高中数学讲义 均值不等式
均值不等式讲义
均值不等式均值不等式又名基本不等式、均值定理、重要不等式。
是求范围问题最有利的工具之一,在形式上均值不等式比较简单,但是其变化多样、使用灵活。
尤其要注意它的使用条件(正、定、等)。
1. (1)若R b a ∈,,则ab b a 222≥+(2)若R b a ∈,,则222b a ab +≤ (当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若*,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”)(3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3. 均值不等式链:若b a 、都是正数,则2211222b a b a ab b a +≤+≤≤+,当且仅当b a =时等号成立。
(注:以上四个式子分别为:调和平均数、几何平均数、代数平均数、加权(平方)平均数)一、 基本技巧技巧1:凑项例 已知54x <,求函数14245y x x =-+-的最大值。
技巧2:分离配凑例 求2710(1)1x x y x x ++=>-+的值域。
技巧3:利用函数单调性例 求函数2y =的值域。
技巧4:整体代换例 已知0,0x y >>,且191x y +=,求x y +的最小值。
典型例题1. 若正实数X ,Y 满足2X+Y+6=XY , 则XY 的最小值是2. 已知x >0,y >0,x,a,b,y 成等差数列,x,c,d,y 成等比数列,则()cdb a 2+的最小值是( )A.0B.1C.2D. 43. 若不等式x 2+ax+4≥0对一切x ∈(0,1]恒成立,则a 的取值范围为( )A.[)+∞,0B.[)+∞-,4C.[)+∞-,5D.[]4,4-4. 若直线2ax+by-2=0 (a,b ∈R +)平分圆x 2+y 2-2x-4y-6=0,则a 2+b1的最小值是( )A.1B.5C.42D.3+225. 已知x>0,y>0,x+2y+3xy=8,则x+2y 的最小值是 .6. 已知,x y R +∈,且满足134xy +=,则xy 的最大值为 .7. 设0,0.a b >>1133a b a b+与的等比中项,则的最小值为( ) A 8 B 4 C 1 D 148. 若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是 ( ) A. 245 B. 285C.5D.6 9. 若0,0,2a b a b >>+=,则下列不等式对一切满足条件的,a b 恒成立的是 (写出所有正确命题的编号).①1ab ≤; ≤ ③ 222a b +≥; ④333a b +≥;⑤112a b+≥ 10.设0a >b >,则()211a ab a a b ++-的最小值是( ) (A )1 (B )2 (C )3 (D )411.下列命题中正确的是A 、1y xx=+的最小值是2 B 、2y =的最小值是2C 、423(0)y x x x =-->的最大值是2-D 、423(0)y x x x =-->的最小值是2-12. 若21x y +=,则24x y +的最小值是______。
高中数学均值不等式
(一) 知识内容1.均值定理:如果,a b +∈R (+R 表示正实数),那么2a bab +≥,当且仅当a b =时,有等号成立. 此结论又称均值不等式或基本不等式.2.对于任意两个实数,a b ,2a b+叫做,a b 的算术平均值,ab 叫做,a b 的几何平均值. 均值定理可以表述为:两个正实数的算术平均值大于或等于它的几何平均值.3.两个正数的积为常数时,它们的和有最小值;两个正数的和为常数时,它们的积有最大值.<教师备案>1.在利用均值定理求某些函数的最值时,要注意以下几点:⑴函数式中的各项必须都是正数,在异号时不能运用均值不等式,在同负时可以先进行 转化,再运用均值不等式;⑵函数式中含变数的各项的和或积必须是常数;⑶只有具备了不等式中等号成立的条件,才能使函数式取到最大或最小值.否则不能由 均值不等式求最值,只能用函数的单调性求最值. 运用均值不等式的前提有口诀:一正二定三相等. 2.均值不等式的几何解释:半径不小于半弦.⑴对于任意正实数,a b ,作线段AB a b =+,使,AD a DB b ==;⑵以AB 为直径作半圆O ,并过D 点作CD AB ⊥于D , 且交半圆于点C ;⑶连结,,AC BC OC ,则2a bOC +=,∵,AC BC CD AB ⊥⊥ ∴CD AD BD ab =⋅=, 当a b ≠时,在Rt COD ∆中,有2a bOC CD ab +=>=.当且仅当a b =时,,O D 两点重合,有2a bOC CD ab +===. 3.已知:a b +∈R 、(其中+R 表示正实数),有以下不等式:22221122a b a b a b ab a b ⎛⎫+++ ⎪ ⎪⎝⎭+≥≥≥≥ 其中222a b +称为平方平均数,2a b+称为算术平均数,ab 称为几何平均数,211a b+称为调和平均数.CO DBA均值不等式证明:()2221024a b a b +⎛⎫-=- ⎪⎝⎭≥∴222a b +⎛⎫ ⎪⎝⎭≥ ∵a b +∈R 、,2a b+,当且仅当“a b =”时等号成立.221024a b +-=⎝⎭≥ ∴22a b +⎝⎭≥,当且仅当“a b =”时等号成立.∵22104⎝⎭≥ ∴2⎝⎭,当且仅当“a b =”时等号成立. 2211ab a ba b=++=211a b+,当且仅当“a b =”时等号成立.了解这组不等式对解决一些不等式的证明题会有帮助,可选择性介绍.(三)典例分析:1.基础不等式【例1】 1.“0a b >,且a b ≠”是“222a b ab +<”的( ) A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件2. 0a ≥,0b ≥,且2a b +=,则( )A .12ab ≤B .12ab ≥ C .222a b +≥ D .223a b +≤【变式】 设a b c ,,是互不相等的正数,则下列等式中不恒成立....的是( ) A .||||||a b a c b c --+-≤ B .2211a a a a++≥ 1【例2】 设a 、b 为非零实数,若a b <,则下列各式成立的是( )A .22a b <B .22ab a b <C .2211ab a b <D .b aa b<【变式】 若110a b <<,则下列不等式①a b ab +<②||||a b >③a b <④2b aa b +>中,正确的不等式有( )A .1个B .2个C .3个D .4个【变式】 设a 、b 、c 、d 、m 、n 均为正实数,P Q =,那么( )A .P Q ≥B .P Q ≤C .P Q <D .P 、Q 间大小关系不确定,而与m 、n 的大小有关【变式】 若直线1x ya b+=通过点(cos sin )M αα,,则( ) A .221a b +≤ B .221a b +≥ C .22111a b+≤D .22111a b +≥【例3】 设实数a 、b 满足0a b <<,且1a b +=,则下列四数中最大的是( )A .12B .22a b +C .2abD .a【例4】 正实数a 、b 、c 满足a d b c +=+,a d b c -<-,则( )A .ad bc =B .ad bc <C .ad bc >D .ad 与bc 大小不定【例5】 已知a b c >>2a c-的大小关系是________.【例6】 已知实数x 、y 、z 满足条件0x y z ++=,0xyz >,设111T x y z=++,则( ) A .0T >B .0T =C .0T <D .以上都可能【例7】 若10a b >>>,以下不等式恒成立的是( )A .12a b+> B .12b a+> C .1lg 2a b b + D .1lg 2b a a +2.不等式最值问题【例8】 若0x >,则423x x++的最小值是_________.【例9】 设a 、b ∈R ,则3a b +=,则22a b +的最小值是_________.【例10】 若a 、b +∈R ,且1a b +=,则ab 的最大值是_________.【例11】 已知不等式()19a x y x y ⎛⎫++ ⎪⎝⎭≥对任意正实数x y ,恒成立,则正实数a 的最小值为( )A .8B .6C .4D .2【例12】 当___x =时,函数22(2)y x x =-有最 值,其值是 .【例13】 正数a 、b 满足9a b=,则1a b +的最小值是______.【例14】 若x 、*y ∈R 且41x y +=,则x y ⋅的最大值是_____________.【变式】 设0,0x y ≥≥,2212y x +=,则_________.【变式】 已知0x >,0y >,1x y +=,则1111x y ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭的最小值为【例15】 设0a b >>,那么21()a b a b +-的最小值为( )A .2B .3C .4D .5【变式】 设221x y +=,则()()11xy xy -+的最大值是 最小值是 .【变式】 已知()23200x y x y+=>>,,则xy 的最小值是 .【例16】 已知2222,,x y a m n b +=+=其中,,,0x y m n >,且a b ≠,求mx ny +的最大值.【变式】 0,0,4,a b a b >>+=求2211a b a b ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭的最小值.【例17】 设x ,y ,z 为正实数,满足230x y z -+=,则2y xz的最小值是 .【例18】 ⑴已知x 、y +∈R ,且2520x y +=,当x =______,y =_____时,xy 有最大值为_______.⑵若a 、b +∈R ,且1a b +=,则ab 的最大值是_______,此时____,_____.a b ==3.均值与函数最值【例19】 求函数2y =的最小值.【例20】 求函数y =.【例21】 求函数2211()1f x x x x x =++++的最小值.【例22】 已知3x ≥,求4y x x=+的最小值.【变式】 求函数2y =【点评】 当a 、b 为常数,且ab 为定值,a b ≠时,2a b+>般方法是通过函数的单调性求最值或者通过恒等变形a b +求出a b -之差的最内能取到对应的值,所以这里需要讨论,可以看出,这种讨论很繁琐晦涩,一般不用.【变式】 函数()992(33)x x x x f x --=+-+的最小值为( )A .1B .2C .3-D .2-【例23】 ⑴求函数2241y x x =++的最小值,并求出取得最小值时的x 值.⑵求y =的最大值.【变式】 ⑴求函数211ax x y x ++=+(1x >-且0a >)的最小值.⑵求函数312y x x=--的取值范围.【点评】 第⑴题在解答过程中如果选用判别式法往往会陷入困境:由21yx y ax x +=++得:2(1)10ax y x y +-+-=,2(42)140y a y a ∆=+-+-≥,且要满足有大于1-的解,下面的讨论与求解过程十分复杂,故这里用判别式法不合适.【例24】 ⑴求函数22(2)y x x =-的最大值.⑵求2y =的最小值.⑶求函数2y =的最值.【例25】 ⑴已知54x <,求函数11454y x x =-+-的最小值.⑵求函数312y x x=--的取值范围.⑶求函数22(2)y x x =-的最大值.【变式】 ⑴已知,a b 是正常数,a b ≠,(0),,x y ∈+∞,求证:222()≥a b a b x y x y+++,指出等号成立的条件;⑵利用⑴的结论求函数29()12f x x x =+-(1(0)2,x ∈)的最小值,指出取最小值时x 的值.【变式】 分别求2213()32(0)g x x x x x x =-++->和2213()32(0)f x x x x x x=+++->的最小值.【例26】 ⑴求函数422331x x y x ++=+的最小值. ⑵解不等式:21log (6)2x x x --->.【例27】 函数()f x =的最大值为( )A .25B .12C D .1【例28】 设函数1()21(0)f x x x x=+-<,则()f x ( ) A .有最大值B .有最小值C .是增函数D .是减函数【变式】 设222()S x y x y =+-+,其中x ,y 满足22log log 1x y +=,则S 的最小值为_________.【例29】 设00,a b >>3a 与3b 的等比中项,则11a b+的最小值为( ) A .8 B .4 C .1 D .14【例30】 若121200a a b b <<<<,,且12121a a b b +=+=,则下列代数式中值最大的是( ) A .1122a b a b + B .1212a a b b + C .1221a b a b + D .12【点评】 排序不等式知识:定义:设a a a ≤≤≤,b b b ≤≤≤为两组实数,c c c ,,为b b b ,,的任一称1211n n n a b a b a b -++为两个实数组的反序积之和(简称反序和)。
均值不等式知识点
均值不等式知识点均值不等式是高等数学中的一种重要的数学不等式,其在解决各类数学问题中起到了重要的作用。
本文将通过逐步思考的方式,详细介绍均值不等式的相关知识点。
1.均值不等式的基本概念均值不等式是指对于一组实数,其算术平均数大于等于几何平均数,即若有n个正实数x1、x2、……、xn,则它们的算术平均数A≥它们的几何平均数G。
这一不等式可表示为:(x1 + x2 + …… + xn)/ n ≥ (x1 * x2 * …… * xn) ^ (1/n)2.均值不等式的证明为了证明均值不等式,可以使用数学归纳法或其他数学方法。
下面以数学归纳法为例,来证明均值不等式。
首先,当n=2时,我们有:(x1 + x2)/ 2 ≥ √(x1 * x2) 化简可得:x1 + x2 ≥2√(x1 * x2) 这是一种常见的数学不等式,称为算术平均数和几何平均数之间的不等式。
接下来,假设当n=k时,均值不等式成立。
即对于任意的k个正实数x1、x2、……、xk,有:(x1 + x2 + …… + xk)/ k ≥ (x1 * x2 * …… * xk) ^ (1/k)然后,我们来证明当n=k+1时,均值不等式也成立。
即对于任意的k+1个正实数x1、x2、……、xk+1,有:(x1 + x2 + …… + xk + xk+1)/ (k+1) ≥ (x1 * x2* …… * xk * xk+1) ^ (1/(k+1))我们可以将左边的式子进行拆分,得到:[(x1 + x2 + …… + xk) + xk+1] / (k+1)≥ [(x1 * x2 * …… * xk) * xk+1] ^ (1/(k+1))根据不等式的性质,我们有:(x1 + x2 + …… + xk) / k ≥ (x1 * x2 * …… * xk) ^(1/k) 即:[(x1 + x2 + …… + xk) / k] * k ≥ [(x1 * x2 * …… * xk) ^ (1/k)] * k将上式代入前面的不等式,得到:[(x1 + x2 + …… + xk) + xk+1] / (k+1) ≥ [(x1 *x2 * …… * xk) * xk+1] ^ (1/(k+1))这样,我们证明了当n=k+1时,均值不等式也成立。
高中数学公式(均值不等式)
高中数学公式(均值不等式)高中数学公式(均值不等式)公式的数学本质是用简洁的语言准确地描述数学问题。
在高中数学中,均值不等式是一个重要而又常用的工具。
它可以帮助我们证明和解决各种数学问题。
本文将介绍均值不等式的定义、性质和应用。
一、均值不等式的定义均值不等式是数学中一类重要的不等式。
它表述了若干个数的某种“平均值”与这些数之间的大小关系。
常见的均值不等式有算术平均不等式、几何平均不等式和平方平均不等式。
1. 算术平均不等式算术平均不等式是指若干个正数的算术平均值不小于它们的几何平均值。
设有n个正数x₁、x₂、...、xₙ,它们的算术平均值为AM,几何平均值为GM,则有AM ≥ GM。
2. 几何平均不等式几何平均不等式是指若干个正数的几何平均值不大于它们的算术平均值。
设有n个正数x₁、x₂、...、xₙ,它们的算术平均值为AM,几何平均值为GM,则有GM ≤ AM。
3. 平方平均不等式平方平均不等式是指若干个正数的平方平均值不小于它们的算术平均值。
设有n个正数x₁、x₂、...、xₙ,它们的算术平均值为AM,平方平均值为QM,则有QM ≥ AM。
二、均值不等式的性质均值不等式有一些基本性质可以帮助我们进行各种推导。
1. 对称性均值不等式具有对称性,即对数x₁、x₂、...、xₙ的排列顺序不影响不等式的成立。
例如,若AM ≥ GM成立,则交换任意两个数的位置,不等式仍然成立。
2. 反序性均值不等式具有反序性,即改变不等式中的不等号方向,不等式仍然成立。
例如,若AM ≥ GM成立,则取倒数得到1/AM ≤ 1/GM,不等式仍然成立。
3. 结合性均值不等式具有结合性,即若AM₁ ≥ GM₁和AM₂ ≥ GM₂成立,则有AM₁ * AM₂ ≥ GM₁ * GM₂。
这一性质可以帮助我们将不等式进行合并和推导。
三、均值不等式的应用均值不等式具有广泛的应用场景,涉及各个数学领域。
1. 不等式证明均值不等式可以用于证明其他的数学不等式。
高中数学专题讲义-均值不等式的应用
【例1】 若0x >,则4y x x=+的最小值是___________.【例2】 设0a b c >>>,则221121025()a ac c ab a a b ++-+-的最小值是( ) A .2 B .4 C .25 D .5【例3】 若,,A B C 为ABC △的三个内角,则41A B C++的最小值为 .典例分析均值不等式的应用【例4】 设0,0,24a b a b ab >>++=,则( )A .a b +有最大值8B .a b +有最小值8C .ab 有最大值8D .ab 有最小值8【例5】 已知:a b +∈R 、(其中+R 表示正实数),求证:22222()2113()2a b a ab b a b a b a b a b+++++++≥.【例6】 设,,0a b c >,求证:3333a b c abc ++≥,当且仅当a b c ==时等号成立,进一步证明:31113a b c a b c++++,当且仅当a b c ==时各等号成立.【例7】 经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量y (千辆/小时)与汽车的平均速度v (千米/小时)之间的函数关系为:2920(0)31600vy v v v =>++.⑴在该时段内,当汽车的平均速度v 为多少时,车流量最大?最大车流量为多少?(精确到0.1千辆/小时)⑵若要求在该时段内车流量超过10千辆/小时,则汽车的平均速度应在什么范围内?【例8】 某种汽车购车费用是10万元,每年使用的保险费、养路费、汽油费和约为0.9万元,年维修费第一年是0.2万元,以后逐年递增0.2万元.问这种汽车使用多少年报废最合算?(最佳报废时间也就是年平均费用最低的时间)【例9】 如图,要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为218000cm ,四周空白的宽度为10cm ,两栏之间的中缝空白的宽度为5cm ,怎样确定广告的高与宽的尺寸(单位:cm ),能使矩形广告面积最小?【例10】 如图,为处理含有某种杂质的污水,要制造一底宽为2米的无盖长方体沉淀箱.污水从A 孔流入,经沉淀后从B 孔流出.设箱体长度为a 米,高度为b 米.已知流出的水中,杂质的质量分数与,a b 的乘积ab 成反比.现有制箱材料60平方米,问当,a b 各为多少米时,经沉淀后流出的水中该杂质的质量分数最小(,A B 孔的面积忽略不计)2BAb【例11】设计一幅宣传画,要求画面面积为24840cm,画面的宽与高的比为(1)λλ<,画面的上下各留8cm的空白,左右各留5cm的空白,问怎样确定画面的高与宽的尺寸,能使宣传画所用纸张面积最小?如果23,34λ⎡⎤∈⎢⎥⎣⎦,那么λ为何值时,能使宣传画所用纸张面积最小?【例12】某单位用木料制作如图所示的框架,框架的下部是边长分别为,x y(单位:m)的矩形.上部是等腰直角三角形. 要求框架围成的总面积28m. 问,x y分别为多少(精确到0.01m) 时用料最省?【例13】 某村计划建造一个室内面积为8002m 的矩形蔬菜温室.在温室内,沿左.右两侧与后侧内墙各保留1m 宽的通道,沿前侧内墙保留3m 宽的空地.当矩形温室的边长各为多少时?蔬菜的种植面积最大.最大种植面积是多少?【例14】 对1个单位质量的含污物体进行清洗,清洗前其清洁度(含污物体的清洁度定义为:1-污物质量)物体质量(含污物)为0.8,要求清洗完后的清洁度为0.99.有两种方案可供选择,方案甲:一次清洗;方案乙: 分两次清洗.该物体初次清洗后受残留水等因素影响,其质量变为(13)a a ≤≤.设用x 单位质量的水初次清洗后的清洁度是0.81x x ++(1)x a >-,用y 单位质量的水第二次清洗后的清洁度是y acy a++,其中c (0.80.99)c <<是该物体初次清洗后的清洁度. ⑴分别求出方案甲以及0.95c =时方案乙的用水量,并比较哪一种方案用水量较少;⑵若采用方案乙,当 1.4a =时,如何安排初次与第二次清洗的用水量,使总用水量最小?【例15】 按照某学者的理论,假设一个人生产某产品的单件成本为a 元,如果他卖出该产品的单价为m 元,则他的满意度为mm a+;如果他买进该产品的单价为n 元,则他的满意度为an a+.如果一个人对两种交易(卖出或买进)的满意度分别为1h 和2h现假设甲生产A 、B 两种产品的单件成本分别为12元和5元,乙生产A 、B 两种产品的单件成本分别为3元和20元,设产品A 、B 的单价分别为A m 元和B m 元,甲买进A 与卖出B 的综合满意度为h 甲,乙卖出A 与买进B 的综合满意度为h 乙;⑴求h 甲和h 乙关于A m 、B m 的表达式;当35A B m m =时,求证:h 甲=h 乙;⑵设35A B m m =,当A m 、B m 分别为多少时,甲、乙两人的综合满意度均最大?最大的综合满意度为多少?⑶记⑵中最大的综合满意度为0h ,试问能否适当选取A m 、B m 的值,使得0h h 甲≥和0h h 乙≥同时成立,但等号不同时成立?试说明理由.。
高中数学人教版必修5——第十三讲均值不等式(解析版)
高中数学人教版必修5——第十三讲均值不等式(解析版)第十三讲均值不等式(解析版)在高中数学的学习中,均值不等式是一条非常重要的数学定理。
它能够帮助我们找到一组数的平均值与其他特定的数值之间的关系。
本文将详细解析高中数学人教版必修5中的第十三讲——均值不等式。
一、均值不等式的定义和性质均值不等式实际上是按平均值来衡量一组数与其他数值之间的大小关系。
它包含了算术平均值、几何平均值和平方平均值等不同的形式。
算术平均值是最为熟悉的一种形式,它表示一组数相加后除以元素个数得到的结果。
几何平均值是将一组数相乘后开根号得到的结果。
平方平均值是将一组数的平方相加后除以元素个数再开根号得到的结果。
在不等式的关系中,对于正实数来说,有以下几个性质:1. 当所有元素相等时,算术平均值、几何平均值和平方平均值相等。
2. 当所有元素不相等时,算术平均值大于几何平均值,而几何平均值大于平方平均值。
3. 对于正实数来说,算术平均值大于几何平均值,并且它们都大于平方平均值。
二、均值不等式的应用均值不等式在数学问题的解决中具有广泛的应用。
它可以帮助我们证明和推导其他重要的数学关系。
1. 证明与推导在证明和推导方面,均值不等式可以帮助我们解决一些复杂的不等式问题。
通过运用不同形式的均值不等式,我们可以逐步地推导出更为严格的不等式关系。
例如,在求证某个不等式问题时,我们可以使用算术平均值与几何平均值之间的关系来逐步推导出正确的结论。
2. 理解与比较均值不等式还能够帮助我们理解和比较数列的大小关系。
通过对数列的算术平均值、几何平均值和平方平均值的比较,我们可以得出一些关于数列性质的结论。
例如,当一组数的算术平均值大于几何平均值时,就能够说明这组数存在着某种程度的波动和不均匀性。
三、均值不等式的例题解析下面,我们将通过一些例题来具体解析均值不等式的应用。
例题1:已知a、b、c为正实数,证明(a+b)(a+c)(b+c)≥8abc。
解析:我们可以通过均值不等式来证明这个不等式关系。
高中数学均值不等式知识点
高中数学均值不等式知识点一、均值不等式的形式。
1. 基本形式。
- 对于任意的正实数a、b,有(a + b)/(2)≥slant√(ab),当且仅当a = b时,等号成立。
- 这里(a + b)/(2)叫做a、b的算术平均数,√(ab)叫做a、b的几何平均数。
2. 推广形式(三元均值不等式)- 对于任意的正实数a、b、c,有(a + b + c)/(3)≥slantsqrt[3]{abc},当且仅当a=b = c时,等号成立。
- 其中(a + b + c)/(3)是a、b、c的算术平均数,sqrt[3]{abc}是a、b、c的几何平均数。
二、均值不等式的证明。
1. 对于(a + b)/(2)≥slant√(ab)(a,b>0)的证明。
- 方法一:作差法。
- 因为((a + b)/(2))^2 - ab=(a^2 + 2ab + b^2)/(4)-ab=(a^2 - 2ab + b^2)/(4)=((a - b)^2)/(4)≥slant0。
- 当且仅当a = b时,((a + b)/(2))^2 - ab = 0,即(a + b)/(2)≥slant√(ab)。
- 方法二:分析法。
- 要证(a + b)/(2)≥slant√(ab)(a,b>0),只需证((a + b)/(2))^2≥slant ab,即证a^2 + 2ab + b^2≥slant4ab,也就是证a^2 - 2ab + b^2≥slant0,即(a - b)^2≥slant0,显然成立,当且仅当a = b时等号成立。
三、均值不等式的应用。
1. 求最值。
- 类型一:和定积最大。
- 已知a + b = m(m为定值,a>0,b>0),根据均值不等式(a +b)/(2)≥slant√(ab),可得ab≤slant((a + b)/(2))^2=(m^2)/(4),当且仅当a = b=(m)/(2)时,ab 取得最大值(m^2)/(4)。
高中数学基础讲义9均值不等式-简单难度-讲义
均值不等式知识讲解一、等号成立条件条件:对于任意实数a b ,,222a b ab +≥,当且仅当a b =时,等号成立. 证明:2222()a b ab a b +-=-,当a b ≠时,2()0a b ->;当a b =时,2()=0a b -.222a b ab ∴+≥,当且仅当a b =时,等号成立.二、均值不等式定义:如果a b ,,是正数,那么2a bab +≥,当且仅当a b =时,有等号成立.此结论又称均值不等式或基本不等式.证明:2222()()()0a b ab a b a b +-=+=-≥,即a b ab +≥2,所以2a bab +≥三、均值不等式的几何解释解释:对于任意正实数a b ,,以AB a b =+的线段为直径做圆,在直线AB 上取点C ,使,AC a CB b ==,过点C 作垂直于直线AB 的弦DD ',连接AD 、DB 、如图已知Rt ACD Rt DCB ∆∆,那么2DC AC BC =⋅,即=CD ab .这个圆的半径为2a b+,显然2a bab +≥,当且仅当点C 与圆心重合,即a b =时,等号成立.abb aD 'D C B A四、均值不等式的理解1.对于任意两个实数a b ,,2a b+叫做a b ,a b ,的几何平均值.此定理可以叙述为:两个正数的算术平均数不小于他们的几何平均数.2.对于=“”的理解应为a b =是2a b +a b ≠,则2a b+3.注意222a b ab +≥和2a b+>a b R ∈,,后者是+a b R ∈,五、极值定理1.若x y s +=(和为定值),则当x y =时,xy 取得最大值是24s;【证明】x y ,都是正数,2x y +x y s +=,22()24x y s xy +≤=,当且仅当x y =时,xy 取得最大值是24s;2.若=xy p (积为定值),则当x y =时,x y +取得最小值是;【证明】x y ,都是正数,2x y +≥x y =时,等号成立.又=xy p ,x y +≥.【注意】利用极值定理求最大值或最小值是应注意:①注意均值不等式的前提条件:函数式中的各项必须都是正数,在异号时不能运用均值不 等式,在同负时可以先进行转化,再运用均值不等式;②求积xy 最大值时,应看和x y +是否是定值;求和x y +最小值时,看xy 是否为定值. ③通过加减的方法配凑成使用算术平均数与几何平均数定理的形式; ④注意“1”的代换;⑤等号是否成立: 只有具备了不等式中等号成立的条件,才能使函数式取到最大或最小值.否则不能由均值不等式求最值,只能用函数的单调性求最值.运用均值不等式的前提有口诀:一正二定三相等.典型例题一.选择题(共10小题)1.(2018•海拉尔区校级二模)已知正实数x ,y 满足2x +y=1,则xy 的最大值为( ) A .18B .23C .14D .25【解答】解:∵正实数x ,y 满足2x +y=1,则1≥2√2xy ,化为:xy ≤18,当且仅当2x=y=12时取等号.∴xy 的最大值为18.故选:A .2.(2018•延边州模拟)若a >0,b >0,lga +lgb=lg (a +b ),则a +b 的最小值为( ) A .8 B .6C .4D .2【解答】解:由a >0,b >0,lga +lgb=lg (a +b ), 则lg (ab )=lg (a +b ), 即有ab=a +b ,即1a +1b=1, 则a +b=(a +b )(1a +1b )=2+b a +ab≥2+2√b a ⋅ab=4,当且仅当a=b=2时,取得等号.则a +b 的最小值为4. 故选:C .3.(2018春•聊城期末)已知a 、b 是不相等的正数,x=√a+√b√2,y=√a +b ,则x 、y 的关系是( ) A .x >y B .y >xC .x >√2yD .不能确定【解答】解:∵x 2=12(√a +√b )2=12(a +b +2√ab ),y 2=a +b=12(a +b +a +b )>12(a +b +2√ab )=x 2,又∵x >0,y >0. ∴y >x .4.(2017秋•莲湖区校级期末)已知a >0,b >0,a +b=2,则y=1a +4b的最小值是( ) A .92B .72C .5D .4【解答】解:∵a >0,b >0,a +b=2,∴y=1a +4b =12(1a +4b )(a +b )=12(1+4+b a +4a b )≥12(5+2√b a ⋅4a b )=92,当且仅当b=2a 时等号成立, 故选:A .5.(2017秋•陆川县校级期末)已知x ,y >0,且1x +1y=2,则x +2y 的最小值为()A.3−2√2B.3−2√22C.3+2√2D.3+2√22【解答】解:由1x +1y=2得,12x+12y=1,∴(x+2y)(12x+12y)=12+yx+x2y+1≥32+2√yx⋅x2y=32+√2,当且仅当x=√2y=1+√22时取等号.故选:D.6.(2018春•昌吉市期末)当x>0,y>0,1x+9y=1时,x+y的最小值为()A.10B.12 C.14D.16【解答】解:∵x>0,y>0,1x +9y=1,∴x+y=(x+y)(1x+9y)=10+yx+9xy≥10+2√y x⋅9x y=16,当且仅当y=3x=12时取等号.∴x+y的最小值为16.故选:D.7.(2018春•沙坪坝区校级期末)实数a,b均为正数,且a+b=2,则1a+2b的最小值为()A.3B.3+2√2C.4D.32+√2【解答】解:∵a+b=2,∴1a +2b =12(1a +2b )(a +b )=12(1+2a b +b a +2)=12(2a b +b a +3), ∵2a b +b a ≥2√2,当2a b =ba ,即a=2√2﹣2时,等号成立, ∴1a +2b 的最小值为32+√2 故选:D .8.(2018春•南关区校级期末)若正数x ,y 满足x +3y=5xy ,则3x +4y 的最小值是( ) A .245B .285C .6D .5【解答】解:∵正数x ,y 满足x +3y=5xy ,∴x+3y 5xy =1,即15y +35x=1,∴3x +4y=(3x +4y )(15y +35x )=135+3x 5y +12y 5x ≥135+2√3x 5y ⋅12y 5x =5当且仅当3x 5y =12y 5x 即x=1且y=12时取等号,∴3x +4y 的最小值为:5 故选:D .9.(2017秋•武邑县校级期末)若x ,y 是正数,且1x +4y =1,则xy 有( )A .最大值16B .最小值116C .最小值16D .最大值116【解答】解:由于x ,y 是正数,且1x +4y =1,∴1x +4y =1≥2√4xy =4√1xy ,∴1xy ≤116,∴xy ≥16,当且仅当 1x =4y =12时,等号成立,∴xy 有最小值为 16, 故选:C .10.(2017•红桥区模拟)已知x >﹣2,则x +1x+2的最小值为( ) A .﹣12B .﹣1C .2D .0【解答】解:∵x >﹣2,则x +1x+2=x +2+1x+2﹣2≥2√(x +2)⋅1x+2﹣2=0,当且仅当x=﹣1时取等号. ∴x +1x+2的最小值为0.故选:D .二.填空题(共4小题)11.(2018•金山区二模)函数y =x +9x ,x ∈(0,+∞)的最小值是 6 . 【解答】解:∵x >0,∴函数y =x +9x ≥2√x ⋅9x =6,当且仅当x=3时取等号. ∴函数y =x +9x (x >0)的最小值是6.故答案为:6.12.(2017秋•杨浦区校级期末)若正数a 、b 满足log a (4b )=﹣1,则a +b 的最小值为 1 .【解答】解:根据题意,若正数a 、b 满足log a (4b )=﹣1,则有a=14b ,即ab=14,则a +b ≥2√ab =1,即a +b 的最小值为1; 故答案为:1.13.(2018春•秦淮区校级期中)已知正实数x ,y 满足xy=3,则x +y 的最小值是 2√3 .【解答】解:正实数 x ,y 满足 xy=3, 则 x +y ≥2√xy =2√3,当且仅当x=y=√3时,上式取得等号, 则x +y 的最小值为2√3, 故答案为:2√3.14.(2017春•宿迁期末)已知正实数x ,y 满足2x +y=1,则xy 的最大值为 18. 【解答】解:根据题意,正实数x ,y 满足2x +y=1,则xy=12(2x )y ≤12[2x+y 2]2=12×14=18,当且仅当2x=y=12,时等号成立,即xy 的最大值为18;故答案为:18.三.解答题(共1小题)15.(2010•南通模拟)某工厂要建造一个长方体无盖贮水池,其容积为4800m 3,深为3m ,如果池底每1m 2的造价为150元,池壁每1m 2的造价为120元,问怎样设计水池能使总造价最低,最低总造价是多少元?【解答】解:设水池底面一边的长度为xm ,水池的总造价为y 元,则底面积为48003=1600m 2,池底的造价为1600×150=240000元, 则y=240000+720(x +1600x)≥240000+720×2√x ⋅1600x =240000+720×2×40=297600,当且仅当x=1600x,即x=40时,y 有最小值297600(元)答:当水池的底面是边长为40m 的正方形时,水池的总造价最低,最低总造价是297600元.。
高一数学辅导讲义11---均值不等式
高一数学辅导讲义----均值不等式【高考导航】历年来高考以选择题或填空题的形式考查利用均值不等式求最值的问题.利用均值不等式求最值的前提是“一正二定三相等”.需通过变形技巧,得到“和”或“积”为定值的情形.均值不等式作为求最值的工具,渗透在许多方面,应用非常广泛【知识要点】1、主要公式:(1)重要不等式若a b R ∈、,则222a b ab +≥22(2||2)a b ab ab +≥≥或(当且仅当a b =时取等号)。
(2)均值不等式如果a b 、都是正数,那么 2a b +≥(当仅当a b =时取等号)。
(其中2a b +叫做a b 、a b 、的几何平均数) (3)变形:①ab ≤222a b +,②ab ≤2()2a b +;222a b +≥2()2a b + 2、最值定理:若,,,,x y R x y S xy P +∈+==则:①如果P 是定值, 那么当x y =时,S 的值最小;②如果S 是定值, 那么当x y =时,P 的值最大.注意:使用均值不等式求最值时要注意以下几点:①前提:“一正、二定、三相等”,如果没有满足前提,则应根据题目创设条件;还要注意选择恰当的公式;②“和定积最大,积定和最小”,可用来求最值;③均值不等式具有放缩功能,如果有多处用到,请注意每处取等的条件是否一致。
【思维方法】1、用均值不等式求函数最值时,关键在于将函数变形为两项的和或积,使这两项的和或积或平方和为定值,然后用公式求出最值;2、利用均值不等式求最值时一定要注意使用条件:一正二定三相等,三者缺一不可。
如均值不等式法无效,一般可改用单调性法求解。
【基础自测】1.已知0,x ≠当x 为何值时,2281x x +有最小值?最小值为多少? 2、若,a b R ∈,且0ab >,则下列不等式中,恒成立的是 ( )A 、222a b ab +>B 、a b +≥、11a b +>、2b a a b +≥ 3、下列函数中,最小值为22的是( )A 、x x y 2+=B 、)0(sin 2sin π<<+=x x x yC 、x x e e y -+=2D 、2log 2log 2x x y +=【应用举例】 例1、已知0,x >则423x x --是否存在最大最小值?若存在,则求出其最值。
均值不等式的定义-概述说明以及解释
均值不等式的定义-概述说明以及解释1.引言1.1 概述均值不等式是数学中一个重要的不等式概念,它描述了一组数的平均值与它们的其他性质之间的关系。
均值不等式在数学分析、概率论、统计学以及许多其他领域都有广泛的应用。
本文将对均值不等式的定义、应用和证明进行详细的阐述,以便读者能更好地理解和应用这一重要的数学理论。
通过深入探讨均值不等式的概念和实际意义,我们可以更好地认识到其在数学和现实生活中的重要作用。
1.2 文章结构:本文将分为引言、正文和结论三个部分来进行阐述均值不等式的定义及相关内容。
在引言部分,我们将先介绍均值不等式的概念,然后简要说明文章的结构,最后阐明撰写本文的目的。
接下来,在正文部分,我们将详细讨论均值不等式的概念、应用和证明,以便读者更全面地了解均值不等式的内涵和意义。
最后,在结论部分,我们将总结均值不等式的重要性,强调其在实际中的意义,并展望其未来研究方向,以期为读者提供一个全面而深入的了解。
1.3 目的:本文的主要目的是介绍和阐述均值不等式的定义及重要性。
我们将深入探讨均值不等式的概念和应用,以及对其进行证明的方法。
通过本文的阐述,我们旨在帮助读者更好地理解均值不等式,并认识到其在数学和实际问题中的重要性。
同时,我们也将展望均值不等式在未来的研究方向,以期激发更多学者对其进行深入研究,并在实际问题中发挥更大的作用。
通过对均值不等式的全面探讨,我们希望读者能够对其有一个更全面的了解,从而在数学和实际问题中更好地运用和发展均值不等式的理论。
2.正文2.1 均值不等式的概念均值不等式是数学中一类重要的不等式,通常用于比较一组数的平均值。
对于任意一组非负实数a1, a2, ..., an,均值不等式可以用来比较它们的平均值,从而得出一些重要的数学结论。
常见的均值不等式包括算术平均-几何平均不等式(AM-GM不等式)和柯西-施瓦茨不等式。
这些不等式在数学和实际问题中都有着广泛的应用和重要性。
高中数学均值不等式讲解
高中数学均值不等式讲解一、教学任务及对象1、教学任务本次教学任务是以“高中数学均值不等式”为主题,对高中学生进行系统的讲解与训练。
均值不等式是高中数学中的一个重要内容,它不仅在数学理论中占有重要地位,而且在实际应用中也具有广泛价值。
通过本节课的学习,使学生掌握均值不等式的概念、性质和应用,培养他们的逻辑思维能力和解决实际问题的能力。
2、教学对象教学对象为高中学生,他们已经具备了一定的数学基础和逻辑思维能力。
在这个阶段,学生们的思维逐渐从具体形象向抽象逻辑转变,他们对于数学问题的理解和解决能力也在不断提高。
因此,针对这个阶段的学生,教学过程中应注重启发式教学,引导学生主动探究、发现和解决问题,提高他们的数学素养。
二、教学目标1、知识与技能(1)理解并掌握均值不等式的定义,包括算术平均数和几何平均数;(2)掌握均值不等式的证明方法,并能够灵活运用;(3)学会运用均值不等式解决实际问题,如求最大(小)值、证明不等式等;(4)通过均值不等式的学习,提高学生的运算能力和解决问题的能力。
2、过程与方法(1)通过问题导入,引导学生自主探究均值不等式的概念,培养学生的自主学习能力;(2)采用比较、分析、归纳等教学方法,帮助学生掌握均值不等式的证明方法和应用,提高他们的逻辑思维能力;(3)设置典型例题,让学生在实践中掌握均值不等式的应用,培养他们分析问题和解决问题的能力;(4)鼓励学生进行合作学习,互相讨论,共享学习成果,提高他们的沟通能力和团队协作能力。
3、情感,态度与价值观(1)培养学生对数学的兴趣,激发他们学习数学的热情,使他们形成积极向上的学习态度;(2)通过均值不等式的学习,让学生认识到数学在生活中的广泛应用和价值,增强他们学习数学的信心;(3)教育学生尊重事实,遵循逻辑,树立正确的价值观,培养他们严谨、踏实的学术作风;(4)培养学生勇于探索、敢于创新的精神,使他们具备面对挑战、克服困难的勇气和信心;(5)通过小组合作,培养学生团结协作、互助互爱的良好品质,提高他们的集体荣誉感和社会责任感。
均值不等式公式完全总结归纳
均值不等式公式完全总结归纳均值不等式是数学中常用的一种不等式,它可以用来比较数列或者函数中数值的大小关系。
均值不等式有很多种形式,常用的有算术均值不等式、几何均值不等式、调和均值不等式以及均方根不等式。
下面将逐个进行详细介绍:1.算术均值不等式:算术均值不等式又称为平均不等式,它是最基本的均值不等式。
对于非负实数a和b,算术均值不等式的表达式为:(a+b)/2≥√(a*b)其中,等号成立当且仅当a=b。
2.几何均值不等式:几何均值不等式也是比较常见的一种不等式。
对于非负实数a和b,几何均值不等式的表达式为:√(a*b)≤(a+b)/2其中,等号成立当且仅当a=b。
3.调和均值不等式:调和均值不等式用来比较两个正实数的大小关系。
对于正实数a和b,调和均值不等式的表达式为:2/(1/a+1/b)≤(a+b)/2其中,等号成立当且仅当a=b。
4.均方根不等式:均方根不等式是一种用于比较多个非负实数大小关系的不等式。
对于非负实数a1, a2, ..., an,均方根不等式的表达式为:√((a1^2 + a2^2 +... + an^2)/n) ≥ (a1 + a2 + ... + an)/n 其中,等号成立当且仅当a1=a2=...=an。
以上四种形式的均值不等式都是基于平均值的概念推导出来的。
它们在数学中有广泛的应用,例如在证明其他不等式时常常被用到。
需要注意的是,以上只是四种常见的均值不等式形式,实际上还存在很多种不同形式的均值不等式。
比如幂均值不等式、可重均值不等式等,它们在一些特定的条件下有着重要的应用。
总结起来,均值不等式是数学中非常重要的一类不等式,它包含了算术均值不等式、几何均值不等式、调和均值不等式以及均方根不等式等形式。
这些不等式在数学推导和证明过程中发挥着非常重要的作用。
高中数学第三章不等式3-2均值不等式名师讲义新人教B版必修5
高中数学第三章不等式3-2均值不等式名师讲义新人教B版必修5如果a,b∈R+,那么≥.当且仅当a=b时,等号成立,以上结论通常称为均值不等式.对任意两个正实数a,b,数称为a,b的算术平均值(平均数),数称为a,b的几何平均值(平均数).均值定理可叙述为:两个正实数的算术平均值大于或等于它的几何平均值.[点睛] (1)“a=b”是≥的等号成立的条件.若a≠b,则≠,即>.(2)均值不等式≥与a2+b2≥2ab成立的条件不同,前者a>0,b >0,后者a∈R,b∈R.2.利用均值不等式求最值(1)两个正数的积为常数时,它们的和有最小值;(2)两个正数的和为常数时,它们的积有最大值.1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)对任意a,b∈R,a2+b2≥2ab,a+b≥2均成立( )(2)若a≠0,则a+≥2=4( )(3)若a>0,b>0,则ab≤2()解析:(1)错误.任意a,b∈R,有a2+b2≥2ab成立,当a,b都为正数时,不等式a+b≥2成立.(2)错误.只有当a>0时,根据均值不等式,才有不等式a+≥2=4成立.(3)正确.因为≤,所以ab≤2.答案:(1)×(2)×(3)√2.已知f(x)=x+-2(x>0),则f(x)有( )A.最大值为0 B.最小值为0C.最小值为-2 D.最小值为2答案:B3.对于任意实数a,b,下列不等式一定成立的是( )A.a+b≥2 B.≥abC.a2+b2≥2ab D.+≥2答案:C4.已知0<x<1,则函数y=x(1-x)的最大值是________.答案:14[典例] m,n之间的大小关系是( )A.m>nB.m<nC.m=n D.不确定(2)若a>b>1,P=,Q=(lg a+lg b),R=lg ,则P,Q,R的大小关系是________.[解析] (1)因为a>2,所以a-2>0,又因为m=a+=(a-2)++2,所以m≥2+2=4,由b≠0,得b2≠0,所以2-b2<2,n=22-b2<4,综上可知m>n.。
高中数学复习 均值不等式
4. 若 把 总 长 为 20 m 的 篱 笆 围 成 一 个 矩 形 场 地 , 则 矩 形 场 地 的 最 大 面 积 是 ___2_5____m2. 解析 设矩形的一边为x m,面积为y m2, 则另一边为12×(20-2x)=(10-x)(m),其中 0<x<10, 所以 y=x(10-x)≤x+(120-x)2=25, 当且仅当x=10-x,即x=5时,等号成立, 所以ymax=25,即矩形场地的最大面积是25 m2.
-25(x∈N*),则每台机器为该公司创造的最大年平均利润是____8____万元.
解析 每台机器运转 x 年的年平均利润为 xy=18-x+2x5万元, 由于 x>0,故 xy≤18-2 25=8, 当且仅当x=5时等号成立,此时每台机器为该公司创造的年平均利润最大,最 大为8万元.
索引
微点突破 均值不等式链
索引
法二(代入消元法) 由 x+3y+xy=9,得 x=91-+3yy, 所以 x+3y=91-+3yy+3y=9-3y+13+y(y 1+y)=91++3yy2 =3(1+y)2-1+6(y 1+y)+12=3(1+y)+11+2y-6 ≥2 3(1+y)·11+2y-6=12-6=6, 当且仅当 3(1+y)=11+2y,即 y=1,x=3 时取等号,即 x+3y 最小值为 6.
索引
解析 (1)不等式 ab≤a+2 b2成立的条件是 a,b∈R,a+2 b≥ ab成立的条件是 a≥0,b≥0. (2)由于 x∈(-∞,0)∪(0,+∞),故函数 y=x+1x无最小值. (3)由于 sin x=sin4 x时 sin x=2 无解,故 sin x+sin4 x的最小值不为 4. (4)“xy+xy≥2”的充要条件是“xy>0”.
高中数学竞赛均值不等式讲义
⾼中数学竞赛均值不等式讲义均值不等式1.均值不等式知识点1: ⼆元均值不等式可以推⼴到n 元,即:设,,,123a a a a n 为n 个⾮负实数,则12na a a n+++≥123a a a a n ====).如何证明?知识点2: 设,,,123a a a a n 为n 个⾮负实数,n Q, 12nn a a a A n+++=,n G =, 12111n nnH a a a =++,则n n n n Q A G H ≥≥≥(等号成⽴当且仅当123a a a a n ====) 更⼀般的平均值的定义: 设正数(1,2,3...)i a i n =,则α的幂平均值=11()ni i a nαα=∑,特别的,我们有:lim ()n f G αα→=,11()()ni i a f nααα==∑为关于α的增函数.知识点3:重要结论 (1)222,,,.a b c R a b c ab bc ac ∈++≥++(2) ()2,,,3().a b c R a b c ab bc ac ∈++≥++ (3) 2222,,,3()().a b c R a b c a b c ∈++≥++ (4) 2,,,()3().a b c R ab bc ca abc a b c ∈++≥++ (5),,,()()()()().a b c R a b b c a c abc a b c ab cb ac ∈++++=++++(6) 222;2a a a b b a b b-≥-+≥(a,b,c>0)(7) 2222221()()3a b b c c a a b c a b c ++≤++++(a,b,c>0)(8)正实数(1,2,3...)i a i n =,则2111n ni i i ia n a ==?≥∑∑(当且仅当12...n a a a ===); (9) 222222222222()()()()()a b b c c a ab bc ca a b c a bc b ca c ab ++++=++++知识点4:加权平均值不等式已知12+...1(0,1,2.,,,)n i w w w w i n +=>=,则对任意正实数12112212........n w w w n n n w a w a w a a a a +++≥.均值不等式的使⽤前要注意两个⽅⾯,⼀个是观察题⽬中不等式证明⽅向,另外⼀个是取等条件,根据这些信息,相应去选择均值不等式的技巧、模型,不断尝试,最终解决问题。
高二数学均值不等式1
练习:
1、x若 3,函y数 x 1 ,当 x为何值 函数有最值,并求其最值。x3
2、求证:在直径为d的圆的内接矩形中,面积最大的是 正方形,这个正方形的面积等于 d 2 . 2
a2b22ab(a,bR)
ab ab(a,bR) 2
课后练习: 课本Leabharlann 71 练习AP72 练习B
非洲旧石器时代考古在世界上占有重要地位。这里不仅发现了迄今为止年代最早的人类化石和石器文化,而是世界上已知的人 类各发展阶段没有缺环、年代前后相继的地区。迄今所知最早的石器发现于东非肯尼亚的科比福拉,以及埃塞俄比亚的奥莫和 哈达尔地区,年代距今约250万~200万年。
石器时代SF http://www.shiqi.so/gl/dike.htm 石器时代SF
旧石器时代早期在非洲存在两大石器文化传统:奥杜韦文化和阿舍利文化。旧石器时代中期,在北非有莫斯特文化和阿替林文 化;在撒哈拉以南地区,有中非的石核斧类型文化,如山果文化和卢本巴文化,南非的彼得斯堡文化、奥兰治文化、斯蒂尔贝 文化和班巴塔文化。旧石器时代晚期,非洲气候极为干旱,发现的遗存数少,在北非有与欧洲石叶文化相似的代拜文化,在撒 哈拉以南地区则有奇托利文化等。 满满盛了汤,但汤里熬的不是鱼翅、干贝,而是白芷、江离——都是沐浴用的香草。汤也不烫,最多比皮肤烫一点点,正好让 人躺进去“哦呼!”一声,绝不会对人造成任何实质性伤害,只会把人泡得红通通的,像一只心满意足的大虾。这是一锅上好 的洗澡水。苏明远沉入水中,“哦呼”了一声。世上再没有比淋了一场大雨之后泡个热热的香汤更美的了!一定有所要求的话, 倒是可以锦上添花一把。第二章 蝶楼吹彻玉笙寒(2)“蝶儿,”苏明远唤道,“给我推拿。”“我不是蝶儿。”炉边主人唇边 逸出一抹不知是何滋味的笑容,“我只是个笑话。”他叫蝶宵华。本朝没有“蝶”这个姓,锦城更没有。“蝶宵华”这三个字, 就跟“楚云”、“海棠”、“娇月”、“香红”差不多,都是人家给取的,专为招揽生意用。所谓艺名。叫“楚云”、“海 棠”、“娇月”、“香红”的女孩子,多半会在什么地方做生意,你也想像得出来吧?不过蝶宵华不在勾栏。有的勾栏只收女 孩子,他自然进不去。有的勾栏,兼收男孩子,他也没进。他进的地方,比勾栏还苦一点,要压腿、要下腰、要走台步,要吊 嗓子,所谓梨院。梨院子弟,地位比起勾栏来似乎高那么一点点,有的时候呢,却仿佛还要低上那么一点点。戏子的生活,有 时比妓女还要糜乱得不止一点点。而蝶宵华,是锦城所有戏子中,“那方面”名声最响的一个。像苏明远是举城最受崇拜的贵 公子一样,没有之一。只不过,蝶宵华的名声,未必招人喜爱。有的人嘴里,他是妖魔。有的人嘴里,他简直就是疯的。他像 一出折子戏,不想管来路、不想管去路,所有的美丽、哀艳、甚或是倦怠,都只凝缩在眼前短短一幕,没有明天。他动人得, 像是根本没有明天。苏明远叫他,他就恹恹的站了起来,恹得似一株才抽出新芽、就已不堪盛大春光负荷的垂柳,每迈出一步, 腰肢儿都是软盈盈的。他的斗篷没有扣住,一站,前面就散开了,露出里头衣裳,是遍地金鸦青百花锦袍子,很难压得住的颜 色。而他甚至根本没想过要压,只那么随随便便一站,春风都要为他醉了。他走到苏明远盆边,刚刚那小少女之一,又奔了回 来,手里捧着一只万寿回文金盏,仍然笑成一团,步子都要迈不稳似的,把金盏往蝶宵华足边一放,咬着嘴忍住笑声,回身又 逃了。蝶宵华伸出尖尖的食指,向小少女的背影指了一指:“你啊——”小少女吐吐舌头,还是跑了,他嘴角咬了咬,也没什 么别的话说,自己弯腰捞起金盏,递给苏明远。盏中盛着酒,酒色清碧,似外头窗格嵌的琉璃。苏明远啜了一口,放开手,酒 盏就自己漂在汤面上,似外头的莲花灯。蝶宵华这里的所有东西,似乎都经过精心的布置,不但美,而且一定很实用,一定让 人舒适、让人省力。只有一个很懒、又很
高中均值不等式讲解及习题
高中均值不等式讲解及习题一.均值不等式1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x+≤- (当且仅当1x =-时取“=”)若0x ≠,则11122-2x x x xxx+≥+≥+≤即或 (当且仅当b a =时取“=”)3.若0>ab ,则2≥+ab ba (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域(1)y =3x 2+12x2(2)y =x +1x解:(1)y =3x 2+12x2 ≥23x 2·12x 2= 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1x≥2x ·1x=2;当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2∴值域为(-∞,-2]∪[2,+∞)解题技巧: 技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。
高中数学 均值不等式
高中数学均值不等式
在高中数学中,均值不等式是一个重要的概念。
今天,本文将重点介绍均值不等式的概念及其应用。
均值不等式是一种数学定理,它表达了一组数据的均值和它们的最大值和最小值之间的关系。
具体来说,均值不等式指出:当一组数据的最大值加上最小值大于均值的两倍时,均值不等式成立。
其公式可以表示为:
xmin + xmax 2 * xmean
在实际应用中,均值不等式主要用来解决最大化或最小化问题。
例如,可以使用均值不等式来解决一些最优化问题,比如最小生成树问题。
此外,均值不等式也可以用来解决数据分类问题。
例如,假设有一组数据X1,X2,…,Xn,可以使用均值不等式来判断它们是否属于一个分类。
当X1 + X2 + + Xn > 2 * Xmean时,这些数据就属于同一个分类。
除此之外,均值不等式还可以用来检测数据是否有特殊分布性。
例如,当一组数据的最大值比最小值大得太多时,就可以用均值不等式来检测这种现象。
此外,均值不等式还可以用于统计研究,例如,当研究者希望比较两组数据的统计特征时,就可以利用均值不等式。
总的来说,均值不等式是一个重要的概念,它可以用于解决众多数学问题,例如最优化问题、分类问题以及检测数据是否有特殊分布性等等。
它的应用可以帮助人们更好地理解数据,从而更好地利用数
据解决世界上各种问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微专题45 利用均值不等式求最值一、基础知识:1、高中阶段涉及的几个平均数:设()01,2,,i a i n >=(1)调和平均数:12111n nnH a a a =+++(2)几何平均数:12nn n G a a a = (3)代数平均数:12nn a a a A n+++=(4)平方平均数:22212nn a a a Q n+++=2、均值不等式:n n n n H G A Q ≤≤≤,等号成立的条件均为:12n a a a ===特别的,当2n =时,22G A ≤⇒2a bab +≤即基本不等式 3、基本不等式的几个变形:(1))2,0a b ab a b +≥>:多用在求和式的最小值且涉及求和的项存在乘积为定值的情况(2)22a b ab +⎛⎫≤ ⎪⎝⎭:多用在求乘积式的最大值且涉及乘积的项存在和为定值的情况(3)222a b ab +≥,本公式虽然可由基本不等式推出,但本身化成完全平方式也可证明,要注意此不等式的适用范围,a b R ∈4、利用均值不等式求最值遵循的原则:“一正二定三等”(1)正:使用均值不等式所涉及的项必须为正数,如果有负数则考虑变形或使用其它方法 (2)定:使用均值不等式求最值时,变形后的一侧不能还含有核心变量,例如:当0,x >求23y x x =+的最小值。
此时若直接使用均值不等式,则2324y x x x=+≥右侧依然含有x ,则无法找到最值。
① 求和的式子→乘积为定值。
例如:上式中24y x x =+为了乘积消掉x ,则要将3x拆为两个2x,则2223342222334y x x x x x x x x =+=++≥⋅⋅=② 乘积的式子→和为定值,例如302x <<,求()()32f x x x =-的最大值。
则考虑变积为和后保证x 能够消掉,所以()()()2112329322322228x x f x x x x x +-⎛⎫=-=⋅-≤= ⎪⎝⎭(3)等:若能利用均值不等式求得最值,则要保证等号成立,要注意以下两点:① 若求最值的过程中多次使用均值不等式,则均值不等式等号成立的条件必须能够同时成立(彼此不冲突)② 若涉及的变量有初始范围要求,则使用均值不等式后要解出等号成立时变量的值,并验证是否符合初始范围。
5、常见求最值的题目类型(1)构造乘积与和为定值的情况,如上面所举的两个例子 (2)已知1ax by +=(a 为常数),求m nx y+的最值, 此类问题的特点在于已知条件中变量位于分子(或分母)位置上,所求表达式变量的位置恰好相反,位于分母(或分子)上,则可利用常数“1”将已知与所求进行相乘,从而得到常数项与互为倒数的两项,然后利用均值不等式求解。
例如:已知0,0,231x y x y >>+=,求32x y+的最小值 解:()3232942366y x x y x y x y x y⎛⎫+=++=+++ ⎪⎝⎭94121224y x x y =++≥+= (3)运用均值不等式将方程转为所求式子的不等式,通过解不等式求解: 例如:已知0,0,24x y x y xy >>++=,求2x y +的最小值解:()22211222228x y x y xy x y ++⎛⎫=⋅⋅≤= ⎪⎝⎭ 所以()()2224248x y x y xy x y +++=⇒++≥即()()2282320x y x y +++-≥,可解得24x y +≥-,即()min 24x y +=-注:此类问题还可以通过消元求解:42241xx y xy y x -++=⇒=+,在代入到所求表达式求出最值即可,但要注意0y >的范围由x 承担,所以()0,2x ∈ 二、典型例题:例1:设1x >-,求函数(5)(2)1x x y x ++=+的最小值为_______________思路:考虑将分式进行分离常数,(5)(2)41511x x y x x x ++==+++++,使用均值不等式可得:59y ≥+=,等号成立条件为4111x x x +=⇒=+,所以最小值为9 答案:9例2:已知0,0x y >>,且115x y x y+++=,则x y +的最大值是________ 思路:本题观察到所求x y +与11x y+的联系,从而想到调和平均数与算术平均数的关系,即2114112x y x y x yx y+≤⇒+≥++,代入方程中可得: ()()()()245540x y x y x y x y ++≤⇒+-++≤+,解得:14x y ≤+≤,所以最大值为4 答案:4例3:已知实数,m n ,若0,0m n ≥≥,且1m n +=,则2221m n m n +++的最小值为( ) A.14 B. 415 C. 18 D. 13思路:本题可以直接代入消元解决,但运算较繁琐。
考虑对所求表达式先变形再求值,可用分离常数法将分式进行简化。
2241212121m n m n m n m n +=-+-++++++,结合分母可将条件1m n +=,变形为()()214m n +++=,进而利用均值不等式求出最值解:222244114121212121m n m n m n m n m n m n -+-++=+=-++-+++++++()4141322121m n m n m n =+-++=+-++++ ()()1214m n m n +=⇒+++= ()()()414141112214121214421n m m n m n m n m n +⎛⎫+⎛⎫∴+=+⋅+++=+++⎡⎤ ⎪ ⎪⎣⎦++++++⎝⎭⎝⎭19544⎛≥+= ⎝ 229122144m n m n ∴+≥-=++,即2221m n m n +++的最小值为14答案:A例4:已知正实数,x y 满足24xy x y ++=,则x y +的最小值为__________思路:本题所求表达式x y +刚好在条件中有所体现,所以考虑将x y +视为一个整体,将等式中的项往x y +的形式进行构造,()()()21xy x y xy x x y x y x y ++=+++=+++,而()1x y +可以利用均值不等式化积为和,从而将方程变形为关于x y +的不等式,解不等式即可解:()()()24414xy x y xy x x y x y x y ++=⇔+++=⇔+++=()()2112x y x y ++⎡⎤+≤⎢⎥⎣⎦ ∴方程变形为:()()2142x y x y ++⎡⎤++≥⎢⎥⎣⎦()()21416x y x y ∴++++≥⎡⎤⎣⎦()()26150x y x y ∴+++-≥解得:3x y +≥= 答案:()x y +的最小值为3 例5:已知20a b >>,则4(2)a b a b +-的最小值为______________思路一:所求表达式为和式,故考虑构造乘积为定值以便于利用均值不等式,分母为()2b a b -,所以可将a 构造为()112222a a b b ⋅=⋅-+⎡⎤⎣⎦,从而三项使用均值不等式即可求出最小值:4181(2)3(2)2(2)2a a b b b a b b a b ⎡⎤+=-++≥⋅=⎢⎥--⎣⎦ 思路二:观察到表达式中分式的分母()2b a b -,可想到作和可以消去b ,可得()()2222b a b b a b a +-⎡⎤-≤=⎢⎥⎣⎦,从而244(2)a a b a b a +≥+-,设()24f a a a =+,可从函数角度求得最小值(利用导数),也可继续构造成乘积为定值:()24322a a f a a =++≥= 答案:3小炼有话说:(1)和式中含有分式,则在使用均值不等式时要关注分式分母的特点,并在变形的过程中倾向于各项乘积时能消去变量,从而利用均值不等式求解 (2)思路二体现了均值不等式的一个作用,即消元(3)在思路二中连续使用两次均值不等式,若能取得最值,则需要两次等号成立的条件不冲突。
所以多次使用均值不等式时要注意对等号成立条件的检验 例6:设二次函数()()24f x ax x c x R =-+∈的值域为[)0,+∞,则1919c a +++的最大值为__________思路:由二次函数的值域可判定0a >,且04ac ∆=⇒=,从而利用定值化简所求表达式:19918918511999913913a c a c c a ac a c a c a c +++++====++++++++++,则只需确定9a c +的范围即可求出1919c a +++的最值。
由均值不等式可得:912a c +≥,进而解出最值 解:二次函数()()24f x ax x c x R =-+∈的值域为[)0,+∞164040ac ac a ∆=-=⇒=⎧∴⎨>⎩()()()9911991891851191999913913a c a c a c c a c a ac a c a c a c ++++++++====++++++++++++912a c +≥=195611912135c a ∴+≤+=+++ 答案:65例7:已知,,x y z R +∈,则222xy yzx y zμ+=++的最大值是________ 思路:本题变量个数较多且不易消元,考虑利用均值不等式进行化简,要求得最值则需要分子与分母能够将变量消掉,观察分子为,xy yz 均含y ,故考虑将分母中的2y 拆分与22,x z 搭配,即22222221122xy yz xy yzx y z x y y z μ++==++⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭,而222211,22x y z y +≥=+≥=,所以μ≤=答案:2小炼有话说:本题在拆分2y 时还有一个细节,因为分子,xy yz 的系数相同,所以要想分子分母消去变量,则分母中,xy yz 也要相同,从而在拆分2y 的时候要平均地进行拆分(因为22,x z 系数也相同)。
所以利用均值不等式消元要善于调整系数,使之达到消去变量的目的。
例8:已知正实数,x y 满足3x y xy ++=,若对任意满足条件的,x y ,都有2()()10x y a x y +-++≥恒成立,则实数a 的取值范围为________思路:首先对恒成立不等式可进行参变分离,()1a x y x y≤+++。
进而只需求得()1x y x y+++的最小值。
将x y +视为一个整体,将3x y xy ++=中的xy 利用均值不等式换成x y +,然后解出x y +的范围再求最小值即可 解:()21()()10x y a x y a x y x y+-++≥⇒≤+++ ,0x y > 22x y xy +⎛⎫∴≤ ⎪⎝⎭232x y x y xy +⎛⎫∴++=≤ ⎪⎝⎭()()2412x y x y ∴++≤+ 解得:6x y +≥或2x y +≤-(舍)()min 1137666x y x y ⎡⎤∴++=+=⎢⎥+⎣⎦ (在6x y +=时取得) 376a ∴≤例9:已知1,0,0x y y x +=>≠,则121x x y ++的最小值是___________ 思路:观察到所求121x x y ++的两项中x 部分互为倒数,所以想到利用均值不等式构造乘积为定值,所以结合第二项的分母变形12x的分子。