人教版六年级数学上册组合图形的面积
人教版六年级数学上册《 圆 组合图形的面积 》教学设计 教学反思
人教版六年级数学上册《圆组合图形的面积》教学设计教学反思一. 教材分析人教版六年级数学上册《圆组合图形的面积》这一章节,是在学生已经掌握了平面几何图形的面积计算方法的基础上进行学习的。
本节课主要让学生掌握圆组合图形的面积计算方法,培养学生的空间想象能力和解决问题的能力。
教材通过具体的例子引导学生思考、探索,从而得出计算圆组合图形面积的方法。
二. 学情分析六年级的学生已经具备了一定的数学基础,对平面几何图形的面积计算方法有一定的了解。
但是,对于圆组合图形的面积计算,他们可能还比较陌生,需要通过实例来引导他们理解和掌握。
此外,学生的空间想象能力和解决问题的能力有待进一步提高。
三. 教学目标1.知识与技能:让学生掌握圆组合图形的面积计算方法,能正确计算圆组合图形的面积。
2.过程与方法:通过观察、操作、思考、交流等过程,培养学生解决问题的能力和空间想象能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作意识和创新精神。
四. 教学重难点1.重点:圆组合图形的面积计算方法。
2.难点:如何将圆组合图形分解为基本图形,并正确计算面积。
五. 教学方法1.情境教学法:通过生活实例引入课题,激发学生的学习兴趣。
2.启发式教学法:引导学生观察、思考、交流,自主探索圆组合图形的面积计算方法。
3.合作学习法:分组讨论,培养学生团队合作意识。
4.实践操作法:让学生亲自动手操作,提高学生的动手能力和解决问题的能力。
六. 教学准备1.教学课件:制作课件,展示圆组合图形的实例和计算过程。
2.学习材料:准备相关的练习题和答案。
3.教学道具:准备一些实物模型,如圆柱、圆锥等,帮助学生直观理解。
七. 教学过程导入(5分钟)教师通过展示一些生活中的实例,如圆形的桌面、圆形的蛋糕等,引导学生思考这些图形的面积如何计算。
学生可能会提到用圆的面积公式计算,教师予以肯定,并提问:“如果这些圆形物体被切割成不同的形状,我们如何计算它们的面积呢?”从而引出本节课的主题。
人教版六年级数学上册 第五单元5.6 练习十七
课堂练习
如图所示,一块边长为8m的正方形草地,在图中相对的顶点 处各拴有一只羊,拴羊的绳长都是8m.两只羊都能吃到草的 草地面积(阴影部分)是多少平方米?
3.14×8²÷2-8²=36.48(平方米)
答:两只羊都能吃到草的草地面积 (阴影部分)是36.48平方米。
课堂小结 这节课你们都学会了哪些知识?
5圆
练习十七
探究新知
圆
圆的认识 圆的周长 圆的面积 圆环的面积 组合图形的面积
扇形
圆心 半径 直径
外圆内方
本单元学习了哪 些有关圆的知识?
外方内圆
探究新知
圆的认识
d
o
r
圆心确定圆的位置。
半径(或直径)决定圆的大小。
d=2r
r=d÷2
圆是由一条曲线新知
圆的周长、面积
圆的周长的计算公式: C=πd或C=2πr。
圆的面积 = πr × r S = πr 2
探究新知
圆环的面积
在大圆中间挖去一个小圆,剩 下的部分就形成了一个圆环, 组成圆环的是两个同心圆。
S环=πR2 -πr2
S环=π(R2 -r2)
探究新知
组合图形的面积
.
o
S阴=S正-S圆
o
S阴=S圆- 2S三角形
3.14×[(5+2÷2)²-5²]÷2=17.27(m²) 答:羊圈的面积增加了17.27 m²。
课堂练习 判断对错,对的画“√”,错的画“×”。 (1)圆周率π就是3.14。( × ) (2)圆的半径扩大到原来的2倍,周长和面积也扩
大到原来的2倍。( × ) (3)半径相等的两个圆周长相等。( √ )
8m
答:这块场地的占地面积是78.5 m²。
六年级数学组合图形的面积试题答案及解析
六年级数学组合图形的面积试题答案及解析1.我们开始提到的“乡村小屋”的面积是多少?【答案】18【解析】图形内部格点数;图形边界上的格点数;根据毕克定理,则(单位面积).2.两个边长相等的正方形各被分成25个大小相同的小方格.现将这两个正方形的一部分重叠起来,若左上角的阴影部分(块状)面积为,右下角的阴影部分(线状)面积为,求大正方形的面积.【答案】19【解析】块状部分与线状部分之间的部分称为D,则D与前者共14个方格,与后者共17个方格,因此每个方格的面积是大正方形的面积为.3.如图,平行四边形,,,,,平行四边形的面积是,求平行四边形与四边形的面积比.【答案】1/18【解析】连接、.根据共角定理∵在和中,与互补,∴.又,所以.同理可得,,.所以.所以.4.如图,有三个正方形的顶点、、恰好在同一条直线上,其中正方形的边长为10厘米,求阴影部分的面积.【答案】100【解析】对于这种几个正方形并排放在一起的图形,一般可以连接正方形同方向的对角线,连得的这些对角线互相都是平行的,从而可以利用面积比例模型进行面积的转化.如右图所示,连接、、,则,根据几何五大模型中的面积比例模型,可得,,所以阴影部分的面积就等于正方形的面积,即为平方厘米.5.如图,与均为正方形,三角形的面积为6平方厘米,图中阴影部分的面积为多少?【答案】6【解析】如图,连接,比较与,由于,,即与的底与高分别相等,所以与的面积相等,那么阴影部分面积与的面积相等,为6平方厘米.6.在边长为6厘米的正方形内任取一点,将正方形的一组对边二等分,另一组对边三等分,分别与点连接,求阴影部分面积.【答案】15【解析】(法1)特殊点法.由于是正方形内部任意一点,可采用特殊点法,假设点与点重合,则阴影部分变为如上中图所示,图中的两个阴影三角形的面积分别占正方形面积的和,所以阴影部分的面积为平方厘米.(法2)连接、.由于与的面积之和等于正方形面积的一半,所以上、下两个阴影三角形的面积之和等于正方形面积的,同理可知左、右两个阴影三角形的面积之和等于正方形面积的,所以阴影部分的面积为平方厘米.7.右图中,和是两个正方形,和相交于,已知等于的三分之一,三角形的面积等于6平方厘米,求五边形的面积.【答案】49.5【解析】连接、,由于与平行,可知四边形构成一个梯形.由于面积为6平方厘米,且等于的三分之一,所以等于的,根据梯形蝴蝶定理或相似三角形性质,可知的面积为12平方厘米,的面积为6平方厘米,的面积为3平方厘米.那么正方形的面积为平方厘米,所以其边长为6厘米.又的面积为平方厘米,所以(厘米),即正方形的边长为3厘米.那么,五边形的面积为:(平方厘米).8.如图,长方形的面积是2平方厘米,,是的中点.阴影部分的面积是多少平方厘米?【答案】【解析】如下图,连接,、的面积相等,设为平方厘米;、的面积相等,设为平方厘米,那么的面积为平方厘米.,.所以有.比较②、①式,②式左边比①式左边多,②式右边比①式右边大0.5,有,即,.而阴影部分面积为平方厘米.9.如图,与均为正方形,三角形的面积为6平方厘米,图中阴影部分的面积为多少.【答案】6【解析】如图,连接,比较与,由于,,即与的底与高分别相等,所以与的面积相等,那么阴影部分面积与的面积相等,为6平方厘米.10.如图,是梯形的一条对角线,线段与平行,与相交于点.已知三角形的面积比三角形的面积大平方米,并且.求梯形的面积.【答案】28【解析】连接.根据差不变原理可知三角形的面积比三角形大4平方米,而三角形与三角形面积相等,因此也与三角形面积相等,从而三角形的面积比三角形的大4平方米.但,所以三角形的面积是三角形的,从而三角形的面积是(平方米),梯形的面积为:(平方米).11.如图,已知,,,,线段将图形分成两部分,左边部分面积是38,右边部分面积是65,求三角形的面积.【答案】40【解析】连接,.根据题意可知,;;所以,,,,,于是:;;可得.故三角形的面积是40.12.如图,长方形的面积是36,是的三等分点,,则阴影部分的面积为多少?【答案】2.7【解析】如图,连接.根据蝴蝶定理,,所以;,所以.又,,所以阴影部分面积为:.13.如图,如果长方形的面积是平方厘米,那么四边形的面积是多少平方厘米?【答案】32.5【解析】如图,过、、、分别作长方形的各边的平行线.易知交成中间的阴影正方形的边长为厘米,面积等于平方厘米.设、、、的面积之和为,四边形的面积等于,则,解得(平方厘米).14.已知正方形的边长为10,,,则?【答案】53【解析】如图,作于,于.则四边形分为4个直角三角形和中间的一个长方形,其中的4个直角三角形分别与四边形周围的4个三角形相等,所以它们的面积和相等,而中间的小长方形的面积为,所以.15.如下图,长方形和长方形拼成了长方形,长方形的长是20,宽是12,则它内部阴影部分的面积是多少.【答案】120【解析】根据面积比例模型可知阴影部分面积等于长方形面积的一半,为.16.长方形的面积为36,、、为各边中点,为边上任意一点,问阴影部分面积是多少?【答案】13.5【解析】解法一:寻找可利用的条件,连接、,如下图:可得:、、,而即;而,.所以阴影部分的面积是:解法二:特殊点法.找的特殊点,把点与点重合,那么图形就可变成右图:这样阴影部分的面积就是的面积,根据鸟头定理,则有:.17.在长方形内部有一点,形成等腰的面积为16,等腰的面积占长方形面积的,那么阴影的面积是多少?【答案】3.5【解析】先算出长方形面积,再用其一半减去的面积(长方形面积的),再减去的面积,即可求出的面积.根据模型可知,所以,又与的面积相等,它们的面积和等于长方形面积的一半,所以的面积等于长方形面积的,所以.18.在边长为6厘米的正方形内任取一点,将正方形的一组对边二等分,另一组对边三等分,分别与点连接,求阴影部分的面积.【答案】15【解析】(法1)特殊点法.由于是正方形内部任意一点,可采用特殊点法,假设点与点重合,则阴影部分变为如上图所示,图中的两个阴影三角形的面积分别占正方形面积的和,所以阴影部分的面积为平方厘米.(法2)连接、.由于与的面积之和等于正方形面积的一半,所以上、下两个阴影三角形的面积之和等于正方形面积的,同理可知左、右两个阴影三角形的面积之和等于正方形面积的,所以阴影部分的面积为平方厘米.19.如图所示,长方形内的阴影部分的面积之和为70,,,四边形的面积为多少?【答案】10【解析】利用图形中的包含关系可以先求出三角形、和四边形的面积之和,以及三角形和的面积之和,进而求出四边形的面积.由于长方形的面积为,所以三角形的面积为,所以三角形和的面积之和为;又三角形、和四边形的面积之和为,所以四边形的面积为.另解:从整体上来看,四边形的面积三角形面积三角形面积白色部分的面积,而三角形面积三角形面积为长方形面积的一半,即60,白色部分的面积等于长方形面积减去阴影部分的面积,即,所以四边形的面积为.20.如图,长方形的面积是36,是的三等分点,,求阴影部分的面积.【答案】2.7【解析】如图,连接.根据蝴蝶定理,,所以;,所以.又,,所以阴影部分面积为:.。
第五单元 圆(期末复习讲义)六年级数学上册重难点知识点(人教版)
人教版六年级数学上册期末复习重难点知识点第五单元圆同学们,经过一个学期的学习,你一定进步了吧!今天,让我们共同回顾一下本学期的知识吧,并且通过完成这些练习,看看自己在哪些方面做得还真不错,以便继续发扬;哪些方面存在不足,需要在今后的学习中注意赶上。
每个人的成功都要经历无数次历练,无论成功还是失败对我们都十分重要。
加油!知识点一:圆的认识1.连接圆心和圆上任意一点的线段叫做半径。
2.通过圆心并且两端都在圆上的线段叫做直径。
3.一个圆有无数条半径,无数条直径。
4.圆是轴对称图形,它有无数条对称轴,任意一条直径所在的直线都是它的对称轴。
5.同一圆内,所有的半径都相等,所有的直径都相等,直径的长度是半径长度的2倍。
把圆沿任意一条直径对折,两边可以重合。
6.圆心确定了,圆的中心位置就确定了。
半径决定了圆的大小。
7.画圆的方法:定好圆心;确定半径的长度;画圆的时候注意线条的流畅。
知识点二:圆的周长1.其实,早就有人研究了周长与直径的关系,发现任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率,用字母π表示。
它是一个无限不循环小数,π=3.1415926535……但在实际应用中常常只取它的近似值,例如π≈3.14。
2.围成圆的曲线的长是圆的周长。
3.圆的周长=直径×圆周率。
4.C=πd 或C=2πr 。
知识点三:圆的面积1.圆的面积公式是由长方形的面积公式推导出来的。
2.圆的面积 S=πr ²。
知识点四:圆的面积公式的应用已知圆的直径求圆的面积时,可以根据公式S=π(2d )²直接求解。
知识点五:圆环的面积S 环=πR 2−πr 2S 环=π(R 2−r 2)知识点六:不规则图形的面积1.外方内圆的图形称为圆外切正方形。
2.外圆内方的图形称为圆内接正方形。
3. 知识点七:扇形1.圆上A 、B 两点之间的部分叫做弧,读作“弧AB ”。
2.一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。
六年级上册数学讲义-5.3圆和扇形组合图形面积(拓展)-人教版(含答案)
扇形和圆的组合图形的面积学生姓名年级学科授课教师日期时段核心内容扇形和圆的组合图形的面积课型一对一/一对N 教学目标掌握扇形和圆的组合图形的面积的计算重、难点1、会利用平面图形的周长和面积公式求平面图形的周长和面积。
2、会用割、补、分解、代换、增加辅助线等方法,将复杂问题变得简单。
课首沟通和学生交谈。
了解学生对圆的认识,对各计算公式是否掌握。
知识导图课首小测1.一个圆形花坛的半径是3m,它的面积是多少平方米?(已知圆的半径,求圆的面积)2.圆形花坛的直径是20m,它的面积是多少平方米?(已知圆的直径,求圆的面积)3.一个圆形蓄水池的周长是25.12m,这个蓄水池的占地面积是多少?(已知圆的周长,求圆的面积)4.求下图扇形的面积。
导学一:运用代换法将复杂的图形转化为简单的规则图形例 1. 图1中右半部分阴影面积比左半部分阴影面积大33平方厘米,AB=60厘米,CB垂直AB,求BC的长。
我爱展示1.如图1-1所示,两个圆的圆心分别为O1、O两圆半径都是1厘米,且图中两个阴影部分的面积相等。
求长方形ABO1O的面积。
2.如图1-2,所示,求右半部分阴影面积比左半部分阴影面积大多少平方厘米。
3.如图1-3:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少平方厘米?导学二:巧用各基本图形的计算公式求解知识点讲解 1:把R2看成一个整体例 1. 图2中已知阴影部分的面积是20平方分米,求环形的面积。
我爱展示1.下图中正方形的面积是8平方米,圆的面积是多少平方米?2.已知下图2-2中阴影部分三角形的面积是5平方米,求圆的面积。
3.已知下图2-3中阴影部分三角形的面积是7平方米,求圆的面积。
知识点讲解 2:从局部到整体,从整体到局部,牢记公式,巧妙应用。
例 1. 如图3,半圆S1的面积是14.13平方厘米,圆S2的面积是19.625平方厘米.那么长方形(阴影部分的面积)是多少平方厘米?我爱展示1.下图3-1中,△ABC是等腰直角三角形,以为半径的圆弧交延长线于点,已知阴影部分的面积是求。
六年级上册数学教案-5.4 圆环的面积|人教版
第五单元圆教学设计第4课时圆环的面积教学内容人教版六年级上册教材第68页例2及相关练习。
内容简析例2是求圆环的面积,教材通过插图帮助学生了解什么叫圆环,理解求圆环的面积是用外圆面积减去内圆面积。
教材给出了两种算法:3.14×62-3.14×22和3.14×(62-22)。
教材也有意引导学生根据乘法分配律,采用相对简便的算法,这样,可以大大减少计算的繁杂程度,减少计算出错的可能性。
教学目标1.让学生认识圆环,了解并掌握圆环的特征和圆环面积的计算方法。
2.通过操作、研究、发现、交流等教学活动,学会计算关于圆环的组合图形的面积,根据图形特征有效地选择计算方法。
3.发展学生的空间观念与交流能力,培养学生的合作意识和创新意识。
教学重点掌握计算圆环的面积的方法。
教学难点圆环的面积计算在实际生活中的应用。
教法与学法1.本课时教学圆环的面积时,通过具体情景引入,学生操作实践,以自主探究、小组合作等形式,引导学生在观察的基础上理解圆环的概念,掌握圆环面积的计算方法。
在比较中体会两种方法的联系与区别,帮助学生建立圆环面积解决问题的教学模型,从而有效解决实际问题。
2.本课时学生的学习主要是通过操作、观察、讨论、交流、归纳、抽象、概括等方法来理解圆环的面积,掌握圆环面积的计算方法,体验探究带来的乐趣。
承前启后链教学过程一、情景创设,导入课题情景展示法:教师出示一个同心圆(光碟),将光碟贴在黑板上。
然后引导学生观察光碟,提问:你有什么发现?引导学生明确:光碟实际就是大圆与小圆组成的同心圆。
如果把同心圆中的小圆去掉,就得到一个圆环。
然后教师提问:怎样计算这个圆环的面积呢?揭示课题。
【品析:通过现实生活中光碟的引入,让学生体会数学与生活的紧密联系,同时提出问题,激发学生学习的热情。
】联系实际引入法:教师出示奥运会会旗,提问:知道奥运会会旗是由什么图案组成的吗?引导学生明确是一大一小的同心圆。
然后教师指出:像这类图形,具有环形的特点,我们称之为圆环。
(完整版)六年级数学上册组合图形的周长和面积
六年级数学上册组合图形的周长和面积例1.求阴影部分的面积。
(单位:厘米)解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。
(单位:厘米)解:这也是一种最基本的方法用正方形的面积减去圆的面积。
设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-×7=1.505平方厘米例3.求图中阴影部分的面积。
(单位:厘米)解:最基本的方法之一。
用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米。
例4.求阴影部分的面积。
(单位:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米例5.求阴影部分的面积。
(单位:厘米)解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=9.12平方厘米另外:此题还可以看成是1题中阴影部分的8倍。
例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=100.48平方厘米(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部分的面积。
(单位:厘米)解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=12.5所以阴影面积为:π÷4-12.5=7.125平方厘米(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形)例8.求阴影部分的面积。
(单位:厘米)解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:π()=3.14平方厘米例9.求阴影部分的面积。
六年级数学思维:组合图形的面积计算,例题解析!
六年级数学思维:组合图形的面积计算,例题解析!主要题型:一、求不规则图形面积(阴影部分面积);二、求不能直接利用公式计算的图形面积;三、求规则图形的面积,但条件比较隐蔽,用常规思路无法解答。
基本解题思路:解题的基本思路是,先通过分割、切拼、旋转、平移、翻折、缩放、等积替换等方法,把不规则图形转化为规则图形(或规则图形面积的和差),让隐蔽条件明朗化,再合理运用面积公式,巧求不规则图形面积。
解题技巧:这一块分六讲,以后会陆续更新,每一块各有侧重地介绍了六种求面积的计算方法,但每一种解题方法并不是孤立存在的,在实际解题时一道题常常需要综合运用多种方法,才能巧妙解题。
例如加减法求面积常需要对图形进行割补,而用割补法求面积常需要添加辅助线、平移、旋转、进行加减运算等。
在解答图形面积问题时,关键就是要注意寻找不同图形或同一个图形的各个部分之间的内在联系,可以变换角度或适当添加辅助线帮助观察,特别要注意观察图形边角的形状、长度和角度,及是否隐藏有等底等高之类的条件。
从而根据图形的形状特征,合理地进行分割重组,化不规则为规则,巧妙地运用题目给出的各种条件。
小学阶段常见的面积公式:长方形的面积=长×宽S=ab正方形的面积=边长×边长S=a.a=a2三角形的面积=底×高÷2S=ah÷2平行四边形的面积=底×高S=ah梯形的面积=(上底+下底)×高÷2S=(a+b)h÷2圆的面积=圆周率×半径×半径S=πr2今天我们讲第一块内容:加减法求面积方法介绍:根据组合图形的形状特征,从整体上观察,将不规则图形分解转化成几个基本规则图形,分别计算它们的面积。
再变化角度思考,通过相加或相减求出所求图形的面积。
例题1:求下图中阴影部分的面积(最后结果保留一位小数)。
(单位:厘米)【解析】:上图阴影部分可以分割成3个完全相同的弓形,先求出其中一个弓形的面积,再求出3个弓形的总面积就是所求阴影部分的面积。
《外方内圆,外圆内方》(教案)六年级上册数学人教版
《外方内圆,外圆内方》(教案)六年级上册数学人教版教学内容:本课教学内容为六年级上册数学人教版,主要围绕几何图形的面积计算展开,重点探讨外方内圆和外圆内方两种组合图形的面积计算方法。
通过本课的学习,学生将掌握如何求解组合图形的面积,并能够灵活运用到实际生活中。
教学目标:1. 知识与技能:使学生掌握外方内圆和外圆内方两种组合图形的面积计算方法,并能运用到实际问题中。
2. 过程与方法:培养学生观察、分析、概括的能力,提高学生的逻辑思维能力和解决问题的能力。
3. 情感、态度与价值观:激发学生对数学学习的兴趣,培养学生合作交流、积极参与的精神,增强学生的自信心。
教学难点:1. 理解并掌握外方内圆和外圆内方两种组合图形的面积计算方法。
2. 学会运用分割法、添补法等方法求解组合图形的面积。
3. 能够将所学知识灵活运用到实际问题中,解决生活中的数学问题。
教具学具准备:1. 教具:多媒体课件、黑板、粉笔、直尺、圆规等。
2. 学具:草稿纸、铅笔、橡皮等。
教学过程:一、导入1. 利用多媒体展示生活中常见的外方内圆和外圆内方两种组合图形,引导学生观察并说出这些图形的特点。
2. 提问:这些组合图形的面积该如何计算呢?今天我们就来学习外方内圆和外圆内方两种组合图形的面积计算方法。
二、探究新知1. 请学生拿出草稿纸和铅笔,跟随教师在黑板上一起画出一个外方内圆图形。
2. 引导学生观察外方内圆图形,并提问:如何计算这个图形的面积?5. 重复步骤14,引导学生探究外圆内方图形的面积计算方法。
三、巩固练习1. 请学生在草稿纸上分别画出一个外方内圆图形和一个外圆内方图形。
2. 学生独立计算这两个图形的面积,教师巡回指导。
四、课堂小结五、板书设计1. 《外方内圆,外圆内方》2. 内容:(1)外方内圆图形的面积计算方法:(2)外圆内方图形的面积计算方法:六、作业设计1. 请学生完成课后练习题,巩固所学知识。
2. 结合生活实际,寻找并解决一个外方内圆或外圆内方的问题。
六年级上册数学教案-第九讲组合图形的周长与面积人教版
六年级上册数学教案第九讲组合图形的周长与面积人教版教学内容本讲主要介绍组合图形的周长与面积的计算方法。
学生需要掌握组合图形的构成,理解组合图形可以分解为简单的几何图形,如三角形、矩形、圆形等。
学生需要学习如何计算组合图形的周长和面积,包括分解图形、计算各部分周长和面积、求和等步骤。
本讲还将介绍一些常见的组合图形的周长与面积的求解技巧和注意事项。
教学目标1. 理解组合图形的构成,能够将组合图形分解为简单的几何图形。
2. 学会计算组合图形的周长和面积,能够熟练运用相关公式和定理。
3. 掌握一些常见的组合图形的周长与面积的求解技巧和注意事项。
4. 培养学生的观察能力、分析能力和解决问题的能力。
教学难点1. 如何正确地将组合图形分解为简单的几何图形。
2. 如何准确地计算组合图形的周长和面积,特别是涉及到多个几何图形的情况。
3. 如何灵活运用求解技巧和注意事项,解决实际问题。
教具学具准备1. 教师准备:组合图形的模型或图片,用于讲解和演示。
2. 学生准备:直尺、圆规、计算器等学习工具。
教学过程1. 导入:通过展示一些组合图形的图片或模型,引起学生的兴趣和好奇心,激发他们的学习欲望。
2. 讲解:讲解组合图形的构成,如何分解为简单的几何图形,以及如何计算组合图形的周长和面积。
通过示例和练习,让学生理解和掌握相关的概念和计算方法。
3. 练习:让学生进行一些练习题,巩固所学知识,提高计算能力。
同时,教师可以给予指导和解答,帮助学生解决遇到的问题。
4. 应用:通过解决实际问题,让学生将所学知识应用到实际中,提高解决问题的能力。
同时,教师可以给予指导和评价,帮助学生提高解题能力。
板书设计1. 组合图形的周长与面积2. 内容:包括组合图形的构成、分解方法、周长和面积的计算公式、示例和练习题等。
作业设计1. 基础题:计算给定组合图形的周长和面积。
2. 提高题:解决实际问题,应用所学知识。
3. 挑战题:探索一些特殊的组合图形的周长和面积的计算方法。
六年级数学人教版 组合图形的面积计算
面积的计算
xx学校 xxx
长方形面积=长×宽 S=ab
正方形面积=边长×边长 S=a2
平行四边形的面积=底×高 S=ah
三角形的面积=底×高÷2 S=ah ÷2
梯形的面积=(上底+下底) × 高÷2 S=(a+b) ×h ÷2
像这样由几个简单的图形组合而成的新图形我们称它
合理分析: 求这块玻璃的面积可以 用:( B ) A:分割法 B:添补法 C:分割、添补都行
38cm 30cm 39cm
45cm
50cm
计算下面图形中阴影部分的面积
(4+8)x4÷2 =12x4÷2 =48÷2 =24(c㎡) 答:阴影部分面积是24c㎡
这是我们学校将要开辟的一块草坪,如下图。 4+9 =33(㎡) 答:至少需要买 33㎡的地板
6m
3m
4m 6m
梯形的面积 + 梯形的面积
(3+6) × 4÷2+(3+7)× 3÷2
7m
=9 × 4÷2+10 × 3÷2 =36÷2+30÷2 =18+15 =33(㎡)
答:至少需要买33㎡的地板
3m
4m
长方形的面积 -正方形的面积
组合图形。
生活中的组合图形
生活中的组合图形
生活中的组合图形
张爷爷的新家正在装修,这是他家客厅的平面图, 你能帮他算出客厅的面积有多大吗?
4m
1
2 6m
3
3m
7m
4
4m
长方形的面积 + 长方形的面积
3×4+3×7 =12+21 =33(㎡)
人教版小学数学组合图形的面积 (经典例题含答案)
班级小组姓名成绩(满分120)一、组合图形的面积(一)组合图形的面积计算(共4小题,每题3分,共计12分)例1.求下面图形的面积。
(单位:cm)32×10÷2+32×203×4÷2+(5+10)×5÷210×12-(4+8)×2÷2=160+640=6+37.5=120-12=800(cm²)=43.5(cm²)=108(cm²)例1.变式1.先回答问题,再计算图形的面积。
(单位:cm)(1)组合图形的面积=(长方形)面积+(三角形)面积36×24+24×21÷2=1116(平方厘米)(2)52阴影部分的面积=(梯形)面积-(三角形)面积(30+52)×28÷2-30×28÷2=728(cm²)例1.变式2.计算下面图形的面积,你能用不同的计算方法吗?5×2.5+(3+5)×(5-2.5)÷2=5×2.5+8×2.5÷2=12.5+10=22.5(平方米)5×3+(2.5+5)×(5-3)÷2=5×3+7.5×2÷2=15+7.5=22.5(平方米)例1.变式3.如图,左边阴影部分的面积是60平方厘米。
求右边空白部分(梯形)的面积。
(单位:厘米)60×2÷8=15(厘米)(16+16+8)×15÷2=40×15÷2=300(平方厘米)答:空白部分的面积是300平方厘米.(二)组合图形的面积计算(共4小题,每题3分,共计12分)例2.计算下列组合图形的面积。
(单位:cm)(8.5+15)×13÷2-8.5×4÷2=135.75(cm²)例2.变式1.解决问题。
六年级数学上册课件求组合图形的面积人教版(共12张PPT)
如果两个圆的半径都是r, 结果又是怎样的?
左图:
(2r)²-3.14×r² =4r²-3.14r² =0.86r²
右图:
3.14 ×r 2 -
1 2
×2r
×r
×2
=3.14r²-2r²
=1.14r²
二、学习新课
回顾与反思
当r=1 m时,和前面的
结果完全一致。
左图: 2²-3.14×1² =4-3.14 =0.86
三、巩固反馈
练习十五
11. 下图中的花瓣状门洞的边是由4个直径相等的半圆组成的。 这个门洞的周长和面积分别是多少?
周长:2×3.14×1 = 6.28(m) 面积: 2×3.14×(1÷2)2 + 12
= 2×3.14×0.25 + 1 = 1.57 + 1 = 2.57(m2)
答:这个门洞的周长是6.28 m,面积是2.57 m2。
二、学习新课
分析与解答
右图中正方形的边长 是多少呢?
图(2)
可以把右图中的正方形 看成两个三角形,它的 底是2 m,高是1 m。
二、学习新课
分析与解答
图(2)
从图(2)可以看出:
1 2
×2
×1
×2
=
2(m2)
3.14-2=1.14(m²)
圆的面积比正方形的面积多1.14 m²。
二、学习新课
回顾与反思
右图:
3.14
12 -
1 2
2
1
2
=3.14-2
=1.14
三、巩固反馈
下图是一面我国唐代外圆内方的铜镜。铜镜的直径是
24 cm。外面的圆与内部的正方形之间的面积是多少?
六年级数学上册组合图形的周长和面积
六年级数学上册组合图形的周长和面积例1.求阴影部分的面积。
(单位:厘米)解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。
(单位:厘米)解:这也是一种最基本的方法用正方形的面积减去圆的面积。
设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-×7=1.505平方厘米例3.求图中阴影部分的面积。
(单位:厘米)解:最基本的方法之一。
用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米。
例4.求阴影部分的面积。
(单位:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米例5.求阴影部分的面积。
(单位:厘米)解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=9.12平方厘米另外:此题还可以看成是1题中阴影部分的8倍。
例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=100.48平方厘米(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部分的面积。
(单位:厘米)解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=12.5所以阴影面积为:π÷4-12.5=7.125平方厘米(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形)例8.求阴影部分的面积。
(单位:厘米)解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:π()=3.14平方厘米例9.求阴影部分的面积。
人教版小学数学六年级上册课件:组合图形的面积
2
2 6
s h z y D
求下面图形中阴影部分的面积。
方法一:4×4÷2
N
8×4÷2 =16÷2 =32÷2 =8 (m2) =16(m2) 8+16=24(m2)
4cm 4cm 8cm
方法二:4+8=12(m)
方法三:S梯=(a+b )h÷2 =(4+8)×4÷2 =24(m2)
(4+12)×4÷2 =64÷2 =32(m2) 4×4÷2=8(m2) 32-8=24(m2)
DT
S
T
在一块长6米,宽5米的草坪中间修两条宽1米的小路(如图),小路 的面积是多少?
y
z
l
我国古代数学家刘徽利用出入相补原理来计算 平面图形的面积。出入相补原理就是把一个图形 分割、移补而,而面积保持不变,来计算出它的 面积。
4×2÷2+4×4 =4+16 =20 (m2)
分割成:两个完全相同的梯形
4+2=6(m)
2m
4 ÷2=2(m)
4m
S梯 =(a+b )h÷2
=(4+6)×2÷2
=10(m2)
玻璃的面积=10 ×2 =20(m2)
添补成长方形,再从长方形中挖走两个小三角形
2m
4m
4 ÷ 2 = 2 (m) 4+2 = 6(m) S长 =ab =6×4 =24(m2) S三 =ah ÷2 =2×2÷2 =2(m2) 玻璃的面积=24-2 - 2 =20(m2)
长方形面积=长×宽
b a a
S=ab 正方形面积=边长×边长 S= a 2
h a
∟
平行四边形的面积=底×高 S=ah
三角形的面积=底×高÷2 S=ah÷2 梯形的面积=(上底+下底)×高÷2 S=(a+b )×h÷2
六年级上册数学教案-第3课时 解决问题 人教版
第3课时解决问题教科书第69、70页例3及相应的“做一做”。
1.巩固圆的面积公式并会计算组合图形的面积。
2.培养学生灵活、综合运用知识的能力。
运用所学的知识解决简单的实际问题。
(解决“外圆内方”及“外方内圆”的实际问题)3.培养学生的逻辑思维能力。
利用圆的面积公式解决有关实际问题。
计算组合图形的面积。
一、自主预习1.计算下面圆的周长和面积。
(1)r=3dm(2)d=4cm2.已知C=12. 56cm,求圆的面积。
指名演板,其余学生做在练习本上。
3.课件出示我国古代建筑的图片,向学生展示“外方内圆”和“外圆内方”的设计图案,欣赏古代建筑之类,从而导入新课。
二、合作探究1.教学例3。
(1)课件出示例3两张图片,图中两个圆的半径都是1m,你能求出正方形和圆之间部分的面积吗?(2)引导学生读题,弄清已知条件和要求的是什么?两个圆的半径都是1m,左图求的是正方形比圆多的面积,右图求的是圆比正方形多的面积。
(3)求左图中正方形比圆多的面积。
①正方形的面积。
正方形的边长就是圆的直径。
所以:2×2=4(m2)②圆的面积。
3. 14×12 =3. 14(m2)③正方形比圆多的面积:4-3. 14=0. 86(m2)(4)求右图中圆比正方形多的面积。
师:知道圆的半径是1m,可求出圆的面积,但正方形的边长是多少呢?引导学生明确:虽然不知道正方形的边长,但可以将正方形看成两个三角形,三角形的底是圆的直径,高是圆的半径。
三角形的面积可求,即可求出正方形的面积。
左图:(2r)2-3.14×r2=0.86r21右图:3.14×r2-(2×2r×r)×2=1.14r2(5)检验答题。
2.自学教科书第70页下面方框内的话。
体会数学知识在生活中的应用。
3.补充结论:①外方内圆,圆的面积是正方形面积的78.5%。
②外圆内方,正方形的面积与圆面积的比是2∶3.14,约占圆面积的63.69%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
40m 30m 30m 70m 15m
下图是一个零件的横截面, 计算它的面积。
20mm54mm
下图是房屋的一堵墙,如果砌这面墙每平方 米用砖185块,一共需要多少块砖?
它的面积 = 三角形的面积+长方形的面积.
5×4+5×1.2÷2
1.2m
=20+3 =23 (平方米)
4m
5m
23×185=4255(块)
答:一共需要4255块砖。
有一块菜地的形状如图所示。①这块地 的面积是多少?②如果每平方米需施肥 0.25kg,这块菜地共需施肥多少kg?
40m
24m
36m
60m
求阴影部分的面积。
4dm
2.2dm
说一说怎样求组合图形的面积?
长方形 的面积= 长 ×宽
正方形 的面积= 边长×边长 平行四边形的面积= 底×高 三角形 的面积=
S=ab S=a×a=a2 S=ah
底×高÷2
梯 形 的 面 积= (上底+下底)×高÷2
S=ah÷2 S=(a+b)h÷2
草坪
喷泉 小 湖
假山 游乐场
★ 由几个简单的图形拼出来的 图形,就叫做组合图形。
草坪
喷泉 小 湖
假山 游乐场
组合图形面积的计算
右图是一间房屋的侧面图,它的 面积是多少?
想:这个图形可以分成一个(
列综合算式解答:
)和一 三角形 个( ),所以它的面积是三角形的面 正方形 积+正方形的面积.
米
5×5+5×2÷2 =25+5 =30(平方米) 答:它的面积是30平方米。
2
5米
米 5
组合图形面积的计算
下图是一个机器零件横截面图, 求黑色部分的面积。
54×27—(20+30)×10÷2 20毫米
10 毫 米
=1458—50×10÷2
=1458—250
30毫米 54毫米
=1208(平方毫米)
答:黑色部分的面积是1208平方毫米。
毫 米
27
判断
1、面积相等的两个梯形一定可以拼成一个平行四边形. ( ×)
2、面积相等的两个三角形形状也相同. ( × ) 3、等底等高的两个三角形的面积一定相等. ( ∨ ) 4,、周长相等的长方形和平行四边形,他们的面积一定 相等. (× ) 5、底和高都是0.2厘米的三角形的面积是0.2平方厘米. ( ×)
6、下图中,两个完全一样的长方形中有 ① 、 ②两个 三角形,比较①和②的面积是 ①>②. ( × )
①
②
练一练
求下列图形的面积。 (单位:cm)
12 4
12
4
12
8 4
12 4
12
4
12
8 4
12 4
12
4
12
8 4
学校开运动会要制作一些锦旗,式样如图所示。 一面锦旗需要多少平方厘米的布料?
45cm
45cm
把两个梯形面积相加 长方形的面积加上两个三角形的面积
60cm
60cm
在一块梯形的地中间有一个长方形的游 泳池,其余的地方是草地。草地的面积 是多少平方米?