低碳钢和铸铁在拉伸和压缩时的力学性能
低碳钢和铸铁拉伸实验报告
![低碳钢和铸铁拉伸实验报告](https://img.taocdn.com/s3/m/53f11670376baf1ffc4fad83.png)
竭诚为您提供优质文档/双击可除低碳钢和铸铁拉伸实验报告篇一:低碳钢、铸铁的拉伸试验工程力学实验报告实验名称:试验班级:实验组号:试验成员:实验日期:一、试验目的1、测定低碳钢的屈服点?s,强度极限?b,延伸率?,断面收缩率?。
2、测定铸铁的强度极限?b。
3、观察低碳钢拉伸过程中的各种现象(如屈服、强化、颈缩等),并绘制拉伸曲线。
4、熟悉试验机和其它有关仪器的使用。
二、实验设备1.液压式万能实验机;2.游标卡尺三、设备简介万能试验机简介具有拉伸、压缩、弯曲及其剪切等各种静力实验功能的试验机称为万能材料试验机,万能材料试验机一般都由两个基本部分组成;1、加载部分:利用一定的动力和传动装置强迫试件发生变形,从而使试件受到力的作用,即对试件加载。
2、测控部分:指示试件所受载荷大小及变形情况。
四、实验原理低碳钢和铸铁是工程上最广泛使用的材料,同时,低碳钢试样在拉伸试验中所表现出的变形与抗力间的关系也比较典型。
低碳钢的整个试验过程中工作段的伸长量与荷载的关系由拉伸图表示。
做实验时,可利用万能材料试验机的自动绘图装置绘出低碳钢试样的拉伸图即下图中拉力F与伸长量△L的关系曲线。
需要说明的是途中起始阶段呈曲线是由于试样头部在试验机夹具内有轻微滑动及试验机各部分存在间隙造成的。
大致可分为四个阶段:(1)弹性阶段(ob段)在拉伸的初始阶段,ζ-ε曲线(oa段)为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。
线性段的最高点则称为材料的比例极限(ζp),线性段的直线斜率即为材料的弹性摸量e。
线性阶段后,ζ-ε曲线不为直线(ab段),应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。
卸载后变形能完全消失的应力最大点称为材料的弹性极限(ζe),一般对于钢等许多材料,其(:低碳钢和铸铁拉伸实验报告)弹性极限与比例极限非常接近。
(2)屈服阶段(bc段)超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。
低碳钢和铸铁拉伸和压缩试验
![低碳钢和铸铁拉伸和压缩试验](https://img.taocdn.com/s3/m/a0fa0799cf2f0066f5335a8102d276a201296068.png)
低碳钢和铸铁拉伸和压缩试验
低碳钢和铸铁是常见的材料,在进行拉伸和压缩试验时可以评估其力学性能。
下面是关于低碳钢和铸铁拉伸和压缩试验的一些基本知识:
1. 拉伸试验:拉伸试验是用来评估材料的拉伸强度、屈服强度、延伸性和抗拉性能。
在拉伸试验中,材料样本会被拉伸直至断裂。
根据拉伸过程中的力和变形,可以绘制应力-应变曲线,
从而得到材料的力学性能参数。
2. 压缩试验:压缩试验是用来评估材料的压缩强度和抗压性能。
在压缩试验中,材料样本会受到压缩力直至破坏。
根据压缩过程中的力和变形,可以绘制应力-应变曲线,进而获得材料的
力学性能参数。
3. 低碳钢拉伸和压缩试验:低碳钢是一种具有较低碳含量的钢材,具有良好的可加工性和焊接性能。
低碳钢通常具有相对较高的塑性,因此在拉伸试验中能够产生较大的延伸和变形。
而在压缩试验中,低碳钢通常具有较高的压缩强度。
4. 铸铁拉伸和压缩试验:铸铁是一种用于铸造的铁合金,具有良好的流动性和耐磨性能。
与低碳钢相比,铸铁通常具有较高的硬度和较低的塑性。
在拉伸试验中,铸铁的断裂强度相对较低,且往往呈现脆性断裂,而在压缩试验中,铸铁通常具有较高的压缩强度。
在进行低碳钢和铸铁拉伸和压缩试验时,需要注意以下关键点:
样本的准备和尺寸、试验设备的选择和设置、试验参数的确定、试验过程的规范和数据的记录与分析。
这些都是确保试验获得可靠结果的重要因素。
低碳钢和铸铁拉伸和压缩试验
![低碳钢和铸铁拉伸和压缩试验](https://img.taocdn.com/s3/m/15276ec169eae009581becb7.png)
低碳钢和铸铁拉伸压缩实验报告摘要:材料的力学性能也称为机械性质,是指材料在外力作用下表现的变形、破坏等方面的特性。
它是由试验来测定的。
工程上常用的材料品种很多,下面我们以低碳钢和铸铁为主要代表,分析材料拉伸和压缩时的力学性能。
关键字:低碳钢 铸铁 拉伸压缩实验 破坏机理一.拉伸实验1.低碳钢拉伸实验拉伸实验试件 低碳钢拉伸图在拉伸实验中,随着载荷的逐渐增大,材料呈现出不同的力学性能:低碳钢拉伸应力-应变曲线(1)弹性阶段(Ob段)在拉伸的初始阶段,σ-ε曲线(Oa段)为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。
线性段的最高点则称为材料的比例极限(σp),线性段的直线斜率即为材料的弹性摸量E。
线性阶段后,σ-ε曲线不为直线(ab段),应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。
卸载后变形能完全消失的应力最大点称为材料的弹性极限(σe),一般对于钢等许多材料,其弹性极限与比例极限非常接近。
(2)屈服阶段(bc段)超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。
使材料发生屈服的应力称为屈服应力或屈服极限(σs)。
当材料屈服时,如果用砂纸将试件表面打磨,会发现试件表面呈现出与轴线成45°斜纹。
这是由于试件的45°斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成的,故称为滑移线。
(3)强化阶段(ce段)经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料的抗变形能力又增强了,这种现象称为应变硬化。
若在此阶段卸载,则卸载过程的应力应变曲线为一条斜线(如d-d'斜线),其斜率与比例阶段的直线段斜率大致相等。
当载荷卸载到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或残余应变,相应地应力减小至零时消失的应变称为弹性应变。
低碳钢和铸铁拉伸实验报告
![低碳钢和铸铁拉伸实验报告](https://img.taocdn.com/s3/m/53f11670376baf1ffc4fad83.png)
竭诚为您提供优质文档/双击可除低碳钢和铸铁拉伸实验报告篇一:低碳钢、铸铁的拉伸试验工程力学实验报告实验名称:试验班级:实验组号:试验成员:实验日期:一、试验目的1、测定低碳钢的屈服点?s,强度极限?b,延伸率?,断面收缩率?。
2、测定铸铁的强度极限?b。
3、观察低碳钢拉伸过程中的各种现象(如屈服、强化、颈缩等),并绘制拉伸曲线。
4、熟悉试验机和其它有关仪器的使用。
二、实验设备1.液压式万能实验机;2.游标卡尺三、设备简介万能试验机简介具有拉伸、压缩、弯曲及其剪切等各种静力实验功能的试验机称为万能材料试验机,万能材料试验机一般都由两个基本部分组成;1、加载部分:利用一定的动力和传动装置强迫试件发生变形,从而使试件受到力的作用,即对试件加载。
2、测控部分:指示试件所受载荷大小及变形情况。
四、实验原理低碳钢和铸铁是工程上最广泛使用的材料,同时,低碳钢试样在拉伸试验中所表现出的变形与抗力间的关系也比较典型。
低碳钢的整个试验过程中工作段的伸长量与荷载的关系由拉伸图表示。
做实验时,可利用万能材料试验机的自动绘图装置绘出低碳钢试样的拉伸图即下图中拉力F与伸长量△L的关系曲线。
需要说明的是途中起始阶段呈曲线是由于试样头部在试验机夹具内有轻微滑动及试验机各部分存在间隙造成的。
大致可分为四个阶段:(1)弹性阶段(ob段)在拉伸的初始阶段,ζ-ε曲线(oa段)为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。
线性段的最高点则称为材料的比例极限(ζp),线性段的直线斜率即为材料的弹性摸量e。
线性阶段后,ζ-ε曲线不为直线(ab段),应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。
卸载后变形能完全消失的应力最大点称为材料的弹性极限(ζe),一般对于钢等许多材料,其(:低碳钢和铸铁拉伸实验报告)弹性极限与比例极限非常接近。
(2)屈服阶段(bc段)超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。
低碳钢和铸铁力学性能分析
![低碳钢和铸铁力学性能分析](https://img.taocdn.com/s3/m/ed32d4ea28ea81c758f578f0.png)
低碳钢和铸铁力学性能分析题目:低碳钢和铸铁的力学性能分析学院:机械工程学院学号:xxxxxxxxxxx 姓名:专业班级:xxx 指导老师:xxx 日期:2019年4月低碳钢和铸铁的力学性能分析作者:xxx作者单位:255000 山东理工大学摘要:材料的力学性能是指在外力作用下所表现出的抵抗能力。
由于载荷形式的不同,材料可表现出不同的力学性能,如强度、硬度、塑形、韧度、疲劳强度等。
材料的力学性能是零件设计、材料选择及工艺评定的主要依据。
本文主要讨论低碳钢和铸铁的力学性能在拉伸和压缩情况下的影响。
关键词:低碳钢、铸铁、拉伸、压缩(一)材料微观组成分析材料的微观结构几乎决定了外在性能,所以要了解研究材料的性能必须深入研究材料的组成成分。
而研究材料的组成成分需要从下面这张铁碳合金相图说起。
这张图记录了奥氏体在在不同温度下的恒温转变时组成成份和物质状态的变化。
低碳钢是指碳含量低于0.3%的碳素钢;铸铁是指碳含量在2.11%-6.69%的金属,其中用于拉伸和压缩试验的铸铁为灰口铸铁,成分一般范围为Wc=2.5%-4.0% Wsi=1.0%-2.2% Wmn=0.5%-1.3%Ws≤0.15% Wp≤0.3%。
低碳钢经过奥氏体转变的基体是铁素体和珠光体,灰口铸铁的基体是珠光体二次渗碳体和莱氏体。
铁素体和工业纯铁相似,塑形韧性较好,强度硬度较低。
渗碳体是一种复杂的间隙化合物,硬度很高,但塑性和韧性几乎为零,是钢中的主要强化相。
珠光体是铁素体和渗碳体的机械混合物,常见的形态是两者呈片层相间分布,片层越细强度越高。
铸铁中的莱氏体是由珠光体和渗碳体组成的机械混合物,其中渗碳体较多,脆性大,硬度高,塑形很差。
12(二)拉伸试验12A :奥氏体 F:铁素体 P:珠光体 Fe3C:渗碳体 Ld:莱氏体δ:固相区 L:液相区1低碳钢碳含量较低,请强度硬度低,塑形较好,拉伸实验结果3如图可分为四个阶段,即弹性阶段、屈服阶段、强化阶段和局部变形阶段,对应应力大小分别为ζe、ζs、ζp,材料的变形程度逐渐变大。
低碳钢、铸铁的拉伸和压缩实验
![低碳钢、铸铁的拉伸和压缩实验](https://img.taocdn.com/s3/m/08fd310602020740be1e9be3.png)
实验一:低碳钢、铸铁的拉伸和压缩实验一、实验目的1.测定低碳钢的屈服强度、抗拉强度、延伸率和断面收缩率。
2.测定铸铁的抗拉强度。
3.测定铸铁压缩时的抗压强度。
4.观察上述两种材料在拉伸过程中的各种现象,并绘制拉伸图。
5.分析比较低碳钢和铸铁的力学性能特点与试样破坏特征。
二、实验内容1.铸铁拉伸实验;2.铸铁压缩实验;3.低碳钢拉伸实验。
三、实验原理、方法和手段常温、静载下的轴向拉伸实验是材料力学试验中最基本、应用最广泛的试验。
通过拉伸试验,可以全面地测定材料的力学性能,如弹性、塑性、强度、断裂等力学性能指标。
这些性能指标对材料力学的分析计算、工程设计、选择材料和新材料开发都有及其重要的作用。
实验表明,工程中常用的塑性材料,其受压与受拉时所表现出的强度、刚度和塑性等力学性能是大致相同的。
但广泛使用的脆性材料,其抗压强度很高,抗拉强度却很低。
为便于合理选用工程材料,以及满足金属成型工艺的需要,测定材料受压时的力学性能是十分重要的。
因此,压缩实验同拉伸实验一样,也是测定材料在常温、静载、单向受力下的力学性能的最常用、最基本的实验之一。
依据国标GB/T 228-2002《金属室温拉伸实验方法》分别叙述如下:1.低碳钢试样。
在拉伸实验时,利用试验机的自动绘图器可绘出低碳钢的拉伸曲线,见图1-1所示的F—ΔL曲线。
图中最初阶段呈曲线,是由于试样头部在夹具内有滑动及试验机存在间隙等原因造成的。
分析时应将图中的直线段延长与横坐标相交于O点,作为其坐标原l图1-1点。
拉伸曲线形象的描绘出材料的变形特征及各阶段受力和变形间的关系,可由该图形的状态来判断材料弹性与塑性好坏、断裂时的韧性与脆性程度以及不同变形下的承载能力。
但同一种材料的拉伸曲线会因试样尺寸不同而各异。
为了使同一种材料不同尺寸试样的拉伸过程及其特性点便于比较,以消除试样几何尺寸的影响,可将拉伸曲线图的纵坐标(力P)除以试样原始横截面面积A,并将横坐标(伸长ΔL)除以试样的原始标距L0得到的曲线便与试样尺寸无关,此曲线称为应力-应变曲线,它与拉伸图曲线相似,也同样表征了材料力学性能。
低碳钢和铸铁在拉伸试验中的力学性能
![低碳钢和铸铁在拉伸试验中的力学性能](https://img.taocdn.com/s3/m/c19c53cb33d4b14e85246828.png)
低碳钢和铸铁在拉伸和压缩时的力学性能根据材料在常温,静荷载下拉伸试验所得的伸长率大小,将材料区分为塑性材料和脆性材料。
它是由试验来测定的。
工程上常用的材料品种很多,下面我们以低碳钢和铸铁为主要代表,分析材料拉伸和压缩时的力学性能。
1、低碳钢拉伸实验在拉伸实验中,随着载荷的逐渐增大,材料呈现出不同的力学性能:(1)弹性阶段在拉伸的初始阶段,ζ-ε曲线为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。
线性段的最高点则称为材料的比例极限(ζp ),线性段的直线斜率即为材料的弹性摸量E 。
线性阶段后,ζ-ε曲线不为直线,应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。
卸载后变形能完全消失的应力最大点称为材料的弹性极限(ζe ),一般对于钢等许多材料,其弹性极限与比例极限非常接近。
(2)屈服阶段超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。
使材料发生屈服的应力称为屈服应力或屈服极限(ζs )。
当材料屈服时,如果用砂纸将试件表面 1打磨,会发现试件表面呈现出与轴线成45°斜纹。
这是由于试件的45°斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成的,故称为滑移线。
(3)强化阶段经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料的抗变形能力又增强了,这种现象称为应变硬化。
若在此阶段卸载,则卸载过程的应力应变曲线为一条斜线,其斜率与比例阶段的直线段斜率大致相等。
当载荷卸载到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或残余应变,相应地应力减小至零时消失的应变称为弹性应变。
卸载完之后,立即再加载,则加载时的应力应变关系基本上沿卸载时的直线变化。
因此,如果将卸载后已有塑性变形的试样重新进行拉伸实验,其比例极限或弹性极限将得到提高,这一现象称为冷作硬化。
(完整word版)低碳钢和铸铁拉伸和压缩试验
![(完整word版)低碳钢和铸铁拉伸和压缩试验](https://img.taocdn.com/s3/m/6e895b90e009581b6ad9eb4c.png)
低碳钢和铸铁拉伸压缩实验报告摘要:材料的力学性能也称为机械性质,是指材料在外力作用下表现的变形、破坏等方面的特性。
它是由试验来测定的。
工程上常用的材料品种很多,下面我们以低碳钢和铸铁为主要代表,分析材料拉伸和压缩时的力学性能。
关键字:低碳钢 铸铁 拉伸压缩实验 破坏机理一.拉伸实验1.低碳钢拉伸实验拉伸实验试件 低碳钢拉伸图在拉伸实验中,随着载荷的逐渐增大,材料呈现出不同的力学性能:低碳钢拉伸应力-应变曲线(1)弹性阶段(Ob段)在拉伸的初始阶段,σ-ε曲线(Oa段)为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。
线性段的最高点则称为材料的比例极限(σp),线性段的直线斜率即为材料的弹性摸量E。
线性阶段后,σ-ε曲线不为直线(ab段),应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。
卸载后变形能完全消失的应力最大点称为材料的弹性极限(σe),一般对于钢等许多材料,其弹性极限与比例极限非常接近。
(2)屈服阶段(bc段)超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。
使材料发生屈服的应力称为屈服应力或屈服极限(σs)。
当材料屈服时,如果用砂纸将试件表面打磨,会发现试件表面呈现出与轴线成45°斜纹。
这是由于试件的45°斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成的,故称为滑移线。
(3)强化阶段(ce段)经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料的抗变形能力又增强了,这种现象称为应变硬化。
若在此阶段卸载,则卸载过程的应力应变曲线为一条斜线(如d-d'斜线),其斜率与比例阶段的直线段斜率大致相等。
当载荷卸载到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或残余应变,相应地应力减小至零时消失的应变称为弹性应变。
低碳钢和铸铁在拉伸和压缩时的力学性能
![低碳钢和铸铁在拉伸和压缩时的力学性能](https://img.taocdn.com/s3/m/01e45f465ef7ba0d4b733b25.png)
低碳钢和铸铁在拉伸和压缩时的力学性能根据材料在常温,静荷载下拉伸试验所得的伸长率大小,将材料区分为塑性材料和脆性材料。
它是由试验来测定的。
工程上常用的材料品种很多,下面我们以低碳钢和铸铁为主要代表,分析材料拉伸和压缩时的力学性能。
1.低碳钢拉伸实验在拉伸实验中,随着载荷的逐渐增大,材料呈现出不同的力学性能:(1)弹性阶段在拉伸的初始阶段,σ-ε曲线为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。
线性段的最高点则称为材料的比例极限(σp),线性段的直线斜率即为材料的弹性摸量E。
线性阶段后,σ-ε曲线不为直线,应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。
卸载后变形能完全消失的应力最大点称为材料的弹性极限(σe),一般对于钢等许多材料,其弹性极限与比例极限非常接近。
(2)屈服阶段超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。
使材料发生屈服的应力称为屈服应力或屈服极限(σs)。
当材料屈服时,如果用砂纸将试件表面打磨,会发现试件表面呈现出与轴线成45°斜纹。
这是由于试件的45°斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成的,故称为滑移线。
(3)强化阶段经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料的抗变形能力又增强了,这种现象称为应变硬化。
若在此阶段卸载,则卸载过程的应力应变曲线为一条斜线,其斜率与比例阶段的直线段斜率大致相等。
当载荷卸载到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或残余应变,相应地应力减小至零时消失的应变称为弹性应变。
卸载完之后,立即再加载,则加载时的应力应变关系基本上沿卸载时的直线变化。
因此,如果将卸载后已有塑性变形的试样重新进行拉伸实验,其比例极限或弹性极限将得到提高,这一现象称为冷作硬化。
3.4材料在拉伸压缩时的力学性能.
![3.4材料在拉伸压缩时的力学性能.](https://img.taocdn.com/s3/m/f5eb7068be1e650e53ea9917.png)
§3—4 材料在拉伸和压缩时的力学性能前面的讨论中,涉及的弹性模量、泊松比等,这些指标都属于材料的力学性质。
材料的力学性质是指:材料受力时力与变形之间的关系所表现出来的性能指标。
材料的力学性质是根据材料的拉伸、压缩试验来测定的。
工程中使用的材料种类很多。
下面主要以常用的低碳钢和铸铁这两种最具有代表性的材料为例,研究它们在常温(一般指室温)、静载下(指在加载过程中不产生加速度)拉伸和压缩时的力学性能。
一、材料拉伸时的力学性能试验时采用国家规定的标准试样。
金属材料试样如图3-10a 、b 所示。
试件中间是一段等直杆,等直部分划上两条相距为l 的横线,横线之间的部分作为测量变形的工作段,l 称为标距;两端加粗,以便在试验机上夹紧。
规定圆形截面试样,标距l 与直径d 的比例为d l 10=或d l 5=,矩形截面试样标距l 与截面面积A 的比例为A l 3.11=或A l 65.5=。
拉伸试验一般在万能试验机上进行,它可以对试件加载,可以测力并自动记录力与变形的关系曲线。
图3-10a A图3-10b(一)低碳钢的拉伸试验1.拉伸图和应力应变曲线将低碳钢试件装在试验机上,缓慢加载,同时试样逐渐伸长。
记录各时刻的拉力P 以及标距l 段相应的纵向伸长l ∆,直至拉断为止。
将P 和l ∆的关系按一定比例绘制成的曲线,称为拉伸图(或l P ∆-曲线)如图3-11a 所示。
将拉力P 除以试件横截面的原面积A ,作为试件工作段的正应力σ,将试件的伸长量l ∆除以工作段的原长l ,代表试件工作段的轴向线应变ε。
按一定的比例将拉伸图转换为σ与ε关系的曲线,如图3-11b ,该曲线称为应力-应变曲线或σ-ε曲线。
图3-11a(c)图3-11b(d) 从应力-应变曲线可见,在低碳钢拉伸试验的不同阶段,应力与应变关系的规律不同。
下面介绍各个阶段的范围、特点、指标及量值。
(1)弹性阶段(图3-11b 中Ob 段) 试样应力不超过b 点所对应的应力时,材料的变形全是弹性变形,即卸除荷载时,试样的变形将全部消失。
低碳钢和铸铁在拉伸和压缩时的力学性能
![低碳钢和铸铁在拉伸和压缩时的力学性能](https://img.taocdn.com/s3/m/f1027ca426fff705cc170a90.png)
低碳钢和铸铁在拉伸和压缩时的力学性能根据材料在常温,静荷载下拉伸试验所得的伸长率大小,将材料区分为塑性材料和脆性材料。
它是由试验来测定的。
工程上常用的材料品种很多,下面我们以低碳钢和铸铁为主要代表,分析材料拉伸和压缩时的力学性能。
1.低碳钢拉伸实验在拉伸实验中,随着载荷的逐渐增大,材料呈现出不同的力学性能:(1)弹性阶段在拉伸的初始阶段,σ-ε曲线为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。
线性段的最高点则称为材料的比例极限(σp),线性段的直线斜率即为材料的弹性摸量E。
线性阶段后,σ-ε曲线不为直线,应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。
卸载后变形能完全消失的应力最大点称为材料的弹性极限(σe),一般对于钢等许多材料,其弹性极限与比例极限非常接近。
(2)屈服阶段超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。
使材料发生屈服的应力称为屈服应力或屈服极限(σs)。
当材料屈服时,如果用砂纸将试件表面打磨,会发现试件表面呈现出与轴线成45°斜纹。
这是由于试件的45°斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成的,故称为滑移线。
(3)强化阶段经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料的抗变形能力又增强了,这种现象称为应变硬化。
若在此阶段卸载,则卸载过程的应力应变曲线为一条斜线,其斜率与比例阶段的直线段斜率大致相等。
当载荷卸载到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或残余应变,相应地应力减小至零时消失的应变称为弹性应变。
卸载完之后,立即再加载,则加载时的应力应变关系基本上沿卸载时的直线变化。
因此,如果将卸载后已有塑性变形的试样重新进行拉伸实验,其比例极限或弹性极限将得到提高,这一现象称为冷作硬化。
低碳钢和铸铁在拉伸和压缩时的力学性能
![低碳钢和铸铁在拉伸和压缩时的力学性能](https://img.taocdn.com/s3/m/0b98bf900129bd64783e0912a216147917117e2d.png)
低碳钢和铸铁在拉伸和压缩时的力学性能根据材料在常温,静荷载下拉伸试验所得的伸长率大小,将材料区分为塑性材料和脆性材料.它是由试验来测定的.工程上常用的材料品种很多,下面我们以低碳钢和铸铁为主要代表,分析材料拉伸和压缩时的力学性能.1.低碳钢拉伸实验在拉伸实验中,随着载荷的逐渐增大,材料呈现出不同的力学性能:1弹性阶段在拉伸的初始阶段,σ-ε曲线为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段.线性段的最高点则称为材料的比例极限σp,线性段的直线斜率即为材料的弹性摸量E.线性阶段后,σ-ε曲线不为直线,应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失.卸载后变形能完全消失的应力最大点称为材料的弹性极限σe,一般对于钢等许多材料,其弹性极限与比例极限非常接近.(2)屈服阶段超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服.使材料发生屈服的应力称为屈服应力或屈服极限σs.当材料屈服时,如果用砂纸将试件表面打磨,会发现试件表面呈现出与轴线成45°斜纹.这是由于试件的45°斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成的,故称为滑移线.3强化阶段经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料的抗变形能力又增强了,这种现象称为应变硬化.若在此阶段卸载,则卸载过程的应力应变曲线为一条斜线,其斜率与比例阶段的直线段斜率大致相等.当载荷卸载到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或残余应变,相应地应力减小至零时消失的应变称为弹性应变.卸载完之后,立即再加载,则加载时的应力应变关系基本上沿卸载时的直线变化.因此,如果将卸载后已有塑性变形的试样重新进行拉伸实验,其比例极限或弹性极限将得到提高,这一现象称为冷作硬化.在硬化阶段应力应变曲线存在一个最高点,该最高点对应的应力称为材料的强度极限σb,强度极限所对应的载荷为试件所能承受的最大载荷Fb.4局部变形阶段试样拉伸达到强度极限σb之前,在标距范围内的变形是均匀的.当应力增大至强度极限σb之后,试样出现局部显着收缩,这一现象称为颈缩.颈缩出现后,使试件继续变形所需载荷减小,故应力应变曲线呈现下降趋势,直至最后在f点断裂.试样的断裂位置处于颈缩处,断口形状呈杯状,这说明引起试样破坏的原因不仅有拉应力还有切应力.5伸长率和断面收缩率试样拉断后,由于保留了塑性变形,标距由原来的L变为L1.用百分比表示的比值δ=L1-L/L100%称为伸长率.试样的塑性变形越大,δ也越大.因此,伸长率是衡量材料塑性的指标.原始横截面面积为A的试样,拉断后缩颈处的最小横截面面积变为A1,用百分比表示的比值Ψ=A-A1/A100%称为断面收缩率.Ψ也是衡量材料塑性的指标.所以,低碳钢拉伸破坏变形很大,断口缩颈后,端口有45度茬口,由于该方向上存在最大剪应力τ造成的,属于剪切破坏力.2.铸铁拉伸实验铸铁是含碳量大于%并含有较多硅,锰,硫,磷等元素的多元铁基合金.铸铁具有许多优良的性能及生产简便,成本低廉等优点,因而是应用最广泛的材料之一.铸铁在拉伸时的力学性能明显不同于低碳钢,铸铁从开始受力直至断裂,变形始终很小,既不存在屈服阶段,也无颈缩现象.断口垂直于试样轴线,这说明引起试样破坏的原因.铸铁拉伸破坏断口与正应力方向垂直说明由拉应力拉断的,属于拉伸破坏,正应力大于了许用值.三、低碳钢和铸铁在拉伸和压缩时力学性质的异同点综述在工程建设中,低碳钢是典型的塑性材料,铸铁是典型的脆性材料.塑性材料和脆性材料在力学性能上的主要特征是:塑性材料在断裂前的变形较大,塑性指标断后伸长率和断面收缩率较高,抗拉能力较好,其常用的强度指标是屈服强度,一般地说,在拉伸和压缩时的屈服强度相同:脆性材料在断裂前的保存较小,塑性指标较低,其强度指标是强度极限,而且其拉伸强度远低于压缩强度.但是,材料不管是塑性的还是脆性的,将随材料所处的温度、应变速率和应力状态等条件的变化而不同.。
低碳钢和铸铁在拉伸和压缩时的力学性能
![低碳钢和铸铁在拉伸和压缩时的力学性能](https://img.taocdn.com/s3/m/77f413320722192e4536f6fc.png)
低碳钢和铸铁在拉伸和压缩时的力学性能根据材料在常温,静荷载下拉伸试验所得的伸长率大小,将材料区分为塑性材料和脆性材料。
它是由试验来测定的。
工程上常用的材料品种很多,下面我们以低碳钢和铸铁为主要代表,分析材料拉伸和压缩时的力学性能。
1.低碳钢拉伸实验在拉伸实验中,随着载荷的逐渐增大,材料呈现出不同的力学性能:(1)弹性阶段在拉伸的初始阶段,ζ-ε曲线为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。
线性段的最高点则称为材料的比例极限(ζp),线性段的直线斜率即为材料的弹性摸量E。
线性阶段后,ζ-ε曲线不为直线,应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。
卸载后变形能完全消失的应力最大点称为材料的弹性极限(ζe),一般对于钢等许多材料,其弹性极限与比例极限非常接近。
(2)屈服阶段超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。
使材料发生屈服的应力称为屈服应力或屈服极限(ζs)。
当材料屈服时,如果用砂纸将试件表面打磨,会发现试件表面呈现出与轴线成45°斜纹。
这是由于试件的45°斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成的,故称为滑移线。
(3)强化阶段经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料的抗变形能力又增强了,这种现象称为应变硬化。
若在此阶段卸载,则卸载过程的应力应变曲线为一条斜线,其斜率与比例阶段的直线段斜率大致相等。
当载荷卸载到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或残余应变,相应地应力减小至零时消失的应变称为弹性应变。
卸载完之后,立即再加载,则加载时的应力应变关系基本上沿卸载时的直线变化。
因此,如果将卸载后已有塑性变形的试样重新进行拉伸实验,其比例极限或弹性极限将得到提高,这一现象称为冷作硬化。
低碳钢和铸铁拉伸和压缩试验
![低碳钢和铸铁拉伸和压缩试验](https://img.taocdn.com/s3/m/aba576b2f80f76c66137ee06eff9aef8941e48e0.png)
低碳钢和铸铁拉伸和压缩试验低碳钢和铸铁是两种具有不同力学性能的材料,在拉伸和压缩试验中表现出明显的差异。
下面是这两种材料的拉伸和压缩试验的详细介绍。
1.低碳钢低碳钢是一种塑性材料,因此在拉伸试验中,低碳钢的应力-应变曲线呈现出明显的塑性变形阶段。
在弹性阶段,应力与应变成正比,低碳钢的弹性模量约为200-250GPa。
当应力超过弹性极限后,低碳钢进入塑性变形阶段,变形量逐渐增大,但应力增长速度减缓。
在塑性阶段后期,低碳钢发生颈缩现象,局部截面面积减小,应力集中,最终导致试样断裂。
在压缩试验中,低碳钢的应力-应变曲线与拉伸试验类似,但在压缩情况下,不会出现颈缩现象。
由于低碳钢具有较好的塑性,因此其抗压强度高于抗拉强度。
2.铸铁铸铁是一种脆性材料,因此在拉伸试验中,铸铁的应力-应变曲线呈现出明显的脆性断裂特征。
铸铁的弹性模量约为150-200GPa,略低于低碳钢。
在拉伸过程中,铸铁的变形量很小,并且应力增长速度迅速下降。
当应力达到一定值后,铸铁突然断裂,断口呈脆性断裂特征。
在压缩试验中,铸铁的应力-应变曲线也呈现出明显的脆性断裂特征。
铸铁在压缩情况下具有较高的抗压强度,但与低碳钢相比仍然较低。
综上所述,低碳钢和铸铁在拉伸和压缩试验中的表现具有明显的差异。
低碳钢具有较好的塑性和较高的抗拉强度,而铸铁则呈现出脆性断裂特征和较低的抗压强度。
这些差异使得这两种材料在不同的应用场景中有各自的优势和局限性。
在实际工程应用中,应根据具体受力情况和使用要求来选择合适的材料。
例如,对于需要承受较大拉力的结构部件,应选择低碳钢等塑性材料;而对于一些需要承受较大压力且对脆性断裂不敏感的结构部件,铸铁等脆性材料可能更为合适。
此外,对于材料的加工和制造工艺也需要考虑,以充分发挥材料的力学性能并降低成本。
为了获得更准确的结果,实际测试中需要注意以下几点:(1)测试前应对材料进行充分的预处理,以消除材料内部的缺陷和应力;(2)测试过程中应保证试样的尺寸和形状符合标准要求,以确保结果的准确性;(3)在测试过程中应使用合适的加载设备和测试仪器,以确保测试结果的可靠性;(4)测试后应对结果进行分析和处理,以得出材料的力学性能参数和结论。
低碳钢与铸铁材料力学性能差异
![低碳钢与铸铁材料力学性能差异](https://img.taocdn.com/s3/m/6ebd4569ec630b1c59eef8c75fbfc77da26997ca.png)
低碳钢与铸铁材料力学性能差异
低碳钢和铸铁材料在力学性能上有一些差异。
1. 强度:低碳钢的强度通常高于铸铁。
低碳钢具有较高的屈服强度和抗拉强度,适用于要求较高强度的应用。
而铸铁的强度比较低,通常用于对强度要求不高的应用。
2. 延展性:低碳钢比铸铁具有更好的延展性。
低碳钢可以在一定程度上进行变形和拉伸,而铸铁的延展性较差,易于断裂。
3. 韧性:低碳钢比铸铁有更好的韧性。
韧性是指材料在受力下可以吸收和消散能量的能力,低碳钢具有较好的抗冲击性能和抗疲劳性能,而铸铁的韧性相对较差。
4. 硬度:铸铁通常比低碳钢具有更高的硬度。
铸铁在冷却过程中会形成大量的碳化物,在材料中形成硬而脆的组织,因此具有较高的硬度。
低碳钢通常具有较低的硬度。
需要注意的是,具体的力学性能差异还取决于具体的低碳钢和铸铁的成分和处理方式。
某些特殊情况下,铸铁的一些特殊合金成分可以提高其强度和硬度,而低碳钢也可以通过热处理等方式来改变其力学性能。
试验二低碳钢和铸铁的拉伸压缩试验
![试验二低碳钢和铸铁的拉伸压缩试验](https://img.taocdn.com/s3/m/75affe64960590c69fc3765e.png)
实验二低碳钢和铸铁的拉伸、压缩实验一、实验目的1、观察低碳钢、铸铁在拉伸、压缩过程中的变形及破坏现象,并绘出P-△L曲线。
2、测定材料的强度指标及塑性指标。
3、比较塑性材料和脆性材料在拉伸和压缩时的力学性能。
二、实验设备1、游标卡尺2、油压式万能材料试验机三、试件1、拉伸试件实验表明,试件尺寸和形状将影响试验结果,为了避免这种影响和便于比较不同材料的力学性质,在国家标准(金属拉伸试验试样)GB6397-86中,对试件尺寸和形状作出了统一的规定。
试件可制成圆形或矩形载面,圆形载面试件如图3所示。
图3 圆形载面拉伸试件拉伸试件按尺寸又分为比例试件和定标距试件两种。
比例试件是指标距长度与横载面面积间具有下面比例关系的试件。
式中系数K通常为5.65或11.3,前者称为短试件,后者称为长试件。
所以直径为d的短、长圆形试件的标距L应分别等于5d和10d。
定标距试件的标距与其载面面积无上述比例关系,其标距由制品(薄板、细管、型材等)的尺寸的材料的性质决定。
2、压缩试件根据国家标准GB7314-87,金属材料的压缩试件一般制成短圆柱形,如图4所示。
试件长度L=(1.5~3.5)d。
为了使试件尽量承受轴向压力,试件两端面必须平行并垂直于轴线,两端面还应加工得光滑,以减小摩擦力的影响。
四、实验过程1、试件准备分别测量拉伸与压缩试件的尺寸,记下最小横载面平均直径d,其中低碳钢拉伸试件还要刻划出标距长度L=100mm。
2、安装试件,拨动测力度盘上的从动针使其与主动针重合,调整好自动绘图仪上的纸与笔。
3、低碳钢拉伸实验(1)开动油泵电机,缓慢匀速加载,注意观察自动绘图仪上绘制的P△L曲线(图5)及测力指针的转动。
拉伸图的第一阶段应是直线,因为拉力与变形成正比,但因开始加载时,试件头部在夹头中的滑动很大,所以拉伸图最初一段是曲线。
(2)当测力指针停止转动,接着倒退并来回摆动,P-△L曲线形成锯齿形,此时为材料的屈服阶段,记下测力指针回摆所示的最小载荷,即为屈服载荷P S。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
低碳钢和铸铁在拉伸和压缩时地力学性能
根据材料在常温,静荷载下拉伸试验所得地伸长率大小,将材料区分为塑性材料和脆性材料.它是由试验来测定地.工程上常用地材料品
种很多,下面我们以低碳钢和铸铁为主要代表,分析材料拉伸和压缩时地力学性能.
.低碳钢拉伸实验
在拉伸实验中,随着载荷地逐渐增大,材料呈现出不同地力学性能:()弹性阶段
在拉伸地初始阶段,σε曲线为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段.线性段地最高点则称为材料地比例极限(σ),线性段地直线斜率即为材料地弹性摸量.线性阶段后,σε曲线不为直线,应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失.卸载后变形能完全消失地应力最大点称为材料地弹性极限(σ),一般对于钢等许多材料,其弹性极限与比例极限非常接近.
(2)屈服阶段
超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服.使材料发生屈服地应力称为屈服应力或屈服极限(σ).当材料屈服时,如果用砂纸将试件表面
打磨,会发现试件表面呈现出与轴线成°斜纹.这是由于试件地°斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成地,故称为滑移线.
()强化阶段
经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料地抗变形能力又增强了,这种现象称为应变硬化.若在此阶段卸载,则卸载过程地应力应变曲线为一条斜线,其斜率与比例阶段地直线段斜率大致相等.当载荷卸载到零时,变形并未完全消失,应力减小至零时残留地应变称为塑性应变或残余应变,相应地应力减小至零时消失地应变称为弹性应变.卸载完之后,立即再加载,则加载时地应力应变关系基本上沿卸载时地直线变化.因此,如果将卸载后已有塑性变形地试样重新进行拉伸实验,其比例极限或弹性极限将得到提高,这一现象称为冷作硬化.
在硬化阶段应力应变曲线存在一个最高点,该最高点对应地应力称为材料地强度极限(σ),强度极限所对应地载荷为试件所能承受地最大载荷.
()局部变形阶段
试样拉伸达到强度极限σ之前,在标距范围内地变形是均匀地.当应力增大至强度极限σ之后,试样出现局部显著收缩,这一现象称为颈缩.颈缩出现后,使试件继续变形所需载荷减小,故应力应变曲线呈
现下降趋势,直至最后在点断裂.试样地断裂位置处于颈缩处,断口形状呈杯状,这说明引起试样破坏地原因不仅有拉应力还有切应力.
()伸长率和断面收缩率
试样拉断后,由于保留了塑性变形,标距由原来地变为.用百分比表示地比值
δ()*
称为伸长率.试样地塑性变形越大,δ也越大.因此,伸长率是衡量材料塑性地指标.
原始横截面面积为地试样,拉断后缩颈处地最小横截面面积变为,用百分比表示地比值
Ψ()*
称为断面收缩率.Ψ也是衡量材料塑性地指标.
所以,低碳钢拉伸破坏变形很大,断口缩颈后,端口有度茬口,由于该方向上存在最大剪应力τ造成地,属于剪切破坏力.
.铸铁拉伸实验
铸铁是含碳量大于并含有较多硅,锰,硫,磷等元素地多元铁基合金.铸铁具有许多优良地性能及生产简便,成本低廉等优点,因而是应用
最广泛地材料之一.铸铁在拉伸时地力学性能明显不同于低碳钢,铸铁从开始受力直至断裂,变形始终很小,既不存在屈服阶段,也无颈缩现象.断口垂直于试样轴线,这说明引起试样破坏地原因.
铸铁拉伸破坏断口与正应力方向垂直说明由拉应力拉断地,属于拉伸破坏,正应力大于了许用值.
三、低碳钢和铸铁在拉伸和压缩时力学性质地异同点综述
在工程建设中,低碳钢是典型地塑性材料,铸铁是典型地脆性材料.塑性材料和脆性材料在力学性能上地主要特征是:塑性材料在断裂前地变形较大,塑性指标(断后伸长率和断面收缩率)较高,抗拉能力较好,其常用地强度指标是屈服强度,一般地说,在拉伸和压缩时地屈服强度相同:脆性材料在断裂前地保存较小,塑性指标较低,其强度指标是强度极限,而且其拉伸强度远低于压缩强度.但是,材料不管是塑性地还是脆性地,将随材料所处地温度、应变速率和应力状态等条件地变化而不同.。