计数原理ppt课件
计数原理(PPT)2-1
基础知识
一、分类计数原理 (加法原理) 完成一件事,有n类办法. 在第1类办法中有
m1种不同的方法,在第2类办法中有m2种不同的 方法,……,在第n类办法中有mn种不同的方法, 则完成这件事共有
N= m1+m2+… +mn 种不同的方法 二、分步计数原理 (乘法原理)
完成一件事,需要分成n个步骤。做第1步有m1 种不同的方法,做第2步有m2种不同的方法, ……, 做第n步有mn种不同的方法,则完成这件事共有
问题1 从温州到杭州旅游,可以乘火车,也可以乘汽车。
若一天中火车有3列,汽车有2辆。那么一天中乘坐这些 交通工具从温州到杭州有多少种不同的走法?
变式: 从温州到杭州旅游,可以乘火车,也可以乘汽
车,还可以乘飞机。若一天中火车有3列,汽车有2辆, 飞机有4架。那么一天中乘坐这些交通工具从温州到 杭州有多少种不同的走法?
N= m1×m2×… ×mnnt/8296.html 适合北方人加盟的面馆
2005年,银河系旋臂的结构被观测到。银河系按哈勃分类应该是一个巨大的棒旋星系SBc(旋臂宽松的棒旋星系),总质量是太阳质量的0.6万亿-3万亿倍,有大约1,000亿颗恒星。 从80年代开始,天文学家怀疑银河系是一个棒旋星系而不是一个普通的旋涡星系。2005年,斯必泽空间望远镜证实了这项怀疑,还确认了在银河核心的棒状结构比预期的还大。 银河的盘面估计直径为9.8万光年,太阳至银河中心的距离大约是2.6万光年,盘面在中心向外凸起。银河的中心有巨大的质量和紧密的结构,因此怀疑它有超大质量黑洞,因为已经有许多星系被相信有超大质量的黑洞在核心。 就像许多典型的星系一样,环绕银河系中心的天体,在轨道上的速度并不由与中心的距离和银河质量的分布来决定。在离开了核心凸起或是在外围,恒星的典型速度在210~240千米/秒之间。因此这些恒星绕行银河的周期只与轨道的长度有关。这与太阳系不同,在太阳系,距离不同就有不同的 轨道速度对应。 银河的棒状结构长约2.7万光年,以44±10度的角度横亘在太阳与银河中心之间,它主要由红色的恒星组成,大多是老年的恒星。被推论与观察到的银河旋臂结构的每一条旋臂都给予一个数字对应(像所有旋涡星系的旋臂),大约可以分出一百段。有四条主要的旋臂起源于银河的核心,包括: 2 and 8 - 三千秒差距臂和英仙座旋臂。3 and 7 - 矩尺座旋臂和天鹅座旋臂(与最近发现的延伸在一起 - 6)。4 and 10 -南十字座旋臂和盾牌座旋臂。 5 and 9 -船底座旋臂和人马座旋臂。还有两个小旋臂或分支,包括:11 -猎户座旋臂(包含太阳和太阳系在内- 12)。最新研究发现银河系可能只有两条主要旋臂——人马座旋臂和矩尺座旋臂,其绝大部分是气体,只有少量恒星点缀其中。 谷德带(本星团)是从猎户臂一端伸展出去的一条亮星集中的带,主要成员是B2~B5型星,也有一些O型星、弥漫星云和几个星协,最靠近的OB星协是天蝎-半人马星协,距离太阳大约400光年。在主要的旋臂外侧是外环或称为麒麟座环,是由天文学家布赖恩·颜尼(Brian Yanny)和韩第·周 ·纽柏格(Heidi Jo Newberg)提出的,是环绕在银河系外由恒星组成的环,其中包括在数十亿年前与其他星系作用诞生的恒星和气体。 银河的盘面被一个球状的银晕包围着,直径25万~40万光年。由于盘面上的气体和尘埃会吸收部分波长的电磁波,所以银晕的组成结构还不清楚。盘面(特别是旋臂)是恒星诞生的活跃区域,但是银晕中没有这些活动,疏散星团也主要出现于盘面上。
计数原理_1-课件
• [点评] 本题求的是“选垄方法”,而不是 “种植方法”,若求不同种植方法,则A种 第1垄,B种第8垄与A种第8垄,B种第1垄为 不同方法,应有不同种植方法2×6=12 种.
•
9、有时候读书是一种巧妙地避开思考 的方法 。2021/3/52021/3/5Fr iday, March 05, 2021
• 由分类加法计数原理知,可以组成的不同 的自然数为4+16+64+256=340(个).
• [点评] (1)在同一题目中涉及到这两个定 理时,必须搞清是先“分类”,还是先 “分步”,“分类”和“分步”的标准又 是什么.
• (2)该题是先分类,后分步,按自然数的位 数“分类”,按组成数的过程“分步”.
• [点评] 解两个计数原理的综合应用题时, 最容易出现不知道应用哪个原理来解题的 情况,其思维障碍在于没有区分该问题是 “分类”还是“分步”,突破方法在于认 真审题,明确“完成一件事”的含义.具 体应用时灵活性很大,要在做题过程中不 断体会和思考,基本原则是“化繁为 简”.
• 一、选择题
• 1.一个礼堂有4个门,若从一个门进,从 任一门出,共有不同走法
• [答案] 13 42
• 5.在一块并排10垄的田地上,选择2垄分 别种植A、B两种作物,每种作物种植一垄, 为有利于作物生长,要求A、B两种作物的 间隔不小于6垄,则不同的选垄方法有 ________种(结果用数字作答).
• [答案] 6
• [解析] A种第1垄,B可种8、9、10垄有3 种方法,A种第2垄,B可种9、10垄有2种 方法,A种第3垄,B只能种第10垄,∴共 有选垄方法3+2+1=6种.
• [解析] 第一类:“多面手”去参加英语 时,选出只会日语的一人即可,有2种选 法.
计数原理-完整版课件
• 7.某校高中部,高一有6个班,高二有7个班,高三有8个班,学 校利用星期六组织学生到某厂进行社会实践活动.
• 1.书架上有不同的语文书10本,不同的英语书7本,不同的数学 书5本,现从中任选一本阅读,不同的选法有( )
• A.22种 B.350种
• C.32种 D.20种
• 解析: 由分类加法计数原理得,不同的选法有10+7+5=22 种.
• 答案: A
• 2.一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的 坐法种数为( )
两通项相乘得:C6r x3r Ck10x-4k=C6r C1k0x3r -4k,
令
r 3
-
k 4
=0,得4r=3k,这样一来,(r,k)只有三组:
(0,0),(3,4),(6,8)满足要求.
故常数项为:1+C36C410+C66C810=4 246.
答案: 4 246
6.C16+C26+C36+C46+C56的值为________.
• A.3×3! B.3×(3!)3
• C.(3!)4 D.9!
• 解析: 把一家三口看作一个排列,然后再排列这3家,所以有 (3!)4种.
• 答案: C
• 3.(2013·山东卷)用0,1,…,9十个数字,可以组成有重复数字的 三位数的个数为( )
• A.243 B.252
• C.261 D.279
• 解析: 能够组成三位数的个数是9×10×10=900,能够组成无 重复数字的三位数的个数是9×9×8=648,故能够组成有重复数字的三 位数的个数是900-648=252.
计数原理课件
计数原理课件计数原理是数字电子技术的基础,它是数字电路设计的基础,也是数字系统设计的基础。
在数字系统中,计数器是一种非常重要的数字电路,它可以实现对输入脉冲信号进行计数,输出相应的计数结果。
本课件将介绍计数原理的基本概念、计数器的分类和应用,以及计数器的设计方法和实际应用案例。
一、计数原理的基本概念。
1. 二进制计数。
在数字系统中,二进制是最基本的计数方式。
二进制计数是以2为基数进行计数的方法,它只包含0和1两个数字。
在二进制计数中,每一位的权值都是2的幂次方,从右向左依次为1、2、4、8、16……。
2. 计数器。
计数器是一种特殊的触发器电路,它可以对输入的脉冲信号进行计数,输出相应的计数结果。
计数器可以实现多种计数方式,如二进制计数、BCD码计数等。
常见的计数器有同步计数器和异步计数器两种。
二、计数器的分类和应用。
1. 同步计数器。
同步计数器是由多个触发器构成的计数器,所有的触发器都由同一个时钟信号进行控制,因此它们的计数动作是同步进行的。
同步计数器可以实现复杂的计数序列,适用于对计数精度要求较高的场合。
2. 异步计数器。
异步计数器是由多个触发器构成的计数器,每个触发器都由前一级触发器的输出信号进行控制,因此它们的计数动作是异步进行的。
异步计数器结构简单,适用于对计数速度要求较高的场合。
三、计数器的设计方法。
1. 计数器的设计步骤。
计数器的设计通常包括确定计数器的类型、确定计数器的位数、确定计数器的计数序列等步骤。
在设计计数器时,需要根据具体的应用要求来选择合适的计数器类型和设计参数,以实现最佳的计数效果。
2. 计数器的设计实例。
以4位二进制同步计数器为例,介绍了计数器的具体设计步骤和设计方法。
通过实例分析,可以更好地理解计数器的设计原理和设计过程。
四、计数器的实际应用案例。
1. 计时器。
计时器是一种常见的计数器应用,它可以实现对时间的精确计数和显示。
在电子钟、计时器、定时器等设备中,都广泛应用了计数器技术。
计数原理精PPT课件
8
创设情境 兴趣导入
从唐华、张凤、薛贵3个候选人中, 选出2个人分别担任班长和团支部书记,会 有多少种选举结果呢?
完成哪件事? 是否可以“一步到位”不能
解决这个问题需要分步骤进行研究.第一步选 出班长,第二步选出团支部书记.每一步并不 能完成选举工作,只有各步骤都完成,才能完 成选举这件事.
10.1 w精计ww选数.1pp原ppt.c理to课m 件2021
3
练练习习2 2
A
B
图1
如图1,该电路从A到B共有多 少种方法使一盏灯发光?
完成什么事? 3种
4
能否一步到位?
10.1 w精计ww选数.1pp原ppt.c理to课m 件2021
A
B
图1
第一种方法
10.1 w精计ww选数.1pp原ppt.c理to课m 件2021
数学4本,物理3本,化学2本,他欲带参考书到图
书馆看书:
(1)若从这些参考书中带一本去图书馆,有多少
种不同的选法? 5+4+3+2=14 (2)若外语、数学、物理和化学参考书各带一本,
有多少种不同的选法?
15
5 4 3 2=120 × × ×
w精ww选.1ppppt.cto课m 件2021
1 2个与3个的问题 2 石家庄可以安装多少部有线电话?
5*3=15 送给某人,共有 --------------------
种不
同的选法
10.1 w精计ww选数.1pp原ppt.c理to课m 件2021
14
运用知识 强化练习
1.两个袋子中分别装有10个红色球和6个白色球. 从中取出一个红色球和一个白色球,共有多少种 方法?
计数原理全部课件集PPT优秀课件(排列等14份) 7
例5、某医院有内科医生12名,外科医生8名,现要 派5人参加支边医疗队,至少要有1名内科医生和1名 外科医生Байду номын сангаас加,有多少种选法?
例6:(1)平面内有9个点,其中4个点在一条直线 上,此外没有3个点在一条直线上,过这9个点可确 定多少条直线?可以作多少个三角形?
例7、8双互不相同的鞋子混装在一只口袋中,从中任 意取出4只,试求满足如下条件各有多少种情况: (1)4只鞋子恰有两双; (2) 4只鞋子没有成双的; (3) 4只鞋子只有一双。
1.2.2组合(二)
复习巩固:
1、组合定义:
一般地,从n个不同元素中取出m(m≤n)个元素并成 一组,叫做从n个不同元素中取出m个元素的一个组合.
2、组合数: 从n个不同元素中取出m(m≤n)个元素的所有组合的个 数,叫做从n个不同元素中取出m个元素的组合数,用符号 C nm 表示.
3、组合数公式:
例4:在100件产品中有98件合格品,2件次品。产品 检验时,从100件产品中任意抽出3件。 (1)一共有多少种不同的抽法?
(2)抽出的3件中恰好有1件是次品的抽法有多少种?
(3)抽出的3件中至少有1件是次品的抽法有多少种?
(4)抽出的3件中至多有一件是次品的抽法有多少种?
说明:“至少”“至多”的问题,通常用分类 法或间接法求解。
3 2 3 2 C . CC CC 8 7 7 8
3 2 1 DC . 8 C7 C11
4、从7人中选出3人分别担任学习委员、宣传委员、体育委员, 则甲、乙两人不都入选的不同选法种数共有( D)
A .C A
2 5
3 3
B .2 C A
3 5
3 3
C .A
3 5
《计数原理》ppt
实例与练习:
5、某校电子八班有男生 26人,女生 20人,若要选男、女生各1人作为学生代 表参加学代会,共有多少种选法?
解:20x26=520(种)
6、两个袋子中分别装有10个红色球 和6个白色球。从中取出一个红色球和一 个白色球,共有多少种方法?
解:10x6=60(种)
分析: 第一步, 由长沙去郴州有3种方法,
第二步, 由郴州去广州有2种方法;
火车2 火车3 火车3
汽车2 汽车1 汽车2
所以 从长沙经郴州到广州共有3 ×2 = 6 种不同的方法。
[ 延伸]:如果小李回家的时候需要转一次车后再
乘飞机,飞机有两个航班(如图),则共有多少种不 同的走法?
重庆
火车1 火车2 火车 3
分析: 从重庆到西昌有2类方法,
火车1 火车2
Ⅰ.乘火车,3种方法;
火车 3
Ⅱ.乘汽车,2种方法; 重庆
汽车1
西昌
汽车2
所以 从重庆到西昌共有 3 + 2 = 5 种不同方法。
[延伸]:
如果重庆到西昌,除了3班火车2班汽车外还有 2班飞机,那么王先生有多少种不同的走法呢?
共有: 3+2+2=7 种
3×3×3×3 =34 = 81
作业:
第122页,习题, 第1、2、4、5题
例2:体育福利彩票的中奖号码有7位数码,每 位数若是0~9这十个数字中任一个,则每次摇 奖产生的号码有多少种可能?
第一位 第二位 第三位 第四位 第五位 第六位 第七位
10 × 10 ×10 × 10 × 10 × 10 × 10 =107
法中有 mn 种不同的方法,那么 mn 种不同的方法,那么完成
《基本计数原理》课件
分布乘法计数原理的公式为
$n(A) = n(A_1) times n(A_2 | A_1) times n(A_3 | A_1, A_2) times ldots$
分布乘法计数原理的实例
假设有一个班级有30名学生,其中10名是男生,20名是女生。现在要选择一个 由3名学生组成的代表队,要求其中必须有1名男生和2名女生,问有多少种不同 的选择方式?
分类加法计数原理的数学表达式
$M = |A_1| + |A_2| + ldots + |A_n|$,其中$M$表示完成这件事情的总方法数 ,$|A_i|$表示第$i$个分类的方法数。
分类加法计数原理的实例
分类加法计数原理在排列组合中的应用
在排列组合中,分类加法计数原理常用于计算不同元素分组的方法数。例如,计算从$n$个不同元素中取出$k$ 个元素(不考虑顺序)的分组方法数,可以按照元素的性质进行分类,然后利用分类加法计数原理计算。
统计学
在统计学中,计数原理用于描述和预测数据 分布。
PART 02
分类加法计数原理
分类加法计数原理的概述
分类加法计数原理定义
对于具有两个或多个互斥的分类$A_1, A_2, ldots, A_n$,若完成一件事情,则 该事情可以由$A_1, A_2, ldots, A_n$中的某一类单独完成。因此,完成这件事 情的方法数等于各个分类方法数的和,即$n$个互斥的分类方法数之和。
随机试验
计数原理可以用于分析随机试验中的结果数量,例如在抛硬币试验中,可以用计数原理计算出现正面 的次数。
在组合数学中的应用
排列组合
计数原理是组合数学中的基本原理,可 以用于计算排列和组合的数量。例如, 通过计数原理可以计算从n个不同元素中 取出r个元素的组合数。
高二数学计数原理ppt课件.ppt
分析:问题相当于把个30相同球放入6个不同盒子(盒
子不能空的)有几种放法?这类问题可用“隔板法”处
理. 解:采用“隔板法”
得:C259
4095
练习: 1、将8个学生干部的培训指标分配给5个不同的班级, 每班至少分到1个名额,共有多少种不同的分配方法?
2、从一楼到二楼的楼梯有17级,上楼时可以一步走 一级,也可以一步走两级,若要求11步走完,则有 多少种不同的走法?
加法原理和乘法原理
问题 1. 从甲地到乙地,可以乘火车,也可以乘汽车,还 可以乘轮船。一天中,火车有4 班, 汽车有2班,轮船有3 班。那么一天中乘坐这些交通工具从甲地到乙地共有多 少种不同的走法?
分析: 从甲地到乙地有3类方法, 第一类方法, 乘火车,有4种方法; 第二类方法, 乘汽车,有2种方法; 第三类方法, 乘轮船, 有3种方法;
至少教一个班,分配方案共有多少种?
C6 1C52C33+C4 6CA 2 1C 2211+C62C A4 32 3C22A33
多个分给少个时,采用先分组 再分配的策略
练习: (1)今有10件不同奖品,从中选6件分成三份, 二份各1 件,另一份4件, 有多少种分法?
(2) 今有10件不同奖品,从中选6件分给甲乙丙三人,每 人二件有多少种分法?
解: (1) C 1 6 01 2C 6 4C 2 1C 1 13150 (2) C 1 6 0C 6 2C 4 2C 2 218900
分配问题
问题1:3个小球放进两个盒子,每 个盒子至少一个,有多少种放法?
C
2 3
C
1 1
A22
问题2:4本书分给两个同学,每人 至少一本,有多少种放法?
C43C11+
计数原理说课ppt课件
根据分类计数原理, 从A到B共有N=3+1+4=8条 不同的线路可通电。
最新版整理ppt
1 创设学习情景,让学生走进数学,凸显职高数学有效教学的“大众性”. 生活情景,正视差异,促进数学意识的提高.
2 活化学习内容,让学生爱上数学,凸显职高数学有效教学的“趣味性”.
动画形式,探索新知,促进思维过程的形成. 3 提供实践空间,让学生会用数学,凸显职高数学有效教学的“应用性”
[设计意图]: 动画激发兴趣,培养学生提炼数学信息的能力。
学生在情境中发现问题、引起思考、自我建构。
13
最新版整理ppt
创设情境 动脑思考 模拟场景 理论升华 运用知识 目标检测 兴趣导入 探索新知 解决问题 整体建构 专业实践 反思评价
(约10分钟)
师生
引领 思考 分析 概括
播放 观察 图片 提炼
体验情景法
迁移法
教法 学法
总结提升法
引导启发式
实物演示教学
实践探究法题·探究·发展”模式
10
最新版整理ppt
5分钟
目标检测
7分钟 专业实践
3分钟 整体建构
16分钟 解决问题
10分钟 探索新知
4分钟
创设情境
45分钟
教学流程
发展提升 深化原理 提炼方法 体验原理 形成原理 提出问题
竞赛抢答方式, 调动学习热情。
18
最新版整理ppt
创设情境 动脑思考 模拟场景 理论升华 运用知识 目标检测 兴趣导入 探索新知 解决问题 整体建构 专业实践 反思评价
(约3分钟)
师生
提出 系统 问题 梳理
分类完成 加法原理 互相独立 不重不漏
计数问题? 如何解决计数问题?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分析: 从重庆到西昌有2类方法,
火车1 火车2
Ⅰ.乘火车,3种方法;
火车 3
Ⅱ.乘汽车,2种方法; 重庆
汽车1
ቤተ መጻሕፍቲ ባይዱ
西昌
汽车2
所以 从重庆到西昌共有 3 + 2 = 5 种不同方法。
3
[延伸]:
如果重庆到西昌,除了3班火车2班汽车外还有 2班飞机,那么王先生有多少种不同的走法呢?
共有: 3+2+2=7 种
法,在第1类办法中有 m1 种不 分成 n 步,做第1步有 m1 种不 同的方法,在第2类办法中有 m2 同的方法,做第2步有 m2 种不 种不同的方法,…,在第 n 类办 同的方法,…,做第 n 步有
法中有 mn 种不同的方法,那么 mn 种不同的方法,那么完成
完成这件事共有:
这件事共有:
种不N同的 方m1法.m2 mn
一般地,若完成一件事,需要分成 n 步,
做第1步有m1种不同的方法,做第2步有 m2种不
同的方法,…,做第 n步有 mn 种不同的方法, 那么完成这件事共有:
N m1 m2 mn 种不同的方法.
注意:只有每步都完成,事情才能完成
9
分类计数原理(加法原理)
分步计数原理 (乘法原理)
一般地,若完成一件事,有 n 类办 一般地,若完成一件事,需要
(2)从书架的第1、2、3层各取1本书,有多少种不 同的取法? 4×3×2=24
(3)从书架上取两本不同学科的书,有多少种不同的取
法
4×3+4×2+3×2=26
12
例2:体育福利彩票的中奖号码有7位数码,每 位数若是0~9这十个数字中任一个,则每次摇 奖产生的号码有多少种可能?
第一位 第二位 第三位 第四位 第五位 第六位 第七位
小结
数学 源于生活
都是有关做一件事情的 不同方法的种数的问题。
种不同的方法.
注意:每类方法都能独立完成这件事,不重复,不遗漏
5
问题2: 在重庆工 作的小李欲回广州 老家过年,受雪灾 影响重庆到广州的 火车全部停运.于 是他决定先乘火车 到柳州,然后第二 天再乘汽车到广州 .一天中,火车有 3班,汽车有2班 ,问小李一共有多 少种走法?
6
问题2: 在重庆读书的小李欲回老家广州过年,受雪灾影
分类计数原理与分步计数原理
1
问题1: 重庆的
王先生想到西昌 现场观看嫦娥一 号卫星的发射, 从重庆到西昌可 以乘坐火车或者 汽车,一天中, 火车有3班,汽 车有2班,问从 重庆到西昌共有 多少种不同的走 法?
2
问题1: 重庆的王先生想到西昌现场观看嫦娥
一号卫星的发射,从重庆到西昌可以乘坐火 车或者汽车,一天中,火车有3班,汽车有 2班,问从重庆到西昌共有多少种不同的走 法.
15
类似问题练习:
1. 有三封信需要寄出,现在有4个邮筒,请问有多
少种投递方法?
43
2. 学校创建语文、数学、英语3个兴趣小组,有4位同
学想要加入,但每人只能参加一科,请问有多少种报名
方法?
34
3. 某宾馆来了3个人投宿,此时宾馆还有4个单
间,请问有多少种安排方法? 4×3×2=24
16
分类计数原理与 分步计数原理
第二步, 选一名女三好学生,有 m2 = 4 种方法;
所以, 根据分步计数原理, 得到不同选法种数共
有 N = 5 × 4 = 20 种。
11
练习
1题 书架的第1层放有4本不同的语文书,第2层放
有3本不同的数学书,第3层放有2本不同的英语 书;
(1)从书架上任取一本书,有多少种取法?
4+3+2=9
7
[ 延伸]:如果小李回家的时候需要转一次车后再
乘飞机(如图),则共有多少种不同的走法?
重庆
火车1
汽车1
飞机1
火车2 火车 3
A地
汽车2
B地 飞机2
广州
共有 :3×2×2=12种
[探究] :如果完成一件事情需要 n 步,每一步都有若
干种不同方法,那么应当如何计数呢?
8
分步计数原理(又叫:乘法原理)
[探究]:
如果完成一件事情有n类不同的办法,在每
一类中都有若干种不同方法,那么应当如何计 数呢?
4
分类计数原理 (又叫:加法原理)
一般地,若完成一件事,有 n 类办法,在第
1类办法中有m1 种不同的方法,在第2类办法中 有m2 种不同的方法,…,在第 n 类办法中有 mn
种不同的方法,那么完成这件事共有: N m1 m2 mn
会,有多少种不同的选法?
分析:(1)完成从三好学生中任选一人去领奖,需分2类: 第一类,选一名男三好学生,有 5 种方法;
第二类,选一名女三好学生,有 4 种方法;
所以,根据分类计数原理,共有N =5 + 4 = 9种;
(2) 完成从三好学生中任选男、女各一人去参加座谈
会, 需分2步完成,
第一步,选一名男三好学生,有 m1 = 5 种方法;
响重庆到广州的火车全部停运.于是他决定先乘火车到柳 州,然后第二天再乘汽车到广州.一天中,火车有3班, 汽车有2班,问小李一共有多少种走法?
火车1 柳州 汽车1
重庆
火车2 火车 3
汽车2 广州
分析: 第一步, 由重庆去柳州有3种方法, 第二步, 由柳州去广州有2种方法;
所以 从重庆经柳州到广州共有3 ×2 = 6 种不同的方法。
10 × 10 ×10 × 10 × 10 × 10 × 10 =107
变1:这十个数字一共可以组成多少个7位数?
百万 十万
万
千
百
十
个
9 × 10 × 10× 10× 10 × 10 ×10 = 9×106
13
例2:体育福利彩票的中奖号码有7位数码,每位数若是 0~9这十个数字中任一个,则产生中奖号码所有可能的 种数是多少?
种不同N的方m1法.m2 mn
区别
做一件事情可以分为几类办法,每一类都可以独立完成这 件事情
做一件事情要分为几步,每一步都完成了才能完成这件 事情
10
例题1. 某班级有男三好学生5人,女三好学生4人。 (1)从中任选一人去领奖, 有多少种不同的选法? (2) 从中任选男、女三好学生各一人去参加座谈
变2: 0~9这十个数字可组成多少数字不重复的 七位数?
百万
十万 万 千
百
十
个
9 × 9 × 8× 7× 6 × 5 × 4=544320
14
例3
第29届奥运会在中国北京举行,在乒乓球比赛中,中国队
的马琳、王皓、王励勤包揽了男子单打的前三名。有4
位女粉丝前去献花,请问可能出现多少种献花情况。
3×3×3×3 =34 = 81