数字图像处理~图像复原

合集下载

数字图像处理图像复原技术

数字图像处理图像复原技术

MATLAB几何失真算法
f=imread('C:\Users\Alice Kong\Desktop\Blair.jpeg.'); figure(1);imshow(f); basepoints=[1 1;1 200;1 512;512 1;512 200;512 512]; inputpoints=[1 150;1 250;1 512;512 100;512 200;512 512]; tform=cp2tform(inputpoints,basepoi nts,'projective'); gp=imtransform(f,tform,'XData',[1 512],'YData',[-150 512]); figure(2);imshow(gp);
手动选择连接点
1
原灰度图
2
几何失真后
3
配准复原后
维纳滤波
2
维纳滤波可用 MATLAB中的 deconvwnr函数实 现。
1
维纳滤波综合了退化函数和噪声统计特性两方面 进行复原处理。维纳滤波是寻找一个滤波器,使得复原 后图像与原始图像的均方误差最小。因此,维纳滤波器 通常又称为最小均方误差滤波器。
生成运动模糊图像
维纳滤波的MATLAB程序
noise=imnoise(zeros(size(A)),'gaussian',0,1e-7); B=imnoise(MF,'gaussian',0,1e-7); figure(2); imshow(B); figure(3); imshow(deconvwnr(B,PSF),[]); noise=imnoise(zeros(size(A)),'gaussian',0,1e-7);

数字媒体下的图像修复与复原技术

数字媒体下的图像修复与复原技术

数字媒体下的图像修复与复原技术数字媒体技术的发展带来了我们在生活中各种便利,其中最为突出的就是数字图像的广泛应用。

但是,每个人都知道数字图像处理是一门复杂的学科,其中最基础的就是图像修复与复原技术,本篇文章将讨论数字媒体下的图像修复与复原技术领域。

1. 什么是图像修复与复原技术图像修复与复原技术是一项旨在消除图像中噪声、去除缺陷、恢复丢失的信息和恢复美观度的技术,其意义非常重大,是现实生活中数字图像处理领域的一个重要子领域。

它主要由两种方法来实现,一种是图像修复,另一种是图像复原。

图像修复指的是降噪、消除部分缺陷和修补损坏部分等,主要通过一些数学算法对图像进行修复,从而达到除噪、减模糊等一系列的图像修复技术。

而图像复原的目的是在尽可能不破坏原有的信息的前提下,对已失去信息,降低了分辨率的图像进行纠正,恢复出较优的清晰度和细节等特征。

2. 数字媒体下图像修复技术随着数字媒体技术的发展,各种图像处理软件也应运而生,图像修复的一系列数字算法也不断涌现。

目前,数字媒体技术已经成为实现图像修复技术的主要手段。

可以说,在数字媒体下,图像修复和复原技术的应用范围更加广泛,在各行各业都有不同程度的应用。

目前,图像修复方面主要采用的技术有:基于复制法的修补算法、基于边缘信息的修复算法、基于局部纹理的修复算法、基于全局优化的修复算法等。

特别是在数字艺术领域,如数字合成、数字雕塑等方面,图像修复技术有着广泛的应用。

通过图像的去噪、变形、合成等技术,不仅能够恢复出清晰的图像,还能够创造出惊人的视觉效果,使人眼花缭乱。

3. 数字媒体下图像复原技术数字媒体下图像复原技术的发展走向更加精细化,主要应用于科学、文化遗产、卫星图片、草图和纪实摄影等方面。

其主要原理是利用图像特征和图像域提取方法,以及评估算法和估计方法,在更小的误差率下,实现图像单调和噪声改善和估计。

在图像复原技术中,噪声估计和去噪是最重要的关键点,目前有多种数字去噪算法可供使用。

数字图像处理技术在图像复原中的应用效果评估

数字图像处理技术在图像复原中的应用效果评估

数字图像处理技术在图像复原中的应用效果评估数字图像处理技术已经广泛应用于图像复原领域,通过利用图像处理算法和技术,对损坏、模糊或降质的图像进行修复和恢复。

本文将探讨数字图像处理技术在图像复原中的应用效果评估。

图像复原是一项复杂的任务,旨在从损坏或降质的图像中恢复原始信息。

在数字图像处理中,有许多方法可以用于图像复原,例如去噪、增强、去模糊等。

然而,对于不同类型和程度的图像损坏,不同的方法可能会产生不同的效果。

因此,评估图像复原方法的效果非常重要。

为了评估图像复原方法的效果,可以使用多种客观和主观的评估指标。

客观评估指标是基于数学和统计分析的指标,可以量化图像恢复质量的好坏。

常用的客观评估指标包括均方误差(MSE)、峰值信噪比(PSNR)和结构相似性指数(SSIM)。

MSE指标通过计算原始图像和复原图像之间像素间的误差平方和来评估图像复原效果,MSE值越小表示复原效果越好。

PSNR指标通过测量原始图像和复原图像之间的峰值信噪比来评估图像复原质量,PSNR值越大表示复原效果越好。

SSIM指标通过比较图像的亮度、对比度和结构信息来评估图像复原质量,SSIM值越接近1表示复原效果越好。

除了客观评估指标外,主观评估也是评估图像复原效果的重要方法。

主观评估主要通过人工观察和主观判断来评估图像复原的视觉质量。

常见的主观评估方法包括主观质量评估(SME)和主观双向比较(DSM)。

在主观质量评估中,评价者通过观察原始图像和复原图像来对复原质量进行评估。

在主观双向比较中,评价者会对不同复原结果进行直接比较,以确定复原质量的优劣。

主观评估的优势在于能够考虑人眼对图像的感知,但主观评估受到主观因素的影响,评估结果可能存在一定的主观性。

除了评估方法,评估数据的选择和准备也对图像复原效果评估的准确性和可靠性起着重要的作用。

对于不同类型和程度的图像损坏,应选择适合的评估数据集进行评估。

评估数据集应包含多样化的图像,包括不同场景、不同角度和不同光照条件下的图像,以模拟实际应用场景中的复原需求。

图像复原的名词解释

图像复原的名词解释

图像复原的名词解释图像复原是数字图像处理领域中的一个重要概念,旨在通过科学的技术手段恢复或改善被损坏的图像质量。

它在许多领域中具有广泛的应用,如医学影像、遥感图像、文化遗产保护等。

图像复原的基本目标是恢复图像本来的清晰度、细节和真实性,使其更好地适应观察者需求和实际应用。

图像在采集、传输、存储等过程中往往经历了噪声、模糊、失真等问题,使得图像质量下降,难以满足人们对图像的需求。

图像复原即通过信号处理的方法,利用图像本身的特征和统计学原理来消除这些问题,使得观察到的图像更接近真实。

图像复原的主要技术手段包括滤波、去噪、增强和复原等。

其中,滤波是最常见的一种方法,其基本思想是通过选择性地传递或抑制不同频率的信号成分来实现图像质量的改善。

常见的滤波方法有线性滤波、非线性滤波等。

线性滤波适用于处理噪声较小、失真较轻的图像,通过卷积运算对图像进行平滑或边缘增强;非线性滤波则可以更好地适用于噪声较强、失真较严重的图像,其基本原理是根据图像统计特性对像素值进行调整,以实现去噪和增强效果。

图像去噪是图像复原中的一个重要环节,旨在消除图像中的噪声干扰,使得图像清晰可见。

噪声是由于图像捕捉、传输等过程中引入的随机干扰,使图像变得模糊不清、细节不明显。

图像去噪技术主要有空域方法和频域方法。

空域方法一般通过滑动窗口或邻域平均来对图像进行平滑处理,从而消除噪声。

频域方法则是将图像转换到频域进行处理,如利用傅里叶变换或小波变换等,通过滤波、阈值处理等操作实现图像的去噪。

图像增强是另一个重要的图像复原技术,其目标在于通过调整图像的对比度、亮度、颜色饱和度等参数,提高图像的视觉效果和观感。

图像增强可以分为直方图增强、空域增强和频域增强等方法。

直方图增强是根据图像的灰度直方图进行操作,通过拉伸直方图的动态范围,改变图像灰度分布来改善图像质量。

空域增强则是直接在像素级别上进行操作,如对比度拉伸、亮度调整、局部增强等。

而频域增强则是将图像转换到频域进行处理,如滤波、锐化等操作,来增强图像的视觉效果。

数字图像处理实验九、图像复原

数字图像处理实验九、图像复原

fs(x,y):
FFt
Fs(u,v)
Gs(u,v)
Hs(u,v)=
Fs(u,v)
2.数学建模法 大气湍流的退化函数:
H (u, v) e
k ( n2 v 2 )5 / 6
匀速运动的退化函数:
T H ( u, v) sin[ ( ua vb)]e j ( ua vb ) ( ua vb)
三、退化函数引起图像退化的复原方法 1.逆滤波法: 无噪声时: F(u,v)= G(u,v) H(u,v) N(u,v) H(u,v)
有噪声时: F(u,v)= F(u,v)+ 问
题:在H(u,v)趋于0处,噪声会被急剧放大。
解决办法:增加一个低通滤波器。
1 | H (u, v) |2 ]G(u, v) 2.维纳滤波法: F (u, v) [ 2 H (u, v) | H (u, v) | k
调入原始图像 fxy
计算退化图像的频谱 Guv
K=0.01;%特殊常数,一般要用交互的方式确定 Fuvyp=(Huv.*conj(Huv)).*Guv./(Huv.*(Huv.*conj(Huv)+K)); 计算原始图像频谱 计算噪声的频谱 Nuv Rtuxy=abs(ifft2(Fuvyp)); Fuv=fft2(fxy) subplot(2,2,2),imshow(Rtuxy,[]),title('K=0.01时维纳滤波的结果') 还
生 成 退 化 图 像
原 退 Fuvyp=(Huv.*conj(Huv)).*Guv./(Huv.*(Huv.*conj(Huv)+K)); 化 Rtuxy=abs(ifft2(Fuvyp)); 计算 复原图像的频谱Fuvyp 图 生产退化图像频谱 subplot(2,2,3),imshow(Rtuxy,[]),title('K=0.005时维纳滤波的结果') Guv=Huv· Fuv 像

数字图像处理—基于Python 第12讲 图像复原-复原算法

数字图像处理—基于Python 第12讲 图像复原-复原算法
squares filter)
9
估计点扩散函数
如果退化函数已知,则图像复原将变得较 为简单
估计psf 函数的基本方法有: – 观察法 – 实验法 – 建模法
10
估计点扩散函数
–观察法
取一个信号强、噪声小的子图像g (x,y) ,然后用一系列的 滤波器处理这个子图像,得到较好的效果图像f (x,y). 那么, 退化函数可以通过H (u,v)= G (u,v)/ F (u,v)得到
第5章 图像复原
图像复原算法
2
回顾
什么是图像复原 针对噪声的复原
− 噪声模型 − 空域滤波去噪方法 − 频域去噪方法
针对模糊等退化的复原
− 线性移不变退化模型 − 无约束图像复原 − 有约束图像复原
针对畸变的图像复原
− 几何变换 − 灰度插值 − 几何校正
3
本课内容
线性移不变退化模型 估计点扩散函数 图像复原算法
g(x, y)
T 0
f
x x0(t), y
y0(t)
dt
– x 0 (t) 和 y 0 (t) 随时间变化的移动距离 –T 是按下快门的时长
14
估计点扩散函数
G(u, v) g(x, y)e j2 (uxvy)dxdy
T 0
f
(x x0(t),
y
y0 (t))dte j2 (uxvy)dxdy
18
本课内容
线性移不变退化模型 估计点扩散函数 图像复原算法
无约束还原: − 逆滤波(Inverse filter) − 伪逆滤波(Pseudo inverse filtering) 有约束还原 − 维纳滤波(Wiener filter) − 受限最小二乘滤波(Constrained least

(完整word版)数字图像处理实验 ——图像恢复

(完整word版)数字图像处理实验                            ——图像恢复

数字图像处理实验——图像恢复班级:信息10—1姓名:张慧学号:36实验四、图像复原一、实验目的1了解图像退化原因与复原技术分类化的数学模型;2熟悉图像复原的经典与现代方法;3热练掌握图像复原的应用;4、通过本实验掌握利用MATLAB编程实现数字图像的图像复原。

二、实验原理:图像复原处理是建立在图像退化的数学模型基础上的,这个退化数学模型能够反映图像退化的原因。

图像的退化过程可以理解为施加于原图像上的运算和噪声两者联合作用的结果,图像退化模型如图1所示,可以表示为:g ( x, y ) H [ f ( x, y )] n( x, y ) f ( x, y )h( x, y ) n( x, y) (1)图1 图像退化模型(1)在测试图像上产生高斯噪声lena图-需能指定均值和方差;并用滤波器(自选)恢复图像;噪声是最常见的退化因素之一,也是图像恢复中重点研究的内容,图像中的噪声可定义为图像中不希望有的部分。

噪声是一种随机过程,它的波形和瞬时振幅以及相位都随时间无规则变化,因此无法精确测量,所以不能当做具体的处理对象,而只能用概率统计的理论和方法进行分析和处理。

本文中研究高斯噪声对图像的影响及其去噪过程。

①高斯噪声的产生:所谓高斯噪声是指它的概率密度函数服从高斯分布(即正态分布)的一类噪声。

一个高斯随机变量z的PDF可表示为:P(z)()22x pz u2σ-⎡⎤-⎢⎥⎣⎦(2)其中z代表灰度,u是z的均值,σ是z的标准差。

高斯噪声的灰度值多集中在均值附近。

图2 高斯函数可以通过不同的算法用matlab 来产生高斯噪声。

②高斯噪声对信号的影响噪声影响图像处理的输入、采集、处理的各个环节以及输出结果的全过程,在图像中加高斯噪声通常会使图像变得模糊并且会出现细小的斑点,使图像变得不清晰。

③去除高斯噪声的一些方法去除高斯噪声的方法有直方图变换,低通滤波,高通滤波,逆滤波,维纳滤波,中值滤波等。

本文应用高斯平滑滤波进行去噪处理。

《数字图像处理A》图像复原与重建实验

《数字图像处理A》图像复原与重建实验

《数字图像处理A》图像复原与重建实验一、实验目的图像的降噪与复原既在日常生活中拥有广泛的应用场景,又是数字图像处理领域的经典应用。

本实验首先对特定图像进行添加噪声和模糊,然后再使用经典的算法对噪声退化图像进行复原和重建。

通过该实验,进一步理解图像降噪和复原的基本原理,巩固图像处理基本操作的同时,提升对图像降噪和复原的理解和掌握。

二、实验内容1.利用matlab实现对特定图像添加高斯噪声和运动模糊。

2.使用逆滤波对退化图像进行处理。

3.使用常数比进行维纳滤波。

4.使用自相关函数进行维纳滤波。

三、实验原理1. 图像退化模型在一般情况下图像的退化过程可建模为一个退化函数和一个噪声项,对一幅图像f(x,y)进行处理,产生退化图像g(x,y),如下所示,其中η(x,y)是噪声项,H则是源图像的退化函数。

g(x,y)=H[f(x,y)]+η(x,y)2. 图像的噪声模型图像的噪声模型分为空间域噪声模型(通过噪声的概率密度函数对噪声进行描述)和频率域噪声模型(由噪声的傅里叶性质进行描述)两种类型。

在本实验中,我们采用的是空间噪声的经典噪声模型高斯噪声,高斯噪声模型的概率分布函数如下所示,其中σ是标准差,μ是期望。

p(z)=√2πσ−(x−μ)22σ2⁄3. 图像模糊图像模糊是一种常见的主要的图像退化过程。

场景和传感器两者导致的模糊可以通过空间域和频率域低通滤波器来建模。

而另一种常见的退化模型是图像获取时传感器和场景之间的均匀线性运动生成的图像模糊。

本实验的模糊模型采用的则是运动模糊,该模糊可以通过工具箱函数fspecial进行建模。

1.带噪声退化图像的复原在图像复原中经典的方法包括两种,分别是直接逆滤波和维纳滤波。

其中,直接逆滤波的复原模型如下所示,其中G(u,v)表示退化图像的傅里叶变换,H(u,v)则表示退化函数。

除了直接逆滤波之外,更为常见的是使用维纳滤波对退化图像进行复原,复原模型如教材100页4.7节所示。

数字图像处理第5章图像复原

数字图像处理第5章图像复原

5.3 有约束复原
5.3.1 5.3.2 5.3.3 5.3.4 有约束的最小二乘方图像复原 维纳滤波方法 有约束最小平方滤波 去除由匀速运动引起的模糊
5.3.1 有约束的最小二乘方图像复原
有约束图像复原技术是指除了要求了解关于退化系统的传 递函数之外,还需要知道某些噪声的统计特性或噪声与图 像的某些相关情况。根据所了解的噪声的先验知识的不同, 采用不同的约束ห้องสมุดไป่ตู้件,从而得到不同的图像复原技术。最 常见的是有约束的最小二乘方图像复原技术。 在最小二乘方复原处理中,有时为了在数学上更容易处理, 常常附加某种约束条件。例如,可以令Q为f的线性算子, 那么,最小二乘方复原问题可看成是使形式为||Qf||2的函 数,服从约束条件 的最小化问题。
第5章 图像复原 本章重点: 图像退化的一般模型 非约束复原方法 约束复原方法 非线性复原方法
第5章 图像复原
5.1 5.2 5.3 5.4 5.5 5.6 基本概念 非约束复原 有约束复原 非线性复原方法 几种其他图像复原技术 小结
5.1 基本概念
5.1.1 5.1.2 5.1.3 5.1.4 图像退化一般模型 成像系统的基本定义 连续函数的退化模型 离散函数的退化模型
5.2.2 逆滤波器方法
逆滤波法复原的基本原理:
H(u,v)可以理解为成像系统的“滤波”传递函数,在频域中系统的传递 函数与原图像信号相乘实现“正向滤波”,这里,G(u,v)除以H(u,v)起到 了“反向滤波”的作用,这意味着,如果已知退化图像的傅立叶变换 和“滤波”传递函数,则可以求得原始图像的傅立叶变换,经反傅立 叶变换就可求得原始图像f(x,y) 。
5.2.1 非约束复原的代数方法
在并不了解噪声项n的情况下,希望找到一个f,使得对在 最小乘方意义上来说近似于g,也就是说,希望找到一个f, 使得:

数字图像处理方法第五章图像复原和重建

数字图像处理方法第五章图像复原和重建

大气
图像
流的
运动
扰动
造成
效应 的模 数字图像处理方法第五章图像复原和重


背景知识
几何畸变
数字图像处理方法第五章图像复原和重 建
背景知识
运动模糊
数字图像处理方法第五章图像复原和重 建
背景知识
图像复原是试图利用退化过 程的先验知识去除已退化的 图像的退化因素,尽可能恢 复图像本来面目的技术。
g ex ,y fe(m ,n )h e(x m ,y n )ex ,y
m 0 n 0
向量矩阵形式为
gHfn
其中,H为MN×MN的矩阵。
数字图像处理方法第五章图像复原和重 建
主要内容
背景知识 图像退化/复原过程的模型 代数恢复 频域恢复 几何校正
数字图像处理方法第五章图像复原和重 建
数字图像处理方法第五章图像复原和重 建
图像退化/复原过程的模型
图像复原的关键在于建立图像退化模型, 反映图像退化原因 通常将成像系统作为线性位移不变系统,点扩散函数用h (x,y)表示,获取退化图像为g(x,y),建立系统退
化模型如下:
退化函数 H
复原滤波
F(u) f(x)ej2uxdx
退化
复原
λ为常数系数(拉格朗日系数),γ为1/ λ 指定不同Q,得到不同复原图像
数字图像处理方法第五章图像复原和重 建
约束最小二乘复原
能量约束 Q=I
I表示单位矩阵
解得最佳复原解为
fˆ(H'HI)1H'g
物理意义为在约束条件下复原图像能量 | | fˆ | |2 最小
数字图像处理方法第五章图像复原和重 建
约束最小二乘复原

数字图像处理图像复原.

数字图像处理图像复原.


式中N(u,v)是噪声n(x,y)的傅立叶变换。

这种方法要求噪声的类型及表达式为可知,因为噪声是
简 一个随机函数,它的傅立叶变换未知。所以即使知道退化函
介 数,也不能准确地复原未退化的图像(F(u,v)的傅立叶反变
换)。
由上式,如果H(u,v)在u,v平面上取零或很小,就会带来 计算上的困难。另一方面,噪声还会带来更严重的问题, N(u,v)/H(u,v)会使恢复结果与预期的结果有很大差距。
(2)

假设h(x,y)为已知的,现在观察到了g(x,y)。在没有噪声
复 的情况下,因以上两式成立,则为了复原出没有退化的图
原 像f(x,y),只需用
简 介
Fˆ (u, v) G(u, v) H (u, v)
(3)
来计算原始图像的傅立叶变换的估计,并进行傅立叶逆变
换即可。
fˆ ( x, y) 1[F (u, v)] 此方法称为逆滤波方法。
复 原
关于原点对称的形式出现
简 √ 如果陷波滤波器位于原点处,则以它本身形式
介 出现
5.5.3 陷波滤波器
第 五 章 图 像 复 原 简 介
5.5.3 陷波滤波器

五 1. 理想陷波带阻滤波器
章 图 像 复 原 简 介
5.5.3 陷波滤波器

五 2. 巴特沃思陷波带阻滤波器





简 介
3. 高斯陷波带阻滤波器


原 简
√ 周期噪声可以通过频率域滤波显著减少

5.4 空间域滤波复原(唯一退化是 噪声)
第 五 章
图 像 复 原 简 介
5.4 空间域滤波复原(唯一退化是

数字图像处理之图像复原总结

数字图像处理之图像复原总结

数字图像处理之图像复原技术总结图像采集、传送和转换过程中,会加入一些噪声,表现为图像模糊、失真和有噪声等。

图像复原技术是根据图像退化的先验知识建立一个退化模型,以此模型为基础,采用各种逆退化处理方法进行恢复,得到质量改善的图像图像噪声模型CCD摄像机获取图像时,光照强度和传感器的温度是产生噪声的主要原因。

噪声:不期望接收到的信号(相对于期望接收到的信号而言)图像噪声按照噪声和信号之间的关系可以分为加性噪声和乘性噪声。

加性噪声一般指热噪声、散弹噪声等,它们与信号的关系是相加,不管有没有信号,噪声都存在。

一般应该考虑为高斯噪声吧1.高斯噪声(正态噪声)----源于电子电路噪声和由低照明度或高温带来的传感器噪声,CCD噪声高斯噪声可以通过空域滤波的平滑或者图像复原技术来消除P(z) = 1/(sqrt(2*pi*σ))*exp(-(z-μ)^2/(2*σ^2))2.椒盐噪声--(双极)脉冲噪声(成像中的短暂停留,例如错误的开关操作)P(z)=Pa,z=aPb,z=b0,other椒盐噪声是指图像中出现的噪声只有两种灰度值,分别是a和b,这两种灰度值出现的概率分别是Pa和Pb均值是 m = a*Pa+b*Pb方差是σ^2 = (a-m)^2*Pa +(b-m)^2*Pb通常情况下,脉冲噪声总是数字化为允许的最大值或最小值。

负脉冲为黑点,正脉冲为白点。

因此该噪声称为椒盐噪声,去除噪声的较好方法是中值滤波3.均匀分布噪声(模拟随机数产生器)均匀分布噪声的概率密度函数为:P(z) = 1/(b-a),a<=z<=b*Pb0,other均匀分布噪声的期望和方差分别为:m = (a+b)/2σ^2 = (b-a)^2/124.指数分布噪声(激光成像)指数分布噪声的概率密度函数为:P(z) = a*exp(-a*z),z>=0,0,z<0指数分布噪声的期望和方差分别为:m= 1/a,σ^2 = 1/a^25,伽马分布噪声(激光成像)伽马分布噪声的概率密度函数为:P(z) = (a^b*z^(b-1))/(b-1)!*exp(-a*z)伽马分布噪声的期望和方差分别为:m = b/a,σ^2 = b/a^26.瑞利噪声空域中的滤波复原均值滤波复原算术均值滤波器几何均值滤波器逆谐波均值滤波器可以用于消除椒噪声或者盐噪声顺序统计滤波复原中值滤波、最大值滤波和最小值滤波中值滤波可以很好的保留图像的边缘,非常适合去除椒盐噪声,效果优于均值滤波二维中值滤波 J = medianfilt2(I)最大值滤波器也能够去除椒盐噪声,但会从黑色物体的边缘去除一些黑色像素最小值滤波器会从白色物体的边缘去除一些白色像素二维排序滤波 J = ordfilt2(I,order,domain)最大值滤波 J = ordfilt2(I,9,ones(3))最小值滤波 J = ordfilt2(I,1,ones(3))自适应滤波复原wiener2() 自适应维纳滤波图像复原算法逆滤波复原在频域上使用退化后观察得到的图像频域值来除去退化函数,得到近似于原图像的估计图像,然后通过傅里叶逆变换得到原图像的估计值维纳滤波复原(对运动模糊图像进行复原)deconvwnr()进行图像的维纳滤波复原约束最小二乘法复原deconvreg()Lucy-Richardson复原deconvlucy()采用加速收敛的Lucy-Richardson算法对图像进行复原盲解卷积复原在实际应用中,经常在不知道PSF的情况下对图像进行复原。

数字图像处理第5章:图像复原

数字图像处理第5章:图像复原

5.1 图像退化 / 复原过程的模型
退化模型的数学描述
如果系统H是一个线性、位置不变的系统,且噪声对 成像图像有污染,那么在空间域中给出的退化图像可由下 式给出:
g x, y hx, y * f x, y x, y
其中,h(x,y)是退化函数的空间描述,*表示空间卷 积。由于空间域的卷积等同于频域上的乘积,因此,模型 在频域上描述为:
5.3仅有噪声的复原—空间滤波
被不同频率的 正弦噪声干扰 了的图像 呈圆形分布 的亮点为噪 声频谱
5.2 噪声模型
• 周期噪声趋向于产生频率尖峰,其参数可以通过检测图像的傅里叶 谱来进行估计。 周 期 噪 声 污 染
?
带 阻 滤 波 器
5.2 噪声模型
• 噪声PDF参数的估计一般可以从传感器的技术说明中得知,
但对于特殊的成像装置,常常有必要估计这些参数。

( z )2 2 2
z 表灰度值,μ 表 z 的平均值或期望 值,σ 表标准差,σ 2为方差。 • 其值有70%落在范围[(μ-σ),(μ+σ)] 之内,且有95%落在范围落在 [(μ-2σ),(μ+2σ)]内。

z
• 高斯噪声的产生源于电子电路噪声和由低照明度或高温带来的 传感器噪声。高斯噪声数学上易于处理,实践中经常使用。
高斯噪声
b确定后,噪声的概率密度函数
( z )2 2
2
1 p( z ) b a 0
均匀噪声
if a z b otherwise
5.3仅有噪声的复原—空间滤波
5.3仅有噪声的复原—空间滤波
• 均值滤波器 算术均值滤波器、几何均值滤波器、谐波均值滤波器、 逆谐波均值滤波器 • 顺序统计滤波器 中值滤波器、最大值滤波器、最小值滤波器、中点滤波器、 修正后的Alpha均值滤波器

914761-数字图像处理-第四章 图像复原-第3讲无约束复原-逆滤波方法

914761-数字图像处理-第四章 图像复原-第3讲无约束复原-逆滤波方法
当 T-1不存在,或存在但不可解时,原图像只能通过退化的g 和对退化模型及噪声的某种了解或假设估计得到。这种估计 是在某种最佳准则下的最佳估计,广义上分为无约束和有约 束估计。
g=Hf+n n=g-Hf 噪声是广义的,在没有先验知识的情况下,要找一个f 的估计 fˆ ,在最小二乘方意义上使下式达到最小:
在实际中,T-1有多种情况: – T-1不存在,即奇异 – T-1存在,但不唯一 – T-1存在,唯一,但g(x,y)小的扰动就会引起f(x,y)大的变
动 – T-1存在,唯一,但其解太复杂,或几乎不可解 – T-1存在,唯一,无病态问题,且可求解
3
4.3 图像复原
(1)无约束复原 当T-1存在,唯一,无病态问题,原图像可精确求解;而
J ( fˆ ) = g - H ×fˆ 2
4
4.3 图像复原
J ( fˆ ) fˆ
=
-2H T
(g
-
Hfˆ )
=
0
H T Hfˆ = H T g
fˆ = (H T H )-1 H T g
因为H 是一方阵,并且设H -1 存在,则可求得 fˆ :
fˆ = H -1(H T )-1 H T g = H -1g
这种方法要求知道成象系统的表达式H。
根据前面所述,H 的尺寸很大,如512x512尺寸的图像,
H 的尺寸为262144x262144,对其求逆是不可解的,故要寻求
合适的求解方法。
从G(u,v)=H(u,v) F(u,v)+N(u,v)出发,若不考虑噪声,则上
式可写成(逆滤波)G (u,v)=H(u,v)F(u,v)
(a)当H(u,v)的值小于某个值d时取一个常数k,其他不变

数字图像处理实验报告图像复原实验

数字图像处理实验报告图像复原实验

实验报告课程名称数字图像处理导论专业班级_______________姓名_______________学号_______________电气与信息学院和谐勤奋求是创新2.对加入噪声图像选用不同的平滑(低通)模板做运算,对比不同模板所形成的效果,要求在同一窗口中显示。

I=imread('moon.tif');H = fspecial('sobel');subplot(2,2,1)imshow(I);title(' Qriginal Image ');Sobel = imfilter(I,H,'replicate');subplot(2,2,2)imshow(Sobel);title(' Sobel Image ')H = fspecial('laplacian',0.4);lap = imfilter(I,H,'replicate');subplot(2,2,3)imshow(lap);title(' Laplacian Image ')H = fspecial('gaussian',[3 3],0.5);gaussian = imfilter(I,H,'replicate');subplot(2,2,4)imshow(gaussian);title(' Gaussian Image ')3.使用函数imfilter时,分别采用不同的填充方法(或边界选项,如零填充、’replicate’、’symmetric’、’circular’)进行低通滤波,显示处理后的图像。

originalRGB = imread('trees.tif');subplot(3,2,1)imshow(originalRGB);title(' Qriginal Image ');h = fspecial('motion', 50, 45); %motion blurredfilteredRGB = imfilter(originalRGB, h);subplot(3,2,2)imshow(filteredRGB);title(' Motion Blurred Image ');boundaryReplicateRGB = imfilter(originalRGB, h, 'replicate');subplot(3,2,3)imshow(boundaryReplicateRGB);title(' 0-Padding');boundary0RGB = imfilter(originalRGB, h, 0);subplot(3,2,4)imshow(boundary0RGB);title('Replicate');boundarysymmetricRGB = imfilter(originalRGB, h, 'symmetric'); subplot(3,2,5)imshow(boundarysymmetricRGB);title(' Symmetric ');boundarycircularRGB = imfilter(originalRGB, h, 'circular'); subplot(3,2,6)imshow(boundarycircularRGB);title(' Circular');5.对加入椒盐噪声的图像分别采用均值滤波法,和中值滤波法对有噪声的图像做处理,要求在同一窗口中显示结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
2π σ
e
21 of 36
瑞利噪声
瑞利噪声的概率密度函数 :
2 ( z − a )e p (z ) = b 0
µ = a +
σ
2
− ( z − a )2
b
z ≥ a z < a
概率密度的均值和方差:
πb
4
=
b (4 − π 4
)
22 of 36
伽马(爱尔兰)噪声
伽马噪声PDF:
18 of 36
噪声和图像
数字图像中的噪声源来自于Biblioteka 像获取(将连续转为 数字)以及传输过程
图像传感器会受到环境的干扰 图像在传输过程中会受到的干扰
19 of 36
噪声模型
对于图像中的噪声项η(x, y) 有多种不同模型:
高斯(Gaussian)噪声 瑞利(Rayleigh)噪声 伽马(爱尔兰)噪声 指数(Exponential)噪声 均匀(Uniform)噪声 脉冲(椒盐)噪声
p (z ) = 0
a b z b −1 − az e (b − 1 )!
z≥0 z<0
其中,a>0,b为正整数且“!”表示阶乘。其密度 的均值和方差为: b µ = a b 2 σ = 2 a
23 of 36
指数分布噪声
指数噪声的PDF:
ae − az p( z ) = 0
ˆ f ( x, y ) =
mn ( s ,t )∈S xy
∑ g ( s, t )
被实现为一个简单的平滑滤波器,此时可以消除噪 声,使图像变得模糊。
1/ 1/ 1/ 9 9 9 1/ 1/ 1/ 9 9 9 1/ 1/ 1/ 9 9 9
31 of 36
几何均值
用几何均值滤波器复原一幅图像由如下表达式给出:
fˆ ( x , y ) =
( s , t )∈ S

( s , t )∈ S

xy
g (s,t)
xy
Q
其中Q称为滤波器的阶数。这种滤波器适合减少或 在实际中消除椒盐噪声的影响。当Q是正数时,滤 波器用于消除“椒”噪声;当Q是负数时,滤波器 用于消除“盐”噪声。但它不能同时消除这两种噪 声。
34 of 36
H [k1 f 1 ( x, y )] = k1 H [ f 1 ( x, y )]
(2) 相加性(k1 = k2 = 1 ): (3) 一致性(f2(x, y) = 0 ): (4) 位置(空间)不变性:
H [ f ( x − a , y − b)] = g ( x − a , y − b)
14 of 36
典型表现:
图像模糊、失真、有噪声
原因: :
透镜像差/色差:光学系统本身 聚焦不准(失焦,限制了图像锐度) 模糊(限制频谱宽度):图像采集过程中产生 噪声(是一个统计过程) 抖动(机械、电子)
复原方法:根据不同的退化模型,处理技巧和估计 准则,导出各种不同的恢复方法
6 of 36
四种类型的退化
(a)规则图案变形, (a)规则图案变形,胶片冲洗时易发生 规则图案变形 (b)边缘模糊 边缘模糊, (b)边缘模糊, 光学系统中的孔径衍生产生退化 (c)运动模糊 运动模糊, (c)运动模糊,或在拍摄过程中相机发生振动 (d)随机噪声的叠加 (d)随机噪声的叠加
fˆ ( x , y ) = ∑ g (s , t ) ( s , t )∈ S
1 mn
其中,每一个被复原像素由子图像窗口中像素点的 1 mn 次幂给出。几何均值滤波器所达到的平滑度可 以与算术均值滤波器相比,但在滤波过程中会丢失 更少的图像细节。
32 of 36
谐波均值滤波器
15 of 36
图像复原技术
图像复原技术:
退化函数估计: • 图像观察估计法 • 模型估计法 图像去噪:可以使用空间域或频率域滤波器实现
16 of 36
图像观察估计法
给定一幅退化图像,但没有退化函数H的知识,那 么估计该函数的方法之一就是收集图像自身的信息:
寻找简单结构的子图像 寻找受噪声影响小的子图像
当使用逆谐波均值滤波器时,如果选择了不当的Q 值会带来严重的错误
37 of 36
顺序滤波器
顺序统计滤波器是空间域滤波器,它们的响应基于 滤波器包围的图像区域中像素点的排序。滤波器在 任何点的响应由排序结果决定。 顺序统计滤波器有:
中值滤波器 最大值和最小值滤波器 中点滤波器 修正后的Alpha均值滤波器
4 of 36
图像退化
图像退化:图像在形成、记录、处理和传输过程中, 由于成像系统、记录设备、传输介质和处理方法的 不完善,从而导致的图像质量下降 图像复原就是对退化的图像进行处理,试图恢复损 坏的图像,还原真面目
确定损坏过程,并尝试其逆过程进行复原 类似于图像增强,但更加客观
5 of 36
图像退化
图像退化与数学模型
可以表示为线性位移不变系统的退化模型:
不考虑加性噪声:g(x,y)= f(x,y)* h(x,y) 考虑加性噪声:g(x,y)= f(x,y)* h(x,y)+ n(x,y) 卷积等同于频域内乘积:G(u,v)=F(u,v)H(u,v)+N(u,v)
使用线性位移不变系统的原因
很多退化都可以用线性位移不变模型来近似,可以借 助数学工具求解图像复原问题 当退化不太严重时,一般有较好的复原结果 尽管实际非线性和位移可变的情况能更加准确而普遍 地反映图像复原问题的本质,但求解困难。
ˆ f ( x, y ) = max {g ( s, t )}
σ
2
z≥0 z<0
其中,a>0。概率密度函数的期望值和方差:
1 µ = a
= 1 a2
注意,指数分布的概率密 度函数是当b=1时爱尔兰概 率分布的特殊情况。
24 of 36
均匀分布噪声
均匀分布噪声的概率密度: 1 a≤ z≤b p (z ) = b − a 0 其他 概率密度函数的期望值和方差是:
26 of 36
噪声举例
右图为额外噪声演示的理想情况,下面我们会对各 个噪声模型作用于图像时的结果进行演示。 下图为原始图像和其直方图
Histogram to go here
27 of 36
噪声举例(续…)
高斯
瑞利
爱尔兰
28 of 36
噪声举例(续…)
指数
均匀噪声
椒盐
29 of 36
空域滤波复原
使用谐波均值滤波器的操作由以下表达式表示:
fˆ ( x , y ) =
( s , t ) ∈ S xy
mn

1 g (s,t)
谐波均值滤波器对于“盐”噪声效果比较好,但 是不适用于“椒”噪声。它善于处理像高斯噪声那 样的其他噪声。
33 of 36
逆谐波均值滤波器
逆谐波均值滤波器对一幅图像的复原基于以下表达 Q +1 式: g (s,t)
我们可以使用不同类型的空间滤波器消除不同类型 的噪声
均值滤波器 • 算术均值滤波器 • 几何均值滤波器 • 谐波均值滤波器 • 逆谐波均值滤波器 顺序统计滤波器 • 中值滤波器 • 最大值/最小值滤波器 自适应滤波器
30 of 36
算术均值滤波器
算术均值滤波器是其中一个最为简单的滤波器,可 以按如下计算: 1
Gaussian Rayleigh
Erlang
Exponential
Uniform Impulse
20 of 36
高斯噪声
高斯随机变量z的概率密度函数( PDF )由下式给 − ( z − µ )2 出 1 2σ 2
p (z ) =
µ σ 其中,z表示灰度值, 表示z的平均值或期望值, 表示标准差。标准差的平方 σ ,称为z的方差。高斯 函数的曲线如图所示。 服从上式的分布时, 其值有70%落在范围 [(µ − σ ), (µ + σ )]之内,且 有95%落在范围落在 [(µ − 2σ ), (µ + 2σ )] 内。
38 of 36
中值滤波器
中值滤波器:用该像素相邻像素的灰度中值来代替 该像素的值
ˆ f ( x, y ) = median{g ( s, t )}
( s ,t )∈S xy
在噪声去除方面非常不错,没有其它平滑滤波器中 的平滑效果 尤其对于椒盐噪声非常有用
39 of 36
最大值/最小值滤波器
最大值滤波器,发现图像中的最亮点非常有用:
构造一个估计图像,它和观察的子图像有相同大小 和特性
g s ( x, y ) 表示观察子图像,ˆs ( x, y ) 表示构造的子图像 f ˆ Gs (u, v) 和 Fs (u , v ) 为对应的傅立叶变换
G S (u , v) H s (u , v) = ˆ F (u , v)
s
假设空间不变的,由 H s (u, v) 推导出完全函数 H (u, v)
噪声去除举例
原始图像
高斯噪 声干扰 的图像
3*3算术均 值滤波后 的图像
3*3几何均 值滤波后 的图像
35 of 36
噪声去除举例(续…)
椒噪声干 扰的图像
盐噪声干 扰的图像
3*3 逆谐波均 值滤波的结果 (Q=1.5)
3*3逆谐波均 值滤波结果 (Q=-1.5)
36 of 36
逆谐波均值滤波器
1 of 36
图像恢复 (Image Restoration)
2 of 36
本节课我们将学习图像复原技术
图像退化 图像退化与数学模型 图像复原技术 噪声模型 空域滤波复原 频域滤波复原
3 of 36
图像恢复: Image Restoration 也称图像复原,图像处理中的一大类技术 图像恢复vs.图像增强 相同之处: 改进输入图像的视觉质量 不同之处: 图像增强借助人的视觉系统特性,以取得较好的视觉 结果(不考虑退化原因) 图像恢复根据相应的退化模型和知识重建或恢复原始 的图像(考虑退化原因)
相关文档
最新文档