10-6=4,设AG =y ,则GH =y ,GF =8-y .在Rt △HGF 中,∵GH 2+HF 2=GF 2,∴y 2+42=(8-y )2,解得y =3,∴AG =GH =3,GF =5.∵∠A =∠D ,AB DE =94,AG DF =32,∴AB DE ≠AG DF ,∴△ABG 与△DEF 不相似,∴②错误;∵S △ABG =12AB ·AG =12×6×3=9,S △FGH =12GH ·HF =12×3×4=6,∴S △ABG =32S △FGH ,∴③正确;∵AG +DF =3+2=5,而GF =5,∴AG +DF =GF ,∴④正确.三、21.解:原式=2×⎝ ⎛⎭⎪⎫222-(2-3)-1+⎝ ⎛⎭⎪⎫12-2=1-(2-3)-1+4=3+2.22.解:(1)圆柱 (2)如图所示.(3)这个几何体的体积为πr 2h ≈3.14×⎝ ⎛⎭⎪⎫1022×20=1 570. 23.解:(1)∵四边形OABC 是平行四边形, ∴OA ∥BC ,OA =BC . 又A (2,0),C (-1,2), ∴点B 的坐标为(1,2). 将(1,2)代入y =k x,得k =2.(2)点C ′在反比例函数y =2x的图象上.理由如下:∵将▱OABC 沿x 轴翻折,点C 落在点C ′处,C (-1,2), ∴点C ′的坐标是(-1,-2).由(1)知,反比例函数的解析式为y =2x.令x =-1,则y =2-1=-2.故点C ′在反比例函数y =2x的图象上.24.解:根据题意,得AB ⊥EF ,DE ⊥EF , ∴∠ABC =90°,AB ∥DE ,∴△ABF ∽△DEF ,∴AB DE =BF EF ,即AB 9=44+6,解得AB =3.6 m. 在Rt △ABC 中,∵cos ∠BAC =AB AC, ∴AC =ABcos 53°≈5.98(m),∴AB +AC ≈3.6+5.98≈9.6(m).答:这棵大树没有折断前的高度约为9.6 m. 25.(1)证明:连接OC ,如图①. ∵DC 切半圆O 于C ,∴OC ⊥DC , 又AD ⊥CD .∴OC ∥AD .∴∠OCA =∠DAC . ∵OC =OA ,∴∠OAC =∠OCA . ∴∠DAC =∠OAC ,即AC 平分∠DAB .(2)解:∵AB =4,∴OC =2.在Rt △OCE 中,∵OC =OB =12OE ,∴∠E =30°.∴∠COF =60°.∴在Rt △OCF 中,CF =OC ·sin60°=2×32= 3. (3)解:连接OC ,如图②.∵CO ∥AD ,∴△CGO ∽△AGD .∴CG GA =CO AD =34.不妨设CO =AO =3k ,则AD =4k .又易知△COE ∽△DAE ,∴CO AD =EO AE =34=EO3k +EO .∴EO =9k .在Rt △COE 中,sin E =CO EO =3k 9k =13.26.(1)①证明:如图①,∵四边形ABCD 是矩形, ∴∠C =∠D =∠B =90°,∴∠1+∠3=90°. 由折叠可得∠APO =∠B =90°, ∴∠1+∠2=90°.∴∠3=∠2. 又∵∠C =∠D ,∴△OCP ∽△PDA .②解:∵△OCP 与△PDA 的面积比为1:4,且△OCP ∽△PDA ,∴OP PA =CP DA =12.∴CP =12AD =4. 设OP =x ,则易得CO =8-x . 在Rt △PCO 中,∠C =90°, 由勾股定理得 x 2=(8-x )2+42.解得x =5.即OP =5.∴AB =AP =2OP =10.(2)解:线段EF 的长度不发生变化.作MQ ∥AN ,交PB 于点Q ,如图②. ∵AP =AB ,MQ ∥AN ,∴∠APB =∠ABP =∠MQP . ∴MP =MQ .又BN =PM ,∴BN =QM .∵MQ ∥AN ,∴∠QMF =∠BNF ,∠MQF =∠FBN , ∴△MFQ ≌△NFB .∴QF =FB .∴QF =12QB .∵MP =MQ ,ME ⊥PQ ,∴EQ =12PQ .∴EF =EQ +QF =12PQ +12QB =12PB .由(1)中可得PC =4,又∵BC =AD =8,∠C =90°. ∴PB =82+42=45,∴EF =12PB =2 5.∴在(1)的条件下,点M ,N 在移动的过程中,线段EF 的长度不变,它的长度恒为2 5.人教版初中数学九年级(下)期末综合测试卷及答案(二)一、选择题(每题3分,共30分)1.已知反比例函数y =k x的图象经过点P (-1,2),则这个函数的图象位于( )A .第二、三象限B .第一、三象限C .第三、四象限D .第二、四象限2.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是( )3.若Rt △ABC 中,∠C =90°,sin A =23,则tan A 的值为( )A.53B.52C.32D.2554.在双曲线y =1-3mx上有两点A (x 1,y 1),B (x 2,y 2),x 1<0<x 2,y 1<y 2,则m 的取值范围是( ) A .m >13B .m <13C .m ≥13D .m ≤135.如图,在等边三角形ABC 中,点D ,E 分别在AB ,AC 边上,如果△ADE ∽△ABC ,AD ∶AB=1∶4,BC =8 cm ,那么△ADE 的周长等于( ) A .2 cmB .3 cmC .6 cmD .12 cm(第5题) (第7题) (第8题)6.小芳和爸爸在阳光下散步,爸爸身高1.8 m ,他在地面上的影长为2.1 m .小芳比爸爸矮0.3 m ,她的影长为( ) A .1.3 mB .1.65 mC .1.75 mD .1.8 m7.一次函数y 1=k 1x +b 和反比例函数y 2=k 2x(k 1k 2≠0)的图象如图所示,若y 1>y 2,则x 的取值范围是( ) A .-2<x <0或x >1B .-2<x <1C .x <-2或x >1D .x <-2或0<x <18.如图,△ABO 缩小后变为△A ′B ′O ,其中A ,B 的对应点分别为A ′,B ′,点A ,B ,A ′,B ′均在图中格点上,若线段AB 上有一点P (m ,n ),则点P 在A ′B ′上的对应点P ′的坐标为( )A.⎝ ⎛⎭⎪⎫m2,n B .(m ,n )C.⎝ ⎛⎭⎪⎫m ,n 2 D.⎝ ⎛⎭⎪⎫m 2,n2 9.如图,在两建筑物之间有一旗杆GE ,高15 m ,从A 点经过旗杆顶点恰好看到矮建筑物的墙脚C 点,且俯角α为60°,又从A 点测得D 点的俯角β为30°,若旗杆底部点G 为BC 的中点,则矮建筑物的高CD 为( ) A .20 mB .10 3 mC .15 3 mD .5 6 m(第9题) (第10题)10.如图,已知第一象限内的点A 在反比例函数y =3x的图象上,第二象限内的点B 在反比例函数y =k x 的图象上,且OA ⊥OB ,cos A =33,则k 的值为( ) A .-3B .-6C .- 3D .-2 3二、填空题(每题3分,共24分)11.计算:2cos 245°-(tan 60°-2)2=________.12.如图,山坡的坡度为i =1∶3,小辰从山脚A 出发,沿山坡向上走了200 m 到达点B ,则他上升了________m.(第12题) (第13题) (第14题) (第15题)13.如图,在△ABC 中,DE ∥BC ,DE BC =23,△ADE 的面积是8,则△ABC 的面积为________.14.如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,若⊙O 的半径为32,AC =2,则sin B的值是__________.15.如图,一艘轮船在小岛A 的北偏东60°方向距小岛80 n mile 的B 处,沿正西方向航行3 h 后到达小岛A 的北偏西45°方向的C 处,则该船行驶的速度为__________n mile/h.16.如图是一个几何体的三视图,若这个几何体的体积是48,则它的表面积是________.(第16题) (第17题) (第18题)17.如图,点A 在双曲线y =1x 上,点B 在双曲线y =3x上,点C ,D 在x 轴上,若四边形ABCD为矩形,则它的面积为________.18.如图,正方形ABCD 的边长为62,过点A 作AE ⊥AC ,AE =3,连接BE ,则tan E =________. 三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分)19.如图,△ABC 三个顶点的坐标分别为A (4,6),B (2,2),C (6,4),请在第一象限内,画出一个以原点O 为位似中心,与△ABC 的相似比为12的位似图形△A 1B 1C 1,并写出△A 1B 1C 1各个顶点的坐标.(第19题)20.由几个棱长为1的小立方块搭成的几何体的俯视图如图所示,小正方形中的数字表示在该位置小立方块的个数.(第20题)(1)请在方格纸中分别画出该几何体的主视图和左视图;(2)根据三视图,这个几何体的表面积为________个平方单位(包括底面积).21.如图,一棵大树在一次强台风中折断倒下,未折断树干AB与地面仍保持垂直的关系,而折断部分AC与未折断树干AB形成53°的夹角.树干AB旁有一座与地面垂直的铁塔DE,测得BE=6 m,塔高DE=9 m.在某一时刻太阳光的照射下,未折断树干AB落在地面的影子FB长为4 m,且点F,B,C,E在同一条直线上,点F,A,D也在同一条直线上.求这棵大树没有折断前的高度(结果精确到0.1 m,参考数据:sin 53°≈0.798 6,cos 53°≈0.601 8,tan 53°≈1.327 0).(第21题)22.如图,在平面直角坐标系xOy 中,一次函数y =3x +2的图象与y 轴交于点A ,与反比例函数y =kx()k ≠0在第一象限内的图象交于点B ,且点B 的横坐标为1,过点A 作AC ⊥y 轴,交反比例函数y =k x(k ≠0)的图象于点C ,连接BC .求:(第22题)(1)反比例函数的解析式; (2)△ABC 的面积.23.如图,AB 是⊙O 的直径,过点A 作⊙O 的切线并在其上取一点C ,连接OC 交⊙O 于点D ,BD 的延长线交AC 于点E ,连接AD .(第23题)(1)求证△CDE ∽△CAD ;(2)若AB =2,AC =22,求AE 的长.24.如图,将矩形ABCD 沿AE 折叠得到△AFE ,且点F 恰好落在DC 上.(第24题)(1)求证△ADF ∽△FCE ;(2)若tan ∠CEF =2,求tan ∠AEB 的值.25.如图,直线y =2x +2与y 轴交于点A ,与反比例函数y =kx(x >0)的图象交于点M ,过点M 作MH ⊥x 轴于点H ,且tan ∠AHO =2. (1)求k 的值.(2)在y 轴上是否存在点B ,使以点B ,A ,H ,M 为顶点的四边形是平行四边形?如果存在,求出点B 的坐标;如果不存在,请说明理由.(3)点N (a ,1)是反比例函数y =k x(x >0)图象上的点,在x 轴上有一点P ,使得PM +PN 最小,请求出点P 的坐标.(第25题)答案一、1.D 2.C 3.D 4.B 5.C 6.C7.A 8.D9.A 点拨:∵点G是BC的中点,EG∥AB,∴EG是△ABC的中位线.∴AB=2EG=30.在Rt△ABC中,∠CAB=30°,则BC=AB·tan∠BAC=30×33=10 3.延长CD至F,使DF⊥AF.在Rt△AFD中,AF=BC=103,∠FAD=30°,则FD=AF·tan∠FAD=103×33=10.∴CD=AB-FD=30-10=20(m).10.B 点拨:∵cos A=33,∴可设OA=3a,AB=3a(a>0).∴OB=(3a)2-(3a)2=6a.过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F.∵点A 在反比例函数y =3x的图象上,∴可设点A 的坐标为⎝ ⎛⎭⎪⎫m ,3m .∴OE =m ,AE =3m .易知△AOE ∽△OBF ,∴AE OF =OA OB ,即3m OF =3a 6a,∴OF =32m.同理,BF =2m ,∴点B 的坐标为⎝⎛⎭⎪⎫-32m,2m .把B ⎝⎛⎭⎪⎫-32m,2m 的坐标代入y =k x,得k =-6. 二、11.3-1 12.100 13.18 14.2315.40+403316.88 点拨:由题中的三视图可以判断,该几何体是一个长方体.从主视图可以看出,该长方体的长为6, 从左视图可以看出,该长方体的宽为2. 根据体积公式可知,该长方体的高为486×2=4,∴该长方体的表面积是2×(6×2+6×4+2×4)=88.17.2 点拨:如图,延长BA 交y 轴于点E ,则四边形AEOD ,BEOC 均为矩形.由点A 在双曲线y =1x 上,得矩形AEOD 的面积为1;由点B 在双曲线y =3x上,得矩形BEOC 的面积为3,故矩形ABCD 的面积为3-1=2.(第17题)18.23点拨:∵正方形ABCD 的边长为62,∴AC =12. 过点B 作BF ⊥AC 于点F ,则CF =BF =AF =6.设AC 与BE 交于点M ,∵BF ⊥AC ,AE ⊥AC ,∴AE ∥BF .∴△AEM ∽△FBM . ∴AM FM =AE FB =36=12.∴AM AF =13. ∴AM =13AF =13×6=2.∴tan E =AM AE =23.三、19.解:画出的△A 1B 1C 1如图所示.(第19题)△A 1B 1C 1的三个顶点的坐标分别为A 1(2,3),B 1(1,1),C 1(3,2). 20.解:(1)如图所示.(第20题) (2)2421.解:根据题意,得AB ⊥EF ,DE ⊥EF ,∴∠ABC =90°,AB ∥DE . ∴△ABF ∽△DEF . ∴AB DE =BF EF ,即AB 9=44+6, 解得AB =3.6.在Rt △ABC 中,∵cos ∠BAC =AB AC, ∴AC =ABcos 53°≈5.98.∴AB +AC ≈3.6+5.98≈9.6(m).答:这棵大树没有折断前的高度约为9.6 m.22.解:(1)∵点B 在一次函数y =3x +2的图象上,且点B 的横坐标为1,∴y =3×1+2=5. ∴点B 的坐标为(1,5).∵点B 在反比例函数y =k x (k ≠0)的图象上,∴5=k1,则k =5.∴反比例函数的解析式为y =5x.(2)∵一次函数y =3x +2的图象与y 轴交于点A ,当x =0时,y =2, ∴点A 的坐标为(0,2).∵AC ⊥y 轴, ∴点C 的纵坐标为2.∵点C 在反比例函数y =5x的图象上,当y =2时,2=5x ,x =52, ∴AC =52.过点B 作BD ⊥AC 于点D , ∴BD =y B -y C =5-2=3.∴S △ABC =12AC ·BD =12×52×3=154.23.(1)证明:∵AB 是⊙O 的直径,∴∠ADB =90°. ∴∠ABD +∠BAD =90°. 又∵AC 是⊙O 的切线, ∴AB ⊥AC ,即∠BAC =90°. ∴∠CAD +∠BAD =90°. ∴∠ABD =∠CAD . ∵OB =OD ,∴∠ABD =∠BDO =∠CDE . ∴∠CAD =∠CDE . 又∵∠C =∠C , ∴△CDE ∽△CAD . (2)解:∵AB =2, ∴OA =OD =1.在Rt △OAC 中,∠OAC =90°, ∴OA 2+AC 2=OC 2, 即12+(22)2=OC 2. ∴OC =3,则CD =2. 又由△CDE ∽△CAD ,得CD CE =CACD, 即2CE =222,∴CE = 2. ∴AE =AC -CE =22-2= 2. 24.(1)证明:∵四边形ABCD 是矩形,∴∠B =∠C =∠D =90°.∵矩形ABCD 沿AE 折叠得到△AFE ,且点F 在DC 上, ∴∠AFE =∠B =90°.∴∠AFD +∠CFE =180°-∠AFE =90°. 又∵∠AFD +∠DAF =90°, ∴∠DAF =∠CFE . ∴△ADF ∽△FCE .(2)解:在Rt △CEF 中,tan ∠CEF =CF CE=2,设CE =a ,CF =2a (a >0), 则EF =CF 2+CE 2=5a .∵矩形ABCD 沿AE 折叠得到△AFE ,且点F 在DC 上, ∴BE =EF =5a ,BC =BE +CE =(5+1)a ,∠AEB =∠AEF . ∴AD =BC =(5+1)a . ∵△ADF ∽△FCE , ∴AF FE =AD CF =(5+1)a 2a =5+12. ∴tan ∠AEF =AFFE=5+12. ∴tan ∠AEB =tan ∠AEF =5+12. 25.解:(1)由y =2x +2可知A (0,2),即OA =2.∵tan ∠AHO =2,∴OH =1. ∵MH ⊥x 轴,∴点M 的横坐标为1. ∵点M 在直线y =2x +2上, ∴点M 的纵坐标为4.∴M (1,4).∵点M 在反比例函数y =k x(x >0)的图象上,∴k =1×4=4. (2)存在.如图所示.[第25(2)题]当四边形B 1AHM 为平行四边形时,B 1A =MH =4, ∴OB 1=B 1A +AO =4+2=6,即B 1(0,6). 当四边形AB 2HM 为平行四边形时,AB 2=MH =4, ∴OB 2=AB 2-OA =4-2=2, 此时B 2(0,-2).综上,存在满足条件的点B ,且点B 的坐标为(0,6)或(0,-2). (3)∵点N (a ,1)在反比例函数y =4x(x >0)的图象上,∴a =4,即点N 的坐标为(4,1).如图,作N 关于x 轴的对称点N 1,连接MN 1,交x 轴于点P ,连接PN ,此时PM +PN 最小.[第25(3)题]∵N 与N 1关于x 轴对称,N 点坐标为(4,1), ∴N 1的坐标为(4,-1).设直线MN 1对应的函数解析式为y =k ′x +b (k ′≠0), 由⎩⎪⎨⎪⎧4=k ′+b ,-1=4k ′+b ,解得⎩⎪⎨⎪⎧k ′=-53,b =173. ∴直线MN 1对应的函数解析式为y =-53x +173.令y =0,得x =175,∴点P 的坐标为⎝ ⎛⎭⎪⎫175,0.人教版初中数学九年级(下)期末综合测试卷及答案(三)一、选择题(每题3分,共30分)1.下列四个几何体中,主视图为三角形的是( )2.【教材P 6练习T 2变式】反比例函数y =-m 2-5x的图象位于( )A .第一、三象限B .第二、三象限C .第二、四象限D .第一、四象限3.若△ABC ∽△A ′B ′C ′,其相似比为32,则△ABC 与△A ′B ′C ′的周长比为( )A .3∶2B .9∶4C .2∶3D .4∶94.在Rt △ABC 中,∠C =90°,sin A =23,则tan A 的值为( )A .53B .52C .32D .2555.如图,电灯P 在横杆AB 的正上方,AB 在灯光下的影子为CD ,AB =1 m ,CD =4 m ,点P到CD 的距离是2 m ,则点P 到AB 的距离是( )A .13mB .12mC .23mD .1 m6.【教材P 22复习题T 10改编】如图,反比例函数y 1=k 1x和正比例函数y 2=k 2x 的图象交于A (-1,-3),B (1,3)两点,若k 1x>k 2x ,则x 的取值范围是( )A.-1<x<0 B.-1<x<1C.x<-1或0<x<1 D.-1<x<0或x>17.如图,放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20 cm,到屏幕的距离为60 cm,且幻灯片中的图形的高度为6 cm,则屏幕上图形的高度为( )A.6 cm B.12 cm C.18 cm D.24 cm8.如图,在▱ABCD中,E为CD上一点,连接AE,BD,且AE,BD交于点F,S△DEF∶S△ABF=4∶25,则DE∶EC=( )A.2∶3 B.2∶5 C.3∶5 D.3∶29.如图,在一笔直的海岸线l上有A,B两个观测站,AB=2 km.从A站测得船C在北偏东45°的方向,从B站测得船C在北偏东22.5°的方向,则船C离海岸线l的距离(即CD 的长)为( )A.4 km B.(2+2)km C.22km D.(4-2)km10.如图,边长为1的正方形ABCD中,点E在CB的延长线上,连接ED交AB于点F,AF=x (0.2≤x ≤0.8),EC =y ,则在下面函数图象中,大致能反映y 与x 之间函数关系的是( )二、填空题(每题3分,共24分)11.写出一个反比例函数y =kx(k ≠0),使它的图象在每个象限内,y 的值随x 值的增大而减小,这个函数的解析式为____________.12.在△ABC 中,∠B =45°,cos A =12,则∠C 的度数是________.13.如图,AB ∥CD ,AD =3AO ,则OB OC=________.14.【教材P 41练习T 1变式】在某一时刻,测得一根高为2 m 的竹竿的影长为1 m ,同时测得一栋建筑物的影长为12 m ,那么这栋建筑物的高度为________m. 15.活动楼梯如图所示,∠B =90°,斜坡AC 的坡度为1∶1,斜坡AC 的坡面长度为8 m ,则走这个活动楼梯从A 点到C 点上升的高度BC 为________.16.【教材P 102习题T 5变式】如图是由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数是________.17.如图,在平面直角坐标系中,一次函数y =ax +b (a ≠0)的图象与反比例函数y =kx(k ≠0)的图象交于第二、四象限的A ,B 两点,与x 轴交于C 点.已知A(-2,m ),B (n ,-2),tan ∠BOC =25,则此一次函数的解析式为____________.18.如图,正方形ABCD 的边长是4,点P 是CD 的中点,点Q 是线段BC 上一点,当CQ =________时,以Q ,C ,P 三点为顶点的三角形与△ADP 相似.三、解答题(19题6分,20题10分,24题14分,其余每题12分,共66分) 19.计算:3tan30°+cos 245°-(sin30°-1)0.20.【教材P 110复习题T 6变式】如图所示的是某几何体的表面展开图.(1)这个几何体的名称是 ________; (2)画出这个几何体的三视图; (3)求这个几何体的体积.(π≈3.14)21.如图,在平面直角坐标系中,▱OABC 的顶点A ,C 的坐标分别为(2,0),(-1,2),反比例函数y =kx(k ≠0)的图象经过点B . (1)求k 的值;(2)将▱OABC 沿x 轴翻折,点C 落在点C ′处,判断点C ′是否在反比例函数y =k x(k ≠0)的图象上,请通过计算说明理由.22.如图,一棵大树在一次强台风中折断倒下,未折断树干AB 与地面仍保持垂直的关系,而折断部分AC 与未折断树干AB 形成53°的夹角.树干AB 旁有一座与地面垂直的铁塔DE ,测得BE =6 m ,塔高DE =9 m .在某一时刻太阳光的照射下,未折断树干AB 落在地面的影子FB 长为4 m ,且点F ,B ,C ,E 在同一条直线上,点F ,A ,D 也在同一条直线上.求这棵大树没有折断前的高度.(结果精确到0.1 m ,参考数据: sin 53°≈0.798 6, cos 53°≈0.601 8,tan 53°≈1.327 0)23.如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD ⊥CE ,垂足为D ,AC 平分∠DAB .(1)求证:CE 是⊙O 的切线;(2)若AD =4,cos ∠CAB =45,求AB 的长.24.【教材P 85复习题T 11拓展】已知矩形ABCD 的一条边AD =8,将矩形ABCD 折叠,使得点B落在CD 边上的点P 处,然后展开.(1)如图①,已知折痕与边BC 交于点O ,连接AP ,OP ,OA .① 求证:△OCP ∽△PDA ;② 若△OCP 与△PDA 的面积比为1∶4,求边AB 的长.(2)如图②,在(1)的条件下,擦去AO 和OP ,连接BP .动点M 在线段AP 上(点M 不与点P ,A 重合),动点N 在线段AB 的延长线上,且BN =PM ,连接MN 交PB 于点F ,作ME ⊥BP 于点E .试问动点M ,N 在移动的过程中,线段EF 的长度是否发生变化?若不变,求出线段EF 的长度;若变化,请说明理由.答案一、1.A 2.C 3.A 4.D 5.B 6.C 7.C 8.A 9.B 10.C 二、11.y =3x (答案不唯一) 12.75° 13.1214.24 15.4 2 m 16.6或7或8 17.y =-x +318.1或4 点拨:设CQ =x .∵四边形ABCD 为正方形,∴∠C =∠D =90°.∵点P 为CD 的中点,∴CP =DP =2.当CQ PD =CP AD 时,△QCP ∽△PDA ,此时x 2=24,∴x =1.当CQ AD =CPPD 时,△QCP∽△ADP ,此时x 4=22,∴x =4.三、19.解:原式=3×33+⎝ ⎛⎭⎪⎫222-1=12. 20.解:(1)圆柱(2)如图所示.(3)这个几何体的体积为πr 2h ≈3.14×⎝ ⎛⎭⎪⎫1022×20=1 570.21.解:(1)∵四边形OABC 是平行四边形,∴OA ∥BC ,OA =BC . 又A (2,0),C (-1,2), ∴点B 的坐标为(1,2).将点B (1,2)的坐标代入y =k x,得k =2.(2)点C ′在反比例函数y =2x的图象上.理由如下:∵将▱OABC 沿x 轴翻折,点C 落在点C ′处,C (-1,2), ∴点C ′的坐标是(-1,-2). 由(1)知,反比例函数的解析式为y =2x.令x =-1,则y =2-1=-2.故点C ′在反比例函数y =2x的图象上.22.解:根据题意,得AB ⊥EF ,DE ⊥EF ,∴∠ABC =90°,AB ∥DE , ∴△ABF ∽△DEF , ∴AB DE =BF EF ,即AB 9=44+6, 解得AB =3.6 m.在Rt △ABC 中,∵cos ∠BAC =AB AC,∠BAC =53°, ∴AC =ABcos 53°≈5.98(m),∴AB +AC ≈3.6+5.98≈9.6(m).答:这棵大树没有折断前的高度约为9.6 m. 23.(1)证明:连接OC .∵AC 平分∠DAB ,∴∠DAC =∠BAC . ∵OA =OC ,∴∠BAC =∠OCA , ∴∠DAC =∠OCA ,∴AD ∥OC , 又∵AD ⊥CE ,∴OC ⊥CE .又∵OC 是⊙O 的半径,∴CE 是⊙O 的切线.(2)解:连接BC .在Rt △ADC 中,cos ∠DAC =cos ∠CAB =45=AD AC =4AC ,∴AC =5,∵AB 为⊙O 的直径,∴∠ACB =90°. 在Rt △ABC 中,cos ∠CAB =AC AB =5AB =45,∴AB =254. 24.(1)①证明:如图①,∵四边形ABCD 是矩形,∴∠C =∠D =∠B =90°,∴∠1+∠3=90°. 由折叠可得∠APO =∠B =90°, ∴∠1+∠2=90°.∴∠3=∠2. 又∵∠C =∠D ,∴△OCP ∽△PDA .②解:∵△OCP 与△PDA 的面积比为1∶4,且△OCP ∽△PDA , ∴OP PA =CP DA =12.∴CP =12AD =4. 设OP =x ,则易得CO =8-x . 在Rt △PCO 中,∠C =90°, 由勾股定理得 x 2=(8-x )2+42.解得x =5,即OP =5.∴AB =AP =2OP =10.(2)解:线段EF 的长度不发生变化.作MQ ∥AN ,交PB 于点Q ,如图②. ∵AP =AB ,MQ ∥AN ,∴∠APB =∠ABP =∠MQP . ∴MP =MQ .又BN =PM ,∴BN =QM .∵MQ ∥AN ,∴∠QMF =∠BNF ,∠MQF =∠FBN , ∴△MFQ ≌△NFB .∴QF =FB .∴QF =12QB .∵MP =MQ ,ME ⊥PQ ,∴EQ =12PQ .∴EF =EQ +QF =12PQ +12QB =12PB .∵BC =AD =8,∠C =90°,PC =4. ∴PB =82+42=45,∴EF =12PB =2 5.∴在(1)的条件下,动点M ,N 在移动的过程中,线段EF 的长度不变,它的长度恒为2 5.人教版初中数学九年级(下)期末综合测试卷(四)一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的。

九年级数学下册期末测试卷题及答案(两套)

九年级数学下册期末测试卷题及答案(两套)

九年级数学下册期末测试卷一、选择题(本部分共10小题,每小题3分,共30分.每小题给出4个选项,其中只有一个选项是正确的,请将正确的选项填在答题卡上).1.下列实数中,最小的数是( )A .2-B .C .0D .12.将一个正方体沿正面相邻两条棱的中点连线截去一个三棱柱,得到一个如图所示的几何体,则该几何体的俯视图是( )A .B .C .D .3.深圳经济特区成立四十周年,经济发生了翻天覆地的变化,深圳经济GDP 2020年位居全国各大城市前三,经济GDP 约为28000亿元,将28000用科学记数法表示为( ) A .42810⨯B .42.810⨯C .52.810⨯D .60.2810⨯4.下列图案中,是中心对称图形但不是轴对称图形的是 ( )A .B .C .D .5.已知一组数据:7,3,9,x ,8,它们的平均数是7,则这组数据的中位数是( ) A .8B .7C .6D .56.以下说法正确的是( ) A .平行四边形是轴对称图形 B .函数y =2x ≥ C .相等的圆心角所对的弧相等D .直线5y x =-不经过第二象限7.在ABC ∆中,60C ∠=︒,50A ∠=︒,分别以点A 、B 为圆心,以大于12AB 的长为半径画弧,两弧分别交于点M 、N ,作直线MN 交AC 点D ,连接BD ,则CB D ∠的大小是( ).A .15︒B .20︒C .25︒D .30︒8.“儿童放学归来早,忙趁东风放纸鸢”,小明周末在龙潭公园草坪上放风筝,已知风筝拉线长100米且拉线与地面夹角为65︒(如图所示,假设拉线是直的,小明身高忽略不计),则风筝离地面的高度可以表示为( )A .100sin 65︒B .100cos 65︒C .100tan 65︒D .100sin 65︒9.如图,抛物线()2112y x =-++与()2221y x =---相交于点B .两抛物线分别与y 轴交于点D 、E 两点.过点B 作x 轴的平行线,交两抛物线于点A 、C ,则以下结论错误的是( )A .无论x 取何值,2y 总是负数B .抛物线2y 可由抛物线1y 向右平移3个单位,再向下平移3个单位得到C .当31x -<<时,随着x 的增大,12y y -的值先增大后减小D .四边形AECD 为正方形10.如图,正方形ABCD 中,AC 、BD 相交于点O ,P 是BC 边上的一点,且PC =2PB ,连接AP 、OP 、DP ,线段AP 、DP 分别交对角线BD 、AC 于点E 、F .过点E 作EQ ⊥AP ,交CB 的延长线于Q .下列结论中:①∠P AO +∠PDO +∠APD =90°;②AE =EQ ;③sin ∠P AC =13; ④S 正方形ABCD =10S 四边形OEPF ,其中正确的结论有( )A .1个B .2个C .3个D .4个二、填空题(本部分共5小题,每小题3分,共15分,请将正确的答案填在答题卡上).11.因式分解:3a a -=__________.12.甲箱中装有3个篮球,分别标号为1,2,3;乙箱中装有2个篮球.分别标号为1,2,现分别从每个箱中随机取出1个篮球,则取出的两个篮球的标号相同的概率是_____________.13.公元3世纪,2ra a≈+得到无理数的近似值,其中r 取正整数,且a131212≈+=⨯≈_____________. 14.如图,在平面直角坐标系中,函数()0k y x x=>与1y x =-的图象交于点(),P a b ,已知1114a b -=-,则k 值为______________.15.如图,已知在菱形ABCD ,BC =9,∠ABC =60°,点E 在BC 上,且BE =6,将ΔABE 沿AE 折叠得到ΔAB ′E ,其中B ′E 交CD 于点F ,则CF =____________.三、解答题(本大题共7题.其中17题5分,18题6分,19题8分,20题8分,21题8分,22题10分,23题10分,共55分).16.计算:02114sin 60320213-⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭︒17.先化简,再求值:22411369x x x x -⎛⎫-÷ ⎪+++⎝⎭,其中4x =-. 18.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.龙岗天虹超市为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A 、B 、C 、D 表示)这四种不同口味粽子的喜爱情况,在节前对在天虹购物的m 名市民进行了抽样调查、并将调查情况绘制成如下两幅不完整统计图.请根据以上信息回答:(1)m =___________,n =___________, (2)并请根据以上信息补全条形统计图.(3)扇形统计图中,C 所对应的扇形的圆心角度数是________度;(4)天虹超市计划进货10000个粽子用于销售,请你估计将进货红枣馅粽多少个. 19.如图,AB 是O e 的直径,BD 平分ABC ∠,DE BC ⊥.(1)求证:DE 是O e 的切线.(2)若2CE =,5DE =,求O e 的半径.20.某校今年新改造了一片绿化带,现计划种植龙舌兰和春兰两种花卉,已知2盆龙舌兰和3盆春兰售价130元,3盆龙舌兰和2盆春兰售价120元. (1)求每盆龙舌兰和春兰单价.(2)学校今年计划采购龙舌兰和春兰共400盆,相关资料表明:龙舌兰和春兰的成活率分别为70%和90%,学校明年都要将枯死的花卉补上相同的新花卉,但这两种花卉在明年共补花卉不多于80盆,应如何选购花卉,使今年购买花卉的费用最低?并求出最低费用. 21.如图1,分别以ABC ∆的AB 、AC 为斜边间外作等腰直角三角形ABD 和等腰直角三角形ACF ,点G 是AC 的中点,连接DG 、BF .(1)求证:ADG ABF ∆∆∽;(2)如图2,若90BAC ∠=︒,AB =AC =AGD ∠的正切值;(3)如图3,以ABC ∆的BC 边为斜边问外作等腰直角三角形BCE ,连接EG ,试探究线段DG 、EG 的关系,并加以证明.22.如图1,直线l :443y x =-与x 轴、y 轴分别交于A 、B 两点,二次函数()2230y ax ax a =-+<的图像经过点A ,交y 轴于点C .(1)求该二次函数的表达式;(2)已知点M 是抛物线上的一个动点,经过点M 作x 轴的垂线MD ,交直线l 于点E ,过点C 作CD MD ⊥,垂足为D ,连接CM .设点M 的横坐标为m . ①若//CE OM ,求m 的值.②如图2,将C D M ∆绕点C 顺时针旋转得到''CD M ∆,且旋转角'MCM OAB ∠=∠.当点M 的对应点'M 落在坐标轴上时,求m 的值.参考答案1.A【分析】先根据实数的大小比较法则比较数的大小,再得出答案即可. 【详解】解:∵-2<0<1, ∴最小的数是-2, 故选:A .【点睛】本题考查了实数的大小比较和算术平方根,能根据实数的大小比较法则比较数的大小是解此题的关键,注意:正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小. 2.B【分析】根据俯视图是从上面看到的图形判定则可. 【详解】解:从上面看,该几何体的俯视图为.故选:B.【点睛】本题考查了三视图的知识,根据俯视图是从物体的上面看得到的视图得出是解题关键.3.B【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将28000用科学记数法表示为2.8×104.故选择:B.【点睛】本题考查科学记数法的表示方法,解题的关键是掌握科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.C【分析】根据中心对称图形以及轴对称图形的概念逐一进行分析即可得.【详解】A、不是中心对称图形,是轴对称图形,故不符合题意;B、是轴对称图形,也是中心对称图形,故不符合题意;C、是中心对称图形,不是轴对称图形,故符合题意;D、不是中心对称图形,也不是轴对称图形,故不符合题意,故选C.【点睛】本题主要考查轴对称图形和中心对称图形,在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内,如果把一个图形绕某个点旋转180°后,能与原图形重合,那么就说这个图形是中心对称图形.5.A【分析】根据平均数即可求出x,再利用中位数的概念即可得出结果.【详解】根据题意可知739875xx++++==,解得:8x=.∴这组数据为:7,3,9,8,8.∴这组数据的中位数为8.故选A.【点睛】本题考查平均数和中位数.掌握求平均数的公式和中位数的概念是解答本题的关键.6.D【分析】利用平四边形的性质,圆周角定理,函数的有关性质一一判断即可.【详解】解:A、平行四边形是中心对称图形,不是轴对称图形,故本选项不符合题意.B、函数y=x>2,故本选项不符合题意.C、同圆或等圆中,相等的圆心角所对的弧相等,故本选项不符合题意.D、直线y=x-5经过第一、三、四象限,不经过第二象限,正确,故本选项符合题意.故选:D.【点睛】本题考查平四边形的性质,圆周角定理,函数的有关性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.B【分析】根据线段垂直平分线的性质得到AD=BD,根据等腰三角形的性质得到∠A=∠DBA,求得∠DBA=50°,根据三角形的内角和得到∠ABC=70°,即可得到结论.【详解】由题意可得:MN是AC的垂直平分线,则AD=BD,∴∠A=∠DBA,∵∠A=50°,∴∠DBA=∠A =50°,∵∠C =60°,∠A +∠C +∠ABC =180°, ∴∠ABC =180°-∠C -∠A =180°-60°-50°=70°, ∴∠CBD =∠ABC −∠ABD =70°-50°=20°, 故选B . 【点睛】本题考查线段垂直平分线的性质,三角形内角和,解题关键在于根据三角形的内角和得到∠ABC =70°. 8.A 【分析】过点A 作AC ⊥BC 于C ,根据正弦的定义解答即可. 【详解】解:如图,过点A 作AC ⊥BC 于C ,在Rt △ABC 中,sin B =ACAB, 则AC =AB •sin B =100sin65°(米), 故选:A . 【点睛】本题考查的是解直角三角形的应用—坡度坡角问题,掌握锐角三角函数的定义是解题的关键. 9.C 【分析】由抛物线开口向下,抛物线有最大值,()222110y x =---≤-<,可判断A ;由两个函数二次项系数相同,开口方向相同,两函数顶点横坐标之差为2-(-1)=3,纵坐标之差为-1-2=-3可判断B ;由两函数之差1266y y x -=-+,k =-6<0随着x 的增大,12y y -的值减小可判断C ;设AC 与DE 交于点F ,由两函数联立解出交点(1,2)B -,可求F (0,-2),当=2y -时,可求点(3,2)A --,点C (3,-2),,当0x =时,D (0,1),点E (0,-5)可利用对角线互相平分,相等,互相垂直判断D . 【详解】A .()2221y x =---∵1a =-,抛物线开口向下,函数有最大值, 当x=2时,函数y 2最大=-1 ∴()222110y x =---≤-<,∴无论x 取何值,2y 的最大值是-1,总是负数; 故选项A 正确;B .∵两个函数的二次项系数相同,开口方向相同, ∴两函数顶点横坐标之差为2-(-1)=3, ∴2l 可由1l 向右平移3个单位, ∵纵坐标之差为-1-2=-3;∴2l 可由1l 向下平移3个单位得到;∴2l 可由1l 向右平移3个单位,再向下平移3个单位得到;故选项B 正确;C .∵()()2212122166y y x x x ⎡⎤⎣⎦-=-++----=-+, ∵k =-6<0随着x 的增大,12y y -的值减小;故选项C 错误; D .设AC 与DE 交于点F ,∵抛物线1l :()2112y x =-++与2l :()2221y x =---交于点B , ∴()212x -++()221x =--- 解得x =1,∴当1x =时,=2y -, ∴点B (1,-2)∴F (0,-2),∵当=2y -时,()2122x -++=-,解得:3x =-或1x =,∴点(3,2)A --,当=2y -时,()2212x ---=-,解得:3x =或1x =,∴点C (3,-2),∴AC =3-(-3)=6, ∴132AF CF AC ===, 当0x =时,()2112=121y x =-++-+= ∴D (0,1),()22021415y =---=--=-, 点E (0,-5),∴()156DE =--=, ∴132DF EF DE ===, ∴AF =CF ,DF =EF ,∴四边形AECD 为平行四边形,∵=6AC DE =,∴四边形AECD 为矩形,∵点(3,2)A --,点C (3,-2),纵坐标都是-2,-3≠3,∴AC ∥x 轴,∴AC ⊥y 轴,又∵点D ,E 在y 轴上,∵AC DE ⊥,∴四边形AECD 为正方形.故选项D 正确.故选择:C .【点睛】本题是二次函数综合题,主要考查了待定系数法求函数解析式,抛物线平移,平行四边形的判定,矩形判定,正方形判定,掌握以上知识、熟练应用数形结合思想是解题关键.10.B【分析】①正方形对角线垂直平分三角形外角等于和它不相邻的两个内角和,可得结果;②连接AQ,可得∠QEP=∠AEQ=∠ABQ=90°,即A、Q、B、E四点共圆,可得∠QAE=90°-∠AQE=45°,即可得AE=EQ;③过P作AC的垂线于点G,设BP=a,由勾股定理求得AP,AC,正方形对角线垂直相等且互相平分可得sin∠P AC的值;④AD∥BC,可得△BEP∽△DEA,△PFC∽△DF A,设S△BEP=s,则S△OEP=s,S△BPO=2s,S△POC=4s,S△OPF=45s,即可求解.【详解】解:①∵∠POB=∠PDO+∠OPD,∠POC=∠P AO+∠APO,∠POB+∠POC=∠BOC,∵四边形ABCD为正方形,∴∠BOC=90°,∴∠PDO+∠OPD+∠P AO+∠APO=90°,∴∠P AO+∠APO+∠PDO=90°,故①正确;②连接AQ,∵QE⊥AP,∴∠QEP=∠AEQ=∠ABQ=90°,∴A、Q、B、E四点共圆,∴∠AQE=∠ABE=12∠ABC=45°,∴∠QAE=45°,∴AE=EQ,故②正确;③过P作AC的垂线于点G,设BP=a,PC=2a,∴BC=3a,∴AP=,∴AC,∴AO=BO,∵BD⊥AC,PE⊥AC,∴BD∥PG,∴2233 PG CP aOB CB a===,∴PG=23,∴sin∠P AC=PGAP==,故③错误;④∵AD∥BC,∴△BEP∽△DEA,△PFC∽△DF A,∴BE:DE=1:3,CF:AF=2:3,∴BE:ED=1:1,OF:CF=1:4,设△BEP=s,则S△OEP=s,S△BPO=2s,S△POC=4s,∴S △OPF =45s , ∴S △BCO =2s +4s =6s ,∴S 四边OPEQ =s +45s =95s , S 正方形ABCD =4s ×6=24s ,故④错误,综上,①②正确,故选:B .【点睛】本题考查了正方形的性质的应用,解本题关键掌握正方形的性质,解直角三角形,相似三角形判定与性质等.11.(1)(1)a a a +-【分析】先提公因式a ,再利用平方差公式因式分解即可解题.【详解】解:32=(1)a a a a --=(1)(1)a a a +-故答案为:(1)(1)a a a +-.【点睛】本题考查因式分解,涉及平方差与提公因式等知识,是重要考点,难度较易,掌握相关知识是解题关键.12.13. 【分析】画出树状图,然后根据概率公式列式进行计算即可.【详解】解:根据题意可画树状图如下:,由树状图可知共有6种情况,其中取出的两个篮球的标号相同有2种情况, 所以取出的两个篮球的标号相同的概率是2163= , 故答案为:13. 【点睛】本题主要考查了利用树状图或列表法求概率的知识点应用,本题的关键是根据题意准确的画出树状图.13.103. 【分析】由题意得到a 和r 的值,再利用所给的公式可得解答.【详解】解:∵2r a a≈+,∴a =3,r=2,21103+=3+=2333≈⨯. 故答案为103. 【点睛】本题考查无理数的估值计算方法,对阅读资料的归纳和应用以及正整数的平方与非平方正整数的和,找出无理数的最大整数平方是解题关键.14.4【分析】根据题意可知1b a =-,k b a=.再由1114a b -=-,可改写为14b a ab -=-,即可求出4ab =,即得出k 的值.【详解】解:由题意可知点P 在一次函数图象上,∴1b a =-,即1b a -=-. ∵1114a b -=-,即14b a ab -=-,∴114ab -=-,即4ab =. 由点P 又在反比例函数图象上, ∴k b a=,即4k ab ==. 故答案为:4.【点睛】本题考查代数式求值以及反比例函数与一次函数的交点问题.掌握反比例函数与一次函数的交点坐标分别满足其解析式是解答本题的关键.15.95【分析】过点A 作AG ⊥BC 交BC 于G ,取HG 使HG =GE ,过H 作HM ⊥AE 于H ,过F 作FN ⊥BC 交BC 延长线于N ,通过直角三角形求出BG 、AE ,由三角形的面积求得HM ,再通过折叠求出CF .【详解】解:过点A 作AG ⊥BC 交BC 于G ,取HG 使HG =GE ,过H 作HM ⊥AE 于H ,过F 作FN ⊥BC 交BC 延长线于N ,∵四边形ABCD 是菱形,∴AB =BC =9,在Rt △ABG 中,∠B =60°,∴sinB =sin 60°=AG AB =,∴AG , ∵cosB =cos 60°=12BG AB =, ∴BG =12AB =92,∵BE =6,∴HE =2GE =2(BE -BG )=2×(962-)=3, 在Rt △AGE 中,AE = ∵S △AHE =12×HE ×AG =12×AE ×HM ,∴12×=12×HM ,解得,HM ∵HG =GE ,AG ⊥HE ,∴△AHE 是等腰三角形,∴AH =AE ,∠AHE =∠HEA ,在Rt △AHM 中,AM =, ∵AB ∥CD ,∴∠FCN =∠B =60°,∴FN CN =tan 60° ∵折叠,∴∠AEB ′=∠HEA ,在△AHE 中,∵∠HAE =180°-∠HEA -∠AHE =180°-2∠HEA ,又∠FEN =180°-∠HEA -∠AEB ′=180°-2∠HEA , ∴∠HAE =∠FEN ,设CN =x ,FN ,∵tan ∠FEC =tan ∠HAM =FN HM EN AM=,,=,∴910x=,∴CN=910,FN,∴CF95=.故答案为:95.【点睛】本题考查了翻折求线段,综合利用了等腰三角形和直角三角形等性质以及三角函数关系求线段,综合难度较高.16.13【分析】先分别化简锐角三角函数,绝对值,零指数幂和负整数指数幂,然后再计算.【详解】解:02114sin60320213-⎛⎫⎛⎫-++⎪ ⎪⎝⎭⎝⎭︒=4319-+=()4319++=419++=19++=13.【点睛】本题考查锐角三角函数,绝对值,零指数幂和负整数指数幂,掌握运算顺序和计算法则准确计算是解题关键.17.31xx++,13.【分析】根据分式的减法和除法可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题.【详解】 解:22411369x x x x -⎛⎫-÷ ⎪+++⎝⎭ 234(3)3(1)(1)x x x x x +-+=⋅++- 131(1)(1)x x x x -+=⋅+- 31x x +=+, 当x=-4时,原式43114133-+-===-+-. 【点睛】本题考查了分式的化简求值,解答本题的关键是明确分式化简求值的方法.18.(1)600,30;(2)见解析;(3)72;(4)2000个【分析】(1)根据两个统计图中B 或D 的人数及所占的百分比,即可求得m ,进而可求得A 所占的百分比,从而可得n ;(2)根据扇形统计图求得C 所占的百分比,从而可求得C 的人数,因而可把条形统计图补充完整;(3)根据C 所占的百分比×360°=C 所对应的扇形的圆心角,即可求得C 所对应的扇形的圆心角的度数;(4)把红枣馅所占的百分比作为总体的百分比,则用10000×红枣馅所占的百分比即得红枣馅粽进货量.【详解】(1)根据条形统计图中B 人数为60人,扇形统计图中B 对应的百分比为10%,则所抽取的人数为:60÷10%=600(人),则A 所占的百分比为:180÷600×100%=30%,所以n =30.故答案为:600,30.(2)C 所占的百分比为:1−(40%+30%+10%)=20%,所以C 的人数为:600×20%=120(人),则补全的条形统计图如下:(3)C所对应的扇形的圆心角为:360°×20%=72°.故答案为:72.(4)10000×20%=2000(个).所以估计将进红枣馅粽2000个.【点睛】本题综合考查了条形统计图和扇形统计图这两种统计图,用样本的百分比估计总体的百分比,关键是读懂统计图,并从统计图中获取有用的信息.19.(1)证明见详解;(2)⊙O的半径为294.【分析】(1)如图,连接OD、AC,由AB是直径可得∠ACB=90°,根据DE⊥BC可得DE//AC,根据垂径定理的推论可得OD⊥AC,即可证明OD⊥DE,由点D在圆上即可证明DE是⊙O的切线;(2)作OF⊥BC于F,可得四边形OFED是矩形,可得OF=DE=5,OD=EF,由垂径定理可得BF=CF,设⊙O的半径为R,在Rt△BOF中,利用勾股定理构造方程求出R值即可.【详解】(1)如图,连接OD、AC,∵AB是⊙O的直径,∴∠ACB=90°,∴AC⊥BC,∵DE⊥BC,∴DE∥AC,∵BD平分ABC,∴∠ABD=∠CBD,∴»»AD CD,∴OD⊥AC,∴DE⊥OD,∵D在⊙O上,∴DE是⊙O的切线;(2)如图,作OF⊥BC于F,∴BF=CF,∵DE⊥BE,OD⊥DE,OF⊥BC,∴四边形OFED是矩形,∴OF=DE=5,OD=EF,设⊙O的半径为R,CE=2,则BF=CF=R﹣2,在Rt△BOF中,BF2+OF2=OB2,∴(R﹣2)2+52=R2,解得R=294,即⊙O的半径为294.【点睛】本题考查切线的判定及垂径定理,角平分线定义,矩形判定与性质,勾股定理,一元一次方程及其解法,熟练掌握切线的判定及垂径定理,角平分线定义,矩形判定与性质,勾股定理,一元一次方程及其解法是解题关键.20.(1)每盆龙舌兰20元,每盆春兰30元;(2)应购买龙舌兰200盆,春兰200盆,最低费用为10000元.【分析】(1)设每盆龙舌兰x 元,每盆春兰y 元.依题意可列出关于x 、y 的二元一次方程组,解出x 、y 即可.(2)设购买龙舌兰a 盆,购买花卉费用为w 元,则购买春兰(400-a )盆.根据题意可列出w 与a 的关系式,再由这两种花卉在明年共补花卉不多于80盆,可列出不等式,得出a 的取值范围,最后利用一次函数的性质即可求解.【详解】(1)设每盆龙舌兰x 元,每盆春兰y 元.根据题意可列出方程组2313032120x y x y +=⎧⎨+=⎩, 解得:2030x y =⎧⎨=⎩. 故每盆龙舌兰20元,每盆春兰30元.(2)设购买龙舌兰a 盆,购买花卉费用为w 元,则购买春兰(400-a )盆,依题意有2030(400)w a a =+⨯-,即1200010w a =-.由这两种花卉在明年共补花卉不多于80盆,可列不等式:4000.70.9(400)80a a ---≤,解得:200a ≤.∵一次函数1200010w a =-,w 随a 的增大而减小,∴当200a =时,w 最小,且最小值为120001020010000w =-⨯=.故应购买龙舌兰200盆,春兰200盆,最低费用为10000元.【点睛】本题考查二元一次方程组的实际应用,一次函数的实际应用以及一元一次不等式的实际应用.根据题意找出数量关系列出等式或不等式是解答本题的关键.21.(1)证明见详解;(2)tan AGD ∠25=;(3)结论是:DG =EG ,且DG ⊥EG ,证明见详解. 【分析】(1)由ABD ∆和ACF ∆都是等腰直角三角形,可得∠DAB =∠CAF =45°,可证∠DAG =∠BAF ,可求AD AG AB AF ==△ADG ∽△ABF ; (2)由∠BAC =90°,ABD ∆和ACF ∆都是等腰直角三角形,可得∠DAB =∠CAF =45°,可证点D ,A ,F 三点共线,证△ADG ∽△ABF ;可得∠AGD =∠AFB ,可求BD =AD =2,AF =3,DF = =5,利用三角函数求tan AGD ∠=tan ∠AFB =25DB DF =;(3)结论是:DG =EG ,且DG ⊥EG ,证△ECG ∽△BCF ,可得BF ,∠EGC =∠BFC ,由△ADG ∽△ABF 得BF =EG ,∠AGD =∠AFB ,可得DG =EG ,∠DGE =90°即可. 【详解】(1)∵ABD ∆和ACF ∆都是等腰直角三角形,∴∠DAB =∠CAF =45°,∴∠DAG =∠DAB +∠BAC =∠CAF +∠DAB =∠BAF ,∴AD =AB cos45°AB ,∴AD AB = ∵点G 是AC 的中点,∴AG =12AC ,∵AF = AC cos45°AC ,∴2AF AC =,∴1ACAGAF==∴AD AGAB AF==,又∠DAG =∠BAF,∴△ADG∽△ABF;(2)∵∠BAC=90°,ABD∆和ACF∆都是等腰直角三角形,∴∠DAB=∠CAF=45°,∴∠DAF=∠DAB+∠BAC+∠CAF=45°+90°+45°=180°,∴点D,A,F三点共线,∵∠DAB=90°即∠FDB=90°,∴△DBF为直角三角形,∵△ADG∽△ABF;∴∠AGD=∠AFB,∵AB=AC=∴BD=AD=AB cos45°AB,AF= AC cos45°,∴DF=AF+AD=3+2=5,∴tan AGD∠=tan∠AFB=25DBDF=;(3)结论是:DG =EG ,且DG ⊥EG ,理由如下:∵△BCE 和△ACF 是等腰直角三角形,∴∠BCE =∠ACB =45°,∴EC =BC cos45°=2BC ,∴CE BC =, ∵点G 是AC 的中点,∴CG =12AC ,∴CF =AF = AC cos45°AC ,∴CF AC =,∴1AC CG CF ==∴EC CG BC CF == ∴∠BCE +∠ACB =∠ACF +∠ACB ,即∠ECG=∠BCF ,∴△ECG ∽△BCF ,∴BF,∠EGC =∠BFC ,由△ADG ∽△ABF 得BF,∠AGD =∠AFB ,∴DG =EG ,∠AGD +∠EGC =∠AFB +∠BFC =90°,∴∠DGE =90°,∴DG =EG ,且DG ⊥EG .【点睛】本题考查三角形相似判定,三点共线,锐角三角函数,等腰直角三角形性质,线段中点,掌握三角形相似判定,三点共线,锐角三角函数,等腰直角三角形性质,线段中点是解题关键.22.(1)抛物线的表达式为:223y x x =-++;(2)①1m =2m ;②当点M的对应点'M 落在坐标轴上时, m 的值为1114m =,2m 3m . 【分析】(1)利用一次函数求出两轴交点坐标,把A 点坐标代入抛物线解析式求1a =-即可; (2)①由MD ⊥x 轴,可得ME ∥OC ,由CE ∥OM ,可证四边形OMEC 为平行四边形,由OC =ME ,列方程27323=m m --解方程即可; ②由勾股定理AB 5=,分两种情况,当点M ′在y 轴上时,可证四边形NMDC 为矩形,利用三角函数比tan ∠OAB =tan ∠NCM =OB MN OA DM =,得34m DM =,由DM +ON =3,列方程2323+34m m m -++=,当点M ′在x 轴上时,过M 作MH ⊥CM ′于H ,过H 作NQ ∥x 轴,交y 轴于N ,交DM 延长线于Q ,tan ∠OAB =tan ∠NC M=4=3HM CH ,可证△ONH ∽△COM′,可求9=5CN ,ON = 65,再证△CNH ∽△QHM ,可求MQ=41235m ⎛⎫- ⎪⎝⎭,利用y M =ON+MQ 列方程求解即可.【详解】解:(1)当x =0时,y =-4,当y =0时,44=03x -,解得x =3 ∴A (3,0),B (0,-4),∵抛物线过点A ,∴9630a a -+=解得1a =-∴抛物线的表达式为:223y x x =-++;(2)①∵MD ⊥x 轴,∴ME ∥OC ,又∵CE ∥OM ,∴四边形OMEC 为平行四边形,∴OC =ME ,,∵M (m ,223m m -++),E (m ,443m -), 当x =0时,y =3,C (0,3),∴ME =443m --(223m m -++)=2372m m --,OC =3, ∴27323=m m --整理得230023=m m --,∴m =∴1m =2m ;②∵OA =3,OB =4,由勾股定理AB 5=,当点M ′在y 轴上时,过M 作MN ⊥OC 于N ,∵MD ⊥CD ,CD ∥x 轴,∴∠NCD =∠D =∠CNM =90°,∴四边形NMDC 为矩形,∴CD =MN =m , ON =223m m -++,∴tan ∠OAB =tan ∠NCM =OB MN OA DM =, ∴43m DM=即34m DM =, ∵DM +ON =3, ∴2323+34m m m -++=,解得111 4m=;当点M′在x轴上时,过M作MH⊥CM′于H,过H作NQ∥x轴,交y轴于N,交DM延长线于Q,∴tan∠OAB=tan∠NC M=4=3 HMCH,在Rt△CHM中设CH=3n,HM=4n,CM′=CM=5n,∴HM′=5n-3n=2n,∵NH平行OM′,∴∠CHN=∠CM′O,∠NCH=∠OCM′,∴△ONH∽△COM′,∴3=5 CN CHCO CM=',∴39=55 CN CO=,∴ON=OC-CN=3-96 =55,∵∠CNH=∠CHM=∠HQM=90°,∠NCH+∠CHN=∠CHN+∠MHQ=90°,∴∠NCH=∠QHM,∴△CNH∽△QHM,∴3=4 CN CHHQ HM=,∴44912=3355 HQ CN=⨯=,∴NH=m125 -,∴MQ=4412 335NH m⎛⎫=-⎪⎝⎭,∴yM =ON +MQ =6412+535m ⎛⎫- ⎪⎝⎭=223m m -++, 整理得232150m m -=-,解得m =∴2m 3m ,∴当点M 的对应点'M 落在坐标轴上时, m 的值为1114m =,2m ,3m .【点睛】本题考查待定系数求抛物线解析式,一次函数与两轴交点坐标,平行四边形的判定与性质,平行线性质,二次函数与一元二次方程,矩形判定与性质,三角形相似判定与性质,锐角三角函数,一元二次方程的解法,掌握待定系数求抛物线解析式,一次函数与两轴交点坐标,平行四边形的判定与性质,平行线性质,二次函数与一元二次方程,矩形判定与性质,三角形相似判定与性质,锐角三角函数,一元二次方程的解法是解题关键.九年级下册数学期末测试卷测试时间:120分钟 满分:120分一、选择题(本大题共12个小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.23-的倒数是( ) A .32- B .32 C .23 D .23- 2.下列计算正确的是( )A .54x x x -=B .326()x x =C .325a a a +=D .632a a a ÷= 3.新型冠状病毒的平均直径约为100纳米,即0.0000001米,将0.0000001用科学记数法表示为( )A .7110⨯B .60.110-⨯C .7110-⨯D .81010-⨯ 4.两个长方体按图示方式摆放,其主视图是( )A .B .C .D .5.在平面直角坐标系中,点P(-2,3)关于x 轴对称的点的坐标为( ) A .(2,-3) B .(-2,-3) C .(3,-2) D .(2,3)6.某同学在今年的中考体育测试中选考跳绳.考前一周,他记录了自己五次跳绳的成绩(次数/分钟):247,253,247,255,263.这五次成绩的平均数和中位数分别是( ) A .253,253B .255,253C .253,247D .255,2477.如图,在⊙O 中,弦AC ∥半径OB ,∠BOC=50°,则∠OAB 的度数为( )A .25°B .50°C .60°D .30°8x 的取值范围是( ) A .x >2B .x ≥2C .x <2D .x ≤29.已知关于x 的一元二次方程(m -1)x 2+2x +1=0有实数根,则m 的取值范围是( )A .m <2B .m≤2C .m <2且m≠1D .m≤2且m≠110.如图,在△ABC 中,AB =AC =10,在AB ,AC 上分别截取AP ,AQ ,使AP =AQ ,再分别以点P ,Q 为圆心,以大于12PQ 的长为半径作弧,两弧在∠BAC 内交于点R ,作射线AR ,交BC 于点D .若∠BAC =60°,则AD 的长为( )A .5B .6C .D .11.已知关于x 的分式方程422x k x x-=--的解为正数,则k 的取值范围是( ) A .80k -<< B .8k >-且2k ≠- C .8k >-且2k ≠D .4k <且2k ≠-12.如图,正方形ABCD 的边长为2,点E 在边AB 上运动(不与点A ,B 重合),∠DAM =45°,点F 在射线AM 上,且AF =,CF 与AD 相交于点G ,连接EC ,EF ,EG .则下列结论:①EF =EC ;②△AEG的周长为2③BE 2+DG 2=EG 2;④△EAF 的面积的最大值是12;⑤当23BE =时,G 是线段AD 的中点.其中正确的结论是( )A .①②③B .②④⑤C .①③④D .①④⑤二、填空题(本大题共4个小题,每小题3分,共12分)13.把多项式2ax a -因式分解的结果是_________. 14.若一元二次方程x 2−x −3=0的两根分别为x 1,x 2,则1211x x +=_________. 15.《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章计算弧田面积所用的经验公式是:弧田面积=21()2⨯+弦矢矢.弧田是由圆弧和其所对的弦围成(如图),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.现已知弦AB =16米,半径等于10米的弧田,按照上述公式计算出弧田的面积为_________平方米.16.如图,排球运动员站在点O 处练习发球,将球从O 点正上方2m 的A 处发出,把球看成点,其运行的高度y (m )与运行的水平距离x (m )满足关系式2(6)y a x h =-+.已知球网与O 点的水平距离为9m ,高度为2.43m ,球场的边界距O 点的水平距离为18m .若球能越过球网,又不出边界,则h 的取值范围为_________.三、解答题(本大题共3个小题,每小题6分,共18分)17.计算:11(cos 45()2|2-⨯︒-+.18.如图,点E ,F 分别在菱形ABCD 的边DC ,DA 上,且CE=AF .求证:∠ABF =∠CBE .19.先化简,再求值:2443(1)11x x x x x -+÷----,其中2x =.四、解答题(本大题共2个小题,每小题7分,共14分)20.为了解温州市民对全市创建全国文明城市工作的满意程度,教研院附校数学兴趣小组在某个小区内进行了调查统计,将调查结果分为不满意、一般、满意、非常满意四类,回收整理好全部间卷后,得到下列不完整的统计图,其中选择“一般..”的人数占总人数的20%. 根据以上信息,回答下列问题:(1)此次调查中接受调查的总人数为________人. (2)请补全条形统计图.(3)该兴趣小组准备从调查结果为“不满意”的4位市民中随机选择2位进行回访,已知这4位市民中有2位男性,2位女性,请用树状图或列表的方法求出选择回访的市民为“一男一女”的概率.21.某文体商店计划购进一批同种型号的篮球和同种型号的排球,每一个排球的进价是每一个篮球的进价的90%,用3600元购买排球的个数要比用3600元购买篮球的个数多10个. (1)问每一个篮球、排球的进价各是多少元?(2)该文体商店计划购进篮球和排球共100个,且排球个数不低于篮球个数的3倍,篮球的售价定为每一个100元,排球的售价定为每一个90元.若该批篮球、排球都能卖完,问该文体商店应购进篮球、排球各多少个才能获得最大利润?最大利润是多少?五、解答题(本大题共2个小题,每小题8分,共16分)22.如图,在矩形OABC 中,AB =2,BC =4,点D 是边AB 的中点,反比例函数(0)k y x x=>的图象经过点D ,交BC 边于点E ,直线DE 的解析式为(0)y mx n m =+≠.(1)求反比例函数(0)ky x x=>的解析式;(2)在y 轴上找一点P ,使△PDE 的周长最小,求出最小值及此时点P 的坐标.23.脱贫攻坚工作让老百姓过上了幸福的生活.如图①是政府给贫困户新建的房屋,如图②是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB 所在的直线.为了测量房屋的高度,在地面上C 点测得屋顶A 的仰角为35︒,此时地面上C 点、屋檐上E 点、屋顶上A 点三点恰好共线,继续向房屋方向走8m 到达点D 时,又测得屋檐E 点的仰角为60︒,房屋的顶层横梁12EF m =,//EF CB ,AB 交EF 于点G (点C ,D ,B 在同一水平线上).(参考数据:sin 350.6︒≈,cos 350.8︒≈,tan 350.7︒≈ 1.7≈)(1)求屋顶到横梁的距离AG ;。

2022-2023学年北京海淀区初三第一学期数学期末试卷及答案

2022-2023学年北京海淀区初三第一学期数学期末试卷及答案

2022-2023学年北京海淀区初三第一学期数学期末试卷及答案第一部分 选择题一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1. 刺绣是中国民间传统手工艺之一.下列刺绣图案中,是中心对称图形的为( )A. B.C. D.【答案】B 【解析】【分析】如果一个图形绕某一点旋转180度后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.依据中心对称图形的概念即可解答. 【详解】解:A 、是轴对称图形不是中心对称图形,故此选项不符合题意; B 、是中心对称图形,故此选项符合题意; C 、不是中心对称图形,故此选项不符合题意; D 、不是中心对称图形,故此选项不符合题意; 故选:B .【点睛】本题考查中心对称图形,熟练掌握中心对称图形的概念是解题的关键. 2. 点关于原点对称的点的坐标是( ) ()1,2A A. B.C. D.()1,2-()1,2-()1,2--()2,1【答案】C 【解析】【分析】根据关于原点对称点的坐标特点:横、纵坐标均取相反数可直接得到答案. 【详解】解:点A (1,2)关于原点对称的点的坐标是(-1,-2), 故选:C .【点睛】此题主要考查了关于原点对称点的坐标特点,关键是掌握点的坐标的变化规律. 3. 二次函数的图象向左平移1个单位长度,得到的二次函数解析式为( ) 22y x =+A.B.23y x =+()212y x =-+C. D.21y x =+()212y x =++【答案】D 【解析】【分析】根据函数平移规律:左加右减,上加下减即可得到答案. 【详解】解:由题意可得,的图象向左平移1个单位长度可得,22y x =+, 2(1)2y x =++故选D .【点睛】本题考查函数图像平移规律,解题关键是熟练掌握规律:左加右减,上加下减. 4. 如图,已知正方形,以点为圆心,长为半径作,点与的位置关ABCD A AB A C A 系为( )A. 点在外B. 点在内C. 点在上D. 无法确C A C A C A 定 【答案】A 【解析】【分析】设正方形的边长为,用勾股定理求得点到的圆心之间的距离,为a C A AC AB 的半径,通过比较二者的大小,即可得到结论.A 【详解】解:设正方形的边长为, a则,,AB a =AC ==,AB AC < 点在外,∴C A 故选:A .【点睛】本题考查了点与圆的位置关系,解题的关键是确定圆的半径和点到圆心之间的距离的大小关系.5. 若点,在抛物线上,则的值为( )()0,5M ()2,5N ()223y x m =-+m A. 2 B. 1 C. 0 D.1-【答案】B 【解析】【分析】由函数的解析式可知函数对称轴为,从而得出的值. 022x m +==m 【详解】由函数可知对称轴是直线, ()223y x m =-+x m =由,可知,M ,N 两点关于对称轴对称,即 ()0,5M ()2,5N 0212x +==,,1m ∴=故选B .【点睛】本题考查二次函数图象上点的坐标特征,注意掌握二次函数图像上点的对称性是解题的关键.6. 勒洛三角形是分别以等边三角形的顶点为圆心,以其边长为半径作圆弧,由三段圆弧组成的曲边三角形.如图,该勒洛三角形绕其中心旋转一定角度后能与自身重合,则该O α角度可以为( )αA. B. C. D.30︒60︒120︒150︒【答案】C 【解析】【分析】连接,可得,从而得到,即可,OA OB AB AC BC==13601203AOC ∠=⨯︒=︒求解.【详解】解:如图,连接,,OA OC∵是等边三角形, ABC ∴,AB AC BC ==即, AB AC BC==∴. 13601203AOC ∠=⨯︒=︒∴该角度可以为.α120︒故选:C【点睛】本题主要考查了弧,弦,圆心角的关系,图形的旋转,等边三角形的性质,熟练掌握弧,弦,圆心角的关系是解题的关键.7. 如图,过点作的切线,,切点分别是,,连接.过上一点A O AB AC B C BC BC作的切线,交,于点,.若,的周长为4,则的D O AB ACEF 90A ∠=︒AEF △BC 长为( )A. 2B.C. 4D. 【答案】B 【解析】【分析】利用切线长定理得出,,,再根据三角形周长等于AB AC =DF FC =DE EB =4,可求得,从而利用勾股定理可求解.2AB AC ==【详解】解:∵,是的切线,切点分别是,, AB AC O B C ∴,AB AC =∵、是的切线,切点是D ,交,于点,, DF DE O AB AC E F ∴,,DF FC =DE EB =∵的周长为4,即, AEF △4AF EF AE AF DF DE AE AC AB ++=+++=+=∴, 2AB AC ==∵, 90A ∠=︒∴BC ===故选:B .【点睛】本题考查切线长定理,勾股定理,熟练掌握切线长定理是解题的关键. 8. 遥控电动跑车竞速是青少年喜欢的活动.如图是某赛道的部分通行路线示意图,某赛车从人口A 驶入,行至每个岔路口选择前方两条线路的可能性相同,则该赛车从口驶出的F 概率是( )A.B.C.D.13141516【答案】B 【解析】【分析】根据“在每个岔路口都有向左或向右两种可能,且可能性相等”可知在点H 、G 、E 、F 处都是等可能情况,从而得到在四个出口H 、G 、E 、F 也都是等可能情况,然后根据概率的意义列式即可得解.【详解】解:由图可知,在每个岔路口都有向左或向右两种可能,且可能性相等, 赛车最终驶出的点共有H 、G 、E 、F 四个, 所以,最终从点F 驶出的概率为, 14故选:B .【点睛】本题考查了概率,读懂题目信息,得出所给的图形的对称性以及可能性相等是解题的关键,用到的知识点为:概率=所求情况数与总情况数之比.第二部分 非选择题二、填空题(共16分,每题2分) 9. 二次函数的图象与轴的交点坐标为______.243y x x =-+y 【答案】 ()0,3【解析】【分析】令,求得的值即可. 0x =y 【详解】令,得, 0x =2433y x x =-+=∴二次函数的图象与轴的交点坐标为, y ()0,3故答案为:.()0,3【点睛】本题考查的是二次函数与轴的交点,正确计算是解答此题的关键. y 10. 半径为3且圆心角为的扇形的面积为________. 120︒【答案】3π. 【解析】【分析】直接利用扇形的面积公式S=,进而求出即可.2360n r π【详解】解:∵半径为3,圆心角为120°的扇形,∴S 扇形===3π.2360n r π21203360π⨯⨯故答案为3π.【点睛】此题主要考查了扇形面积公式应用,熟练记忆扇形面积公式是解题关键. 11. 下表记录了一名球员在罚球线上投篮的结果. 投篮次数 n 50 100 150 200 300 400 500 投中次数 m 284978102153208255投中频率m n0.56 0.49 0.52 0.51 0.51 0.52 0.51根据以上数据,估计这名球员在罚球线上投篮一次,投中的概率为______. 【答案】0.51(答案不唯一) 【解析】【分析】根据频率估计概率的方法结合表格数据可得答案.【详解】解:由频率分布表可知,随着投篮次数越来越大时,频率逐渐稳定到常数0.51附近,∴这名球员在罚球线上投篮一次,投中的概率为0.51, 故答案为:0.51(答案不唯一).【点睛】此题考查了利用频率估计概率的知识,注意这种概率的得出是在大量实验的基础上得出的,不能单纯的依靠几次决定.12. 若关于的一元二次方程有两个不相等的实数根,则的取值范围是x 230x x m -+=m ______. 【答案】 94m <【解析】【分析】根据一元二次方程根的判别式列出关于m 的不等式,即可解得答案. 【详解】解:∵的一元二次方程有两个不相等的实数根, 230x x m -+=∴,即, 0∆>()2340m -->解得:, 94m <故答案为:. 94m <【点睛】本题考查一元二次方程根的判别式,解题的关键是掌握时,一元二次方程有0∆>两个不相等的实数根.13. 二次函数的图象如图所示,则______0(填“”,“”或“”).2y ax bx =+ab ><=【答案】 <【解析】【分析】根据抛物线的开口方向,判断的符号,根据对称轴的位置,判断的符号,进而a b 得到的符号.ab 【详解】解:由图象,可知:抛物线的开口向上:, 0a >对称轴在的右侧:,即:, y bx 02a=->0b <∴; 0ab <故答案为:.<【点睛】本题考查二次函数的图象与二次函数的系数之间的关系.熟练掌握二次函数的图象和性质,是解题的关键.14. 如图,是的内接三角形,于点,若,ABC O OD AB ⊥E O ,则______.45ACB ∠=︒OE =【答案】1 【解析】【分析】连接,,由圆周角定理求得,再由等腰三角OA OB 224590AOB ACB ∠=∠=⨯︒=︒形三线合一性质求得,从而求得,1452AOE BOE AOB ∠=∠=∠=︒45AOE OAE ∠=∠=︒得到,然后在中,,由勾股定理求解即可. OE AE =Rt AOE △90AEO ∠=︒【详解】解:连接,,OA OB∴, 224590AOB ACB ∠=∠=⨯︒=︒∵于点, OD AB ⊥E OA OB =∴, 1452AOE BOE AOB ∠=∠=∠=︒∴, 45AOE OAE ∠=∠=︒∴,OE AE =在中,,由勾股定理,得Rt AOE △90AEO ∠=︒,222OE AE OA +=∴,2222OE OA ==∴, 1OE =故答案为:1.【点睛】本题考查圆周角定理,等腰三角形的性质,勾股定理,熟练掌握圆周角定理,等腰三角形三线合一性质是解题的关键.15. 对于二次函数,与的部分对应值如表所示.在某一范围内,2y ax bx c =++y x x y 随的增大而减小,写出一个符合条件的的取值范围______.x xx …1-0 1 2 3 …y …3- 1331…【答案】(答案不唯一,满足即可) 2x >32x ≥【解析】【分析】根据表格,用待定系数法求出二次函数解析式,再根据二次函数的性质求解即可.【详解】解:把,;,;,分别代入=1x -=3y -0x =1y =1x =3y =,得2y ax bx c =++,解得:, 313a b c c a b c -+=-⎧⎪=⎨⎪++=⎩131a b c =-⎧⎪=⎨⎪=⎩∴,22373124y x x x ⎛⎫=-++=--+ ⎪⎝⎭∵, 10a =-<∴当时,随的增大而减小, 32x >y x ∴当时,随的增大而减小, 2x >y x 故答案为:(答案不唯一,满足即可). 2x >32x ≥【点睛】本题考查待定系数法求二次函数解析式,二次函数的性质,熟练掌握二次函数的性质是解题的关键.16. 如图,,,分别是某圆内接正六边形、正方形、等边三角形的一边.若AB AC AD ,下面四个结论中,2AB =①该圆的半径为2; ②的长为; AC π2③平分; ④连接,,则与的面积比为AC BAD ∠BC CD ABC ACD .所有正确结论的序号是______.【答案】①③④ 【解析】【分析】根据圆内接正六边形、内接正方形的性质、弧长公式,勾股定理逐一判断可选项即可.【详解】解:根据题干补全图形,连接,BC CD OA OB OC OD OE ,,,,,,根据内接正六边形的性质可知:, 60AOB ∠=︒OA OB =∴是等边三角形,AOB ,圆的半径为2,所以①正确;2OA OB AB ===根据内接正方形的性质可知:,=90AOC ︒∠的长为:,所以②错误; AC90π2π180⨯=∵,, OA OD =120AOD ∠=︒∴,30OAD ∠=︒∵,, OA OC ==90AOC ︒∠∴, 45OAC ∠=︒∵,60OAB ∠=︒∴, 604515BAC =︒-︒=︒∠∴,BAC DAC ∠=∠∴平分, 所以③正确;AC BAD ∠过点A 作交延长线于点H ,交延长线于点G , AH BC ⊥CB AG CD ⊥DC ∵, 1302ACB AOB ∠=∠=︒∴, 12AH AC =∵AC==∴AH =, 1245ADC AOC ∠=∠=︒∴, AG AD =设交于点M ,OB AD ∵,60AOM ∠=︒∴,,OM AD ⊥2AD AM =∵,30OAM ∠=︒∴, 112MD OA ==∴,AM==∴,2AD AM ==∴AG =∵,=BAC CAD ∠∠∴,CD BC =∴,所以④正确;1212ABCACD BC AH S AH S AG DC AG ∙====∙ 因此正确的结论:①③④故答案为:①③④【点睛】本题考查圆内接正六边形、内接正方形的性质、弧长公式,勾股定理,得出圆形的半径是解题的关键.三、解答题(共68分,第17-20题,每题5分,第21题6分,第22-23题,每题5分,第24-26题,每题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17. 解方程:.226x x -=【答案】,11x =+21x =-【解析】【分析】用配方法求解即可.【详解】解:,22161x x -+=+,()217x -=∴1x -=∴,.11x =+21x =-【点睛】本题考查解一元二次方程,熟练掌握用配方法求解一元二次方程是解题的关键.18. 已知抛物线过点和,求该抛物线的解析式.22y x bx c =++()1,3()0,4【答案】2234y x x =-+【解析】【分析】把和代入,解方程组求出b 、c 的值即可得答案.()1,3()0,422y x bx c =++【详解】解:∵抛物线过点和,∴ 22y x bx c =++()1,3()0,432,4.b c c =++⎧⎨=⎩解方程组,得 3,4.b c =-⎧⎨=⎩∴抛物线的解析式是.2234y x x =-+【点睛】本题考查待定系数法求二次函数解析式,把抛物线上的点的坐标代入解析式确定字母的值是解题关键.19. 已知为方程的一个根,求代数式的值.a 22310x x --=()()()1132a a a a +-+-【答案】1【解析】【分析】将a 代入方程中得,将所求代数式化简整理后,把整体2231a a -=2231a a -=代入即可.【详解】解:∵为方程的一个根,a 22310x x --=∴.22310a a --=∴.2231a a -=∴原式=.()222213646122312111a a a a a a a -+-=--=--=⨯-=【点睛】本题主要考查了一元二次方程的解的概念,以及用整体代入法求代数式的值.解题的关键是掌握整体代入法. 20. 如图,四边形内接于,为直径,.若,求的ABCD O AB BCCD =50A ∠=︒B ∠度数.【答案】65B ∠=︒【解析】【分析】连接.利用等弧所对圆周角相等,得出,从而得出AC DAC BAC ∠=∠,再利用直径所对圆周角是直角,最后由直角 三角形两锐角互1252BAC DAB ∠=∠=︒余求解即可.【详解】解:如图,连接. AC∵, BCCD =∴.DAC BAC ∠=∠∵,50DAB ∠=︒∴. 1252BAC DAB ∠=∠=︒∵为直径,AB ∴.90ACB ∠=︒∴.9065B BAC ∠=︒-∠=︒【点睛】本题考查圆周角定理的推论,直角三角形的性质,熟练掌握圆周角定理的推论是解题的关键.21. 为了发展学生的兴趣爱好,学校利用课后服务时间开展了丰富的社团活动.小明和小天参加的篮球社共有甲、乙、丙三个训练场.活动时,每个学生用抽签的方式从三个训练场中随机抽取一个场地进行训练.(1)小明抽到甲训练场的概率为______;(2)用列表或画树状图的方法,求小明和小天在某次活动中抽到同一场地训练的概率.【答案】(1) 13(2) 13【解析】【分析】(1)直接根据概率公式求解即可;(2)画树状图得出所有等可能结果,从中找到符合条件的结果,再根据概率公式求解即可.【小问1详解】 解:小明抽到甲训练场的概率为, 13故答案为:; 13【小问2详解】根据题意,可以画出如下树状图:由树状图可以看出,所有可能出现的结果有9种,并且这些结果出现的可能性相等. 小明和小天抽到同一场地训练(记为事件)的结果有3种,A 所以,. ()3193P A ==【点睛】此题考查了树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.22. 已知:如图,是的切线,为切点.PA O A 求作:的另一条切线,为切点.O PB B 作法:以为圆心,长为半径画弧,交于点;P PA O B 作直线. PB 直线即为所求.PB(1)根据上面的作法,补全图形(保留作图痕迹);(2)完成下面证明过程.证明:连接,,.OA OB OP ∵是的切线,为切点,PA O A ∴.OA PA ⊥∴.90PAO ∠=︒在与中,PAO PBO ,,______,PA PB OP OP =⎧⎪=⎨⎪⎩∴.∴.PAO PBO ≌△△90∠=∠=︒PAO PBO ∴于点.∵是的半径,OB PB ⊥B OB O ∴是的切线(____________________)(填推理的依据).PB O 【答案】(1)见解析 (2),经过半径外端并且垂直于这条半径的直线是圆的OA OB =切线【解析】【分析】(1)按照作法作出图形即可;(2)连接,,,证明即可证明是的切线.OA OB OP PAO PBO ≌△△PB O 【小问1详解】补全图形,如图所示:【小问2详解】连接,,.OA OBOP∵是的切线,A 为切点,PA O ∴.OA PA ⊥∴.90PAO ∠=︒在与中,PAO PBO ,,,PA PB OP OP OA OB =⎧⎪=⎨⎪=⎩∴.∴.PAO PBO ≌△△90∠=∠=︒PAO PBO ∴于点.∵是的半径,OB PB ⊥B OB O ∴是的切线(经过半径外端并且垂直于这条半径的直线是圆的切线).PB O 故答案为:,经过半径外端并且垂直于这条半径的直线是圆的切线.OA OB =【点睛】本题考查了尺柜作图,切线的性质和判定,以及全等三角形的判定与性质,熟练掌握切线的判定与性质是解答本题的关键.23. 紫砂壶是我国特有的手工制造陶土工艺品,其制作过程需要几十种不同的工具,其中有一种工具名为“带刻度嘴巴架”,其形状及使用方法如图1.当制显艺人把“带刻度嘴巴架”上圆弧部分恰好贴在壶口边界时,就可以保证需要粘贴的壶嘴、壶把、壶口中心在一条直线上.图2是正确使用该工具时的示意图.如图3,为某紫砂壶的壶口,已知,两点O A B 在上,直线过点,且于点,交于点.若,O l O l AB ⊥D O C 30mm AB =,求这个紫砂壶的壶口半径的长.5mm CD =r【答案】25mm 【解析】【分析】连接,根据垂径定理求得,又由,即可由勾股定OB 1152BD AB ==5DO r =-理求解.【详解】解:如图,连接.OB∵过圆心,,,l O l AB ⊥30AB =∴. 1152BD AB ==∵,5CD =∴.5DO r =-∵,222BO BD DO =+∴.()222155r r =+-解得.25r =∴这个紫砂壶的壶口半径的长为.r 25mm 【点睛】本题考查垂径定理,勾股定理,熟练掌握垂径定理是解题的关键.24. 如图,是的直径,点在上.过点作的切线,过点作AB O C O C O l B BD l ⊥于点. D(1)求证:平分;BC ABD ∠(2)连接,若,,求的长.OD 60ABD ∠=︒3CD =OD【答案】(1)见解析 (2)OD =【解析】【分析】(1)连接,求得,得到,即可求得平分.OC OC BD ∥OBC CBD ∠=∠BC ABD ∠(2)连接,求得,在中,求得;在中,AC 90ACB ∠=︒Rt BDC 6BC =Rt ACB △,;在中,利用勾股定理可求得.2AB AC =OC =Rt OCD △OD =【小问1详解】证明:如图,连接. OC∵直线与相切于点,l O C ∴于点.OC l ⊥C ∴.90OCD ∠=︒∵于点,BD l ⊥D ∴.=90BDC ∠︒∴.180OCD BDC ︒∠+∠=∴.OC BD ∥∴.OCB CBD ∠=∠∵,OC OB =∴.OBC OCB ∠=∠∴.OBC CBD ∠=∠∴平分.BC ABD ∠【小问2详解】解:连接. AC∵是的直径,AB O ∴.90ACB ∠=︒∵,60ABD ∠=︒∴. 1302OBC CBD ABD ︒∠=∠=∠=在中,Rt BDC ∵,,30CBD ∠=︒3CD =∴.26BC CD ==在中,Rt ACB △∵,30ABC ∠=︒∴.2AB AC =∵,222AC BC AB +=∴ AB =∴. 12OC AB ==在中,Rt OCD △∵,222OC CD OD +=∴OD =【点睛】本题是圆与三角形综合题,考查了切线的性质、角平分线的判定和和勾股定理,作出恰当的辅助线是解决问题的关键25. 学校举办“科技之星”颁奖典礼,颁奖现场人口为一个拱门.小明要在拱门上顺次粘贴“科”“技”“之”“星”四个大字(如图1),其中,“科”与“星”距地面的高度相同,“技”与“之”距地面的高度相同,他发现拱门可以看作是抛物线的一部分,四个字和五角星可以看作抛物线上的点.通过测量得到拱门的最大跨度是10米,最高点的五角星距地面6.25米.(1)请在图2中建立平面直角坐标系,并求出该抛物线的解析式;xOy (2)“技”与“之”的水平距离为米.小明想同时达到如下两个设计效果: 2a ① “科”与“星”的水平距离是“技”与“之”的水平距离的2倍;②“技”与“科”距地面的高度差为1.5米.小明的设计能否实现?若能实现,直接写出的值;若不能实现,请说明理由.a 【答案】(1)(答案不唯一)20.25y x =-(2)能实现;a =【解析】【分析】(1)建立平面直角坐标系,写出点的坐标,代入求解析式即可; (2)设“技”的坐标,表示“科”,列出方程解方程即可. ()20.25a a --,()22a a --,【小问1详解】 解:如图,以抛物线顶点为原点,以抛物线对称轴为轴,建立平面直角坐标系. y设这条抛物线表示的二次函数为.2y ax =∵抛物线过点,()5, 6.25-∴25 6.25a =-∴0.25a =-∴这条抛物线表示的二次函数为.20.25y x =-【小问2详解】能实现;.a =由“技”与“之”的水平距离为米,设“技”,“之”, 2a ()20.25a a --,()20.25a a -,则 “科”,()22a a --,“技”与“科”距地面的高度差为1.5米,,()220.25 1.5a a ∴---=解得:舍去)a =a =【点睛】本题考查运用二次函数解决实际问题,建立适当的平面直角坐标系,求出函数解析式是解题的关键.26. 在平面直角坐标系中,抛物线过点.xOy 21y ax bx =++()2,1(1)求(用含的式子表示); b a(2)抛物线过点,,.()2,M m -()1,N n ()3,P p ①判断:______0(填“>”“<”或“=”);()()11m n --②若,,恰有两个点在轴上方,求的取值范围.M N P x a 【答案】(1)2b a =-(2)①<②的取值范围是或 a 1138a -<≤-1a ≥【解析】【分析】(1)把代入,计算即可;()2,121y ax bx =++(2)①把代入,得,把代入()2,M m -21y ax bx =++18m a -=()1,N n ,得,当时,,,得21y ax bx =++1n a -=-0a >180m a -=>10n a -=-<;当时,,,得;()()110m n --<a<0180m a -=<10n a -=->()()110m n --<即可得出结论;②把,,代入,得,,()2,M m -()1,N n ()3,P p 21y ax bx =++81m a =+1n a =-+.当时,抛物线开口向上,对称轴为,则抛物线在时,取得最31p a =+0a >1x =1x =小值.所以,在轴上方,在轴上或轴下方,则,解得.当n M P x N x x 81031010a a a +>⎧⎪+>⎨⎪-+≤⎩1a ≥时,抛物线开口向下,对称轴为,所以抛物线在时,取得最大值,且0a <1x =1x =n .所以,在轴上方,在轴上或轴下方.则,解得<m p N P x M x x 10310810a a a -+>⎧⎪+>⎨⎪+≤⎩. 1138a -<≤-【小问1详解】解:把代入,得()2,121y ax bx =++,4211a b ++=∴;2b a =-【小问2详解】解:①把代入,得()2,M m -21y ax bx =++,421m a b =-+由(1)知:,2b a =-∴,18m a -=把代入,得()1,N n 21y ax bx =++,1n a b =++,1n a -=-当时,,,0a >180m a -=>10n a -=-<∴,()()110m n --<当时,,,a<0180m a -=<10n a -=->∴,()()110m n --<绽上,;()()110m n --<②由(1)知,2b a =-∴221y ax ax =-+∴抛物线对称轴为.1x =∵抛物线过点,,,()2,M m -()1,N n ()3,P p ∴,,.81m a =+1n a =-+31p a =+当时,抛物线开口向上,对称轴为,0a >1x =∴抛物线在时,取得最小值.1x =n ∵,,恰有两点在轴上方,M N P x ∴,在轴上方,在轴上或轴下方.M P x N x x ∴,解得.81031010a a a +>⎧⎪+>⎨⎪-+≤⎩1a ≥当时,抛物线开口向下,对称轴为,0a <1x =∴抛物线在时,取得最大值,且.1x =n <m p ∵,,恰有两点在轴上方,M N P x ∴,在轴上方,在轴上或轴下方.N P x M x x ∴,解得. 10310810a a a -+>⎧⎪+>⎨⎪+≤⎩1138a -<≤-综上,的取值范围是或. a 1138a -<≤-1a ≥【点睛】本题考查二次函数图象上点的坐标特征,二次函数的性质,熟练掌握二次函数的图象性质是解题的关键.27. 如图,在中,,.是边上一点,交ABC AB AC =120BAC ∠=︒D AB DE AC ⊥的延长线于点.CA E(1)用等式表示与的数量关系,并证明;AD AE (2)连接,延长至,使.连接,,.BE BE F EF BE =DC CF DF ①依题意补全图形;②判断的形状,并证明.DCF 【答案】(1),理由见解析;2AD AE =(2)①如图;②结论:是等边三角形,理由见解析.DCF 【解析】【分析】(1)根据,可知,DE AC ⊥120BAC ∠=︒90DEA ∠=︒,利用含角的直角三角形性质:角所对直角边等30ADE BAC DEA ∠=∠-∠=︒30︒30︒于斜边的一半,可得.2AD AE =(2)①根据题意补全图形即可;②延长至点使,连接,,根据可知,由BA H AH AB =CH FH AB AC =AH AC =,得是等边三角形,,18060HAC BAC ∠=︒-∠=︒ACH HC AC =, 根据,,可知,,60AHC ACH ∠=∠=︒AH AB =EF BE =2HF AE =HF AE ∥得,,,由60FHA HAC ∠=∠=︒120FHC FHA AHC ∠=∠+∠=︒FHC DAC ∠=∠,得,由,可证明,可得,2AD AE =HF AD =HA AC =FHC DAC ≌△△FC DC =,,从而可证明是等边三角形.HCF ACD ∠=∠60FCD ACH ∠=∠=︒DCF 【小问1详解】解:线段与的数量关系:.AD AE 2AD AE =证明: ,DE AC ⊥ .90DEA ∴∠=︒,120BAC ∠=︒30ADE BAC DEA ∴∠=∠-∠=︒;2AD AE ∴=【小问2详解】解:①补全图形,如图.②结论:是等边三角形.DCF 证明:延长至点使,连接,,如图.BA H AH AB =CH FH,AB AC =. ∴AH AC =,18060HAC BAC ∠=︒-∠=︒是等边三角形.∴ACH ,.∴HC AC =60AHC ACH ∠=∠=︒,,AH AB =EF BE =,.∴2HF AE =HF AE ∥.∴60FHA HAC ∠=∠=︒.∴120FHC FHA AHC ∠=∠+∠=︒,∴FHC DAC ∠=∠,2AD AE =.∴HF AD =,HC AC =()∴FHC DAC ≌△△SAS ,.∴FC DC =HCF ACD ∠=∠.∴60FCD ACH ∠=∠=︒是等边三角形.∴DCF【点睛】此题考查了含角的直角三角形性质,等边三角形的判定和性质,全等三角形的30︒判定和性质,综合掌握相关知识点是解题关键.28. 在平面直角坐标系中,对于点和线段,若线段或的垂直平分线与线xOy P AB PA PB 段有公共点,则称点为线段的融合点.AB P AB(1)已知,, ()30A ,()50B ,①在点,,中,线段的融合点是______; ()160P ,()212P -,()332P ,AB ②若直线上存在线段的融合点,求的取值范围;y t =AB t (2)已知的半径为4,,,直线过点,记线段关于O (),0A a ()1,0B a +l ()0,1T -AB 的对称线段为.若对于实数,存在直线,使得上有的融合点,直接写出l A B ''a l O A B ''a 的取值范围.【答案】(1)①,;②当时,直线上存在线段的融合点 1P 3P 22t -≤≤y t =AB(2或1a -≤≤1a -≤≤【解析】【分析】(1)①画出对应线段的垂直平分线,再根据融合点的定义进行判断即可;②先确定线段融合点的轨迹为分别以点,为圆心,长为半径的圆及两圆内区域,则当直AB A B AB 线与两圆相切时是临界点,据此求解即可;y t =(2)先推理出的融合点的轨迹即为以T 为圆心,的长为半径的圆和以T 为圆A B ''()1TA -心,以的长为半径的圆的组成的圆环上(包括两个圆上),再求出两个圆分别与()1TB +O 内切,外切时a 的值即可得到答案. 【小问1详解】解:①如图所示,根据题意可知,是线段的融合点,1P 3P AB故答案为;,;1P 3P②如图1所示,设的垂直平分线与线段的交点为Q ,PA AB ∵点Q 在线段的垂直平分线上,PA ∴,PQ AQ =∴当点Q 固定时,则点P 在以Q 为圆心,的长为半径的圆上,AQ ∴当点Q 在上移动时,此时点P 的轨迹即线段的融合点的轨迹为分别以点,为AB AB A B 圆心,长为半径的圆及两圆内区域. AB当直线与两圆相切时,记为,,如图2所示.y t =1l 2l∵,, ()30A ,()50B ,∴,2AB =∴或.2t =2t =-∴当时,直线上存在线段的融合点.22t -≤≤y t =AB 【小问2详解】解:如图3-1所示,假设线段位置确定,AB 由轴对称的性质可知,TA TA TB TB ''==,∴点在以T 为圆心,的长为半径的圆上运动,点在以T 为圆心,以的长为半径A 'TA B 'TB 的圆上运动,∴的融合点的轨迹即为以T 为圆心,的长为半径的圆和以T 为圆心,以A B ''()1TA -的长为半径的圆的组成的圆环上(包括两个圆上);()1TB +当时,TA TB <如图3-2所示,当以T 为圆心,为半径的圆与外切时,()1TA -O ∴,141TA -=+, 6=∴,2136a +=∴(负值舍去); a =如图3-3所示,当以为圆心,为半径的圆与内切时,T ()1TB +O ∴,13TB +=, 2=∴,22114a a +++=∴(负值舍去);1a -时,存在直线,使得上有的融合点;1a ≤≤l O A B ''同理当时,TA TB >当以T 为圆心,为半径的圆与外切时,()1TB -O ∴,141TB -=+, 6=∴,221136a a +++=∴(正值舍去);1a =-当以为圆心,为半径的圆与内切时,T ()1TA +O ∴,13TA +=, 2=∴,214a +=∴;a =∴时,存在直线,使得上有的融合点;1a ≤≤l O A B ''或时存在直线,使得上有1a -≤≤1a -≤≤l O A B ''的融合点.【点睛】本题主要考查了坐标与图形,轴对称的性质,线段垂直平分线的性质,勾股定理,圆与圆的位置关系等等,正确推理出对应线段的融合点的轨迹是解题的关键.。

人教版初三上册数学期末测试题及答案

人教版初三上册数学期末测试题及答案

人教版初三上册数学期末测试题及答案一、选择题(每题 3 分,共 30 分)1.以下对于 x 的方程中,是一元二次方程的有( )A . x 21B. ax 2bx c 0x 2C . x 1 x 2 1D. 3x 22xy 5y 22.化简1 2 的结果为( )2 1 31A 、 32B 、 3 2C 、223D 、3223. 已知对于 x的方程x 2kx 6的一个根为x 3,则实数 k的值为()A .2B. 1C .1D . 24.要使二次根式 x 1 存心义,那么 x 的取值范围是()( A ) x >- 1 (B ) x < 1 ( C ) x ≥1 ( D ) x ≤ 15.有 6 张写有数字的卡片,它们的反面都同样,现将它们反面向上(如图 2),从中随意一张是数字 3 的概率是( ) 图 2A 、1B 、1C 、1D 、263236.已知 x 、 y 是实数, 3x +4 + y 2 -6y + 9= 0,则 xy 的值是( )99A .4B .-4C.47、以下图形中,既是轴对称图形,又是中心对称图形的是()图 7ABCDO8.已知两圆的半径分别是 5cm 和 4cm ,圆心距为 7cm ,那么这两圆的地点关系 M 是( )A BA .订交B .内切C .外切D .外离9.如图 3,⊙O的半径为5,弦AB的长为8,M是弦AB上的动点,则线段OM长的最小值为( )图 3A.2 B.3 C.4 D.5 A10.已知:如图 4, ⊙O 的两条弦 AE 、BC 订交于点 D,连结 AC 、 BE.CODEB图 4若∠ ACB=60°, 则以下结论中正确的选项是()A.∠ AOB=60°B.∠ADB=60°C.∠ AEB=60°D.∠ AEB=30°二、填空题(每题 3 分,共 24 分)11.方程 x2= x 的解是 ______________________12.如下图,五角星的极点是一个正五边形的五个极点.这个五角星能够由一个基本图形(图中的暗影部分)绕中心O 至少经过 ____________次旋转而获得,每一次旋转_______度.O12题图13.若实数a、 b 知足b a 2 1 1 a 2a 1 ,则 a+b 的值为________.14.圆和圆有不一样的地点关系 . 与以下图不一样的圆和圆的地点关系是_____.( 只填一种 )图 515.若对于x 方程 kx2–6x+1=0 有两个实数根,则k 的取值范围是.16.如图 6,在 Rt△ABC中,∠ C=90°, CA=CB=2。

初三期末数学试题及答案

初三期末数学试题及答案

初三数学期末考试试卷考生须知:1.本试卷共有四个大题,24个小题,共6页,满分100分. 2.考试时间为90分钟,请用蓝色或黑色钢笔、圆珠笔答卷.一、精心选一选:(每小题只有一个正确答案,每题3分,共30分) 1.如图,已知P 是射线OB 上的任意一点,PM ⊥OA 于M , 且OM : OP =4 : 5,则cos α的值等于( ) A .34 B .43 C .45 D .352.已知⊙O 的半径为5,A 为线段OP 的中点,若OP =10,则点A 在( ) A .⊙O 内 B .⊙O 上 C .⊙O 外 D .不确定 3. 若两圆的半径分别是1cm 和5cm ,圆心距为6cm ,则这两圆的位置关系是( ) A .内切B .相交C .外切D .外离4.如图,A 、B 、C 是⊙O 上的点,若∠AOB =70°,则∠ACB 的度数为() A . 70° B . 50° C .40°D .35°5.若一个正多边形的一个内角是144°,则这个多边形的边数为( ) A. 12B. 11C.10D. 96.如图,在△OAB 中, CD ∥AB ,若OC : OA =1:2,则下列结论:(1)OD OCOB OA=; (2)AB =2 CD ;(3)2OAB OCD S S ∆∆=. 其中正确的结论是( )A .(1)(2)B .(1)(3)C .(2)(3)D .(1)(2)(3) 7. 在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定( ) A .与x 轴相离、与y 轴相切 B .与x 轴、y 轴都相离C .与x 轴相切、与y 轴相离D .与x 轴、y 轴都相切 8. 如图,直径为10的⊙A 经过点(05)C ,和点(00)O ,,与x 轴的正半轴交于点D ,B 是y轴右侧圆弧上一点,则cos ∠OBC 的值为( ) A .12 B .2 C .35D .45第4题图CB AO 第1题图O M PBAα第6题图D C B AO9.如图,等边△ABC 的边长为3,P 为BC 上一点,且BP =1,D 为AC 上一点,若∠APD =60°,则CD 的长为( ) A .32 B .23 C .12 D .3410. 如图,⊙O 的半径为3厘米,B 为⊙O 外一点,OB 交⊙O 于点A ,AB =OA .动点P 从点A 出发,以π厘米/秒的速度在⊙O 上按逆时针方向运动一周回到点A 立即停止.当点P 运动的时间为( )秒时,BP 与⊙O 相切.A .1B .5C .0.5或5.5D . 1或5 二、细心填一填:(每题3分,共18分) 11.计算:tan45°cos45°= .12. 如图,⊙O 的弦AB =8,OD ⊥AB 于点D ,OD = 3,则⊙O 的半径等于 . 13.如图是二次函数2y ax bx c =++的部分图象,由图象可知方程20ax bx c ++=的解是________ ,___________.14. 如图,在⊙O 中,半径 OA ⊥BC ,∠AOB =50°,则∠ADC 的度数是________.15.小红要过生日了,为了筹备生日聚会,准备自己动手用纸板制作一个底面半径为9cm ,母线长为30cm 的圆锥形生日礼帽,则这个圆锥形礼帽的侧面积为________cm 2 .(结果保留π)16.图中各圆的三个数之间都有相同的规律,据此规律,第n 个圆中,m=__________(用含n 的代数式表示).三、认真做一做:(共22分)17. (4分)如图,在△ABD 和△AEC 中,E 为AD 上一点,若∠DAC =∠B ,∠AEC =∠BDA . 求证:AE ACBD BA=. 证明:第17题图ECBA 第9题图60°PD CA第10题图第12题图第14题图第16题图∙∙∙∙m2n n 80358634221第8题图18.(6分)如图,在△ABC 中,点O 在AB 上,以O 为圆心的圆经过A ,C 两点,交AB 于点D ,已知2∠A +∠B =90︒. (1)求证:BC 是⊙O 的切线; (2)若OA =6,BC =8,求BD 的长. (1)证明:(2)解:19. (6分)在平面直角坐标系xOy 中,二次函数22y mx nx =+-的图象过A (-1,-2)、B (1,0)两点.(1)求此二次函数的解析式;(2)点(),0P t 是x 轴上的一个动点,过点P 作x 轴的垂线交直线AB 于点M ,交二次函数的图象于点N .当点M 位于点N 的上方时,直接写出t 的取值范围. 解:(1) (2)20.(6分) 如图是黄金海岸的沙丘滑沙场景.已知滑沙斜坡AC 的坡度是3tan 4α=,在与滑沙坡底C 距离20米的D 处,测得坡顶A 的仰角为26.6°,且点D 、C 、B 在同一直线上,求滑坡的高AB (结果取整数:参考数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50). 解:四、解答题:(共30分)21. (6分)如图,AD 为⊙O 的直径,作⊙O 的内接等边三角形ABC .黄皓、李明两位同学的作法分别是:第19题图第20题图黄皓:1. 作OD 的垂直平分线,交⊙O 于B ,C 两点,2. 连结AB ,AC ,△ABC 即为所求的三角形.李明:1. 以D 为圆心,OD 长为半径作圆弧,交⊙O 于B ,C 两点, 2. 连结AB ,BC ,CA ,△ABC 即为所求的三角形.已知两位同学的作法均正确,请选择其中一种作法补全图形,并证明△ABC 是等边三角形.解:我选择___________的作法. 证明:22.(7分)已知:如图,在四边形ABCD 中,BC <DC ,∠BCD =60º,∠ADC =45º, CA 平分∠BCD,AB AD ==ABCD 的面积.23.(8分)将抛物线c 1:y=2+x 轴翻折,得到抛物线c 2,如图所示. (1)请直接写出抛物线c 2的表达式;(2)现将抛物线c 1向左平移m 个单位长度,平移后得到的新抛物线的顶点为M ,与x 轴的交点从左到右依次为A ,B ;将抛物线c 2向右也平移m 个单位长度,平移后得到的新抛物线的顶点为N ,与x 轴的交点从左到右依次为D ,E . ①用含m 的代数式表示点A 和点E 的坐标;②在平移过程中,是否存在以点A ,M ,E 为顶点的三角形是直角三角形的情形?若存在,请求出此时m 的值;若不存在,请说明理由.解:(1)抛物线c 2的表达式是__________________;(2)①点A 的坐标是(______,______),点E 的坐标是(______,______).②第21题图第22题图B A24.(9分)在平面直角坐标系xOy中,点B(0,3),点C是x轴正半轴上一点,连结BC,过点C作直线CP∥y轴.(1)若含45°角的直角三角形如图所示放置.其中,一个顶点与点O重合,直角顶点D 在线段BC上,另一个顶点E在CP上.求点C的坐标;(2)若含30°角的直角三角形一个顶点与点O重合,直角顶点D在线段BC上,另一个顶点E在CP上,求点C的坐标.解:(1)(2)备用图备用图第24题图参考答案及评分标准一、精心选一选:(每小题只有一个正确答案,每题3分,共30分) 1.C 2.B 3.C 4.D 5.C 6.A 7.A 8.B 9. B 10. D 二、细心填一填:(每题3分,共18分)11. 2; 12. 5; 13. 11x =-,25x =; 14. 25o; 15. 270π; 16. 291n -. 三、认真做一做:(共22分)17. 证明:∵∠DAC =∠B ,∠AEC =∠BDA , ……………… 2分;∴△AEC ∽△BDA . ……………… 3分;∴AE ACBD BA=. ……………… 4分. 18.(1)证明:连结OC . ………… 1分;∵»»CDCD =, ∴2COD A ∠=∠,∵290A B ∠+∠=o,∴90COD B ∠+∠=o . ……………… 2分; 在△OCB 中, ∴90OCB ∠=o,∴BC 是⊙O 的切线 . ……………… 3分;(2)解: 在⊙O 中,∴OC =OA =OD =6, ……………… 4分; ∵90OCB ∠=o, ∴222OB OC BC =+.∴10OB =. ……………… 5分; ∴1064BD OB OD =-=-=. ……………… 6分.19.解:(1)把A (-1,-2)、B (1,0)分别代入22y mx nx =+-中,∴2220m n m n --=-⎧⎨+-=⎩,;……………… 2分;解得:11.m n =⎧⎨=⎩……………… 3分; ∴所求二次函数的解析式为22y x x =+-. ……………… 4分; (2)11t -<<. ……………… 6分. 20. 解:由题意可知:20DC =米,ADB ∠=26.6°,90B ∠=o.在Rt △ABC 中,∵3tan 4AB BC α==, ……………… 1分; ∴设3AB x =,4BC x =, ……………… 2分;在Rt △ABD 中,∴tan ABADB DB ∠=, ……………… 3分; ∴3tan 26.60.5420x x ==+o, ……………… 4分;解得:10x =, ……………… 5分; ∴330AB x ==.答:滑坡的高AB 为30米. ……………… 6分. 四、解答题:(共30分) 21. 解:我选择黄皓的作法.如图画图正确. ……………… 2分; 证明:连结OB 、OC .∵AD 为⊙O 的直径,BC 是半径OD 的垂直平分线,∴»»AB AC =,»»BD CD =, 1122OE OD OC ==, ……………… 3分; ∴AB AC =. ……………… 4分;在Rt △OEC 中, ∴ cos 12OE EOC OC ∠==, ∴60EOC ∠=o, ……………… 5分; ∴120BOC ∠=o.第21题图∴60BAC ∠=o .∴△ABC 是等边三角形. ……………… 6分. 我选择李明的作法.如图画图正确. ……………… 2分; 证明:连结DB 、DC .由作图可知: DB =DO =DC , 在⊙O 中, ∴OB =OD =OC ,∴△OBD 和△OCD 都是等边三角形, ……… 3分;∴60ODB ODC ∠=∠=o, ……… 4分;∵»»AB AB =,»»AC AC =, ∴60ODB ACB ∠=∠=o,60ABC ODC ∠=∠=o , ……………… 5分;∴△ABC 是等边三角形. ……………… 6分.22.解: 在CD 上截取CF =CB ,连结AF . 过点A 作AE ⊥CD 于点E . …… 1分;∵CA 平分∠BCD ,∠BCD =60º, ∴30BCA FCA ∠=∠=o, 在△ABC 和△AFC 中∵ .BC FC ACB ACF CA CA =⎧⎪∠∠⎨⎪=⎩,=,∴△ABC ≌△AFC . ……………… 2分; ∴ AF =AB , ∵AB AD =,∴AF AD =. ……………… 3分; 在Rt △ADE 中,45D ∠=o,AB AD ==, ∴ sin 2AE ADE AD ∠==, ∴AE =ED =2 . ……………… 4分; 在Rt △AEC 中,30ACE ∠=o, ∴ tan AE ACE EC ∠==, 第21题图FE第22题图DCB A∴CE =. ……………… 5分; ∵AE ⊥CD , ∴FE =ED =2 .1222ABCD ACE S S CE AE ==⨯⨯⨯V ……… 6分;= 1222⨯⨯=……………… 7分.注: 另一种解法见下图,请酌情给分.23. 解:(1)抛物线c 2的表达式是2y = ……………… 2分; (2)①点A 的坐标是(1m --,0), ……………… 3分;点E 的坐标是(1m +,0). ……………… 4分;②假设在平移过程中,存在以点A ,M ,E 为顶点的三角形是直角三角形.由题意得只能是90AME ∠=o. 过点M 作MG ⊥x 轴于点G .由平移得:点M 的坐标是(m -),……… 5分; ∴点G 的坐标是(m -,0),∴1GA =,MG = 21EG m =+, 在Rt △AGM 中, ∵tan MG MAG AG ∠==, ∴60MAG ∠=o, ……………… 6分;∵ 90AME ∠=o,∴30MEA ∠=o,FEAB D第22题图第23题图∴tan 3MG MEG EG ∠==, ∴213m =+, ……………… 7分; ∴1m =. ……………… 8分.所以在平移过程中,当1m =时,存在以点A ,M ,E 为顶点的三角形是直角三角形. 24. 解:(1)过点D 分别作DG ⊥x 轴于G ,DH ⊥PC 于H . ……………… 1分;∴90OGD EHD ∠=∠=o,∵△ODE 是等腰直角三角形,∴OD =DE ,90ODE ∠=o , ∵CP ∥y 轴,∴ 四边形DGCH 是矩形, ……………… 2分;∴90GDH ∠=o,DH =GC .∴90ODG GDE EDH GDE ∠+∠=∠+∠=o, ∴ODG EDH ∠=∠,∴△ODG ≌△EDH . ……………… 3分; ∴DG =DH . ∴DG =GC ,∴△DGC 是等腰直角三角形,∴45DCG ∠=o, ……………… 4分;∴tan 1OBDCG OC∠==, ∴OC =OB =3.∴点C 的坐标为(3,0)(2) 分两种情况:当60DOE ∠=o时, 过点D 分别作DG ⊥x 轴于G , DH ⊥PC 于H .第24题图∴90OGD EHD ∠=∠=o ,∵△ODE 是直角三角形,∴tan OD DEO DE ∠==, 90ODE ∠=o ,∵CP ∥y 轴,∴ 四边形DGCH 是矩形,∴90GDH ∠=o ,DH =GC .∴90ODG GDE EDH GDE ∠+∠=∠+∠=o ,∴ODG EDH ∠=∠,∴△ODG ∽△EDH . ……………… 6分;∴DG OD DH DE ==∴DG GC =, ∴tan 3DG DCG GC ∠==, ∴30DCG ∠=o ,∴tan 3OB DCG OC ∠==, ∴OC= ……………… 7分;当30DOE ∠=o 时,过点D 分别作DG ⊥x 轴于G ,DH ⊥PC 于H .∴90OGD EHD ∠=∠=o ,∵△ODE 是直角三角形,∴tan OD DEO DE ∠== 90ODE ∠=o ,∵CP ∥y 轴,∴ 四边形DGCH 是矩形,∴90GDH ∠=o,DH =GC .∴90ODG GDE EDH GDE ∠+∠=∠+∠=o , ∴ODG EDH ∠=∠,∴△ODG ∽△EDH . ……………… 8分;∴DG OD DH DE==∴DG GC=∴tan DG DCG GC ∠==, ∴30DCG ∠=o ,∴tan OB DCG OC∠==,∴OC ……………… 9分.∴点C )、().备注:点E 在x 轴下方,证法一样,不须分类讨论. (以上答案供参考,其它证法或解法酌情给分)。

初三期末数学试题及答案

初三期末数学试题及答案

初三期末数学试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是无理数?A. 3.14159B. πC. 0.33333D. √22. 一个直角三角形的两条直角边分别为3和4,斜边的长度是:A. 5B. 6C. 7D. 83. 函数y = 2x + 3的斜率是:A. 2B. 3C. -2D. -34. 一个数的平方根是4,这个数是:A. 16B. -16C. 8D. -85. 以下哪个方程的解是x = 2?A. x + 2 = 4B. x - 2 = 4C. 2x = 4D. 3x = 6答案:1. B 2. A 3. A 4. A 5. A二、填空题(每题1分,共5分)6. 一个数的绝对值是5,这个数是______。

7. 一个正比例函数y = kx,当x = 2时,y = 4,k的值是______。

8. 一个二次方程ax² + bx + c = 0的判别式是b² - 4ac,当判别式小于0时,方程______实数解。

9. 一个圆的半径是r,它的面积是______。

10. 一个数的立方根是2,这个数是______。

答案:6. ±5 7. 2 8. 没有9. πr² 10. 8三、计算题(每题5分,共15分)11. 计算下列表达式的值:(3x - 2)² - 4(x - 3)²,当x = 1。

12. 解下列方程:2x - 5 = 3x + 1。

13. 化简下列分数:\(\frac{2x}{3} + \frac{5}{x - 2}\)。

答案:11. 712. x = -613. \(\frac{2x^2 - 4x + 15}{3(x - 2)}\)四、解答题(每题10分,共20分)14. 一个长方体的长、宽、高分别是2x,3x和4x,求它的体积。

15. 一个圆的半径是5厘米,求它的周长和面积。

答案:14. 体积是 \(24x^3\)。

人教版九年级上册数学期末检测试卷(含答案)

人教版九年级上册数学期末检测试卷(含答案)

人教版九年级上册数学期末检测试卷一、选择题(每题3分,共24分) 1. 已知⊙O 的半径为6cm ,点O 到直线l 的距离为7cm ,则直线l 与O 的位置关系是( ) A. 相交 B. 相离 C. 相切 D. 无法确定2. 线段2cm ,8cm 的比例中项为 cm 。

( ) A. 4 B. 4.5 C. ±4 D. ±83. 如图,已知直线a //b//c ,直线m 、n 与a 、b 、c 分别交于点A 、C 、E 、B 、D 、F 、AC=3,CE=6,BD=2,DF= ( ) A. 4 B.4.5 C. 3 D. 3.54. 张华同学的身高为1.6米,某一时刻他在阳光下的影长为2米,与他邻近的一棵树的影长为6米,则这棵树的高为 米. ( ) A. 3.2 B. 4.8 C.5.2 D. 5.6第3题图 第8题图5. 把抛物线y =2x ²向左平移2个单位,则平移后抛物线对应的函数表达式是 ( ) A. y=2x ²+2 B. y=2(x-2)² C. y=2x ²+2 D. y=2(x+2)²6. 在△ABC 中,若|21sinA -|+(cosB 22-)²=0,则∠C 的度数是 ( ) A. 45° B. 75° C. 105° D. 120°7. 如下图,小正方形的边长均为1,则下图中的三角形(阴影部分)与△ABC 相似的为( )8. 如图,矩形ABCD 的四个顶点分别在直线l3,l4,l2,l1上。

若直线l1∥l2∥l3∥l4且间距相等,AB =5,BC =3,则tan α的值为 ( ) A. 103 B. 53C. 126D. 25二、填空题(每题3分,共24分)9. 二次函数y=(x-1)²+2的顶点坐标为 。

10. 已知扇形的圆心角为120°,半径为2厘米,则这个扇形的弧长为 厘米。

2022-2023学年人教版九年级数学第一学期期末测试题含答案

2022-2023学年人教版九年级数学第一学期期末测试题含答案

第1页,共4页 第2页,共4页………○…………○…………内…………○…………装…………○…………订…………○…………线…………○………………○…………○…………外…………○…………装…………○…………订…………○…………线…………○………考点考场考号姓 名座位号2022-2023学年第一学期期末质量监测试卷九年级 数学学科(考试时间:120分钟 考试分值:150分)一、选择题。

(每题5分,共45分)1.在下列图形中,是中心对称图形的是( )A.B.C.D.2.下列事件属于必然事件的是( )A.打开电视,正在播放新闻B.我们班的同学将会有人成为航天员C.实数0<a ,则02<aD.新疆的冬天不下雪3.若关于x 的一元二次方程01)12=++-x x k (有两个实数根,则k 的取值范围是( ) A.45≤k B.45>kC.45<k 且1≠kD.45≤k 且1≠k4.用配方法解方程0982=++x x ,变形后的结果正确的是 A.9)4(2-=+x B.7)4(2-=+x C.25)4(2=+xD.7)4(2=+x5.二次函数3)1(2+-=x y 的图象的顶点坐标是 A.)3,1(-B.)3,1(C.)3,1(--D.)3,1(-6.如图,在圆O 中,所对的圆周角50=∠ACB ,若P 为上一点,55=∠AOP ,则=∠POB ( ) A.30B.45 C.55D.60第6题图 第7题图7.小红要过生日了,为了筹备生日聚会,准备自己动手用纸板制作圆锥形生日礼帽.如图,圆锥帽底面半径为cm 9,母线长为cm 36,请你帮助他们计算制作一个这样的生日礼帽需要纸板的面积为( ) A.2648cm ΠB.2432cm ΠC.2324cm ΠD.2216cm Π8.下列各图是在同一直角坐标系内,二次函数c x c a ax y +++=)(2与一次函数c ax y +=的大致图象,有且只有一个是正确的,正确的是( )A.B. C. D.9.宾馆有50间房供游客居住,当毎间房每天定价为180元时,宾馆会住满;当毎间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的毎间房每天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价定为x 元.则有( )A.10890)1050)(20180=--+xx ( B.10890)1018050)(20=---x x (C.180902050)108050(=⨯---x xD.108902050)1050)(180=⨯--+xx (二、 填空题。

数学期末测试卷及答案初三

数学期末测试卷及答案初三

一、选择题(每题4分,共40分)1. 下列各数中,有理数是()A. √2B. πC. 0.1010010001…(无限循环小数)D. -3/42. 已知a,b是方程x^2 - 4x + 3 = 0的两个实数根,则a + b的值是()A. 3B. 4C. 5D. 63. 下列函数中,一次函数是()A. y = x^2 - 2x + 1B. y = 2x + 3C. y = √xD. y = log2x4. 在△ABC中,∠A = 60°,∠B = 45°,则∠C的度数是()A. 60°B. 75°C. 90°D. 105°5. 已知正方体的体积为64立方厘米,则其棱长是()A. 2厘米B. 4厘米C. 8厘米D. 16厘米6. 下列等式中,正确的是()A. (a + b)^2 = a^2 + 2ab + b^2 + 2abB. (a - b)^2 = a^2 - 2ab + b^2C. (a + b)^2 = a^2 - 2ab + b^2D. (a - b)^2 = a^2 + 2ab + b^27. 下列命题中,正确的是()A. 平行四边形的对角线相等B. 矩形的对角线互相垂直C. 等腰三角形的底角相等D. 直角三角形的两条直角边相等8. 已知等差数列{an}的首项为a1,公差为d,则第n项an可以表示为()A. an = a1 + (n - 1)dB. an = a1 - (n - 1)dC. an = a1 + (n + 1)dD. an = a1 - (n + 1)d9. 下列各式中,正确的是()A. (x + y)^2 = x^2 + y^2B. (x - y)^2 = x^2 - y^2C. (x + y)^2 = x^2 + 2xy + y^2D. (x - y)^2 = x^2 - 2xy + y^210. 下列各数中,无理数是()A. √9B. 3.1415926…C. -√16D. 2/3二、填空题(每题5分,共50分)11. 若a = 3,b = -2,则a^2 + b^2 = ________。

江苏省苏州市2022-2023学年第一学期初三数学期末试卷及参考答案

江苏省苏州市2022-2023学年第一学期初三数学期末试卷及参考答案

2022~2023学年第一学期初三期末试卷数 学本卷由选择题、填空题和解答题组成,共27题,满分130分,调研时间120分钟. 注意事项:1.答题前,考生务必将学校、班级、姓名、调研号等信息填写在答题卡相应的位置上. 2.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效;如需作图,先用2B 铅笔画出图形,再用0.5毫米黑色墨水签字笔描黑,不得用其他笔答题.3.考生答题必须答在答题卡相应的位置上,答在试卷和草稿纸上一律无效.一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将答案填涂在答题卡相应位置.......上) 1.有一组数据:11,11,12,15,16,则这组数据的中位数是A .11B .12C .15D .162.方程24x =的根是AB .2C或D .2或2-3.已知⊙O 的半径是4,点A 到圆心O 的距离为3,则点A 与⊙O 的位置关系是A .点A 在圆内B .点A 在圆上C .点A 在圆外D .无法确定4.若抛物线y =x 2+ax +2的对称轴是y 轴,则a 的值是A .2-B .1-C .0D .25.如图,点A ,B ,C 在⊙O 上,若∠AOB =100°,则∠ACB 的度数为A .40︒B .50︒C .80︒D .100︒6.我们可用“斜尺”测量管道的内径(如图),若玻璃管的内径DE 正对“30”刻度线,已知AB 长为5mm ,DE ∥AB ,则玻璃管内径DE 的长度等于 A .2.5mm B .3mm C .3.5mm D .4mm(第5题)(第6题)0EDCBA504030OCBA7.如图,C 为⊙O 上一点,AB 是⊙O 的直径,AB =4,∠ABC =30°,现将△ABC 绕点B 按顺时针方向旋转30°后得到△A BC '',BC '交⊙O 于点D ,则图中阴影部分的面积为 A .3πB.3πC .23π D.23π+8.如图,已知抛物线2y ax c =+与直线y kx m =+交于1(3)A y -,,2(1)B y ,两点,则关于x 的不等式2ax kx c ++≥m 的解集是 A .3x -≤或1x ≥ B .1x -≤或3x ≥ C .31x -≤≤ D .13x -≤≤二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9.某体育用品专卖店在一段时间内销售了20双男生运动鞋,各种尺码运动鞋的销售量如下表.则由这20双运动鞋尺码组成的数据的众数是 ▲ cm .10 11.一只蚂蚁在一块黑白两色的正六边形地砖上任意爬行,并随机停留在地砖上某处,则蚂蚁停留在黑色区域的概率是 ▲ .12.已知1x ,2x 是一元二次方程2560x x +-=的两个根,则1211x x +的值为 ▲ . BA(第8题)(第7题)CBA(第10题)(第11题)13.如图,MN 与⊙O 相切于点A ,AB 是⊙O 的弦,且AB =1,30BAN ∠=︒,则⊙O 的半径长为 ▲ .14.如图,四边形ABCD 中,点E 在AD 上,且EC ∥AB ,EB ∥DC ,已知△ABE 的面积为3,△ECD 的面积为1,则△BCE 的面积为 ▲ .15.在△ABC 中,AB =2,BC,则∠A 度数的最大值为 ▲ °.16.已知抛物线2y x bx c =++过(10)A -,,(0)B m ,两点.若2<m <3,则下列四个结论中正确的是 ▲ .(请将所有正确结论的序号都填写到横线上): ①b >0; ②0c <;③点11()M x y ,,22()N x y ,在抛物线上,若x 1<x 2,x 1+x 2=1,则y 1>y 2; ④关于x 的一元二次方程220x bx c +++=必有两个不相等的实数根.三、解答题(本大题共11小题,共82分.请在答题卡指定区域内........作答,解答时应写出文字说明、证明过程或演算步骤) 17.(本题满分5分)计算:2cos30tan 60sin 45︒-︒+︒.18.(本题满分5分)解方程:2450x x --=.ANME DCBA(第13题)(第14题)为落实“双减”政策,某中学在课后服务时间开设了四个兴趣小组,分别为A :机器人,B :交响乐,C :油画,D :古典舞.为了解学生的报名情况(每名学生只报一个兴趣小组),现随机抽取部分学生进行调查,并根据调查结果绘制了如下两幅不完整的统计图.请根据以上图文信息回答下列问题: (1)此次调查共抽取 ▲ 名学生; (2)请将条形统计图补充完整;(3)扇形统计图中,项目A 所对应的扇形圆心角的度数为 ▲ °.20.(本题满分6分)为深入学习贯彻党的二十大精神,我市某中学决定举办“青春心向党,奋进新征程”主题演讲比赛.该校九年级有二男二女共4名学生报名参加演讲比赛.(1)若从报名的4名学生中随机选1名,则所选的这名学生是女生的概率是 ▲ ; (2)若从报名的4名学生中随机选2名,用树状图或表格列出所有可能的情况,并求出这2名学生都是男生的概率.21.(本题满分6分)如图,测绘飞机在同一高度沿直线BC 由B 向C 飞行,且飞行路线经过观测目标A 的正上方.在第一观测点B 处测得目标A 的俯角为60°,航行1000米后在第二观测点C 处测得目标A 的俯角为75°.求第二观测点C 与目标A 之间的距离.CBA60°75°(第21题)把一根长8米的绳子剪成两段,并把每一段绳子围成一个正方形. (1)要使这两个正方形面积的和等于2平方米,应该怎么剪? (2)这两个正方形面积的和可能等于418平方米吗?请说明理由.23.(本题满分8分)60°的扇形(图中的阴影部分). (1)求这个扇形的半径;(2)若用剪得的扇形纸片围成一个圆锥的侧面,求所围成圆锥的底面圆半径.24.(本题满分8分)已知二次函数244y ax ax =-+的图像与x 轴有唯一公共点(1)求a 的值;(2)当0≤x ≤m 时(0m >),函数的最大值为4,且最小值为0,则实数m 的取值范围是 ▲ .25.(本题满分10分)如图,矩形ABCD 中,AD =3,CD =4,点P 从点A 出发,以每秒1个单位长度的速度在射线AB 上向右运动,运动时间为t 秒,连接DP 交AC 于点Q .(1)求证:DCQ PAQ △∽△;(2)若△ADQ 是以AD 为腰的等腰三角形,求运动时间t 的值.(第25题)如图,以AB 为直径的⊙O 经过△ABC 的顶点C ,AE ,BE 分别平分∠BAC 和∠ABC ,AE 的延长线交BC 于点F ,交⊙O 于点D ,连接BD .(1)求证:CBD BAD ∠=∠; (2)求证:BD =DE ;(3)若AB=BE=BC 的长.27.(本题满分10分)在平面直角坐标系中,O 为坐标原点,直线3y x =-+与x 轴交于点B ,与y 轴交于点C .二次函数y =ax 2+2x +c 的图像过B ,C 两点,且与x 轴交于另一点A ,点M 为线段OB 上的一个动点(不与端点O ,B 重合).(1)求二次函数的表达式;(2)如图①,过点M 作y 轴的平行线l 交BC 于点F ,交二次函数y =ax 2+2x +c 的图像于点E .记CEF △的面积为1S ,BMF △的面积为2S ,当1212S S =时,求点E 的坐标; (3)如图②,连接CM ,过点M 作CM 的垂线1l ,过点B 作BC 的垂线2l ,1l 与2l 交于点G .试探究CG CM 的值是否为定值?若是,请求出CGCM的值;若不是,请说明理由.(第26题)苏州市阳光指标学业水平调研测试初三数学参考答案及评分标准2023.019.25 10.1211.1312.5613.1 1415.45︒16.②③④三、解答题(共11小题,共82分)17.(本题满分5分)················································································ 3分. ························································································· 5分18.(本题满分5分)解:原方程可化为:(5)(1)0x x-+=······························································· 3分∴原方程的解为:15x=,21x=-. ··························································· 5分19.(本题满分6分)解:(1)100;··························································································· 2分(2)图(略); ······················································································· 4分(3)144.····························································································· 6分20.(本题满分6分)解:(1)12; ····························································································· 2分(2)树状图或表格(略); ······································································ 4分2名学生都是男生的概率为16. ································································· 6分答:这两名学生都是男生的概率为16.21.(本题满分6分)解:如图,过点C作CH AB⊥,垂足为H. ····························· 1分CH AB⊥90CHB CHA∴∠=∠=︒.在Rt△CHB中,60B∠=︒,1000BC=CH∴=.······· 3分在Rt△CHA中,∵45A∠=︒,CH=AC∴=··························· 5分答:第二观测点C与目标A之间的距离为 ···································· 6分22.(本题满分8分)解:设剪成的两段绳子长分别为x米,(8)x-米.CHBA60°75°(1)由题意可得:228()()244x x -+=. ····················································· 2分 解得:124x x ==.················································································· 4分 ∴应该剪成两段长度均为4米的绳子,可使得两个正方形的面积和为2平方米. (2)由题意可得:22841()()448x x -+=. ······················································ 5分 解得:11x =-,29x =. ·········································································· 7分 经检验,11x =-,29x =均不符合题意.∴两个正方形的面积和不可能为418平方米. ················································ 8分 23.(本题满分8分)解:(1)连接OA ,OB ,过点O 作OH AB ⊥,垂足为H .由图形的轴对称性可得:30OAB ∠=︒. ············ 1分OA OB =.在等腰三角形OAB中,OA OB =30OAB ∠=︒,OH AB ⊥∴32AH =且H 为AB 中点. ····································································· 3分 ∴23AB AH ==,即扇形ABC 的半径为3. ················································ 4分 (2)设圆锥的底面圆半径为r .603=180180n R l ππ⨯==π扇形. ······································································· 6分 又2r π=π,12r ∴=. ··········································································· 8分 ∴圆锥底面圆的半径为12. 24.(本题满分8分)解:(1)由题意得:2=16160a a -=△. ························································· 2分解得:10a =,21a =. ············································································ 4分 ∵0a ≠,∴1a =. ················································································· 5分 (2)24m ≤≤. ·················································································· 8分 25.(本题满分10分)解:(1)∵矩形ABCD ,∴DC ∥AP . ······························································· 1分 ∴∠CDQ =∠APQ ,∠DCQ =∠P AQ . ·························································· 2分 DCQ PAQ ∴△∽△. ··············································································· 3分 (2)设点P 运动的时间为t 秒.①如图1,若AQ AD =.矩形ABCD ,3AD =,4DC =,90ADC ∠=︒,∴5AC =.AQ AD =,3AD =,3AQ ∴=,CQ =2. ·················································· 4分DCQ PAQ △∽△,DC CQ PA AQ ∴=,即:423t =. ·········································· 5分 解得:6t =. ························································································ 6分②如图2,若AD DQ =.过点D 作DH AC ⊥,垂足为H .DH AC ⊥,90AHD ∴∠=︒,又矩形ABCD ,90ADC ∴∠=︒,∴.AHD ADC ∠=∠ 又∵DAH CAD ∠=∠,ADH ACD ∴△∽△. AH AD AD AC ∴=,335AH ∴=,95AH ∴=.DA DQ =,DH AC ⊥,1825AQ AH ∴==,75CQ ∴=. ····························· 8分又DCQ PAQ △∽△,DC QC PA QA ∴=,∴47/518/5t =. ···································· 9分 解得:727t =. ···················································································· 10分综上所述:6t =或727. 26.(本题满分10分) 解:(1)AE 平分BAC ∠,BAD CAD ∴∠=∠. ················································ 1分DBC DAC ∠=∠. ················································································ 2分CBD BAD ∴∠=∠. ················································································ 3分 (2)BE 平分ABC ∠,ABE CBE ∴∠=∠. ················································ 4分 DBE DBC EBC ∠=∠+∠,DEB BAE EBA ∠=∠+∠.DBE DEB ∴∠=∠. ············ 5分 ∴BD =DE . ··························································································· 6分 (3)解法一:如图①,延长BD , 交AC 的延长线于点G . AB 是直径,=90BDA ∴∠︒,=90GDA ∠︒.在ABD △和AGD △中,∵BDA GDAAD AD BAD GAD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴ABD AGD △≌△.∴=BD DG ,AB =AG . ················· 7分 在△BDE中,∵BE =90BDA ∠︒,BD DE =,∴=2BD . ····················· 8分 在△ABD 中,∠BDA =90°,AB=,BD=2,由勾股定理可得:4AD =. 在△ABG 中,AB =AG=,=BD DG =2,4AD =,∠BDA=∠BCA =90°.由等面积法可得:BG AD AG BC ⋅=⋅,即44BC ⨯=. ··························· 9分解得:BC =. ··············································································· 10分B Q P DC B A (图1) (图2)解法二:如图②,连接CD ,过D 作DH ⊥BC 于H . ∵∠BAD =∠CAD ,∴BD =CD ,即△BDC 为等腰三角形. ································································· 7分 又∵DH ⊥BC ,∴H 为BC 中点. 在△BHD 和△ADB 中:∠BAD =∠BCD =∠DBH ;∠BDA =∠DHB =90°. ∴△ABD ∽△BDH ,∴AB BDAD BH=. ·················· 8分 同解法一可得:=2BD ,4AD =. ··················· 9分2BH =,解得:BH =∴2BC BH ==. ··································· 10分 27.(本题满分10分) 解:(1)直线3y x =-+与x 轴交于点B ,与y 轴交于点C ,(3,0)B ∴,(0,3)C . ·· 1分将B ,C 两点的坐标代入22y ax x c =++可得:9603a c c ++=⎧⎨=⎩. ······················ 2分解得:1a =-,3c =.∴二次函数的解析式为:223y x x =-++. ··················· 3分 (2)EM y ∥轴,EM x ∴⊥轴.设(,0)M t (03t <<),则(,3)F t t -,2(,23)E t t t -++,23EF t t ∴=-+,3FM t =-+. ∴211(3)2S t t =-,221(3)2S t =-,2122(3)1(3)2S t t S t -∴==-. ·································· 5分 2230t t ∴+-=,1t ∴=或32t =-(舍去).·················································· 6分(1,4)E ∴. ···························································································· 7分(3)如图,在线段OC 上取点N ,使得ON OM = 3OB OC ==,ON OM =,CN BM ∴=. CM MG ⊥,90OMC GMB ∴∠+∠=︒. 90BOC ∠=︒,90OMC NCM ∴∠+∠=︒. 90OMC GMB ∠+∠=︒,90OMC NCM ∠+∠=︒, NCM BMG ∴∠=∠.135MBG CBG CBO ∠=∠+∠=︒, 180135CNM MNO ∠=︒-∠=︒,CNM MBG ∴∠=∠. ··············································································· 8分在CNM △和MBG △中CNM MBGCN BMNCM BMG ∠=∠⎧⎪=⎨⎪∠=∠⎩,CNM MBG ∴△≌△. ··············································· 9分 CM MG ∴=.90CMG ∠=︒,CG ∴=.CGCM∴=····················· 10分图② 图①。

初三期末数学试题及答案

初三期末数学试题及答案

初三期末数学试题及答案一、选择题(每题3分,共30分)1. 若一个数的平方等于4,则这个数是()A. 2B. -2C. 2或-2D. 02. 以下哪个图形是轴对称图形?()A. 平行四边形B. 梯形C. 矩形D. 任意三角形3. 已知函数y=3x+2,当x=1时,y的值为()A. 5B. 4C. 3D. 24. 若一个三角形的两个内角分别为30°和60°,则第三个内角的度数是()A. 60°B. 90°C. 120°D. 150°5. 一个数的立方根等于它本身,这个数是()A. 0B. 1C. -1D. A和C6. 以下哪个分数是最简分数?()A. 3/6B. 4/8C. 5/10D. 7/147. 一个圆的半径为5cm,它的周长是()A. 10π cmB. 20π cmC. 25π cmD. 30π cm8. 以下哪个是二次函数的一般形式?()A. y=ax+bB. y=ax^2+bx+cC. y=a(x+b)(x+c)D. y=a(x-b)(x-c)9. 一个数的绝对值是5,这个数可以是()A. 5B. -5C. 5或-5D. 010. 以下哪个是等腰三角形?()A. 两边相等的三角形B. 三边相等的三角形C. 两边不等的三角形D. 底边不等的三角形二、填空题(每题3分,共30分)11. 一个数的相反数是-3,这个数是______。

12. 一个数的倒数是1/4,这个数是______。

13. 一个数的平方是9,这个数是______或______。

14. 一个数的立方是-8,这个数是______。

15. 一个数的绝对值是7,这个数是______或______。

16. 一个数的平方根是2,这个数是______或______。

17. 一个圆的直径是10cm,它的半径是______。

18. 一个三角形的内角和是______度。

19. 一个等腰三角形的底角是45°,顶角是______度。

初三数学期末考试练习试题及答案

初三数学期末考试练习试题及答案

初三数学期末考试练习试题及答案初三数学期末考试练习试题及答案初三数学期末考试练习试题一、选择题(每题3分、共30分)1.四会市现在总人口43万多,数据43万用科学记数法表示为( )A.43×104B.4.3×105C.4.3×106D.0.43×1062.下列四个多边形:①等边三角形;②正方形;③正五边形;④正六边形、其中,既是轴对称图形又是中心对称图形的是( )A.①②B.②③C.②④D.①④3.如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC 等于( )A.20B.15C.10D.54.如图是一个用相同的小立方体搭成的几何体的三视图,则组成这个几何体的小立方体的个数是( )A.2B.3C.4D.55.在平面中,下列命题为真命题的是( )A.四边相等的四边形是正方形B.对角线相等的四边形是菱形C.四个角相等的四边形是矩形D.对角线互相垂直的四边形是平行四边形6.若关于x的方程x2﹣4x+m=0没有实数根,则实数m的取值范围是( )A.m<﹣4b.m>﹣4C.m<4d.m>47.用配方法解一元二次方程x2+4x﹣5=0,此方程可变形为( )A.(x+2)2=9B.(x﹣2)2=9C.(x+2)2=1D.(x﹣2)2=18.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是( )A.B.C.D.9.在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx的图象可能为( )A.B.C.D.10.如图,抛物线y=x2与直线y=x交于A点,沿直线y=x平移抛物线,使得平移后的抛物线顶点恰好为A点,则平移后抛物线的解析式是( )A.y=(x+1)2﹣1B.y=(x+1)2+1C.y=(x﹣1)2+1D.y=(x﹣1)2﹣1二、填空题(每题3分、共30分)11.若在实数范围内有意义,则x的取值范围是 .12.已知一次函数y=kx+3的图象经过第一、二、四象限,则k的取值范围是 .13.分解因式:3ax2﹣3ay2= .14.在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .15.设x1、x2是方程3x2﹣x﹣1=0的两个实数根,则3x12﹣2x1﹣x2的值等于 .16.某商品原价289元,经过两次连续降价后售价为256元,设平均每次降价的百分率为x,则由题意所列方程 .17.若|a﹣3|+(a﹣b)2=0,则ab的倒数是 .18.如图,在?ABCD中,AE⊥BC于E,AE=EB=EC=a,且a是一元二次方程x2+2x﹣3=0的根,则?ABCD的周长是 .19.如图,A(4,0),B(3,3),以AO,AB为边作平行四边形OABC,则经过C点的反比例函数的解析式为 .三、解答题(共60分)20.(﹣1)0+()﹣2﹣.21.先化简,再求值:,其中.22.解不等式组:,并把解集在数轴上表示出来.23.某校初三(1)班的同学踊跃为“雅安芦山地震”捐款,根据捐款情况(捐款数为正数)制作以下统计图表,但生活委员不小心把墨水滴在统计表上,部分数据看不清楚.捐款人数0~20元21~40元41~60元61~80元681元以上4(1)全班有多少人捐款?(2)如果捐款0~20元的人数在扇形统计图中所占的圆心角为72°,那么捐款21~40元的有多少人?24.四张扑克牌的点数分别是2,3,4,8,将它们洗匀后背面朝上放在桌上.(1)从中随机抽取一张牌,求这张牌的点数偶数的概率;(2)从中随机抽取一张牌,接着再抽取一张,求这两张牌的点数都是偶数的概率.25.如图.直线y=ax+b与双曲线相交于两点A(1,2),B(m,﹣4).(1)求直线与双曲线的解析式;(2)求不等式ax+b>的解集(直接写出答案)26.(10分)(2013南通)某公司营销A、B两种产品,根据市场调研,发现如下信息:信息1:销售A种产品所获利润y(万元)与销售产品x(吨)之间存在二次函数关系y=ax2+bx.在x=1时,y=1.4;当x=3时,y=3.6.信息2:销售B种产品所获利润y(万元)与销售产品x(吨)之间存在正比例函数关系y=0.3x.根据以上信息,解答下列问题;(1)求二次函数解析式;(2)该公司准备购进A、B两种产品共10吨,请设计一个营销方案,使销售A、B两种产品获得的利润之和最大,最大利润是多少?27.(12分)(2008包头)阅读并解答:①方程x2﹣2x+1=0的根是x1=x2=1,则有x1+x2=2,x1x2=1.②方程2x2﹣x﹣2=0的根是x1=,x2=,则有x1+x2=,x1x2=﹣1.③方程3x2+4x﹣7=0的根是x1=﹣,x2=1,则有x1+x2=﹣,x1x2=﹣.(1)根据以上①②③请你猜想:如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根为x1,x2,那么x1,x2与系数a、b、c有什么关系?请写出你的猜想并证明你的猜想;(2)利用你的猜想结论,解决下面的问题:已知关于x的方程x2+(2k+1)x+k2﹣2=0有实数根x1,x2,且x12+x22=11,求k的值.参考答案与试题解析一、选择题(每题3分、共30分)1.四会市现在总人口43万多,数据43万用科学记数法表示为( )A.43×104B.4.3×105C.4.3×106D.0.43×106考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于43万有6位,所以可以确定n=6﹣1=5.解答:解:43万=430000=4.3×105.故选B.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n 值是关键.2.下列四个多边形:①等边三角形;②正方形;③正五边形;④正六边形、其中,既是轴对称图形又是中心对称图形的是( )A.①②B.②③C.②④D.①④考点:中心对称图形;轴对称图形.分析:根据正多边形的性质和轴对称与中心对称的性质解答.解答:解:由正多边形的对称性知,偶数边的正多边形既是轴对称图形,又是中心对称图形;奇数边的正多边形只是轴对称图形,不是中心对称图形.故选C.点评:此题考查正多边形对称性.关键要记住偶数边的正多边形既是轴对称图形,又是中心对称图形,奇数边的正多边形只是轴对称图形.3.如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC 等于( )A.20B.15C.10D.5考点:菱形的性质;等边三角形的判定与性质.分析:根据菱形的性质及已知可得△ABC为等边三角形,从而得到AC=AB.解答:解:∵AB=BC,∠B+∠BCD=180°,∠BCD=120°∴∠B=60°∴△ABC为等边三角形∴AC=AB=5故选D.点评:本题考查了菱形的性质和等边三角形的判定.4.如图是一个用相同的小立方体搭成的几何体的三视图,则组成这个几何体的小立方体的个数是( )A.2B.3C.4D.5考点:由三视图判断几何体.分析:根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,再结合题意和三视图的特点找出每行和每列的小正方体的个数再相加即可.解答:解:由俯视图易得最底层有3个立方体,第二层有1个立方体,那么搭成这个几何体所用的小立方体个数是4.故选C.点评:本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.5.在平面中,下列命题为真命题的是( )A.四边相等的四边形是正方形B.对角线相等的四边形是菱形C.四个角相等的四边形是矩形D.对角线互相垂直的四边形是平行四边形考点:正方形的判定;平行四边形的判定;菱形的判定;矩形的判定;命题与定理.分析:分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案,不是真命题的可以举出反例.解答:解:A、四边相等的四边形不一定是正方形,例如菱形,故此选项错误;B、对角线相等的四边形不是菱形,例如矩形,等腰梯形,故此选项错误;C、四个角相等的四边形是矩形,故此选项正确;D、对角线互相垂直的四边形不一定是平行四边形,如右图所示,故此选项错误.故选:C.点评:此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6.若关于x的方程x2﹣4x+m=0没有实数根,则实数m的取值范围是( )A.m<﹣4b.m>﹣4C.m<4d.m>4考点:根的判别式.专题:计算题.分析:由方程没有实数根,得到根的判别式的值小于0,列出关于m的不等式,求出不等式的解集即可得到m的范围.解答:解:∵△=(﹣4)2﹣4m=16﹣4m<0,∴m>4.故选D点评:此题考查了根的判别式,熟练掌握根的判别式的意义是解本题的关键.7.用配方法解一元二次方程x2+4x﹣5=0,此方程可变形为( )A.(x+2)2=9B.(x﹣2)2=9C.(x+2)2=1D.(x﹣2)2=1考点:解一元二次方程-配方法.分析:移项后配方,再根据完全平方公式求出即可.解答:解:x2+4x﹣5=0,x2+4x=5,x2+4x+22=5+22,(x+2)2=9,故选:A.点评:本题考查了解一元二次方程的应用,关键是能正确配方.8.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是( )A.B.C.D.考点:由实际问题抽象出分式方程.分析:题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出关系式.解答:解:根据题意,得.故选:C.点评:理解题意是解答应用题的关键,找出题中的等量关系,列出关系式.9.在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx的图象可能为( )A.B.C.D.考点:二次函数的图象;一次函数的图象.专题:数形结合.分析:根据二次函数的性质首先排除B选项,再根据a、b的值的正负,结合二次函数和一次函数的性质逐个检验即可得出答案.解答:解:根据题意可知二次函数y=ax2+bx的图象经过原点O(0,0),故B选项错误;当a<0时,二次函数y=ax2+bx的图象开口向下,一次函数y=ax+b的斜率a为负值,故D选项错误;当a<0、b>0时,二次函数y=ax2+bx的对称轴x=﹣>0,一次函数y=ax+b与y轴的交点(0,b)应该在y轴正半轴,故C选项错误;当a>0、b<0时,二次函数y=ax2+bx的对称轴x=﹣>0,一次函数y=ax+b与y轴的交点(0,b)应该在y轴负半轴,故A选项正确.故选A.点评:本题主要考查了二次函数的性质和一次函数的性质,做题时要注意数形结合思想的运用,同学们加强训练即可掌握,属于基础题.10.如图,抛物线y=x2与直线y=x交于A点,沿直线y=x平移抛物线,使得平移后的抛物线顶点恰好为A点,则平移后抛物线的解析式是( )A.y=(x+1)2﹣1B.y=(x+1)2+1C.y=(x﹣1)2+1D.y=(x﹣1)2﹣1考点:二次函数图象与几何变换.分析:首先根据抛物线y=x2与直线y=x交于A点,即可得出A 点坐标,然后根据抛物线平移的性质:左加右减,上加下减可得解析式.解答:解:∵抛物线y=x2与直线y=x交于A点,∴x2=x,解得:x1=1,x2=0(舍去),∴A(1,1),∴抛物线解析式为:y=(x﹣1)2+1,故选:C.点评:此题主要考查了二次函数图象的几何变换,关键是求出A 点坐标,掌握抛物线平移的性质:左加右减,上加下减.二、填空题(每题3分、共30分)11.若在实数范围内有意义,则x的取值范围是x≥2 .考点:二次根式有意义的条件.专题:计算题.分析:让二次根式的被开方数为非负数列式求解即可.解答:解:由题意得:3x﹣6≥0,解得x≥2,故答案为:x≥2.点评:考查二次根式有意义的条件;用到的知识点为:二次根式有意义,被开方数为非负数.12.已知一次函数y=kx+3的图象经过第一、二、四象限,则k的取值范围是 k<0 .考点:一次函数图象与系数的关系.分析:根据一次函数经过的象限确定其图象的增减性,然后确定k 的取值范围即可.解答:解:∵一次函数y=kx+3的图象经过第一、二、四象限,∴k<0;故答案为:k<0.点评:本题考查了一次函数的图象与系数的关系,解题的关键是根据图象的位置确定其增减性.13.分解因式:3ax2﹣3ay2= 3a(x+y)(x﹣y) .考点:提公因式法与公式法的综合运用.分析:当一个多项式有公因式,将其分解因式时应先提取公因式,再对余下的多项式继续分解.解答:解:3ax2﹣3ay2=3a(x2﹣y2)=3a(x+y)(x﹣y).故答案为:3a(x+y)(x﹣y)点评:本题考查了提公因式法,公式法分解因式,关键在于提取公因式后再利用平方差公式继续进行二次因式分解,分解因式一定要彻底.14.在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .考点:概率公式.分析:由在10个外观相同的产品中,有2个不合格产品,直接利用概率公式求解即可求得答案.解答:解:∵在10个外观相同的产品中,有2个不合格产品,∴现从中任意抽取1个进行检测,抽到合格产品的概率是:=.故答案为:.点评:此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.15.设x1、x2是方程3x2﹣x﹣1=0的两个实数根,则3x12﹣2x1﹣x2的值等于 .考点:根与系数的关系;一元二次方程的解.分析:根据题意可知,x1+x2=,然后根据方程解的定义得到3x12=x1+1,然后整体代入3x12﹣2x1﹣x2计算即可.解答:解:∵x1,x2是方程3x2﹣x﹣1=0的两个实数根,∴x1+x2=,∵x1是方程x2﹣5x﹣1=0的实数根,∴3x12﹣x1﹣1=0,∴x12=x1+1,∴3x12﹣2x1+x2=x1+1﹣2x1﹣x2=1﹣(x1+x2)=1﹣=.故答案为:.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系x1+x2=﹣,x1x2=,以及一元二次方程的解.16.某商品原价289元,经过两次连续降价后售价为256元,设平均每次降价的百分率为x,则由题意所列方程289×(1﹣x)2=256 .考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:可先表示出第一次降价后的价格,那么第一次降价后的价格×(1﹣降低的百分率)=256,把相应数值代入即可求解.解答:解:第一次降价后的价格为289×(1﹣x),两次连续降价后售价在第一次降价后的价格的基础上降低x,为289×(1﹣x)×(1﹣x),则列出的方程是289×(1﹣x)2=256.点评:考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.17.若|a﹣3|+(a﹣b)2=0,则ab的倒数是 .考点:非负数的性质:偶次方;非负数的性质:绝对值.分析:根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.解答:解:根据题意得,a﹣3=0,a﹣b=0,解得a=b=3,所以,ab=33=27,所以,ab的倒数是.故答案为:.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.18.如图,在?ABCD中,AE⊥BC于E,AE=EB=EC=a,且a是一元二次方程x2+2x﹣3=0的根,则?ABCD的周长是 4+2 .考点:解一元二次方程-因式分解法;平行四边形的性质.专题:计算题.分析:先解方程求得a,再根据勾股定理求得AB,从而计算出?ABCD的周长即可.解答:解:∵a是一元二次方程x2+2x﹣3=0的根,∴(x﹣1)(x+3)=0,即x=1或﹣3,∵AE=EB=EC=a,∴a=1,在Rt△ABE中,AB==a=,∴?ABCD的周长=4a+2a=4+2.故答案为:4+2.点评:本题考查了用因式分解法解一元二次方程,以及平行四边形的性质,是基础知识要熟练掌握.19.如图,A(4,0),B(3,3),以AO,AB为边作平行四边形OABC,则经过C点的反比例函数的解析式为 y=﹣ .考点:待定系数法求反比例函数解析式;平行四边形的性质.专题:待定系数法.分析:设经过C点的反比例函数的解析式是y=(k≠0),设C(x,y).根据平行四边形的性质求出点C的坐标(﹣1,3).然后利用待定系数法求反比例函数的解析式.解答:解:设经过C点的反比例函数的解析式是y=(k≠0),设C(x,y).∵四边形OABC是平行四边形,∴BC∥OA,BC=OA;∵A(4,0),B(3,3),∴点C的纵坐标是y=3,|3﹣x|=4(x<0),∴x=﹣1,∴C(﹣1,3).∵点C在反比例函数y=(k≠0)的图象上,∴3=,解得,k=﹣3,∴经过C点的反比例函数的解析式是y=﹣.故答案为:y=﹣.点评:本题主要考查了平行四边形的性质(对边平行且相等)、利用待定系数法求反比例函数的解析式.解答反比例函数的解析式时,还借用了反比例函数图象上点的坐标特征,经过函数的某点一定在函数的图象上.三、解答题(共60分)20.(﹣1)0+()﹣2﹣.考点:实数的运算;零指数幂;负整数指数幂.专题:计算题.分析:原式第一项利用零指数幂法则计算,第二项利用负整数指数幂法则计算,即可得到结果.解答:解:原式=1+4﹣=4.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.21.先化简,再求值:,其中.考点:分式的化简求值;约分;分式的乘除法;分式的加减法.专题:计算题.分析:先算括号里面的减法,再把除法变成乘法,进行约分即可.解答:解:原式=&pide;()=×=,当x=﹣3时,原式==.点评:本题主要考查对分式的加减、乘除,约分等知识点的理解和掌握,能熟练地运用法则进行化简是解此题的关键.22.解不等式组:,并把解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.专题:计算题.分析:分别解两个不等式得到x≥﹣2和x<1,再根据大于小的小于大的取中间确定不等式组的解集,然后用数轴表示解集.解答:解:,由①得:x≥﹣2,由②得:x<1,∴不等式组的解集为:﹣2≤x<1,如图,在数轴上表示为:.点评:本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.也考查了在数轴上表示不等式的解集.23.某校初三(1)班的同学踊跃为“雅安芦山地震”捐款,根据捐款情况(捐款数为正数)制作以下统计图表,但生活委员不小心把墨水滴在统计表上,部分数据看不清楚.捐款人数0~20元21~40元41~60元61~80元681元以上4(1)全班有多少人捐款?(2)如果捐款0~20元的人数在扇形统计图中所占的圆心角为72°,那么捐款21~40元的有多少人?考点:扇形统计图;统计表.分析:(1)根据扇形统计图中的捐款81元以上的认识和其所占的百分比确定全班人数即可;(2)分别确定每个小组的人数,最后确定捐款数在21﹣40元的人数即可.解答:解:(1)4&pide;8%=50答:全班有50人捐款.(2)∵捐款0~20元的人数在扇形统计图中所占的圆心角为72°∴捐款0~20元的人数为50×=10∴50﹣10﹣50×32%﹣6﹣4=14答:捐款21~40元的有14人.点评:本题考查了扇形统计图及统计表的知识,解题的关键是确定总人数.24.四张扑克牌的'点数分别是2,3,4,8,将它们洗匀后背面朝上放在桌上.(1)从中随机抽取一张牌,求这张牌的点数偶数的概率;(2)从中随机抽取一张牌,接着再抽取一张,求这两张牌的点数都是偶数的概率.考点:列表法与树状图法;概率公式.分析:(1)利用数字2,3,4,8中一共有3个偶数,总数为4,即可得出点数偶数的概率;(2)利用树状图列举出所有情况,让点数都是偶数的情况数除以总情况数即为所求的概率.解答:解:(1)根据数字2,3,4,8中一共有3个偶数,故从中随机抽取一张牌,这张牌的点数偶数的概率为:;(2)根据从中随机抽取一张牌,接着再抽取一张,列树状图如下:根据树状图可知,一共有12种情况,两张牌的点数都是偶数的有6种,故连续抽取两张牌的点数都是偶数的概率是:=.点评:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.25.如图.直线y=ax+b与双曲线相交于两点A(1,2),B(m,﹣4).(1)求直线与双曲线的解析式;(2)求不等式ax+b>的解集(直接写出答案)考点:反比例函数与一次函数的交点问题.分析:(1)先把先把(1,2)代入双曲线中,可求k,从而可得双曲线的解析式,再把y=﹣4代入双曲线的解析式中,可求m,最后把(1,2)、(﹣,﹣4)代入一次函数,可得关于a、b的二元一次方程组,解可求a、b的值,进而可求出一次函数解析式;(2)根据图象观察可得x>1或﹣<x<0.主要是观察交点的左右即可.<>解答:解:(1)先把(1,2)代入双曲线中,得k=2,∴双曲线的解析式是y=,当y=﹣4时,m=﹣,把(1,2)、(﹣,﹣4)代入一次函数,可得,解得,∴一次函数的解析式是y=4x﹣2;(2)根据图象可知,若ax+b>,那么x>1或﹣<x<0.<>点评:本题考查了一次函数与反比例函数交点问题,解题的关键是掌握待定系数法求函数解析式,并会根据图象求出不等式的解集.26.(10分)(2013南通)某公司营销A、B两种产品,根据市场调研,发现如下信息:信息1:销售A种产品所获利润y(万元)与销售产品x(吨)之间存在二次函数关系y=ax2+bx.在x=1时,y=1.4;当x=3时,y=3.6.信息2:销售B种产品所获利润y(万元)与销售产品x(吨)之间存在正比例函数关系y=0.3x.根据以上信息,解答下列问题;(1)求二次函数解析式;(2)该公司准备购进A、B两种产品共10吨,请设计一个营销方案,使销售A、B两种产品获得的利润之和最大,最大利润是多少?考点:二次函数的应用.分析:(1)把两组数据代入二次函数解析式,然后利用待定系数法求解即可;(2)设购进A产品m吨,购进B产品(10﹣m)吨,销售A、B两种产品获得的利润之和为W元,根据总利润等于两种产品的利润的和列式整理得到W与m的函数关系式,再根据二次函数的最值问题解答.解答:解:(1)∵当x=1时,y=1.4;当x=3时,y=3.6,∴,解得,所以,二次函数解析式为y=﹣0.1x2+1.5x;(2)设购进A产品m吨,购进B产品(10﹣m)吨,销售A、B两种产品获得的利润之和为W元,则W=﹣0.1m2+1.5m+0.3(10﹣m)=﹣0.1m2+1.2m+3=﹣0.1(m﹣6)2+6.6,∵﹣0.1<0,∴当m=6时,W有最大值6.6,∴购进A产品6吨,购进B产品4吨,销售A、B两种产品获得的利润之和最大,最大利润是6.6万元.点评:本题考查了二次函数的应用,主要利用了待定系数法求二次函数解析式,二次函数的最值问题,比较简单,(2)整理得到所获利润与购进A产品的吨数的关系式是解题的关键.27.(12分)(2008包头)阅读并解答:①方程x2﹣2x+1=0的根是x1=x2=1,则有x1+x2=2,x1x2=1.②方程2x2﹣x﹣2=0的根是x1=,x2=,则有x1+x2=,x1x2=﹣1.③方程3x2+4x﹣7=0的根是x1=﹣,x2=1,则有x1+x2=﹣,x1x2=﹣.(1)根据以上①②③请你猜想:如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根为x1,x2,那么x1,x2与系数a、b、c有什么关系?请写出你的猜想并证明你的猜想;(2)利用你的猜想结论,解决下面的问题:已知关于x的方程x2+(2k+1)x+k2﹣2=0有实数根x1,x2,且x12+x22=11,求k的值.考点:根与系数的关系;解一元二次方程-公式法;解一元二次方程-因式分解法;根的判别式.专题:压轴题;阅读型.分析:(1)由①②③中两根之和与两根之积的结果可以看出,两根之和正好等于一次项系数与二次项系数之比的相反数,两根之积正好等于常数项与二次项系数之比.(2)欲求k的值,先把代数式x12+x22变形为两根之积或两根之和的形式,然后与两根之和公式、两根之积公式联立组成方程组,解方程组即可求k值.解答:解:(1)猜想为:设ax2+bx+c=0(a≠0)的两根为x1、x2,则有,.理由:设x1、x2是一元二次方程ax2+bx+c=0(a≠0)的两根,那么由求根公式可知,,.于是有,,综上得,设ax2+bx+c=0(a≠0)的两根为x1、x2,则有,.(2)x1、x2是方程x2+(2k+1)x+k2﹣2=0的两个实数根∴x1+x2=﹣(2k+1),x1x2=k2﹣2,又∵x12+x22=x12+x22+2x1x2﹣2x1x2=(x1+x2)2﹣2x1x2∴[﹣(2k+1)]2﹣2×(k2﹣2)=11整理得k2+2k﹣3=0,解得k=1或﹣3,又∵△=[﹣(2k+1)]2﹣4(k2﹣2)≥0,解得k≥﹣,∴k=1.点评:本题考查了学生的总结和分析能力,善于总结,善于发现,学会分析是学好数学必备的能力.将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.。

初三上册数学期末考试题及答案

初三上册数学期末考试题及答案

初三上册数学期末考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 2B. √2C. 0.5D. 3.14答案:B2. 一个数的平方根是它本身,这个数是A. 0B. 1C. -1D. 2答案:A3. 一个等腰三角形的两边长分别为3和4,那么它的周长是A. 7B. 10C. 11D. 14答案:C4. 已知一个数列的前三项为1, 2, 4,那么第四项是A. 8C. 6D. 5答案:A5. 函数y=2x+3的图像经过点A. (0, 3)B. (1, 5)C. (2, 4)D. (3, 9)答案:B6. 一个圆的直径是10厘米,那么它的半径是A. 5厘米B. 10厘米C. 15厘米D. 20厘米答案:A7. 一个长方体的长、宽、高分别是2cm、3cm、4cm,那么它的体积是A. 24立方厘米B. 12立方厘米C. 26立方厘米D. 36立方厘米答案:A8. 一个数的绝对值是5,这个数可能是B. -5C. 5或-5D. 0答案:C9. 一个角的补角是90°,那么这个角是A. 90°B. 45°C. 30°D. 60°答案:B10. 一个数的立方根是它本身,这个数是A. 0B. 1C. -1D. 2答案:A二、填空题(每题4分,共20分)1. 一个数的平方是25,这个数是____。

答案:±52. 一个数的倒数是2,这个数是____。

答案:1/23. 一个数的相反数是-3,这个数是____。

答案:34. 一个数的绝对值是10,这个数是____。

答案:±105. 一个数的平方根是4,这个数是____。

答案:16三、解答题(共50分)1. 解方程:x² - 5x + 6 = 0(10分)答案:x₁ = 2,x₂ = 32. 已知等腰三角形的两边长分别为5cm和10cm,求第三边的长度。

(10分)答案:第三边的长度为10cm。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

创作编号:BG7531400019813488897SX 创作者: 别如克*初三数学期末测试题全卷分A 卷和B 卷,A 卷满分86分,B 卷满分34分;考试时间l20分钟。

A 卷分第Ⅰ卷和第Ⅱ卷,第Ⅰ卷为选择题,第Ⅱ卷为其他类型的题。

一、选择题(本题共有个小题,每小题4分,共32分)在每小题给出的四个选项中,只有一项是正确的,把正确的序号填在题后的括号内。

1.下列实数中是无理数的是( ) (A )38.0 (B )π (C )4 (D ) 722-2.在平面直角坐标系中,点A (1,-3)在( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 3.下列四组数据中,不能..作为直角三角形的三边长是( ) (A )3,4,6 (B )7,24,25 (C )6,8,10 (D )9,12,15 4.下列各组数值是二元一次方程43=-y x 的解的是( )(A )⎩⎨⎧-==11y x (B )⎩⎨⎧==12y x (C )⎩⎨⎧-=-=21y x (D )⎩⎨⎧-==14y x5.已知一个多边形的内角各为720°,则这个多边形为( )(A )三角形 (B )四边形 (C )五边形 (D )六边形6.如果03)4(2=-+-+y x y x ,那么y x -2的值为( ) (A )-3 (B )3 (C )-1 (D )1c7.在平面直角坐标系中,已知一次函数b kx y +=的图象大致如图所示,则下列结论正的是( )(A )k >0,b >0 (B )k >0, b <0 (C )k <0, b >0 (D )k <0, b <0. 8.下列说法正确的是( )(A )矩形的对角线互相垂直 (B )等腰梯形的对角线相等(C )有两个角为直角的四边形是矩形 (D )对角线互相垂直的四边形是菱形创作编号:BG7531400019813488897SX 创作者: 别如克*二、填空题:(每小题4分,共16分)9.如图,在Rt △ABC 中,已知a 、b 、c 分别是∠A 、∠B 、∠C 的对边,如果b =2a ,那么ca= 。

10.在平面直角坐标系中,已知点M (-2,3),如果将OM 绕原点O逆时针旋转180°得到O M ',那么点M '的坐标为 。

11.已知四边形ABCD 中,∠A=∠B=∠C=90°,现有四个条件:①AC ⊥BD ;②AC=BD ;③BC=CD ;④AD=BC 。

如果添加这四个条件中的一个条件,即可推出该四边形是正方形,那么这个条件可以是 (写出所有可能结果的序号)。

12.如图,在平面直角坐标系中,把直线x y 3=沿y 轴向下平移后得到直线AB ,如果点N (m ,n )是直线AB 上的一点,且3m -n =2,那 么直线AB 的函数表达式为。

三、(第13题每小题6分,第14题6分,共18分) 13.解下列各题:(1)解方程组⎪⎩⎪⎨⎧-==-+136)1(2y x y x(2)化简:311548412712-++A B CD14.如图,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD=1,AB=3,CD=5,求底边BC 的长。

四、(每小题10分,共20分)15.如图,已知四边形ABCD 是平行四边形,BE ⊥AC 于点E ,DF ⊥AC 于点F 。

(1)求证:△ABE ≌△CDF ; (2)连结BF 、DE ,试判断四边形BFDE 是什么样的四边形?写出你的结论并予以证明。

D16.如图,在平面直角坐标系中,一次函数5+=kx y 的图象经过点A (1,4),点B 是一次函数5+=kx y 的图象与正比例函数x y 32=的图象的交点。

(1)求点B 的坐标。

(2)求△AOB 的面积。

B 卷(50分)17.(共10分)某商场代销甲、乙两种商品,其中甲种商品的进价为120元/件,售件为130元/件,乙种商品的进价为100元/件,售件为150元/件。

(1)若商场用36000元购进这两种商品,销售完后可获得利润6000元,则该商场购进甲、乙两种商品各多少件?(2)若商场要购进这两种商品共200件,设购进甲种商品x 件,销售后获得的利润为y 元,试写出利润y (元)与x (件)函数关系式(不要求写出自变量x 的取值范围);并指出购进甲种商品件数x 逐渐增加时,利润y 是增加还是减少?18.(共12分)如图,已知四边形ABCD 是正方形,E 是正方形内一点,以BC 为斜边作直角三角形BCE ,又以BE 为直角边作等腰直角三角形EBF ,且∠EBF=90°,连结AF 。

(1)求证:AF=CE ; (2)求证:AF ∥EB ;(3)若AB=35,36=CE BF ,求点E 到BC 的距离。

A19.(共12分)如图,在平面直角坐标系中,已知矩形OABC 的两个顶点A 、B 的坐标分别A (,32-0)、B (,32-2),∠CAO=30°。

(1)求对角线AC 所在的直线的函数表达式;(2)把矩形OABC 以AC 所在的直线为对称轴翻折,点O 落在平面上的点D 处,求点D 的坐标;(3)在平面内是否存在点P ,使得以A 、O 、D 、P 为顶点的四边形为菱形?若存在,求出点P 的坐标;若不存在,请说明理由。

参考答案: A 卷:一、1.B 2. D 3.A 4.A 5. D 6.C 7.D 8.B二. 9.5510. (2,-3) 11. ①、③ 12. 23-=x y三、13(1).原方程组的解为⎩⎨⎧==23y x . (2) 原式=3331534413332=⨯-⨯++. 14.解:如图,过点D 作DE ⊥BC 于E,∵ABCD 是直角梯形,∴BE=AD=1,DE=AB=3,在Rt △DEC 中,DE=3,CD=5, ∴由勾股定理得,CE=4352222=-=-DE CD ,∴BC=BE+CE=1+4=5.四、15(1) ∵四边形ABCD 是平行四边形, ∴AB=CD,AB ∥CD, ∵AB ∥CD, ∴∠BAE=∠DCF, ∵BE ⊥AC 于点E ,DF ⊥AC 于点F , ∴∠AEB=∠CFD=90º,在△ABE 和△CDF 中,∵∠BAE=∠DCF ,∠AEB=∠CFD ,AB=CD ,∴△ABE ≌△CDF (AAS ),(2)如图,连结BF 、DE ,则四边形BFDE 是平行四边形,证明:∵BE ⊥AC 于点E ,DF ⊥AC 于点F ,∴∠BEF=∠DFE=90º,∴BE ∥DF ,又由(1),有BE=DF ,∴四边形BFDE 是平行四边形16.(1)点B 的坐标(3,2), (2)如图,设直线5+-=x y 与y 轴相交于点C ,在5+-=x y 中,令 x =0,则y =5, ∴点C 的 的坐标为(0,5),∴=-=∆∆∆OAC BOC AOB S S S ⋅2121-⋅B x OC • A x OC ⋅=⋅21OC •(B x -A x )=21×5×(3-1)=5,∴△AOB 的面积为5。

B 卷17.(1) 设购进甲种商品x 件, 乙种商品y 件,由题意, 得⎩⎨⎧=-+-=+6000)100150()120130(36000100120y x y x 解得⎩⎨⎧==72240y x 所以,该商场购进甲种商品240件,乙种商品72件。

(2)已知购进甲种商品x 件, 则购进乙种商品(200-x )件,根据题意,得y =(130-120)x +(150-100)(200-x )=-40x +10000, ∵y =-40x +10000中,k =-40<0, ∴y 随x 的增大而减小。

∴当购进甲种商品的件数x 逐渐增加时,利润y 是逐渐减少的。

18.(1) ∵四边形ABCD 是正方形, ∴∠ABE+∠EBC=90º,AB=BC, ∵△EBF 是以以BE 为直角边的等腰直角三角形, ∴∠ABE+∠FBA=90º,BE=BF, ∴∠FBA=∠EBC,在△ABF 和△CBE 中,∵AB=BC, ∠FBA=∠EBC, BE=BF, ∴△ABF ≌△CBE, ∴AF=CE, (2)证明:由(1), ∵△ABF ≌△CBE, ∴∠AFB=∠CEB=90º,又∠EBF=90º, ∴∠AFB+∠EBF=180º, ∴AF ∥EB. (3)求点E 到BC 的距离,即是求Rt △BCE 中斜边BC 上的高的值,由已知,有BE=BF,又由36=CE BF ,可设BE=6k ,CE=3k ,在Rt △BCE 中,由勾股定理,得2222221596k k k CE BE BC =+=+=,而BC=AB=53,即有152k =2)35(=75, ∴2k =5,解得k =5,∴BE=6×5,CE=35,设Rt △BCE 斜边BC 上的高为h , ∵=∆BCE Rt S 21·BE ·CE=21·BE ·h ,∴(6×5)×35=53×h ,解得h =32,点E 到BC 的距离为32.19.(1)由题意,得C(0,2),设对角线AC 所在的直线的函数表达式为2+=kx y (k ≠0),将A(-23,0)代入2+=kx y 中,得-23k +2=0,解得k =33,∴对角线所在的直线的函数表达式为233+=x y ,(2) ∵△AOC 与△ADC 关于AC 成轴对称, ∠OAC=30º, ∴OA=AD, ∠DAC=30º, ∴∠DAO=60º,如图,连结OD, ∵OA=AD, ∠DAO=60º, △AOD 是等边三角形,过点D 作DE ⊥x 轴于点E,则有AE=OE=21OA,而OA=23,∴AE=OE=3,在Rt △ADE 中, ,由勾股定理,得DE=3)3()32(2222=-=-AE AD ,∴点D 的坐标为(-3,3),(3)①若以OA 、OD 为一组邻边,构成菱形AODP,如图,过点D 作DP ∥x 轴,过点A 作AP ∥OD,交于点P ,则AP=OD=OA=23,过点P 作PF ⊥x 轴于点F, ∴PF=DE=3,AF=33)32(2222=-=-PF AP ,∴OF=OA+AF=23+3=33;由(2), △AOD 是等边三角形,知OA=OD,即四边形AODP 为菱形, ∴满足的条件的点1P (-33,3);②若以AO 、AD 为一组邻边,构成菱形AO P 'D,类似地可求得2P (3,3); ③若以DA 、DO 为一组邻边, 构成菱形ADO P '',类似地可求得3P (-3,-3); 综上可知,满足的条件的点P 的坐标为1P (-33,3)、2P (3,3)、3P (-3,-3).创作编号:BG7531400019813488897SX 创作者: 别如克*。

相关文档
最新文档