(完整word版)继电保护算法分析

合集下载

(完整word版)继电保护教材(超实用)

(完整word版)继电保护教材(超实用)

第一章绪论第一节电力系统继电保护的作用一、电力系统的故障和不正常运行状态1.电力系统的故障:三相短路f (3)、两相短路f (2)、单相短路接地f (1)、两相短路接地f (1,1)、断线、变压器绕组匝间短路、复合故障等。

2. 不正常运行状态:小接地电流系统的单相接地、过负荷、变压器过热、系统振荡、电压升高、频率降低等。

二、发生故障可能引起的后果是:1、故障点通过很大的短路电流和所燃起的电弧,使故障设备烧坏;2、系统中设备,在通过短路电流时所产生的热和电动力使设备缩短使用寿命;3、因电压降低,破坏用户工作的稳定性或影响产品质量;破坏系统并列运行的稳定性,产生振荡,甚至使整个系统瓦解。

事故:指系统的全部或部分的正常运行遭到破坏,以致造成对用户的停止送电、少送电、电能质量变坏到不能容许的程度,甚至毁坏设备等等。

三、电保护装置及其任务1.继电保护装置:就是指反应电力系统中电气元件发生故障或不正常运行状态,并动作于断路器跳闸或发出信号的一种自动装置。

2.它的基本任务是:(1)发生故障时,自动、迅速、有选择地将故障元件(设备)从电力系统中切除,使非故障部分继续运行。

(2)对不正常运行状态,为保证选择性,一般要求保护经过一定的延时,并根据运行维护条件(如有无经常值班人员),而动作于发出信号(减负荷或跳闸),且能与自动重合闸相配合。

第二节继电保护的基本原理和保护装置的组成一、继电保护的基本原理继电保护的原理是利用被保护线路或设备故障前后某些突变的物理量为信息量,当突变量达到一定值时,起动逻辑控制环节,发出相应的跳闸脉冲或信号。

1、利用基本电气参数的区别发生短路后,利用电流、电压、线路测量阻抗等的变化,可以构成如下保护。

(1)过电流保护:反映电流的增大而动作,如图1-1所示,(2)低电压保护:反应于电压的降低而动作。

(3)距离保护(或低阻抗保护):反应于短路点到保护安装地之间的距离(或测量阻抗的减小)而动作。

2、利用内部故障和外部故障时被保护元件两侧电流相位(或功率方向)的差别。

电力系统继电保护简易整定值计算方法解析

电力系统继电保护简易整定值计算方法解析

电力系统继电保护简易整定值计算方法解析【摘要】本文主要介绍了电力系统继电保护简易整定值计算方法。

在文章从背景介绍、研究意义、研究目的三个方面入手。

接着在详细阐述了继电保护的概述、整定值计算方法、基于潮流计算的整定值确定、基于经验公式的整定值确定和实例分析。

结合实例分析,文章探讨了简易整定值计算方法的可行性,并提出了未来研究方向。

最后在结论部分对整篇文章进行总结。

整篇文章系统地介绍了电力系统继电保护简易整定值计算方法,为电力系统继电保护的设计和优化提供了重要参考。

【关键词】电力系统、继电保护、整定值计算方法、潮流计算、经验公式、实例分析、可行性、未来研究方向、总结。

1. 引言1.1 背景介绍电力系统是现代社会不可或缺的基础设施之一,它为各种工商业以及居民生活提供了稳定可靠的电力供应。

而电力系统中的继电保护则是保障系统稳定运行的重要组成部分之一。

在电力系统中,电气设备和线路可能受到各种因素的影响,如短路、过载、接地故障等,需要及时切除故障点,以防止故障扩大影响整个系统,同时保护系统设备的安全运行。

继电保护作为电力系统中的一项重要技术,其性能直接关系到电力系统的安全运行和可靠性。

为了提高继电保护的性能,需要对其整定值进行精确的计算和调整。

传统的整定值计算方法往往繁琐复杂,需要大量的专业知识和经验。

简化整定值计算方法成为了当前研究的重点之一。

本文将从继电保护的概念和作用出发,介绍整定值计算方法以及基于潮流计算和经验公式的整定值确定方法,最后通过实例分析,探讨简易整定值计算方法的可行性和未来研究方向。

希望通过本文的研究,能够为电力系统继电保护的优化提供一定的参考和借鉴。

1.2 研究意义电力系统继电保护是电力系统中非常重要的一部分,其作用是在系统出现故障或异常情况时及时切除故障部分,保护系统中的设备和电器不受损坏,确保系统的安全稳定运行。

继电保护的准确性和可靠性对于电力系统的运行具有至关重要的意义。

研究继电保护的整定值计算方法具有重要的意义,因为整定值决定了保护装置动作的灵敏程度和可靠性。

(完整word版)电力系统继电保护课程设计1(word文档良心出品)

(完整word版)电力系统继电保护课程设计1(word文档良心出品)

1 设计原始材料1.1 具体题目一台双绕组降压变压器的容量为20MV A,电压比为35±2×2.5%/6.6kV,Y,d11接线;采用BCH-2型继电器。

求差动保护的动作电流。

已知:6.6kV外部短路的最大三相短路电流为10536A;35kV侧电流互感器变比为600/5,35kV侧电流互感器变比为1500/5;可靠系数取。

试对变压器进行相关保护的设计。

1.2 要完成的内容For personal use only in study and research; not for commercial use对变压器进行主保护和后备保护的设计、配置、整定计算和校验。

2 分析要设计的课题内容(保护方式的确定)2.1 设计规程For personal use only in study and research; not for commercial use根据设计技术规范的规定,针对变压器的各种故障、不正常工作状态和变压器容量,应装设相应的保护装置。

(1)对800kV A以上的油侵式变压器:应装设瓦斯保护做为变压器内部故障的保护。

(2)对于变压器的引出线、套管和内部故障:①并联运行、容量为6300kV A及以上,单台运行、容量为10000kV A及以上的变压器,应装设纵差动保护。

②并联运行、容量为6300kV A及以下,单台运行、容量为10000kV A及以下的变压器,应装设电流速断保护。

2000kV A及以上的变压器,如果电流速断保护的灵敏度不能满足要求,应装设纵差动保护。

(3)对于由外部相同短路引起的遍野器过电流,应装设过电流保护。

如果灵敏度不能满足要求,可以装设低电压启动的过电流保护。

(4)对于一项接地故障,应装设零序电流保护。

(5)对于400kV A及以上的变压器,应根据其过负荷的能力,装设过负荷保护。

(6)对于过热应装设温度信号保护。

2.2 本设计的保护配置2.2.1 主保护配置电流纵差动保护不但能区分区内外故障,而且不需要与其他元件的保护配合,可以无延时的切除区内各种故障,具有明显的优点。

DL-T 684-1999大型发电机变压器继电保护整定计算导则Word版

DL-T 684-1999大型发电机变压器继电保护整定计算导则Word版

K45备案号:6763—2000中华人民共和国电力行业标准DL/T 684—1999大型发电机变压器继电保护整定计算导则Guide of calculating settings of relayprotection for large generator and transformer2000-02-24批准2000-07-01实施中华人民共和国国家经济贸易委员会发布前言本标准根据原能源部1992年电供函[1992]11号《关于组织编制大机组继电保护装置运行整定条例函》的要求以及广大继电保护工作者的迫切需要而制定。

本标准的制定和实施将对提高发电机变压器继电保护装置的正确动作率、保障电气设备的安全及维持电力系统的稳定运行有重要意义。

在国家电力调度通信中心及中国电机工程学会继电保护专委会等单位的组织领导下,经过深入调查研究,广泛征求国内各有关单位的专家、教授及广大继电保护工作者的意见,组织多次专题讨论,反复修改条文内容,先后数易其稿,历经数年终于完成了本标准的编制任务。

本标准以GB14285—93《继电保护和安全自动装置技术规程》为依据进行编制。

本标准的附录A、附录B都是标准的附录。

本标准的附录C、附录D、附录E、附录F、附录G、附录H、附录J、附录K、附录L和附录M都是提示的附录。

本标准由原能源部电力司、科技司共同提出。

本标准由原电力工业部继电保护标准化技术委员会归口。

本标准起草单位:华北电力设计院、东北电力设计院、清华大学。

本标准参加起草单位:东北电力调度局、西北电力试验研究院。

本标准主要起草人:王维俭、孟庆和、宋继成、闫香亭、毛锦庆、侯炳蕴、李玉海。

本标准由国家电力调度通信中心负责解释。

目录前言1 范围2 引用标准3 总则4 发电机保护的整定计算4.1 定子绕组内部故障主保护4.2 发电机相间短路后备保护4.3 定子绕组单相接地保护4.4 励磁回路接地保护4.5 发电机过负荷保护4.6 发电机低励失磁保护4.7 发电机失步保护4.8 发电机异常运行保护5 变压器保护的整定计算5.1 变压器纵差保护5.2 变压器分侧差动保护5.3 变压器零序差动保护5.4 变压器瓦斯保护5.5 变压器相间短路后备保护5.6 变压器接地故障后备保护5.7 变压器过负荷保护5.8 变压器过励磁保护6 发电机变压器组保护的整定计算6.1 概述6.2 发电机变压器组保护整定计算特点附录A(标准的附录)发电机定子绕组对地电容,机端单相接地电容电流及单相接地电流允许值附录B(标准的附录)本标准用语说明附录C(提示的附录)发电机变压器继电保护整定计算导则有关文字符号附录D(提示的附录)发电机若干异常运行状态的要求附录E(提示的附录)大型汽轮发电机组对频率异常运行的要求附录F(提示的附录)系统联系电抗X con的计算附录G(提示的附录)自并励发电机外部短路电流的计算附录H(提示的附录)电力系统振荡时阻抗继电器动作特性分析附录J(提示的附录)变压器电容参数估算值附录K(提示的附录)保护用电流互感器的选择附录L(提示的附录)变压器电抗的计算附录M(提示的附录)非全相故障计算中华人民共和国电力行业标准大型发电机变压器继电保护整定计算导则DL/T 684—1999Guide of calculating settings of relayprotection for large generator and transformer1 范围本标准规定了大型发电机变压器继电保护的整定计算原则和方法,它是设计、科研、运行、调试和制造部门整定计算的依据。

第二节 微机继电保护算法介绍

第二节 微机继电保护算法介绍

第二节微机继电保护算法介绍第二节微机继电保护算法介绍第二节微机继电保护算法介绍这一节将要对微机保护算法进行简要概述,并介绍常见的几种算法。

一、微机保护算法概述把经过数据采集系统量化的数字信号经过数字滤波处理后,通过数学运算、逻辑运算、并进行分析、判断,以决定是否发出跳闸命令或信号,以实现各种继电保护功能。

这种对数据进行处理、分析、判断以实现保护功能的方法称为微机保护。

二、常见微机保护算法介绍1. 算法微机保护装置中采用的算法分类:(1)直接由采样值经过某种运算,求出被测信号的实际值再与定值比较。

例如,在电流、电压保护中,则直接求出电压、电流的有效值,与保护的整定值比较。

(2)依据继电器的动作方程,将采样值代入动作方程,转换为运算式的判断。

分析和评价各种不同的算法优劣的标准是精度和速度。

2. 速度影响因素(1)算法所要求的采样点数。

(2)算法的运算工作量。

3. 算法的计算精度指用离散的采样点计算出的结果与信号实际值的逼近程度。

4. 算法的数据窗一个算法采用故障后的多少采样点才能计算出正确的结果,这就是算法的数据窗。

算法所用的数据窗直接影响保护的动作速度。

例如,全周傅氏算法需要的数据窗为一个周波(20ms),半周傅氏算法需要的数据窗为一个半周波(10ms)。

半周波数据窗短,保护的动作速度快,但是它不能滤除偶次谐波和恒稳直流分量。

一般地算法用的数据窗越长,计算精度越高,而保护动作相对较慢,反之,计算精度越低,但是保护的动作速度相对较快。

尽量提高算法的计算速度,缩短响应时间,可以提高保护的动作速度。

但是高精度与快速动作之间存在着矛盾。

计算精度与有限字长有关,其误差表现为量化误差和舍入误差两个方面,为了减小量化误关基保护中通常采用的A/D芯片至少是12位的,而舍入误差则要增加字长。

不管哪一类算法,都是算出可表征被保护对象运行特点的物理量。

5. 正弦函数的半周绝对值积分算法假设输入信号均是纯正弦信号,既不包括非周期分量也不含高频信号。

继电保护整定计算实列分析

继电保护整定计算实列分析

继电保护整定计算实列分析继电保护整定计算是电力系统中非常重要的一环,它的准确与否直接关系到电力系统的安全运行。

在电力系统中,继电保护的作用是在电力系统发生故障时,对故障进行检测、定位并切除故障,保障正常电力供应和设备的安全运行。

继电保护的整定计算主要包括对各个保护装置的参数进行计算,确保保护装置能够在故障发生时迅速、准确地动作。

整定计算的过程通常包括以下几个关键步骤:选择保护装置类型、确定保护继电器的定值、根据电力系统的参数进行计算、进行整定试验等。

接下来,我们以负荷电流保护为例,来分析继电保护整定计算的实例。

假设一些电力系统的额定电压为10kV,额定频率为50Hz,负荷电流保护的带动保护时间为0.2秒,负荷电流保护的整定系数为1.2,故障电流为1000A,额定电流为200A。

首先,我们需要计算负荷电流保护的动作电流。

负荷电流保护的动作电流通常为额定电流的整定系数乘以额定电流。

根据给定条件,负荷电流保护的动作电流为1.2乘以200A,即240A。

接下来,我们计算负荷电流保护的动作时间。

负荷电流保护的动作时间通常为带动保护时间加上故障电流通过继电器的时间。

根据给定条件,带动保护时间为0.2秒,故障电流为1000A。

假设负荷电流保护的系数为K,则通过继电器进行计算得动作时间为:0.2秒+K/1000秒。

根据保护动作表,当动作时间小于0.4秒时,应选择K为0.2秒。

接下来,我们进行整定试验。

首先,我们设置负荷电流为240A,然后通过继电保护进行试验。

如果继电器动作时间在0.2秒到0.4秒之间,我们可以确定整定计算是正确的。

如果继电保护的动作时间不符合要求,我们需要重新进行整定计算,或检查电力系统是否存在异常。

以上就是对继电保护整定计算的一个实例分析。

在实际应用中,继电保护的整定计算通常是一个复杂的过程,需要根据电力系统的具体参数和保护装置的特性进行计算和试验。

合理的继电保护整定可以提高电力系统的可靠性和安全性,保障电力供应的连续和稳定运行。

继电保护及整定计算方法

继电保护及整定计算方法

继电保护及整定计算方法继电保护是电力系统中的一种重要保护手段,能够对电力系统中发生的故障进行快速、准确的检测,并发出切除故障点的命令,以确保电力系统的安全运行。

为了保证继电保护的可靠性和稳定性,需要对其进行合理的整定。

1. 故障参数计算:继电保护的整定首先需要进行系统的故障参数计算,包括故障电流、故障电压和故障功率的计算。

根据电力系统的拓扑结构和参数数据,可以使用数学模型和计算方法来计算故障参数。

2. 故障距离的整定:故障距离是继电保护中常用的一个整定参数,它表示故障点离继电保护装置的距离。

故障距离的整定既要考虑到电力系统的拓扑结构,又要考虑到电力系统的装置特性。

3. 故障电流的整定:故障电流是继电保护中另一个重要的整定参数,它表示在故障状态下电流的幅值。

故障电流的整定需要根据系统的额定电流、变压器的额定容量和故障电流的计算结果来确定。

4. 选取动作时间:继电保护的动作时间是指继电保护在检测到故障后发出切除命令的时间。

动作时间的选取要根据系统的特点和保护的要求来确定,一般应在保护范围内尽可能小的范围内选择。

继电保护的整定流程包括以下几个步骤:1. 确定保护的目标和要求:首先需要明确继电保护的目标和要求,包括保护的范围、保护的可靠性和稳定性要求等。

2. 确定故障检测方法:根据电力系统的特点和保护的要求,确定故障检测方法,例如电流比较法、阻抗比较法和特征分析法等。

5. 选取动作时间和动作特性:根据电力系统的特点和保护的要求,选取继电保护的动作时间和动作特性。

继电保护的整定计算方法是一个复杂的过程,需要综合考虑电力系统的特点和保护的要求,以及继电保护装置的特性。

整定计算的正确与否直接关系到继电保护的可靠性和稳定性,因此在实际应用中需要进行仔细的计算和评估,以确保电力系统的安全运行。

(完整word版)继电保护整定计算实用手册(word文档良心出品)

(完整word版)继电保护整定计算实用手册(word文档良心出品)

继电保护整定计算实用手册目录前言1 继电保护整定计算1.1 继电保护整定计算的基本任务和要求1.1.1 继电保护整定计算的目的1.1.2 继电保护整定计算的基本任务1.1.3 继电保护整定计算的要求及特点1.2 整定计算的步骤和方法1.2.1 采用标么制计算时的参数换算1.2.2 必须使用实测值的参数1.2.3 三相短路电流计算实例1.3 整定系数的分析与应用1.3.1 可靠系数1.3.2 返回系数1.3.3 分支系数1.3.4 灵敏系数1.3.5 自启动系数1.3.6 非周期分量系数1.4 整定配合的基本原则1.4.1 各种保护的通用整定方法1.4.2 阶段式保护的整定1.4.3 时间级差的计算与选择1.4.4 继电保护的二次定值计算1.5 整定计算运行方式的选择原则1.5.1 继电保护整定计算的运行方式依据 1.5.2 发电机、变压器运行变化限度的选择原则1.5.3 中性点直接接地系统中变压器中性点 1.5.4 线路运行变化限度的选择1.5.5 流过保护的最大、最小短路电流计算1.5.6 流过保护的最大负荷电流的选取2 变压器保护整定计算2.1 变压器保护的配置原则2.2 变压器差动保护整定计算2.3 变压器后备保护的整定计算2.3.1 相间短路的后备保护2.3.2 过负荷保护(信号)2.4 非电量保护的整定2.5 其他保护3 线路电流、电压保护装置的整定计算3.1 电流电压保护装置概述3.2 瞬时电流速断保护整定计算3.3 瞬时电流闭锁电压速断保护整定计算3.4 延时电流速断保护整定计算3.4.1 与相邻线瞬时电流速断保护配合整定 3.4.2 与相邻线瞬时电流闭锁电压速断保护配合整定3.4.3 按保证本线路末端故障灵敏度整定 3.5 过电流保护整定计算3.5.1 按躲开本线路最大负荷电流整定3.5.2对于单电源线咱或双电源有“T”接变压器的线路3.5.3 保护灵敏度计算3.5.4 定时限过电流保护动作时间整定值3.6 线路保护计算实例3.6.1 35kV线路保护计算实例3.6.2 10kV线路保护计算实例附录A 架空线路每千米的电抗、电阻值附录B 三芯电力电缆每千米的电抗、电阻值附录C 各电压等级基准值表附录D 常用电缆载流量本文中涉及的常用下脚标号继电保护整定计算1.1 继电保护整定计算的基本任务和要求1.1.1继电保护整定计算的基本任务和要求继电保护装置属于二次系统,它是电力系统中的一个重要组成部分,它对电力系统安全稳定运行起着极为重要的作用,没有继电保护的电力系统是不能运行的。

继电保护配置及整定计算

继电保护配置及整定计算

保证电力系统安全稳定运行
提高电力系统的可靠性
优化电力系统的经济性
预防和减少电力系统的事故
可靠性:确保保护装置在规定的运行方式和故障类型下能够正确动作,不发生误动或拒动。
选择性:在保护装置发生动作时,应仅切除故障设备或线路,尽量减小对其他设备或线路 的影响。
灵敏性:保护装置应能够灵敏地反映被保护设备或线路的故障,并在规定的保护范围内达 到相应的灵敏度要求。
及时处理继电保 护装置的故障和 异常情况
汇报人:XX
XX,A CLICK TO UNLIMITED POSSIBILITES
汇报人:XX
目录
CONTENBiblioteka S保证电力系统安全稳定运行
提高电力系统的可靠性
添加标题
添加标题
防止设备损坏和事故扩大
添加标题
添加标题
保障用户用电安全和正常供电
继电保护装置:用于检测和切除故障元件,保障电力系统正常运行
互感器:将一次侧的高电压和大电流转换为二次侧的低电压和小电流,便于测量和保护 装置的接入
保护装置的选择:根据系统要求和设备特性选择合适的保护装置。 配置方案:根据保护需求制定合理的配置方案,确保保护装置的正确安装和运行。 整定计算:根据系统参数和运行要求进行整定计算,确保保护装置的正确动作。 调试与测试:在安装完成后进行调试和测试,确保保护装置的性能和功能符合要求。
考虑保护装置的特性,确保其能 够正确动作
遵循继电保护配置的原则,确保 系统的安全稳定运行
添加标题
添加标题
添加标题
添加标题
考虑系统运行方式和负荷变化, 以确定合适的整定值
考虑可能出现的故障类型和运行 异常,以确定相应的保护方案
添加项标题

电力系统继电保护简易整定值计算方法解析

电力系统继电保护简易整定值计算方法解析

电力系统继电保护简易整定值计算方法解析【摘要】本文旨在探讨电力系统继电保护的简易整定值计算方法,并通过实例分析、改进方法和案例验证来进一步论证其有效性。

首先介绍了继电保护的基本概念和作用,引出了整定值计算方法在保护系统中的重要性。

其次详细解析了整定值计算方法的步骤和原理,为读者提供了实用的操作指南。

然后通过实例分析,展示了计算方法的具体应用和效果。

接着提出了改进方法,探讨了如何进一步优化整定值计算的精度和效率。

最后通过案例验证,验证了方法的可靠性和实用性。

本文全面解析了电力系统继电保护简易整定值计算方法,为相关领域的专业人士提供了有益的指导和参考。

【关键词】电力系统, 继电保护, 整定值计算方法, 实例分析, 改进方法, 案例验证, 简易整定值计算, 结论1. 引言1.1 电力系统继电保护简易整定值计算方法解析电力系统继电保护是一种重要的保护装置,用于对电力系统的故障进行检测和保护。

整定值计算方法是继电保护工程中的一个关键环节,直接关系到继电保护的性能和可靠性。

本文将从继电保护的基本原理入手,介绍整定值计算方法的基本理论和实践经验,探讨如何根据电力系统的具体情况来确定合适的整定值。

在继电保护的设计中,整定值的选择是一个复杂而又关键的问题。

通常情况下,整定值的确定需要考虑到电力系统的负荷情况、电压水平、故障类型等多个因素。

针对不同的继电保护设备,有不同的整定值计算方法,例如电流互感器整定、电压互感器整定、时间整定等。

通过实例分析,可以更好地理解整定值计算方法的具体应用。

案例验证是对整定值计算方法的实际有效性进行检验,从而指导工程实践中的具体应用。

在总结部分将对电力系统继电保护简易整定值计算方法进行总结,强调其在电力系统运行中的重要性和必要性。

希望本文能够帮助读者更加深入地理解电力系统继电保护整定值计算方法,为电力系统运行提供支持和保障。

2. 正文2.1 一、继电保护简介继电保护是电力系统中的一项重要技术,其主要作用是在电力系统发生故障时,及时切除故障点,保护系统设备和人员的安全。

电力系统继电保护整定计算中的问题分析_1

电力系统继电保护整定计算中的问题分析_1

电力系统继电保护整定计算中的问题分析发布时间:2022-07-28T02:14:23.180Z 来源:《中国建设信息化》2022年6期27卷作者:祁凤[导读] 继电保护是指在电力系统发生故障和异常情况下,对其进行快速响应,祁凤内蒙古电力(集团)有限责任公司薛家湾供电公司内蒙古鄂尔多斯市 010300摘要:继电保护是指在电力系统发生故障和异常情况下,对其进行快速响应,并在一定程度上发布报警或断开故障部件。

在保证电力系统安全、降低电力系统损耗的同时,对保证电力系统的正常工作具有重要意义。

在电力系统大面积断电时,除继电器自身有缺陷外,往往是由于其整定不合理。

本文全面、高效地研究和讨论了电力系统中继电保护的整定和计量方法,对于提高电力系统的安全可靠度具有重要意义。

本文从各种不同的角度出发,对电力系统中的继电保护整定和计算进行了综合、高效的分析与阐述。

关键词:继电保护;整定计算;问题;解决措施引言:随着社会经济的发展,对电力系统的运行质量提出了越来越高的要求,为了保障电力系统的正常运转,必须对电力系统进行全面、高效的防护。

目前,我国电力系统中的继电整定仪作为一种较好的保护手段,其可靠性都受到了较大的影响。

文章着重讨论了目前我国电力系统继电保护整定计算中遇到的问题和相应的解决办法,以期提高电力系统的稳定性。

一、继电保护的要求及原理要使电力系统的可靠、灵敏、具有选择性,才能确保电力系统的安全可靠地工作。

保证在一定的范围之内,当出现了失效问题时,确保继电器能正确地工作,当不需要的时候,可以自动地进行操作,以防止出现误动;迅速的继电器需要迅速地切断网络中的短路,减少对电力设施的损害,防止发生的事故;对继电器的敏感性,需要保证无论在什么情况下,都能对发生的各种情况做出适当的反应;对继电器的选择,需要在运行过程中保证整个系统的断电幅度尽量减小,以保证非短路部件的工作。

主要包括两种基本的继电器保护原则:(1)对电力系统的输线一头的感应电气量进行防护。

继电保护整定计算方法问题与完善策略分析

继电保护整定计算方法问题与完善策略分析

继电保护整定计算方法问题与完善策略分析发布时间:2022-04-24T02:25:47.596Z 来源:《中国电业与能源》2022年1期作者:程大帅 ?谢绍魁[导读] 在当前我国发展进入新常态背景下,社会经济建设对高质量供电的要求不断提升。

输配电网作为电力系统的基础组成部分,其运行可靠性对提升供电稳定性具有重要意义,在当前时代背景下程大帅 ?谢绍魁华能吉林发电有限公司九台电厂摘要:在当前我国发展进入新常态背景下,社会经济建设对高质量供电的要求不断提升。

输配电网作为电力系统的基础组成部分,其运行可靠性对提升供电稳定性具有重要意义,在当前时代背景下,电力供应的稳定性在推动民众生活质量提升方面发挥着积极促进作用。

继电保护整定计算作为提升电网运行可靠性的重要手段之一,其重要意义也不断提升。

由此,对电网继电保护整定计算进行深入研究具有重要意义。

关键词:继电保护;整定计算方法;问题;完善策略引言整定计算是继电保护的重要环节,提升其精确性对于电力系统的维护以及减少事故的发生具有重要的意义,即快速、准确的计算可以使相关人员在最短的时间内发现电力系统中的故障并及时处理,从而减少相应的损失。

因此,有必要对继电保护中的整定计算方法进行研究。

1电网故障因素分析1.1设备因素从实际建设角度分析,电网工作环境通常为条件恶劣的室外环境,这就对电网设备性能及质量提出极高的要求,材料质量直接对电网运行可靠性造成影响。

我国在实际发展过程中也充分认识到材料质量的重要性,并制定了严格的质量控制指标体系。

为避免设备因素对电网运行造成影响,施工单位在作业过程中应对材料采购环节进行严格把控,在充分满足质量要求的前提下,考虑经济性问题,通过构建完善的材料质检体系以及责任追究制度,避免工程建设期间留下安全隐患。

1.2人为因素考虑到电网通常假设于室外环境,不可避免地会穿过耕地、山林等地区,这就使得民众在耕作、放牧过程中无意间破坏电网的几率大幅提升,进而导致电网故障。

继电保护系统可靠性分析及计算方法

继电保护系统可靠性分析及计算方法

5 可用 度A 是描 述可修 复系统 可靠性 路 、接线 失 效 的 概率 ,P 表 示 装 置通 究 》. 科技资讯 》. 0. 《 2 8. 0 9 表 的指标 ,表 示系统处于正 常工作状 态的 信 、通 道等 失效 的概 率 ,而 h 示 由 长期状 态概 率 ( 也称为稳态概 率 ),其
21 失 效 率 .
评估软件 可靠 性开始 ,程序 可无故障运 元件 ,其工作 最初 此可用马尔可 夫模 型法分析继 电保护 系 失效是故障发生 的原 因。在可靠性 行 的时 间 ; 。
。 研 究 中,最基本 的可靠性指标是失 效率 的无故 障运行 时间T及 软件 的缺 陷总数 统的可靠性 ,有个 别文献对此也进行 了 M。 有关 。软件失效将 导致继 电保护系统 研究 。其 中影 响到继电保护系统安全性 入,它表示 系统 已经无故 障工作 到时间
t ,而在t 后无 限小 的时段 △t 内实效 的概 率 。对机 电保护装置而言 ,失 效可分为 误 动失 效 和据动失 效2 ,应 分别定 义 种 出现 误动 或拒 动 ,认 为这 2 情况 出现 的因素非 常多 ,人 们在实际分析 的过程 种
的概率相 同 ,即
拒动失效率 。
= i /,其 中 中主要 是 对 几个 主 要 因素 进行 综 合分 = 2
的灵活性 ,所 以对 可靠性的结果判定上
和 i 为软件误 动失效率和软件 析 ,在建模 和主要 因素的选择上有很 大 分别 32 硬件综合失效 率的求解 .
硬件失效也将 导致 继电保护系统 出
保护 误 动失效 率 和保 护据 动失效 率
i ,分别用来表示 系统 已经无 故障工作
也存在一定 的差异 。 蘧
动 或拒 动 。

电力系统继电保护技术分析

电力系统继电保护技术分析

电力系统继电保护技术分析1. 引言1.1 继电保护技术的重要性继电保护技术在电力系统中扮演着至关重要的角色。

它的主要功能是监测电力系统的状态,及时发现和隔离故障,以保护电力设备和维持电网的稳定运行。

继电保护技术不仅可以保护电力设备免受损坏,还可以确保电力系统的可靠性和安全性。

如果没有有效的继电保护系统,电力系统可能会发生故障,导致停电、设备损坏甚至火灾等严重后果。

继电保护技术的重要性还体现在其对电网运行的支撑作用上。

随着电力系统的规模不断扩大和复杂化,电力设备的重要性和价值也日益增加。

而继电保护技术的快速响应和准确判断,可以帮助电力系统迅速应对各种故障,保证电网的可靠供电。

继电保护技术还是电力系统与其他智能电网技术连接的桥梁,为电力系统的智能化和自动化提供了重要支持。

继电保护技术的重要性不可忽视,它是电力系统正常运行和安全运行的基础。

只有不断创新和完善继电保护技术,才能提高电力系统的可靠性、安全性和经济性。

【字数:216】1.2 继电保护技术发展历程继电保护技术是电力系统中非常重要的一项技术,它的发展历程可以追溯到19世纪末20世纪初。

随着电力系统的不断发展和扩张,电力系统的安全性和可靠性越来越受到重视,继电保护技术也随之不断进步和完善。

在早期,继电保护技术主要是依靠电气原理和机械运算来实现,这种传统的保护方式虽然简单可靠,但是在面对复杂的电力系统和工况下表现会有限制。

随着科技的发展和数字化技术的应用,现代数字继电保护技术逐渐兴起,通过数字信号处理和智能算法实现更高效、更精准的保护功能。

数字化技术的进步大大提升了继电保护技术的精度和响应速度,使电力系统的安全性得到了更好的保障。

随着电力系统的不断发展和智能化的进程,继电保护技术也在不断演进和创新。

未来,随着电力系统的规模不断扩大和复杂度不断增加,继电保护技术将会更加智能化、自适应和可靠,为电力系统的安全稳定运行提供更强有力的支持。

通过不断创新和技术升级,继电保护技术将在电力系统中发挥更加重要和关键的作用。

电力系统继电保护技术分析

电力系统继电保护技术分析

电力系统继电保护技术分析电力系统是一个复杂的系统,中断发生的可能性很高。

由于供电中断会影响国家、城市、企业和居民的日常生活,因此电力系统中继电保护技术是必不可少的。

继电保护技术是指对电力系统中异常状态进行检测和保护,并迅速切断故障电源,以向系统提供连续的、稳定的电力。

电力系统中的继电保护技术主要由以下三个方面组成:1.继电保护装置继电保护装置主要由感应电流互感器、感应电压电压互感器、配电自动保护装置以及接地系统等组成。

继电保护装置主要用于检测电力系统中出现的异常状态,并迅速切断故障电源,保障系统的稳定。

2.保护逻辑保护逻辑主要指继电保护装置中的保护算法和保护策略。

保护算法主要用于对系统的故障进行识别。

保护策略则是针对不同的故障类型设计的不同的保护动作,以使电力系统能够及时恢复正常运行状态。

3.保护通信保护通信主要指继电保护装置之间的通信。

在保护通信的帮助下,继电保护装置可以在需要的时候进行传输保护信号,通知系统内的其他继电保护装置进行保护动作,从而快速地切断故障电源,保护电力系统的安全。

以上三个方面是电力系统中继电保护技术的核心。

针对不同的电力系统,继电保护技术的应用方式也会有所不同。

例如,在高压和超高压电力系统中,高速继电保护是非常重要的。

高速继电保护能够在由于故障时电力系统电压瞬间下降的情况下提供及时的保护。

此外,在输电线路系统中,紧急动作功能也是非常必要的。

紧急动作功能可以在系统发生故障或出现超负荷时,立即切断并重新投入电源,以保护系统不受过载的影响。

Conclusively,继电保护技术是电力系统中至关重要的一项技术。

它能够在故障的情况下,迅速进行保护动作,从而保障整个电力系统的稳定运行。

电力系统中继电保护技术应该不断提升,以适应更加复杂的电力系统的需求。

(完整word版)110KV变电站继电保护设计

(完整word版)110KV变电站继电保护设计

第一章综述第一节继电保护的发展简史继电保护技术是随着电力系统的发展而发展起来的。

继电保护原理经历一系列的发展,从开始的单一过电流保护到现在的差动保护、距离保护、高频保护、微机保护、行波保护以及现在研究的光纤保护.继电保护装置也经历了三代,即电磁型继电保护,晶体管型继电保护和微机型继电保护(简称微机保护)。

与过去的保护装置相比,微机保护具有巨大的计算、分析和逻辑判断能力,有存储记忆功能,可以实现任何性能完善且复杂的原理。

微机保护可连续不断地对本身地工作情况进行自检,其工作可靠性高。

此外,微机保护可用同一硬件实现不同地保护原理,这使保护装置的制造大为简化,也容易实行保护装置的标准化。

微机保护除了保护功能外,还可兼有故障滤波、故障测距、事件顺序记录、和调度计算机交换信息等辅助功能,这对简化保护的调试、事故分析和事故处理等都有重大的意义。

由于微机保护装置的巨大优越性和潜力,因而受到了运行人员的欢迎,进入90年代以来,在我国得到了大量应用,将成为继电保护装置的主要型式。

可以说微机保护代表着电力系统继电保护的未来,将成为未来电力系统保护、控制、运行调度及事故处理的统一计算机系统的组成部分。

第二节继电保护的作用继电保护装置,就是指能反应电力系统中电气元件发生故障或不正常运行状态,并动作于断路器跳闸或发出信号的一种自动装置。

它的基本任务是:一、自动,迅速,有选择性地将故障元件从电力系统中切除,使故障元件免于继续遭到破坏,保证其它无故障部分迅速恢复正常运行;二、反应电气元件地不正常运行状态,并根据运行维护地条件(例如有无经常值班人员),而动作于发出信号、减负荷或跳闸。

此时一般不要求动作,而是根据对电力系统及元件地危害程度规定一定地延时,以免不必要的动作和由于干扰而引起的误动作。

第三节继电保护的基本要求即在电力系统的电气元件发生故障或不正常运行时,保护动作必须具有选择性、速动性、灵敏性和可靠性。

一、选择性继电保护动作的选择性是指保护装置动作时,仅将故障元件从电力系统中切除,使停电范围尽量缩小,以保证系统无故障部分仍能继续安全运行。

继电保护算法分析

继电保护算法分析

继电保护算法分析1 引言根据继电保护的原理可知,微机保护系统的核心内容即是如何采用适当而有效的保护算法提取出表征电气设备故障的信号特征分量.图1是目前在微机保护中通常采用的提取故障信号特征量的信号处理过程。

从图中可以看出,自故障信号输入至A/D 输出的诸环节由硬件实现,在此过程中故障信号经过了预处理(如由ALF 滤除信号中高于5次的谐波分量),然后通过保护算法从中提取出故障的特征分量(如基波分量)。

很明显,只有准确且可靠地提取出故障的特征量,才能通过故障判据判断出是否发生了故障,是何种性质的故障,进而输出相应的保护动作。

因此计算精度是正确作出保护反应的重要条件。

就硬件部分而言,为了减少量化误差,通常采用12位甚至16位A/D 转换芯片;而就保护算法而言,提高精度除了与算法本身的性能有关,还与采样频率、数据窗长度和运算字长有关。

目前针对故障特征的提取有许多不同类型的保护算法,本课题研究的是电动机和变压器的保护,根据相应的保护原理,主要涉及基于正弦量的算法和基于序分量过滤器的算法。

本章将对其中几种较典型的算法作简要介绍和分析. 2 基于正弦量的特征提取算法分析 2.1 两点乘积算法设被采样信号为纯正弦量,即假设信号中的直流分量和高次谐波分量均已被理想带通滤波器滤除。

这时电流和电压可分别表示为:)sin(20i t I i αω+=和 )sin(20u t U u αω+= 表示成离散形式为:)sin(2)(0i S S k T k I kT i i αω+== (1) )sin(2)(0u S S k T k U kT u u αω+== (2)式中,ω为角频率,I 、U 为电流和电压的有效值,S T 为采样频率,0i α和0u α为电流和故障图1 故障信号特征的提取过程Fig. 1 Character extraction process of fault signal电压的初相角。

设1i 和2i 分别为两个相隔2π的采样点1n 和2n 处的采样值(图2),即: 212πωω=-S S T n T n由式(1):10111sin 2)sin(2)(i i S S I T n I T n i i ααω=+== (3) )sin(2)(0222i S S T n I T n i i αω+==101cos 2)2sin(2i i S I T n I ααπω=++= (4)式中011i S i T n αωα+=为第n 1个采样时刻电流的相位角。

继电保护计算 -回复

继电保护计算 -回复

继电保护计算-回复
继电保护计算是电力系统中一项非常重要的工作,它能够检测和判别线路故障,保护电力系统的安全运行。

继电保护的设计包括了故障检测、信号处理、判据确定和保护动作等几个部分,其中保护动作的计算是比较重要的一个环节。

具体来说,继电保护的保护动作计算主要包括以下几个方面:
1.故障电流计算:
在故障发生时,保护系统需要检测故障电流的大小,以便判断故障类型和位置。

故障电流的计算涉及了线路参数(电抗、电阻、导纳),电网拓扑结构和电源等多个因素。

2.判据设定:
在故障电流确定后,需要根据保护系统的设计要求设置合理的判据(如电流门限值),以便识别故障信号,并进行保护动作。

3.保护动作计算:
根据故障的位置和类型,保护系统需要对相应的断路器进行保护动作,
以便从故障状态下尽快地恢复线路的正常运行。

保护动作的计算主要涉及于故障相的选取、保护区域的界定及保护动作方式的选择等。

总体来说,继电保护的计算需要涉及的内容比较多,需要结合实际应用场景和技术规范进行具体的设计和计算。

同时,随着电力系统的不断发展和变革,继电保护的计算也需要不断地进行优化和更新,以满足新的发展需求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

继电保护算法分析1 引言根据继电保护的原理可知,微机保护系统的核心内容即是如何采用适当而有效的保护算法提取出表征电气设备故障的信号特征分量。

图1是目前在微机保护中通常采用的提取故障信号特征量的信号处理过程。

从图中可以看出,自故障信号输入至A/D 输出的诸环节由硬件实现,在此过程中故障信号经过了预处理(如由ALF 滤除信号中高于5次的谐波分量),然后通过保护算法从中提取出故障的特征分量(如基波分量)。

很明显,只有准确且可靠地提取出故障的特征量,才能通过故障判据判断出是否发生了故障,是何种性质的故障,进而输出相应的保护动作。

因此计算精度是正确作出保护反应的重要条件。

就硬件部分而言,为了减少量化误差,通常采用12位甚至16位A/D 转换芯片;而就保护算法而言,提高精度除了与算法本身的性能有关,还与采样频率、数据窗长度和运算字长有关。

目前针对故障特征的提取有许多不同类型的保护算法,本课题研究的是电动机和变压器的保护,根据相应的保护原理,主要涉及基于正弦量的算法和基于序分量过滤器的算法。

本章将对其中几种较典型的算法作简要介绍和分析。

2 基于正弦量的特征提取算法分析 2.1 两点乘积算法设被采样信号为纯正弦量,即假设信号中的直流分量和高次谐波分量均已被理想带通滤波器滤除。

这时电流和电压可分别表示为:)sin(20i t I i αω+=和 )sin(20u t U u αω+= 表示成离散形式为:)sin(2)(0i S S k T k I kT i i αω+== (1) )sin(2)(0u S S k T k U kT u u αω+== (2)式中,ω为角频率,I 、U 为电流和电压的有效值,S T 为采样频率,0i α和0u α为电流和故障图1 故障信号特征的提取过程Fig. 1 Character extraction process of fault signal电压的初相角。

设1i 和2i 分别为两个相隔2π的采样点1n 和2n 处的采样值(图2),即: 212πωω=-S S T n T n由式(1): 10111sin 2)sin(2)(i i S S I T n I T n i i ααω=+== (3))sin(2)(0222i S S T n I T n i i αω+==101cos 2)2sin(2i i S I T n I ααπω=++= (4)式中011i S i T n αωα+=为第n 1个采样时刻电流的相位角。

将式(3)和式(4)平方后相加可得:222122i i I +=由此可求得电流的有效值为:22221i i I +=将式(3)和式(4)相除可求得S T n 1时刻的电流相位为:211i i arctgi =α 同理,由式(2)可得:11sin 2u U u α= (5) 12cos 2u U u α= (6)类似于电流的情况,由式(5)和式(6)可得:221u u U +=kT S图2 两点乘积算法的采样Fig. 2 Sampling of two-point product algorithm211u u arctgu =α 式(3)~(6)表明,若输入量为纯正弦函数,只要得到任意两个相隔2π的瞬时值,就可以计算出其有效值和相位。

为了避免涉及三角函数,在计算测量阻抗时可采用复数法,即把电流和电压表示为:1111sin cos sin cos i i i i jU U U jI I I αααα+=+=利用式(3)~(6)得:1212ji i ju u I U Z ++== (7) 由式(7)可求得测量阻抗的电阻分量和电抗分量为:22212211i i u i u i R ++=(8) 22212112i i u i u i X +-=(9) 式(8)和式(9)中用到了两个采样点的乘积,故称为两点乘积算法。

该算法使用了两个相隔2π的采样值,即算法本身所需的数据窗长度为41周期,在工频场合该长度为5mS ,这即是算法的响应时间。

文献表明,用正弦量任何两点相邻的采样值都可以计算出有效值和相位角,亦即理论上两点乘积算法本身所需的数据窗可以是很短的一个采样间隔,但事实上由于此时的算法公式将比前者复杂得多,实际应用中由于实现算法所需的运算时间加长反而抵消了采样间隔的缩短。

此外,由于算法所针对的是纯正弦量,实际的故障信号很难满足这一要求,可见算法的精度严重依赖于信号波形的正弦度。

因此,尽管算法本身没有理论误差,但为了使信号尽可能接近于正弦,必须通过数字滤波的方法先滤除信号中的高频分量,这将额外地增加很大的运算工作量,使实际的算法响应时间大大超过理论值。

2.2 导数算法设电流和电压分别为:)sin(2)sin(200u i t U u t I i αωαω+=+=则1t 时刻的电流和电压分别为:1011sin 2)sin(2i i I t I i ααω=+= (10)1011sin 2)sin(2u u U t U u ααω=+= (11)式中011i i t αωα+=,011u u t αωα+=。

而1t 时刻电流和电压的导数分别为:11cos 2i I i αω=' 或 11cos 2i I i αω=' (12) 11cos 2u U u αω=' 或 11cos 2u U u αω='(13) 由式(10)~(13)可得:基波有效值 212121⎪⎭⎫ ⎝⎛'+=ωi i I (14) 212121⎪⎭⎫ ⎝⎛'+=ωu u U (15)阻抗分量 21211111⎪⎭⎫ ⎝⎛'+'⋅'+=ωωωi i u i i u R (16) 21211111⎪⎭⎫⎝⎛'+'-'=ωωωi i u i i u X (17) 可见,只要获得了电流电压在某一时刻的采样值和在该时刻的导数,就可以计算出相应的电流电压基波有效值、相位和阻抗。

在微机的离散系统中,无法通过采样直接得到该点的导数,为此,可取t 1为两个相邻采样时刻k 和k +1的中间时刻,用差分近似表示该时刻的导数(图3)。

即:)(111+-='k k Si i T i (18) )(111+-='k k Su u T u (19) 这实际上是用直线ab 的斜率近似表示直线mn 的斜率,当S T 足够小时,这种近似将会有足够的精度。

从图3可以看到,t 1并不在采样点上,为了使采样值与导数尽可能在同一点上,对相邻两点采样值求平均值:)(2111++=k k i i i (20))(2111++=k k u u u (21)显然,当S T 足够小时,t 1与导数点将足够接近。

虽然与两点乘积算法相似,导数算法也使用了两个相邻的采样值,但其采样间隔很小,因此算法的响应速度很快。

由于算法在求导数时是用差分近似微分,即算法的精度与采样频率有关,所以采样频率越高则精度越高。

此外,由于算法中采用了差分方法,对信号中的直流分量具有一定的滤除能力,但对高次谐波则具有放大作用,因此类似于两点乘积算法,该算法也需要通过数字滤波器滤除高次谐波,因而算法的实际响应速度主要取决于算法本身和数字滤波器的运算时间。

2.3 半周绝对值积分算法半周绝对值积分算法的原理是依据一个正弦量在任意半个周期内绝对值积分为一常数S ,且积分值S 与积分起始点的初相位α无关,如图4中两个从不同起始点算起的半周内的两部分面积是相等的。

即:t td Idt t I S T t ωωωαωαπααsin 2)sin(22⎰⎰+=+=ωωωωπIt td I22sin 20==⎰(22)由式(22)可求得基波分量的有效值为:S I 22ω=(23)式(23)的离散形式可以用梯形法或矩形法推出。

如采用梯形法,可以设若干个小梯形面积之和为S '(图5),则有:1 kT S图3 差分近似求导原理Fig, 3 Approximate derivative calculation by difference methodS T i i i i i i S N N ⎪⎪⎪⎭⎫⎝⎛++++++='-2222212110 S k kT i i i NN ⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛+=∑-=1102221(24)式中:0i ,1i ,⋯,2N i 为半周内的采样值,N 为一周内的采样点数,S T 为采样间隔(周期)。

式(24)是式(22)的近似,其精度与采样频率有关。

当采样频率足够高(S T 足够小)时,误差也可以足够小,即S '与S 足够接近。

半周积分算法需要的数据窗长度为10mS ,较两点乘积算法和导数算法长。

但由于这种算法只有加法运算,算法的工作量很小,可以用低端MCU 实现。

此外,算法本身具有一定的滤除高频分量的能力,因为叠加在基波分量上的高频分量(通常幅度不大)在半周积分中其对称的正负半周互相抵消,剩余的未被抵消部分所占的比重减小,极端情况(正负半周刚好相等)时,可以完全抵消。

但该算法不能滤除直流分量,因此对于一些要求不高的保护场合可以采用该算法,必要时可以在前级配以简单的差分滤波器来滤除直流分量。

2.4 付立叶算法(付氏算法) 2.4.1 付氏算法的基本原理tt图4 半周积分算法原理Fig. 4Principle of half-cycle integral algorithmt图5 梯形法面积计算原理Fig. 5 Principle of acreage calculation with trapezia method付氏算法的基本思想来自付立叶级数,它假定被采样信号是一个周期时间函数,除了基波分量,还含有不衰减直流分量和高次谐波分量,可以表示为:∑∑∞=∞=++=++=1010)cos sin ()sin()(k k k k k k t k b t k a X t X X t x ωωαω (25)式中:0X 为直流分量,k X 为k 次谐波分量的幅值,k α为k 次谐波分量的初相位,ω为基波角频率,k k k X a αcos =为k 次谐波的正弦分量系数,k k k X b αsin =为k 次谐波的余弦分量系数。

由付氏级数原理可求得系数k a 和k b 分别为:⎪⎪⎩⎪⎪⎨⎧==⎰⎰dt t k t x T b tdtk t x T a Tk Tk 00cos )(2sin )(2ωω 式中T 为x (t )的周期。

由此可计算出各次谐波分量的幅值和初相位。

继电保护中通常对基波分量感兴趣,此时基波(k =1)的正弦和余弦分量系数为:⎰=Ttdt t x T a 01sin )(2ω (26)⎰=Ttdt t x T b 01cos )(2ω (27)基波分量的幅值和初相位分别为:21211b a X += 111a b arctg=α 根据数据窗的长度,在微机上实现式(26)和式(27)时可分为全波付氏算法和半波付氏算法。

相关文档
最新文档