概率统计练习题

合集下载

九年级数学概率统计练习题及答案

九年级数学概率统计练习题及答案

九年级数学概率统计练习题及答案一、选择题1. 下列各项中,属于概率的是:A. 李明抽到红球的可能性是10%B. 今天下雨的可能性是80%C. 买彩票中奖的可能性是1/1000000D. 扔一次骰子掷出的点数是4的可能性是1/62. 某班级有30个学生,其中有18个男生和12个女生。

从班级中随机选取一个学生,男生和女生被选到的概率相等。

那么,被选到的学生是男生的概率是多少?A. 2/3B. 1/3C. 3/5D. 1/23. 一副扑克牌中有52张牌,其中红心牌有13张。

从扑克牌中随机抽一张牌,抽到红心牌的概率是多少?A. 1/4B. 1/2C. 1/13D. 1/52二、填空题1. 从数字1、2、3、4、5中任意抽取一个数,抽到奇数的概率是_________。

2. 一组数据:10、12、14、16、18中,大于15的数的概率是_________。

3. 一枚硬币抛掷,正面向上的概率是_________。

三、计算题1. 某班级有40个学生,其中有18个男生和22个女生。

从班级中随机选取两个学生,分别计算:a) 选出的两个学生都是男生的概率是多少?b) 选出的两个学生一个是男生一个是女生的概率是多少?2. 一副扑克牌中有52张牌,其中黑色牌有26张。

从扑克牌中随机抽取两张牌,并将它们放回,再抽取一张牌。

计算:a) 三次抽取都是黑色牌的概率是多少?b) 三次抽取中至少有一张黑色牌的概率是多少?四、解答题1. 一组数据:5、7、9、11、13,从中随机抽取一个数。

计算抽取奇数的概率。

答案解析:一、选择题1. D2. A3. A二、填空题1. 3/52. 3/53. 1/2三、计算题1.a) 18/40 × 17/39 = 9/20 × 17/39 = 153/780b) 18/40 × 22/39 + 22/40 × 18/39 = 396/780 = 2/5 2.a) 26/52 × 26/52 × 26/52 = 27/64b) 1 - (26/52 × 26/52 × 26/52) = 37/64四、解答题1. 3/5通过以上习题,希望能够帮助同学们加深对数学概率统计的理解和掌握。

初中数学概率统计练习题及参考答案

初中数学概率统计练习题及参考答案

初中数学概率统计练习题及参考答案初中数学概率统计练习题及参考答案:一、选择题1、某班级三年级有男生35人,女生40人。

从这些人中任选一个人,下列说法中,正确的是()A.女生的概率是 35/75B.女生的概率是 40/75C.男生的概率是 35/75D.男生的概率是 40/752、从 1、2、3、4、5 中任取一个数字,问所得数的个位数为 3 的概率是多少?A.2/5B.1/5C.1/10D.2/103、小明每次买两个鸡蛋,有80%的概率一个鸡蛋没碎,20%的概率两个鸡蛋都碎了。

问题一:小明买8个鸡蛋,不会是全部碎了吧?问题二:小明买8个鸡蛋,不需要赔偿多少个鸡蛋?A.不会全部碎,赔偿两个B.不会全部碎,赔偿四个C.不会全部碎,赔偿六个D.会全部碎二、填空题1、小明从 1、2、3、4、5 中任取一个数,他猜测所得数小于 4 的概率是 ______。

2、小港每小时按外卖订单分别有30%、25%、20%、15%、10%的概率接到0、1、2、3、4个外卖订单。

求小港接到的订单数的期望值是 ______。

3、有 15 条石子 5 个人轮流取,每次只能取 1-3 条,最后取光石子的人失败。

第一个取石子的人应该取几颗才能保证享有取胜的策略?三、解答题1、小明做课外辅导班的概率是 3/4,小华做课外辅导班的概率是1/2。

两人都不做辅导课的概率是多少?解:小明不做辅导班的概率为 1-3/4=1/4,小华不做辅导班的概率为1-1/2=1/2。

根据“都不”的概率公式:P(A且B)=P(A)×P(B),两人都不做辅导班的概率为 1/4×1/2=1/8。

2、有 10 个球,其中有 4 个黑球。

每次抽出 1 个球,观察它的颜色后再放回去。

问需要抽多少次,才可使得抽到 1 个白球的概率大于 0.5?解:这是个典型的随机事件重复试验问题,符合二项分布的模型。

假定抽到白球的次数为 X,则 P(X=i)=(6/10)^i*(4/10)^(10-i)*C(10,i)。

《概率统计》练习题及参考答案

《概率统计》练习题及参考答案

习题一 (A )1.写出下列随机试验的样本空间: (1)一枚硬币连抛三次;(2)两枚骰子的点数和;(3)100粒种子的出苗数;(4)一只灯泡的寿命。

2. 记三事件为C B A ,,。

试表示下列事件:(1)C B A ,,都发生或都不发生;(2)C B A ,,中不多于一个发生;(3)C B A ,,中只有一个发生;(4)C B A ,,中至少有一个发生; (5)C B A ,,中不多于两个发生;(6)C B A ,,中恰有两个发生;(7)C B A ,,中至少有两个发生。

3.指出下列事件A 与B 之间的关系:(1)检查两件产品,事件A =“至少有一件合格品”,B =“两件都是合格品”; (2)设T 表示某电子管的寿命,事件A ={T >2000h },B ={T >2500h }。

4.请叙述下列事件的互逆事件:(1)A =“抛掷一枚骰子两次,点数之和大于7”; (2)B =“数学考试中全班至少有3名同学没通过”; (3)C =“射击三次,至少中一次”;(4)D =“加工四个零件,至少有两个合格品”。

5.从一批由47件正品,3件次品组成的产品中,任取一件产品,求取得正品的概率。

6.电话号码由7个数字组成,每个数字可以是9,,1,0 中的任一个,求:(1)电话号码由完全不相同的数字组成的概率;(2)电话号码中不含数字0和2的概率;(3)电话号码中4至少出现两次的概率。

7.从0,1,2,3这四个数字中任取三个进行排列,求“取得的三个数字排成的数是三位数且是偶数”的概率。

8.从一箱装有40个合格品,10个次品的苹果中任意抽取10个,试求:(1)所抽取的10个苹果中恰有2个次品的概率;(2)所抽取的10个苹果中没有次品的概率。

9.设A ,B 为任意二事件,且知4.0)()(==B p A p ,28.0)(=B A p ,求)(B A p ⋃;)(A B p 。

10.已知41)(=A p ,31)(=AB p ,21)(=B A p ,求)(B A p ⋃。

高中数学概率统计专题练习题及答案

高中数学概率统计专题练习题及答案

高中数学概率统计专题练习题及答案一、选择题1. 掷一枚骰子,结果为奇数的概率是多少?A. 1/2B. 1/6C. 2/3D. 1/32. 从1至20这20个数字中随机选出一个数,选出的数是素数的概率是多少?A. 1/5B. 1/4C. 1/2D. 2/53. 一只盒子中有5张红牌和3张蓝牌,从中随机抽取2张牌,同时放回,再随机抽取2张牌,求两次抽取都是红牌的概率是多少?A. 1/16B. 3/8C. 1/4D. 1/8二、计算题1. 一次考试中,甲乙丙三位同学都有70%的概率通过考试。

求三位同学中至少有一位通过考试的概率。

答案:1 - (1 - 0.7)^3 = 0.9732. 从1至100这100个数字中随机选出一个数,选出的数是2的倍数且小于等于50的概率是多少?答案:50/100 = 0.53. 有A、B两个车站,A车站开往B车站的列车间隔是15分钟,B车站开往A车站的列车间隔是10分钟。

现在一个人随机到达A车站,请问他至少要等待几分钟才能搭乘到开往B车站的列车?答案:最小公倍数(15, 10) = 30分钟三、应用题1. 每个学生参加一次足球比赛的概率是0.4,问一个班级20个同学中至少有10个学生参加比赛的概率是多少?答案:利用二项分布公式,计算P(X≥10),其中n=20,p=0.4,k≥10。

答案约为0.599。

2. 一批产品有10%的次品率,现从中随机抽取20个产品,求其中恰好有3个次品的概率。

答案:利用二项分布公式,计算P(X=3),其中n=20,p=0.1,k=3。

答案约为0.201。

3. 一支篮球队最近10场比赛中获胜的概率是0.8,在下一场比赛中,求该队至少获胜8次的概率。

答案:利用二项分布公式,计算P(X≥8),其中n=10,p=0.8,k≥8。

答案约为0.967。

以上为高中数学概率统计专题练习题及答案。

希望对您的学习有所帮助!。

中职数学概率统计练习题

中职数学概率统计练习题

中职数学概率统计练习题
练一:概率计算
1. 某班级有50名学生,其中30人擅长篮球,20人擅长足球,10人既擅长篮球又擅长足球。

从该班级中随机选一个学生,请计算该学生擅长篮球或足球的概率。

练二:条件概率
2. 一家电子产品公司生产电视机和电冰箱两种产品。

该公司的统计数据显示,电视机的次品率是5%,而电冰箱的次品率是3%。

另外,该公司生产的电视机和电冰箱的比例为3:2。

从该公司中随机选一个产品,请计算该产品是电视机的概率,且是次品的条件概率。

练三:二项分布
3. 一枚硬币正面向上的概率是0.6。

现在进行5次抛硬币的实验,请计算恰好有3次正面朝上的概率。

练四:正态分布
4. 某市一所高中的学生成绩服从正态分布,其平均分为80分,标准差为10分。

请计算学生中成绩大于90分的比例。

练五:抽样与估计
5. 某公司的员工数量为1000人。

为了对该公司员工的平均年
龄进行估计,从中随机抽取了100人并统计了他们的年龄。

请计算
在95%的置信水平下,对于该公司员工平均年龄的置信区间。

练六:相关与回归
6. 一个研究人员想要了解身高和体重之间的关系。

他在200名
成年男性中测量了他们的身高(单位:厘米)和体重(单位:千克)。

请计算身高和体重之间的相关系数,并解释其意义。

概率统计练习题

概率统计练习题

概率统计练习题一、选择题1. 某事件A的概率为0.3,事件B的概率为0.5,且事件A和B互斥,那么事件A和B至少有一个发生的概率是多少?A. 0.2B. 0.5C. 0.8D. 0.32. 某工厂生产的产品中,有5%的产品是次品。

如果随机抽取100件产品,那么至少有5件次品的概率是多少?A. 0.95B. 0.99C. 0.05D. 0.013. 抛一枚均匀硬币两次,求出现至少一次正面的概率。

A. 0.25B. 0.5C. 0.75D. 1.04. 某机器发生故障的概率为0.01,如果该机器连续工作10天,那么至少发生一次故障的概率是多少?A. 0.01B. 0.1C. 0.62D. 0.995. 某次考试的及格率为70%,如果一个班级有30名学生,那么这个班级至少有20名学生及格的概率是多少?A. 0.95B. 0.5C. 0.05D. 0.01二、填空题6. 假设一个随机变量X服从二项分布,参数为n=10,p=0.4,那么P(X=3)的值是____________。

7. 某地区居民的平均寿命为75岁,标准差为10岁。

根据正态分布的性质,该地区寿命超过85岁的居民占总人口的百分比大约是____________。

8. 假设随机变量Y服从泊松分布,参数为λ=5,那么P(Y=3)的值是____________。

9. 某工厂生产的产品中,次品率是0.03。

如果随机抽取100件产品,那么恰好有3件次品的概率是____________。

10. 某公司有100名员工,其中60%是男性。

如果随机选取10名员工,那么至少有7名男性的概率是____________。

三、简答题11. 请简述什么是大数定律,并给出一个实际生活中的例子。

12. 请解释什么是中心极限定理,并说明为什么它在统计学中非常重要。

13. 描述什么是条件概率,并给出一个条件概率的计算例子。

14. 解释什么是统计推断,并简述其在数据分析中的作用。

15. 什么是假设检验?请简述其基本步骤。

概率统计高二练习题及答案

概率统计高二练习题及答案

概率统计高二练习题及答案一、选择题1. 设随机试验S的样本空间Ω={1, 2, 3, 4, 5, 6},事件A={2, 4, 6},事件B={3, 4, 5},则事件A∪B的元素个数是:A. 2B. 3C. 4D. 5答案:C2. 将两个硬币抛掷,它们的结果可以分别是正面(正)、反面(反)。

S表示随机试验“抛掷两个硬币,观察正反面”,事件A表示“至少有一个正面朝上”,则事件A的对立事件是:A. 两个硬币都是反面朝上B. 两个硬币都是正面朝上C. 两个硬币正反面朝上D. 至少有一个反面朝上答案:A3. 设随机试验S的样本空间Ω={1, 2, 3, 4, 5},事件A={1, 2},事件B={1, 3, 4},则事件A∩B的元素个数是:A. 0B. 1C. 2D. 3答案:14. 设随机试验S的样本空间Ω={1, 2, 3, 4, 5},事件A={1, 2},事件B={3, 4},则事件A∪B的元素个数是:A. 4B. 5C. 6D. 7答案:45. 在某次抽查中,2人中至少有1人精通英语的概率为0.8,两人都不精通英语的概率为0.1,则恰有1人精通英语的概率为:A. 0.1B. 0.2C. 0.3D. 0.4答案:C二、填空题1. 样本空间为Ω={1, 2, 3, 4, 5}的随机试验,以P表示概率函数,则P(Ω)=____。

答案:12. 设随机试验S可有n个结果,而其样本空间的元素个数为m个,则事件A发生的可能性大小为 ________。

答案:m/n3. 在某乡村学校的学生中,男生占40%,女生占60%,男生与女生都占的概率是______。

答案:04. 把两颗骰子分别投掷一次,事件A表示两颗骰子的点数和为8,则事件A发生的概率为________。

答案:5/365. 在两人赛马中,甲、乙、丙三匹马参赛,任一马获胜的概率均为1/3,则甲、乙、丙三匹马同时获胜的概率为______。

答案:0三、计算题1. 有n个袜子,有黑、白两种颜色,从中任取3只,问至少有1只黑袜子的概率是多少?答案:1 - (C(n, 3)/C(n, 3 - 0))*(C(n - 2, 3)/C(n, 3))2. 某商场推出一种新产品,调查发现客户购买此产品的概率为0.25,连续3个客户中至少有一个购买此产品的概率是多少?答案:1 - (1 - 0.25)^33. 一批零件中有5个次品,从中任取4个进行抽样,假设各个零件取得的概率相同,计算抽到至少1个次品的概率。

高中数学概率统计练习题

高中数学概率统计练习题

1.在大小相同的6个球中,4个是红球,若从中任意选2个,求所选的2个球至少有一个是红球的概率?变式训练1:在大小相同的6个球中,2个是红球,4 个是白球,若从中任意选取3个,求至少有1个是红球的概率?变式训练2:盒中有6只灯泡,其中2只次品,4只正品,有放回的从中任抽2次,每次抽取1只,试求下列事件的概率:(1)第1次抽到的是次品;(2)抽到的2次中,正品、次品各一次变式训练3:甲乙两人参加一次考试共有3道选择题,3道填空题,每人抽一道题,抽到后不放回,求(1)甲抽到选择题而乙抽到填空题的概率?(2)求至少1人抽到选择题的概率?变式训练4:一只口袋里装有5个大小形状相同的球,其中3个红球,2 个黄球,从中不放回摸出2个球,球两个球颜色不同的概率?2、在地上画一正方形线框,其边长等于一枚硬币的直径的2倍,向方框中投掷硬币硬币完全落在正方形外的不计,求硬币完全落在正方形内的概率?三、趋近高考1、甲从正方形四个顶点中任意选择两个顶点连成直线,乙从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是()(A)318(A)418(A)518(A)6182、从{1,2,3,4,5}中随机选取一个数为a,从{1,2,3}中随机选取一个数为b,则b>a的概率是()(A)45(B)35(C)25(D)153、.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰子向上的点数是3”为事件B,则事件A,B中至少有一件发生的概率是() A512B12C712D344、11.在区间[-1,2]上随即取一个数x,则x∈[0,1]的概率为。

5、三张卡片上分别写上字母E、E、B,将三张卡片随机地排成一行,恰好排成英文单词BEE的概率为。

6、在区间上随机取一个数x,则的概率为7、盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是_ __.1、一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(I )从袋中随机抽取一个球,将其编号记为a ,然后从袋中余下的三个球中再随机抽取一个球,将其编号记为b .求关于x 的一元二次方程2220x ax b ++=有实根的概率;(II )先从袋中随机取一个球,该球的编号为m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n .若以(,)m n 作为点P 的坐标,求点P 落在区域050x y x y -≥⎧⎨+-<⎩内的概率.2.高三某班有甲、乙两个学习小组,甲组有9名同学,其中有5名女同学;乙组有6名同学,其中3名女同学。

概率统计练习题

概率统计练习题

概率统计复习题1.一射手向目标射击3 次,i A 表示第i 次射击中击中目标这一事件)3,2,1(=i ,则3次射击 中至多2次击中目标的事件为( ): 321321321321)(;)(;)(;)(A A A D A A A C A A A B A A A A ⋃⋃⋃⋃2. 袋中有10个乒乓球,其中7个黄的,3个白的,不放回地依次从袋中随机取一球。

则第一次和第二次都取到黄球的概率是( );()715A ; ()49100B ; ()710C ; ()2150D3..将一枚均匀的硬币抛掷三次,恰有一次出现正面的概率为( ) A.81 B. 83 C. 41 D.214、设事件A 与B 互不相容,则有( ) )()()()(B P A P B A P A = )()()(B P B A P B =)()()()(A P B P B A P C -= )()()()(AB P A P B A P D -=5.设事件A 与B 相互独立,且0)(,0)(>>B p A p ,则下列等式成立的是() A. φ=AB B. 0)|(=A B pC. )(1)(A p B p -=D. )()()(B p A p B A p =6.设随机变量X 的取值范围是(-1,1),以下函数可作为X 的概率密度的是() A. .;11,0,21)(其它<<-⎪⎩⎪⎨⎧=x x f B. .;11,0,2)(其它<<-⎩⎨⎧=x x fC .;11,0,)(其它<<-⎩⎨⎧=x x x f . D. .;11,,0)(2其它<<-⎩⎨⎧=x x x f7、设随机变量)1,0(~N X ,X 的分布函数为)(x Φ,则{}2>X P 的值为( )[])2(12)(Φ-A 1)2(2)(-ΦB)2(2)(Φ-C )2(21)(Φ-B8、设随机变量X 的密度函数为⎩⎨⎧∈=其它0],0[2)(A x x x f ,则常数A=( )A 、41B 、21C 、 1D 、29. 设A 、B 是两个随机事件,且0)(=AB P ,则 ( )A 、A 和B 不相容; B 、A 和B 独立;C 、0)(0)(==B P A P 或;D 、)()(A P B A P =-10.加工一种零件需经过三道独立工序,各道工序的废品率为321,,p p p ,则加工该种零件的成品率为( ) 3211)(p p p A -)1)(1)(1)((321p p p B --- 3211)(p p p C --- 3213211)(p p p p p p D ----11.若A 与B 互为对立事件,则下式成立的是( ) A. P (AB )=P (A )P (B ) B P (A ⋃B )=ΩC. P (AB )=φD. P (A )=1-P (B )12.下列各函数中,可作为某随机变量概率密度的是( )A . ⎩⎨⎧-<<=其他,1;10,3)(2x x x fB .⎩⎨⎧<<-=其他,0;11,4)(3x x x fC . ⎩⎨⎧<<=其他,0;10,2)(x x x fD .⎪⎩⎪⎨⎧<<=其他,0;10,21)(x x f13.列函数中可作为某一随机变量X 的概率密度的是( )A.()⎩⎨⎧≤≤=其他00cos πx x x f B.()⎩⎨⎧≤≤=其他00sin 23πx x x f C.()⎩⎨⎧≤≤=其他00cos 2πx x x f D.()⎩⎨⎧≤≤-=其他0sin 22ππx x x f 14 。

概率统计练习题

概率统计练习题

第一章 随机事件及其概率习题一 、填空题:1.设A ,B ,C 为三个事件,用A 、B 、C 的运算关系表示(1)A 和B 都发生,而C 不发生为 ,(2)A 、B 、C 至少有两个发生的事件为 。

2.设A ,B 为两个互不相容的事件,P(A)=0.2, P(B)=0.4, P(A+B)= 。

3.设A ,B ,C 为三个相互独立的事件,已知P(A)=a, P(B)=b, P(C)=c,则A ,B ,C 至少有一个发生的概率为 。

4.把一枚硬币抛四次,则无反面的概率为 ,有反面的概率为 。

5.电话号码由0,1,……9中的8数字排列而成,则电话号码后四位数字全都不相同的概率表示为 。

6.设公寓中的每一个房间都有4名学生,任意挑选一个房间,则这4人生日无重复的概率表示为 (一年以365天计算)。

7. 设A ,B 为两个事件,P(A)=0.4, ,P(B)=0.8,P(B A )=0.5,则P(B|A)= 。

8.设A ,B ,C 构成一个随机试验的样本空间的一个划分,且7.0)(,5.0)(==B P A P ,则P(C)= ,P(AB)= 。

9.设A ,B 为两个相互独立的事件,P(A)=0.4,P(A+B)=0.7,则P(B)= 。

10.3个人独立地猜一谜语,他们能够猜出的概率都是31,则此谜语被猜出的概率为 。

二 、选择题 :1. 设A 与B 是两随机事件,则AB 表示( )(A )A 与B 都不发生 (B )A 与B 同时发生(C )A 与B 中至少有一个发生 (D )A 与B 中至少有一个不发生 2.设c B A P b B P a A P =⋃==)(,)(,)(,则)(B A P 为 (A )b a -(B )b c -(C ))1(b a -(D ))1(c a -3.若A ,B 是两个互不相容的事件,P (A )>0,P (B )>0,则一定有( ) (A )P (A )=1—P (B ) (B ) P (A|B )=0 (C ) P (A|B )=1 (D )P (A |B )=04. 每次试验失败的概率为p (0<p<1),则在3次重复试验中至少成功一次的概率为( )(A ))1(3p - (B)3)1(p -(C) 31p - (D)13C 3)1(p p -三、计算:1.掷两颗质地均匀的骰子,求出现的两个点数之和等于5的概率。

概率统计练习题

概率统计练习题

,n X 是来自正态总体小概率事件在一次试验中绝对不会发生;是正态随机变量的分布函数,则一定有,n X 是来自于总体知参数,12,,,n x x x 为样本值,求(设纸张重量(以g 记)服从正态分布2的置信水平为已知某炼铁厂的铁水含碳量在正常情况下服从正态分布
)0.8B =、3、4、5,从中同时取掷一枚质地均匀的骰子,已知出现的是偶数点,则出现)X x c ==,则c = 2,0
,x x ≥其它,则概率 ;
,n X 是来自总体的一组
,,n x 是样本的一组观测值,求(的最大似然估计值。

随机取某种炮弹9发做试验,测得炮口速度的样本标准差。

设炮口速度服从正态分布这种炮口速度的方差σ一种燃料的辛烷等级服从正态分布1,,n X +是取自总体~(1
n
t n n +
)B=
}0== X是正态总体
,
n
服从自由度为
若一件事的成功率是
,
X是正态总体
n
)求参数θ的矩估计量
某工厂生产一批零件,其长度服从正态分布
)B=
}1==
,
n
X是正态总体
与B对立,则事件
是标准正态的分布函数,则有
已知随机变量~
X U
,
n
X是来自于总体
2,,
n
x x为样本值,求(
某机械零件的长度服从正态分布
,2.6,2.5
某厂生产的某种型号的电池,其寿命(以小时计)长期以来服从方差。

小学四年级概率与统计练习题

小学四年级概率与统计练习题

小学四年级概率与统计练习题题目:小学四年级概率与统计练习题第一部分:概率计算1. 某班级有30个学生,其中20个是男生,10个是女生。

请问从班级中随机选择一个学生,他是女生的概率是多少?2. 一副标准扑克牌共有52张牌,其中红心和黑桃各有13张,梅花和方块各有13张。

请问从一副扑克牌中随机抽取一张牌,它是红心的概率是多少?3. 一枚公平的硬币抛掷一次,正面朝上的概率是多少?4. 甲、乙、丙三个学生参加一场考试,其考试成绩如下:甲:60分乙:80分丙:90分请问从他们中随机选择一个人,他的考试成绩大于70分的概率是多少?第二部分:数据统计与图表1. 下图是小明家的月度用水量统计表,请根据图表回答问题。

![image](image_link)a. 小明家一月份的用水量是多少?b. 二月份的用水量比一月份多还是少?c. 三月份的用水量是多少?d. 四月份的用水量比三月份多还是少?2. 下表是某小学四年级学生的身高统计表,请根据表格回答问题。

| 班级 | 身高范围(cm) | 学生数量 ||------|---------------|----------|| 1班 | 120 - 130 | 5 || 1班 | 131 - 140 | 8 || 1班 | 141 - 150 | 6 || 2班 | 120 - 130 | 4 || 2班 | 131 - 140 | 6 || 2班 | 141 - 150 | 7 |a. 1班的学生数量是多少?b. 2班身高在131cm以上的学生数量是多少?c. 班级1和班级2的学生数量总共是多少?d. 身高在141cm以上的学生数量是多少?第三部分:数据分析1. 某班级12个学生参加一场语文测试,他们的得分如下: 78, 86, 92, 73, 64, 80, 89, 77, 85, 91, 68, 79a. 这组数据的平均分是多少?b. 这组数据的中位数是多少?c. 这组数据的众数是多少?d. 这组数据的范围是多少?2. 某小区住户的家庭成员数统计如下:| 家庭成员数 | 家庭数量 ||------------|----------|| 1人 | 10 || 2人 | 15 || 3人 | 20 || 4人 | 25 || 5人以上 | 30 |a. 该小区共有多少个家庭?b. 平均每个家庭有几人?c. 家庭成员数最多的家庭有多少人?请按照题号完成相应的题目。

概率统计练习题

概率统计练习题

P( A B) c , 0 b c ,求 P( AB )
12. 设 A , B , C 是三个事件,且 P ( A) P ( B ) P (C )
1 , P ( AB) P ( BC ) 0 , 5
P( AC )
1 ,求 A,B,C 至少有一个发生的概率. 7
概率统计练习题
第1章
1. 一口袋装有 10 只球,其中 6 只是红球,4 只是白球,今随机地从中同时取出 2 只球,试 求取到二只球颜色相同的概率。 2. 一口袋装有 10 只球, 其中 6 只是红球, 4 只是白球, 今随机地从中同时取出 2 只球试求: (1)2 只都是红球的概率 (2)一只是红球一只是白球的概率. 3. 在 8 件产品中有 5 件是一级品和 3 件是二级品,现从中任取 2 件,求取得的 2 件中只有 一件是一级品的概率. 如果: (1)2 件产品是无放回的逐次抽取; (2)2 件产品是有放回的逐次抽取. 4. 将 15 名新生平均分配到三个班级中去, 新生中有三名是优秀生, 问每一个班级各分配到 一名优秀生的概率是多少? 5. 盒中有 10 只外形相同的晶体管,其中有 4 只次品,6 只正品,现从中随机地抽取一只测 试,测试后不放回,直到找出 4 只次品为止,求最后一只次品晶体管在第 10 次测试时发现 的概率。 6. 盒中装有 10 只外形相同的晶体管,其中有 4 只次品,6 只正品,现从中随机地抽取一只 测试,测试后不放回,直到找出 4 只次品为止,求最后一只次品晶体管在第 5 次测试时发现 的概率。 30 这 30 个数中随机地选取 10 个不同的数, 求所取出的数都是偶数的概率。 7. 从 1, 2, …, 8. 袋中装有 5 个白球,3 个黑球,4 个红球,从中一次取出三个球,问三个球是同色球的概 率。 9. 为了减少比赛次数,把 21 个球队分成三组(每组 7 个队)进行比赛,求其中最强的三个队 被分在不同组内的概率。 10. 从一付扑克的 13 张黑桃中,一张接一张地有放回地抽取 3 次,求抽到有同号的概率。 11. 已知 P ( B ) b,

概率统计练习题集

概率统计练习题集

概率统计习题库12.48.0;32.2;55.0;44.0( ).)(,96.0)(,6.0)(,8.0)((D)(C)(B)(A)A B P B A P B P A P 则已知3.)1(;)1(;)1(;)1(4),10(63395449643964410p p C p p C p p C p p C p p 次成功地概率为才取得进行重复试验每次试验成功率为(A)(B)(C)(D)( ).直到第十次试验,4).()()(;;;,8.(,7.0)(,8.)(B P A P B A P A B B A B A B A P B P A P 互斥与独立与则下列结论正确的是设(A)(B)(C)(D)( )..103;42;43;53,2,1,2,3,5(D)(C)(B)(A)则第二次取到新球的概率是次地取个每次取个旧球个新球其中个球袋中共有( ).无放回56.8.02.010;102.0;8.02.0;2.0( ).,5,%,20,233233(D)(C)(B)(A)则恰有三件是优质品的概率等于行检查件产品进共取进行重复抽样检查优质品占一批产品一批产品的废品率为0.01,从中随机抽取10件,则10是2件的概率为( ).(A)2210)0.01(C (B)28210)0.99()(C (C)82810)()(C (D)28810)()(C 件中废品数0.010.010.990.990.01;.;;7设A ,B 相互独立,P (A ),P (B ,则( ).)(B A P (A)0.45;(B)0.95;(C)0.6;(D)0.55.0.80.758若A , B 相互独立P (B P (A 则P (B A )等于( ).(A)0.6;(B)0.3;(C)0.5;(D)0.18.0.3,, 9 .85.0;4.0;3375.0;3.0( ).)(,45.0)(,75.0)(,(D)(C)(B)(A)B P B A P A P B A 则相互独立、10有甲、乙2批种子, 发芽率分别为0.8和0.7. 在2批中随机, 则:(1)粒种子都发芽的概率是____________;(2)至少有1粒种子能发芽的概率是______;(3)至多有1粒种子能发芽的概率是______.地各取一粒211.,,6.075.0,则它是甲和乙共同射中的概率是现已知目标被命中及他们的命中率分别为甲乙两人独立地向目标射击一次______12.)(,7.)(,4.0(,5.0)(B A P B A P B P A P 则已知13.__________4,至多有一次不发生的概率是次重复独立试验则在发生的概率为设在一次试验中事件A p A 中事件14.,784.0,,在一次试验中发生的概率为则发生一次的概率为若已知发生的概率都相等事件设在三次独立试验中A A A 至少15.________,5,至少发生一次的概率是次重复独立试验则在发生的概率为设在一次试验中事件A p A 中16某射手射击的命中率为0.6,重复独立进行射击,事件A :6次射击才第3次命中目标,则P (A ) ________________.直到第17._______38,,次成功的概率为试验才取得则直到第每次试验成功率为一试验可以独立重复进行p 次18._____,,3.0(,8.()(都不发生的概率为则已知B A AB P B P A P19.____|,41)(,31)(,B (A P B P A P B A 则条件概率且互不相容与设事件)20设A ,B 是两个相互独立的随机事件,且知31)(,41)(B P A P 则P (A B )_________.21设321,,A A A 是随机试验E 的三个相互独立的事件,已知,)(,)()(321A P A P A P 则321,,A A A 至少有一个发生的概率是______________.22已知P (A )21,41A B P ,则B A P _______________.23设一个病人从某种心脏手术中复原的概率是0.8则(1)有3个病人, 恰有2个手术后存活的概率是_____.(2)个病人中至少有1个不能存活的概率是_______., 324..51,41,31,求敌机被击中的概率依次为设各人击中概率向一敌机独立射出一弹甲、乙、丙三炮手同时25.,3,1,10,100求第三次才取得合格品的概率.取出后不放回次个零件每次从其中任取个次品有个一批零件共共取26某仓库有同样规格的产品六箱,乙厂生产的,201,151,101,现从中任取一件产品,二箱是其中三箱是甲厂生产的,且它们的次品率依次为另一箱是丙厂生产的,试求取得的一件产品是正品的概率.27某种集成电路使用到2000小时不能正常工作的概率为0.06到3000小时不能正常工作的概率为0.13问已经工作了2000时的集成电路能继续工作到3000小时的概率.,,使用小28,1,%,90%,85%,80%.20%,30%,50,3得优质品的概率.个从中任取将加工的零件混在一起是分比依次是零件由各台机床加工的百台机床加工同一种零件甲、乙、丙各机各机床加工的优质品率依次求取29开关使用1800次以上的概率为0.2,求三个开关在使用1800 后最多只有一个损坏的概率.次以30实验室器皿中产生甲类细菌与乙类细菌的机会是相同的,若某次发现产生了10个细菌,问至少有一个是甲类细菌的概率是多少?31设某运动员每次射击时命中率为0.25,问20次射击中至少击中一次的概率是多时32设三台机器相互独立地运转着,又第一台,第二台,生故障的概率依次为0.3, 求这三台机器都不发生故障的概率.第三台机器发 0.1,0.2,33甲、,投篮命中率分别为0.8和0.7,每人投篮3次,求两人进球相等的概率.乙两篮球运动员34设某电路由二组串联电池AB 和CD 并联而成(如图所示)电池A ,B ,C ,D 且它们损坏的概率依次0.2,0.1,0.3,0.1求这电路发生间断的概率.为损坏与否是相互独立的,35某厂生产的显像管的使用寿命X (以小时计)服从正态分布).,6000(2N 若,0.870005000{X P 则).((A) 800; (B) 780; (C) 820; (D) 850.36设随机变量).25,(~),16,(~N Y N X 令}5{}4{21YP p XP p 则有( )成立.(A)对任何实数, 都有21p p ;(B)对任何实数, 都有21p p ;(C)对的部分数值, 才有21p p ;(D)不能确定.,37设随机变量X 服从正态分布),,(2N 则随的增大, 概率}|{|XP 有性质( ).(A)单调增大;单调减小;(C)保持不变;增减不定.(B)(D)38.2;2;2;2).1,0(~)(1)(4)3(2(D)(C)(B)(A)N x ex f x 则的概率密度为设随机变量39).1,2();4,2();4,1();1,0(~,2),1,0(~N (D)N (C)N (B)N (A)N 则设( ).40.________0{,3.042{),,2(~2X P X P N X 则且已知设随机变量41_________.},{}{_______;}72{_______,}52{),2,3(~2cc X P c X P X P X P N X 则若则设42____________.}1{,951{)3(),2(YPXPpYpX则的二项分布数为的二项分布服从参数为设随机变量随机变量,服从参若,,43).12,110(),(182NHgmm服从计以收缩压岁女青年的血压某地区,18X测量她的血压岁女青年在该地区任选一..0.05}{,xXPx使的确定最小44).12,110(),(182NHgmm服从计以收缩压岁女青年的血压某地区,18X测量她的血压岁女青年在该地区任选一.};100{},105{XPXP求45};{}{(1)使得确定cXPcXPc).2,3(~2设NX?,0.9{(2)至多为多少问满足设ddXPd,46.9.010,)2(;157)1(),4,10(dXdxPNX使求求设47.95.0)2(;006.08.0)1(:)003.0,8.0(2ccXPXPNX的满足试求已知随机变量,48.301,,3)2(;30)1()()(,3200)2(2的概率误差不超过求至少有每次测量互相独立进行次接连测量的概率测量误差的绝对值不超过试求其概率密度函数为设测量两地间的距离时带有随机误差xexPx,次:49已知从某一批材料中任取一件时)16,200(2N求取得的这件材料的强度不低于160的(已知).9933.0)5.2(1.0F 概率取得的这件材料的强度,.,50已知某种产品的质量指标服从),(2N ,并规定m |产品合格m 取多大时95%.已知标准正态分布函数)(1.0x F 的值.475.0)06.0(,05.)65.1(,95.)65.1(,975.0)96.1(1.01.01.01.0F F F F 率达到问才能使产品的合格,,:时51若随机变量与相互独立,且方差D ( ,D ( ) ,则D (2)等于( ).(A);(B);(C);(D)1.531924252.52)4(,9861.)2.2(,5438.0)11.0(,8643.0)1.1(1.01.01.01.0F F F F .机器生产的螺栓长度服从若规定长度在范围内为合格品(cm)( 2 ),N 10,0.0511.0函数的值1.0F (x )求螺栓不合格的概率已知标准正态分布?,:53设随机变量已知服从试分别确定值的值:N (5,22 ),a :(1)Pa0.90;(2)P |5|a0.01.标准正态分布函数)(1.0F x 99.0)327.2(,995.)58.2(,90.0)282.1(,45.)14.0(1.01.01.01.0F F F F .使下列关系式成立,54设)1,0(~),,(~2N a N 则与的关系为( ).(A)2a ; (B)a a ;(C);(D)a .,55设~ N (,2),是任意实数,则有( ).(A) p { } p { };(B) p { }p {};(C) |~ N ( ,|| 2);(D)~ N ( ,22).0| 1 0056).40,1();22,1();14,1();8,1(( ).~2,),3,1(~),2,1(~N (D)N (C)N (B)N (A)Y X Y X N Y N X 则相互独立与且57若随机变量和相互独立,且方差2221)(,)(D D 2121,),0,0(k k 是已知常数,则)(21k k D 等于( ).(A) 222211k k ;(B) 222211k k ;(C) 22222121k k ;(D) 22222121k k .58.____}0{,3.0}42{22X P XP X 则的正态分布,,方差为服从均值为若随机变量且59在正态总体)100,(N 中取一容量为n 的样本, 其样本均值为x . 若0.954,}55{xP 则( ).n (A) 20; (B) 18; (C) 14; (D) 16.60设n X X ,,1是来自总体),(2N 的样本,n i nni X X n S X n X22,)(11,1则以下结论中错误的是( ).(A)X 与2n S 独立;(B))1,0(~N X;(C))1(~1222n X S n n ;(D))1(~n t n.61设n X X X ,21是来自随机变量X 的样本,n i x nX11,结论错误的是( ).(A) E (X )E (X )(B)nX D X D )()((C)D (X )D (X )(D)X 是E (X )的无偏估计量.,;;;则以下62设2521,,,x x x 是来自正态总体N (0,16)的样本,2521,,,y y y 是来自正态总体N (1,9)的样本, 且2组样本独立, 2值分别记为,,y x 则( ).}{y x P (A) 0.8413; (B) 0.9772; (C) 0.1587; (D) 0.9332.组样本的均63.11,,,,,),2,10(~8212X P X X X X X N X 求是样本均值个样本是来自于总体假设总体64.69(2);2.54.49(1)年的概率的随机样本平均寿命小于大小为年之间的概率和的随机样本平均寿命落在大小为:,,1,5求拌机的寿命近似服从正态分布假设这些搅年标准差为年某厂生产的搅拌机平均寿命为65.95.01.0,),6.0,(2的概率达到才能使样本均值与总体均值的差的绝对值小于为多少本容量服从正态分布已知一批产品的某一数量指标n N X 问样66?95.01..0,,,,),2.0,1(212最小应取多大样本容量满足概率不等式要使样本均值体样本服从正态分布假设总体n X P X X X X X N X n 来自总求67求总体N (20,23)的容量分10,15的两个独立样本均值差的绝对值大于0.3的概率(已知 (0.2449) 0.5948).68.16),(~2N X 的样本中抽取容量为从总体:2X 的概率之差的绝对值小于与别求在下列情形下分(1);25已知(2).8.,2s 但未知69在总体N (52,260)中机抽取一容量为25的样本,求样本均值X 在50.8与55.8之间的概率( (0.32) 0.6255,(0.10) 0.5398).落70在总体N (60 ,220),随机抽取为200的样本,试求样本均值与总体均值之差的绝对值大于2的概率.(已知9772.029207.).,71设n X X X ,,,21,是来自正态总体)2,(2N 的简单随机样本,Xn 使X 的方差E 2)(u X为样本均值.求72某种产品的平均生产时间是65秒(每件).标准差为25秒,的生产时间服从正态分布,问样本容量应取多大,才能使样本均值以95 的概率处于区间(6515,5)之内.(已知(1.96) 0.95 .设产品% 1) 6573设母体X ~ N ( ,2) ,如果要求以99.7%的概率保证偏差,1.0问在2时,样本容量n 应取多大?(已知(2.96) 0.9985).74.,01.02,试求总体的标准差的概率为假定样本均值与总体的样本从一正态总体中抽取容量为均值之差的绝对值大于75设总体X 服从正态分布),1,(N 其中未知, 作20n 次独立, 记录其出现负值的次数.设事件}0{X 出现m 次, 频率估计概率的原理,的估计值为( ).(A) 0.525;(B) 0.525;(C) 0.435;0.435.观测(D)用76.21,31(D);21,23(C);61,32(B);21,21(A).,( ),2121b ab ab a b a ba的无偏估计量也是参数时则当的无偏估计量都是参数与设77.,1)(;,1)(;,,1)(;,,)(,D C B A 则置信区间的长度变短变大置信度则置信区间的长度变短变小置信度则置信区间的长度样本容量增加一定时置信度则置信区间的长度样本容量增加一定时置信度正确的说法是的区间估计中总体均值).(变长变短78设(n X X X ,,,21)是正态总体),(~2N X 的样本,统计量)/()(n XU服从)1,0(N ,又知,64.02n ,及样本均值X ,利用U 对作区间估计,若已指定置信度并查得U的临界值为96.U ,则( ).(A))396.0,(X X ;(B))196.0,196.0(X X ;(C))392.0,392.0(XX;(D))784.0,784.0(XX.的置信区间为79设总体),,(~20N X 其中20已知. 取样本,,,1n x x 若置信0.95的置信区间的长度不大于00.5, 则n 应不小于( ).(A) 54; (B) 75; (C) 62; (D) 87.度为80对参数的一种区间估计及一个样本观测值),,,(21n X X X 来说,下列结论中正确的是( ).(A)置信度越大,对参数取值范围估计越准确;(B)置信度越大,置信区间越长;(C)置信度越大,置信区间越短;(D)置信度大小与置信区间的长度无关.81).________,.),,(~22需给出表达式则样本容量至少应取的置信区间的长度不大于的置信度为为使总体均值已知设总体L N X (只82.95.0,16)1,(的置信区间是的置信度为则未知参数本均值的简单随机样本算出样的容量为设由来自正态总体x N ____83某次数学测验的分数呈正态分布, 随机抽取20名学生, 得平均,72x样本方差.2s 则总体方差2的置信度为98%的置信区间是________.分数84设从正态分布变量X 采用了个相互独立的观察值算,均值61.58X及方差2)8.5(S ,求随机变量X 的均值和方差的90%的置信区间.(注:77.4330(,6973.30(,29.1,64.295.095.090.095.0t u u ,49.1830(205.0)985.44)31(,28.)31(295.0205.0.,得子样85某产品的件重近似服从正态分布,随机抽取16件算出样本均值75.507x(克)样本方差2220.6S )(2克求总体均值的95%的置信区间.(注:)1448.2)14(,1315.2)15(,1199.2)16(,7459.)16(975.0975.0975.095.0t t t t ,.86应该是多少量,或,的长度不超过的置信区间的置信度如果要求设总体为n a a N 01.01.021,),,(2取水平那么需要抽取的样本容87从自动车床加工的一批零件中随机抽取10个,测得其直径与标准尺寸间的偏差(单位:毫米)分别为2,2,2,零件直径尺寸的偏差为,并设~N (a ,2) ,试求a 及,并求a 的置信度为0.9的置信区间{已知833.1)9(95.0t }.估计值. 4 3,5,4, 2,3,1, ,记的无偏88)7764.2)4(,1318.2)4(,))(((.,95.01),,(,,1259,5975.095.012t t n t tP N C s C x 的置信区间试求置信度假设温度近似服从正态分布样本标准差经计算得样本均值次测量某种仪器的工作温度给定.89在假设检验问题中,检验水平等于( ) .(A)原假设0H 成立,经检验被拒绝的概率;(B)原假设0H 成立,经检验不能被拒绝的概率;(C)原假设0H 不成立,经检验被拒绝的概率;(D)原假设0H 不成立,经检验不能被拒绝的概率.90,195.0)2(.95.0)1(.101,,,10),8.2,(~101012多少最少应取观察值个数的置信区间长度小于要想使的置信区间的置信度为求知个观察值的现有设随机变量n x x x x X N X i 已:91为确定某种溶液中甲醛的浓度,取样得9个独立测定值的平均值%34.x ,样本标准离差S 并设被测总体近似地服从正态分布,求总体均值的90%的置信区间.(注:)8331.9(,8595.18(,3968.8(95.095.0)9.0(t t t .0.04%,92某部件设计使用寿命平均为3500小时,今抽得35件进行试验,3300小时,425小时,(对显著水平已知当~N (0,,P (1.645) 0.05 )果样本平均寿命为寿命是否低于设计寿命?(结问该部件使用而标准差为1).93在统计假设的显著性检验中,下列结论错误的是( ).(A)显著性检验的基本思想是小概率原则,即小概率事件在一次试验中是几乎不可能发生;(B)显著性水平是该检验犯第一类错误的概率拒真率;(C)记显著性水平为,则是该检验犯第二类错误的概率,即受伪概率;(D)若样本值落在拒绝域内则拒绝原假设.概“”“”“”“”即,94设对统计假设0H 构造了显著性检验方法,( ).(A)对不同的样本观测值,所做的统计推理结果可能不同;(B)对不同的样本观测值,拒绝域不同;(C)拒绝域的确定与样本观测值无关;(D)对一样本观测值,可能因显著性水平的不同,而使推断结果不同.则下列结论错误的是96设),,(~2N X 其中未知. 从X 抽取容量为10的样本. 假设检验0.02:0.02:2120H H 若显著水平为0.05, 则检验的拒绝域为( ).(A))9(45020.052s ;)10(50020.052s ;(C))9(45020.952s ;(D))9(450)9(45020.025220.9752s s 或.对于(B)97一台机床加工轴的椭圆度服从正态分布)0.02,0.095(2N (单位:机床经调整后随机取20根轴测量其椭圆度, 计算得0.081xmm. 问调整后机床加工轴的平均椭圆度有无显著降低?)0.05(对此问题, 假设检验问题应设为( ).(A)0.095:0.095:10H H ; (B)0.095:0.095:10H H ;(C)0.095:0.095:10H H ;(D)0.095:0.095:10H H .mm).98设总体),,(~2N X 其中未知. 从总体X 抽取容量为15的样. 对于假设检验100::10H H 若显著水平为0.01, 则检验的拒绝域为( ).)14(0.01t x ;本(B))14(14)100(0.01t sx ;(C))14(15)100(0.01t s x ;(D))15(15)100(0.01t sx .99设样本n X X X ,,,21来自总体),(~2N X ,已知,要对2假设检验,统计假设为20212020:,:H H ,则要用检验统计量为______ ,给定显著水平,则检验的拒绝域_____.为作100设样本),,,(21n X X X 抽自总体22,).,(~NX 对作假设检验,统计假设为,00H (0),,:01H 则要用检验统计量为_______,给定,则检验的拒绝______.已知显著水平均未知.区间为要101设总体),(~2N X ,其中2已知,若要检验,需用统计量U.若对单边检验,统计假设为0H (0已知),01:H,绝区间为_______;若单边假设为0:H ,01:H ,则拒绝区间为_____,(给,X ,样本容量为n ,且可记1准正态分布的)1(分位数).定显著水平为样本均值为则拒102总体),,(~2N X 其中未知.n x x x ,,,21为一样本, 样本.2s对16:16:2120H H 其检验统计量,2其拒绝域.W方差为103检验结果是之下检验假设在显著水平得样本均值的样本抽取容量为的正态总体中从已知标准差_________.,:05.0,56.27,16,2.50H x算104如果产品某指标的尺寸的方差显著地不超过0.2那就接收这批产品,由容量n = 46的样本求得,3.2s 在显著性水平0.05接收这批产品吗 假定产品某指标的尺寸服从正态分布(已知656.61(45)295.0)..下,可以105从某厂生产的一批灯泡中随机抽取20个进行寿命测试,算得1n i x n x小时,490s小时.假设灯泡寿命服从正态分布,在显著性水平下能否断言这批灯泡的平均寿命小于2000小时?(已知).725.19(95.0t106某厂生产一批某种型号的汽车蓄电池,由以往经验知其寿命近似地服从正态分布,它的均方差年),现从该厂生产的该型号畜电池中任意抽取13个,算得样本均方差92.0s(年),取显著性水平,显地增大(已知55.290.0).问该厂生产的这批畜电池寿命方差是否明10107某类钢板的重量指标平日服从正态分布,板重量的方差不得超过220016.0kg ,现由25块钢板组成的一个随机样本给出的样本方差()025.1122nix x n s 从这些数据能否得出钢板不合格的结论(取0.05;已知4.24,98.4224295.0299.0).钢它的制造规格规定,108甲制药厂进行有关麻疹疫菌效果的研究,用X 表示一个人用这种疫菌注射后的抗体强度.假定),(~2N X 另一家与之竞争的乙制药厂生产的同种疫菌的平均抗体强度是1.9,菌有更高的平均抗体,问:(1)如何提出零假设和配择假设?(2)从甲厂取容量为16的样本,2686667.,225.22s x 检验(1)的假设.0.05,(已知).7531.115(95.0t ,若甲厂为证实其产测得109在一批木材中抽出100根,,6.11cm 样本方差()n icm x x n s 22276.611.已知木材小头直径服从正态分布),(2N ,问是否可答为该批木12.00cm ?已知).65.99(05.0t 材小头直径的均值小于得到样本均值测量其小头直径,习题一解答1. 用集合的形式写出下列随机试验的样本空间与随机事件A : (1) 抛一枚硬币两次,观察出现的面,事件}{两次出现的面相同=A ;(2) 记录某电话总机一分钟内接到的呼叫次数,事件{=A 一分钟内呼叫次数不超过3次};(3) 从一批灯泡中随机抽取一只,测试其寿命,事件{=A 寿命在2000到2500小时之间}。

统计概率专项练习

统计概率专项练习

统计概率专项练习一、单选题1.“幸福感指数”是指某个人主观地评价他对自己目前生活状态的满意程度的指标,常用区间[]0,10内的一个数来表示,该数越接近10表示满意程度越高,现随机抽取7位小区居民,他们的幸福感指数分别为5,6,7,8,9,5,4,则这组数据的第75百分位数是( ) A .7 B .7.5 C .8 D .92.若样本数据123x +,223x +,,823x +的方差为32,则数据128,,,x x x 的方差为( ) A .16 B .8 C .13 D .53.盒子中装有红色,黄色和黑色小球各2个,一次取出2个小球,下列事件中,与事件“2个小球都是红色”对立的事件是( )A .2个小球都是黑色B .2个小球恰有1个是红色C .2个小球都不是红色D .2个小球至多有1个是红色4.为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中正确的是( )A .估计该地农户家庭年收入的平均值超过7.5万元B .估计该地有一半以上的农户,其家庭年收入不低于8.5万元C .该地农户家庭年收入低于4.5万元的农户比率估计为4%D .估计该地有一半以上的农户,其家庭年收入介于4.5万元至7.5万元之间5.为迎接北京2022年冬奥会,小王选择以跑步的方式响应社区开展的“喜迎冬奥爱上运动”(如图)健身活动.依据小王2021年1月至2021年11月期间每月跑步的里程(单位:十公里)数据,整理并绘制的折线图(如图),根据该折线图,下列结论正确的是( )A .月跑步里程逐月增加B .月跑步里程的极差小于15C .月跑步里程的中位数为5月份对应的里程数D .1月至5月的月跑步里程的方差相对于6月至11月的月跑步里程的方差更大 6.寒假来临,秀秀将从《西游记》、《童年》、《巴黎圣母院》、《战争与和平》、《三国演义》、《水浒传》这六部著作中选四部(其中国外两部、国内两部),每周看一部,连续四周看完,则《三国演义》与《水浒传》被选中且在相邻两周看完的概率为( )A .112B .16C .13D .237.为了研究某种病毒与血型之间的关系,决定从被感染的人群中抽取样本进行调查,这些感染人群中O 型血、A 型血、B 型血、AB 型血的人数比为4:3:3:2,现用比例分配的分层随机抽样方法抽取一个样本量为n 的样本,已知样本中O 型血的人数比AB 型血的人数多20,则n =( ) A .100 B .120 C .200 D .2408.某商场推出抽奖活动,在甲抽奖箱中有四张有奖奖票.六张无奖奖票;乙抽奖箱中有三张有奖奖票,七张无奖奖票.每人能在甲乙两箱中各抽一次,以A 表示在甲抽奖箱中中奖的事件,B 表示在乙抽奖箱中中奖的事件,C 表示两次抽奖均末中奖的事件.下列结论中不正确的是( )A .()2150P C = B .事件A 与事件B 相互独立 C .()P AB 与()P C 和为54% D .事件A 与事件B 互斥二、多选题9.甲、乙两支女子曲棍球队在去年的国际联赛中,甲队平均每场的进球数是3.2,全年进球数的标准差为3;乙队平均每场的进球数是1.8,全年进球数的标准差为0.3.下列说法中正确的是 ( )A .乙队的技术比甲队好B .乙队发挥比甲队稳定C .乙队几乎每场都进球D .甲队的表现时好时坏10.某市地铁全线共有四个车站,甲、乙两人同时在地铁第1号车站(首发站)乘车,假设每人自第2号车站开始,在每个车站下车是等可能的,则( )A .甲、乙两人下车的所有可能的结果有9种B .甲、乙两人同时在第2号车站下车的概率为19C .甲、乙两人同时在第4号车站下车的概率为13 D .甲、乙两人在不同的车站下车的概率为2311.某校为做好疫情防控,每天早中晩都要对学生进行体温检测.某班级体温检测员对一周内甲、乙两名同学的体温进行了统计,其结果如图所示,则( )A .甲同学体温的极差为0.4℃B .乙同学体温的众数为36.4℃,中位数与平均数相等C .乙同学的体温比甲同学的体温稳定D .甲同学体温的第60百分位数为36.4℃12.从高一某班抽三名学生(抽到男女同学的可能性相同)参加数学竞赛,记事件A 为“三名学生都是女生”,事件B 为“三名学生都是男生”,事件C 为“三名学生至少有一名是男生”,事件D 为“三名学生不都是女生”,则以下正确的是( )A .()18P A = B .事件A 与事件B 互斥 C .()()P C P D ≠ D .事件A 与事件C 对立三、填空题13.某人有3把钥匙,其中2把能打开门,如果随机地取一把钥匙试着开门,把不能打开门的钥匙扔掉,那么第二次才能打开门的概率为__________.14.一个总体分为,A B 两层,用分层抽样方法从总体中抽取一个容量为20的样本.已知B 层中每个个体被抽到的概率都是112,则总体中的个体数为________.15.由于夏季炎热某小区用电量过大,据统计一般一天停电的概率为0.3,现在用数据0、1、2表示停电;用3、4、5、6、7、8、9表示当天不停电,现以两个随机数为一组,表示连续两天停电情况,经随机模拟得到以下30组数据, 28 21 79 14 56 74 06 89 53 90 14 57 62 30 93 78 63 44 71 28 67 03 53 82 47 23 10 94 02 43根据以上模拟数据估计连续两天中恰好有一天停电的概率为________.16.一所初级中学为了估计全体学生的平均身高和方差,通过抽样的方法从初一年级随机抽取了30人,计算得这30人的平均身高为154cm ,方差为30;从初二年级随机抽取了40人,计算得这40人的平均身高为167cm ,方差为20;从初三年级随机抽取了30人,计算得这30人的平均身高为170cm ,方差为10.依据以上数据,若用样本的方差估计全校学生身高的方差,则全校学生身高方差的估计值为_________. 四、解答题17.为了估计某校的一次数学考试情况,现从该校参加考试的600名学生中随机抽出60名学生,其成绩(百分制)均在[)40,100上,将这些成绩分成六段[)40,50,[)50,60,…,[)90,100,后得到如图所示部分频率分布直方图.(1)求抽出的60名学生中分数在[)70,80内的人数;(2)若规定成绩不小于85分为优秀,则根据频率分布直方图,估计该校优秀人数; (3)根据频率分布直方图算出样本数据的中位数.18.为普及抗疫知识,弘扬抗疫精神,某学校组织防疫知识竞赛,比赛分两轮进行,每位选手都必须参加两轮比赛,若选手在两轮比赛中都胜出,则视为该选手赢得比赛,现已知甲、乙两位选手,在第一轮胜出的概率分别为11,23,在第二轮胜出的概率分别为23,34,甲、乙两位选手在一轮二轮比赛中是否胜出互不影响.(1)在甲、乙二人中选派一人参加比赛,谁赢得比赛的概率更大? (2)若甲、乙两人都参加比赛,求至少一人赢得比赛的概率.19.某教育集团为了办好人民满意的教育,每年底都随机邀请8名学生家长代表对集团内甲、乙两所学校进行人民满意度的民主测评(满意度最高分120分,最低分0分,分数越高说明人民满意度越高,分数越低说明人民满意度越低).去年测评的结果(单位:分)如下甲校:96,112,97,108,100,103,86,98; 乙校:108,101,94,105,96,93,97,106(1)分别计算甲、乙两所学校去年人民满意度测评数据的平均数、中位数; (2)分别计算甲、乙两所学校去年人民满意度测评数据的方差;20.在某校2022年春季的高一学生期末体育成绩中随机抽取50个,并将这些成绩共分成五组:[)[)[)[)[]50,60,60,70,70,80,80,90,90,100,得到如图所示的频率分布直方图.在[)50,70的成绩为不达标,在[]70,100的成绩为达标.(1)根据样本频率分布直方图求a的值,并估计样本的众数和中位数(中位数精确到个位);(2)以体育成绩是否达标为依据,用分层抽样的方法在该校2022年春季的高一学生中选出5人,再从这5人中随机选2人,那么这两人中至少有一人体育成绩达标的概率是多少?21.每年的11月9日是我国的全国消防日.119为我国规定的统一火灾报警电话,但119台不仅仅是一部电话,也是一套先进的通讯系统.它可以同中国国土上任何一个地方互通重大灾害情报,还可以通过卫星调集防灾救援力量,向消防最高指挥提供火情信息.佛山某中学为了加强学生的消防安全意识,防范安全风险,特在11月9日组织消防安全系列活动.甲、乙两人组队参加消防安全知识竞答活动,每轮竞答活动由甲、乙各答一题.在每轮竞答中,甲和乙答对与否互不影响,各轮结果也互不影响.已知甲每轮答对的概率为23,乙每轮答对的概率为p,且甲、乙两人在两轮竞答活动中答对3题的概率为5 12.(1)求p的值;(2)求甲、乙两人在三轮竞答活动中答对4题的概率.22.在一个文艺比赛中,由10名专业评审、10名媒体评审和10名大众评审各组成一个评委小组,给参赛选手打分.小组A 85 91 87 93 88 84 97 94 95 86小组B 84 87 92 96 89 95 92 91 94 90小组C 95 89 95 96 97 93 92 90 89 94(1)选择一个可以度量每一组评委打分相似性的量,并对每组评委的打分计算度量值;(2)你能依据(1)的度量值判断小组A,B与C中哪一个更象是由专业人士组成的吗?(3)已知选手小华专业评审得分的平均数和方差分别为195x=,218s=,媒体评审得分的平均数和方差分别为293x=,2212s=,大众评审得分的平均数和方差分别为391x=,2320s=,将这30名评审的平均分作为最终得分,求该选手最终的得分和方差.参考答案:1.C【分析】把该组数据从小到大排列,计算775%⨯,从而找出对应的第75百分位数; 【详解】解:依题意可得这组数据从小到大排列为4、5、5、6、7、8、9, 且775% 5.25⨯=,所以这组数据的第75百分位数为8. 故选:C 2.B【分析】根据方差的性质进行求解即可.【详解】因为样本数据12823,23,,23x x x +++的方差为32,所以数据128,,,x x x 的方差为 23282=. 故选:B 3.D【分析】根据互斥事件与对立事件的概念逐个分析可得答案.【详解】对于A ,“2个小球都是黑色”与“2个小球都是红色”是只互斥不对立事件,故A 不正确;对于B ,“2个小球恰有1个是红色” 与“2个小球都是红色”是只互斥不对立事件,故B 不正确;对于C ,“2个小球都不是红色” 与“2个小球都是红色”是只互斥不对立事件,故C 不正确; 对于D ,“2个小球至多有1个是红色” 与“2个小球都是红色”是对立事件,故D 正确. 故选:D 4.A【分析】根据频率分布直方图,即可结合选项逐一计算平均值以及所占的比重. 【详解】对于A ,估计该地农户家庭年收入的平均值为30.0240.0450.160.1470.280.290.1100.1110.04120.02⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+ 130.02140.027.687.5⨯+⨯=>,故A 正确,对于B ,家庭年收入不低于8.5万元所占的比例为0.10.10.040.020.020.020.3+++++=,故B 错误,对于C ,该地农户家庭年收入低于4.5万元的农户比率估计为(0.020.04)16%+⨯=,故C 错误,家庭年收入介于4.5万元至7.5万元之间的频率为0.10.140.20.440.5++=<,故D 错误. 故选:A 5.C【分析】根据折线分布图中数据的变化趋势可判断A 选项;利用极差的定义可判断B 选项;利用中位数的定义可判断C 选项;利用数据的波动幅度可判断D 选项.【详解】对于A 选项,1月至2月、6月至8月、10月至11月月跑步里程逐月减少,A 错; 对于B 选项,月跑步里程的极差约为2552015-=>,B 错;对于C 选项,月跑步里程由小到大对应的月份分别为:2月、8月、3月、4月、 1月、5月、7月、6月、11月、9月、10月,所以,月跑步里程的中位数为5月份对应的里程数,C 对;对于D 选项,1月至5月的月跑步里程的波动幅度比6月至11月的月跑步里程的波动幅度小,故1月至5月的月跑步里程的方差相对于6月至11月的月跑步里程的方差更小,D 错. 故选:C. 6.B【分析】首先计算出没有任何限制条件的所有可能,再计算《三国演义》与《水浒传》被选中且在相邻则用捆绑法,再从三部国外著作中选两部然后再分配到每周即可得到结果.【详解】三部国内三部国外各选两部再全排列共有224334C C A ;由于要选《三国演义》与《水浒传》被选中且在相邻两周看完,则将两本书看成一个整体,有22A 种;从三部国外著作中选出两部有23C 种,此时将四本书分布在四周转化为三整体分布在三空中,先从中选一个为《三国演义》与《水浒传》有13C ,剩下两本书再排列有22A 种.综上:22122332224334A C C A 1C C A 6P ==故选:B 7.B【分析】由题知422043324332n n -=++++++,再解方程即可得答案. 【详解】解:因为感染人群中O 型血、A 型血、B 型血、AB 型血的人数比为4:3:3:2,所以,抽取样本量为n 的样本中,O 型血的人数为44332n +++, AB 型血的人数为24332n +++,所以,422043324332n n -=++++++,解得120n = 故选:B 8.D【分析】分别求出()P A ,()P B ,进一步求出()P C 与()P AB ,从而判断AC 选项,在甲抽奖箱抽奖和在乙抽奖箱抽奖互不影响,故事件A 和事件B 相互独立,判断BD 选项.【详解】()42105P A ==,()310P B = 在甲抽奖箱抽奖和在乙抽奖箱抽奖互不影响,故事件A 和事件B 相互独立,B 项正确()321(1)(1)510502C P =--=,故A 正确()()()325P AB P A P B ==()P AB ()2754%50P C +==,故C 正确 事件A 与事件B 相互独立而非互斥,故D 错误. 故选:D. 9.BCD【分析】根据平均数、方差的知识,对四个说法逐一分析,由此得出正确选项 【详解】因为甲队每场进球数为3.2,乙队平均每场进球数为1.8, 甲队平均数大于乙队较多,所以甲队技术比乙队好,所以A 不正确;因为甲队全年比赛进球个数的标准差为3,乙队全年进球数的标准差为0.3, 乙队的标准差小于甲队,所以乙队比甲队稳定,所以B 正确; 因为乙队的标准差为0.3,说明每次进球数接近平均值, 乙队几乎每场都进球,甲队标准差为3, 说明甲队表现时好时坏,所以C ,D 正确, 故选:BCD. 10.ABD【分析】由题意,根据分步乘法计数原理,可得A 的答案;根据古典概型的概率计算公式,可得B 、C 、D 的答案.【详解】对于A ,甲下车的情况有第2号站、第3号站,第4号站,共3种,同理可得,乙下车的情况数也是3,由题意,甲乙两人下车互不影响,则总情况数为339⨯=,故A 正确;对于B ,甲、乙两人同时在第2号站下车的情况数为1,由题意,下车是等可能的,则概率为19,故B 正确; 对于C ,甲、乙两人同时在第4号站下车的情况数为1,由题意,下车是等可能的,则概率为19,故C 错误;对于D ,甲、乙两人在相同车站下车的情况数为3,则在不同车站下车的情况数为936-=,即概率为62=93,故D 正确.故选:ABD. 11.ABC【分析】根据图中数据,依次分析各选项即可得答案.【详解】解:对于A 选项,甲同学体温的极差为36.636.20.4-=℃,故A 选项正确; 对于B 选项,乙同学体温为36.4,36.3,36.5,36.4,36.4,36.3,36.5,其众数为36.4℃,中位数、平均数均为36.4℃,故B 选项正确;对于C 选项,根据图中数据,甲同学的体温平均数为36.4℃,与乙同学的体温平均数相同,但甲同学的体温极差为0.4℃,大于乙同学的体温极差0.2℃,而且从图中容易看出乙同学的数据更集中,故乙同学的体温比甲同学的体温稳定,C 选项正确;对于D 选项,甲同学的体温从小到大排序为36.2,36.2,36.4,36.4,36.5,36.5,36.6,760% 4.2⨯=,故甲同学体温的第60百分位数为36.5℃,故D 选项错误. 故选:ABC 12.ABD【分析】由独立乘法公式求()P A ,根据事件的描述,结合互斥、对立事件的概念判断B 、C 、D 即可.【详解】由所抽学生为女生的概率均为12,则311()()28P A ==,A 正确;,A B 两事件不可能同时发生,为互斥事件,B 正确;C 事件包含:三名学生有一名男生、三名学生有两名男生、三名学生都是男生,其对立事件为A ,D 正确;D 事件包含:三名学生都是男生、三名学生有一名男生、三名学生有两名男生,与C 事件含义相同,故()()P C P D =,C 错误; 故选:ABD13.13【分析】分析试验过程,利用概率的乘法公式即可求出概率. 【详解】记事件A :第二次才能打开门.因为3把钥匙中有2把能打开门,而第一次没有打开,第二次必然能打开.所以()121323P A =⨯=.故答案为:13.14.240【分析】根据分层抽样每个个体抽到的概率相等,即可求出结论 【详解】因为用分层抽样方法从总体中抽取一个容量为20的样本.由B 层中每个个体被抽到的概率都为112 ,知道在抽样过程中每个个体被抽到的概率是112,所以总体中的个体数为12024012÷=.故答案为:240.15.25##0.4【分析】根据题意从30个数据中找出恰有一天停电的情况,再利用古典概型的概率公式可求得结果.【详解】由题意可知恰有一天停电的情况有:28,14,06,90,14,62,30,71,28,03,82,23,共12种,所以连续两天中恰好有一天停电的概率为122305=,故答案为:2516.64.4【分析】利用方差及平均数公式可得()()()()()()30304040303022222221111111100i i i i i i i i i s x x x y y y z z z ωωω======⎡⎤=-+-+-+-+-+-⎢⎥⎣⎦∑∑∑∑∑∑, 进而即得.【详解】初一学生的样本记为1x ,2x ,…,30x ,方差记为21s ,初二学生的样本记为1y ,2y ,…,40y ,方差记为22s ,初三学生的样本记为1z ,2z ,…,30z ,方差记为23s .设样本的平均数为ω,则301544016730170164100ω⨯+⨯+⨯==,设样本的方差为2s .则()()()30403022221111100i i i i i i s x y z ωωω===⎡⎤=-+-+-⎢⎥⎣⎦∑∑∑ ()()()3040302221111100i i i i i i x x x y y y z z z ωωω===⎡⎤=-+-+-+-+-+-⎢⎥⎣⎦∑∑∑ 又()303011300i i i i x x x x ==-=-=∑∑,故()()()()303011220i ii i x x x x x x ωω==--=--=∑∑,同理()()40120i i y yy ω=--=∑,()()30120ii z z z ω=--=∑,因此,()()()()()()30304040303022222221111111100i i i i i i i i i s x x x y y y z z z ωωω======⎡⎤=-+-+-+-+-+-⎢⎥⎣⎦∑∑∑∑∑∑ ()()()2222221231303040403030100s x s y s z ωωω⎡⎤=+-++-++-⎢⎥⎣⎦()()(){}222130301541644020167164301017016464.4100⎡⎤⎡⎤⎡⎤=⨯⨯+-+⨯+-+⨯+-=⎣⎦⎣⎦⎣⎦.故答案为:64.4. 17.(1)15人 (2)135人 (3)76【分析】(1)根据频率的和等于1求出成绩在[)70,80内的频率,计算对应的频数即可.(2)计算小于85分的频数即可.(3)根据中位数平分频率直方图的面积,求出即可. 【详解】(1)解:由题意得:在频率分布直方图中,小矩形的面积等于这一组的频率,频率的和等于1, 成绩在[)70,80内的频率()10.0050.010.020.0350.005100.25-++++⨯= 人数为0.256015⨯=人;(2)估计该校的优秀人数为不小于85分的频率再乘以样本总量600,即0.0356000.005101352⎛⎫⨯+⨯=⎪⎝⎭人; (3)分数在[)70,80内的频率为0.25,∵分数在[)40,70内的频率为()0.0050.0100.020100.350.5++⨯=<, ∴中位数在[)70,80内,∵中位数要平分方图的面积,∴中位数为0.50.3570760.025-+= 18.(1)甲赢得比赛的概率更大 (2)12【分析】(1)根据独立事件概率乘法公式可分别计算甲、乙赢得比赛的概率,对比即可得到结论;(2)首先求得二人都没有赢得比赛的概率,根据对立事件概率公式可求得结果.【详解】(1)甲赢得比赛的概率为121233⨯=,乙赢得比赛的概率为131344⨯=,1134>,∴甲赢得比赛的概率更大. (2)若二人都没有赢得比赛,则概率为112311134342⎛⎫⎛⎫-⨯-=⨯= ⎪ ⎪⎝⎭⎝⎭,∴甲、乙至少一人赢得比赛的概率为11122-=.19.(1)平均数为100;100;中位数99;99 (2)55.25;29.5【分析】(1)利用平均数、中位数定义及公式直接求即可; (2)利用方差公式直接求即可 【详解】(1)甲学校人民满意度的平均数为:()1961129710810010386981008x =+++++++=甲,甲校:86,96,97,98,100,103,108,112甲学校人民满意度的中位数为10098992+=; 乙学校人民满意度的平均数为:1(10810194105969897106)1008x =+++++++=乙,乙校:93,94,96,97,101,105,106,108乙学校人民满意度的中位数为10197992+=. (2)甲学校人民满意度的方差:()2222222221412380314255.258S =+++++++=甲,乙学校人民满意度的方差:()222222222181********.58S =+++++++=乙.20.(1)0.020a =,众数为65,中位数为73;(2)910.【分析】(1)根据各组频率和为1可求出a 的值,然后根据众数和中位数的定义求解即可;(2)根据分层抽样的概念可知不达标的学生有2人,达标的学生有3人,然后利用列举法,根据古典概型概率公式即得. 【详解】(1)由题知()0.0040.0080.0320.036101a ++++⨯=, 得0.020a =,由直方图可知众数为65;因为()0.0040.036100.4+⨯=,()0.0040.0320.036100.72++⨯=,设中位数为x ,则()0.004100.03610700.0320.5x ⨯+⨯+-⨯=,得73.12573x =≈, 所以中位数为73;(2)分层抽样的方法从不达标和达标的学生中共选出5人,则不达标的学生有2人记为,A B ,达标的学生有3人记为,,a b c ,从这5人中选2人的情况有,,,,,,,AB Aa Ab Ac Ba Bb Bc ab ,,ac bc 共10种,这两人中至少有一人是“达标”的情况有,,Aa Ab Ac ,,,,,,Ba Bb Bc ab ac bc 共9种,设M =“这两人中至少有一人达标”,则()910P M =,所以,这两人中至少有一人达标的概率是910.21.(1)34(2)3196【分析】(1)利用相互独立事件概率的乘法公式列方程求解;(2)分甲有两题没有答对,乙有两题没有答对,甲乙各有一题没有答对三种情况,利用相互独立事件的概率以及独立重复事件的概率的乘法公式求出概率. 【详解】(1)设事件A =“甲第一轮猜对” ,事件B =“乙第一轮猜对” ,事件C =“甲第二轮猜对” ,事件D “乙第二轮猜对 ,∴甲、乙两人在两轮竞答活动中答对3题的概率为 ()P ABCD ABCD ABCD ABCD +++()()()()()()()()()()()()()()()()P A P B P C P D P A P B P C P D P A P B P C P D P A P B P C P D =+++()2533331212221p p p p ⎡⎤=⨯⨯⨯+⨯-⨯⨯=⎢⎥⎣⎦解得34p =或54p =(舍去)34p ∴=; (2)三轮竞答活动中甲乙一共答6题,甲、乙两人在三轮竞答活动中答对4题,即总共有2题没有答对,可能甲有两题没有答对,可能乙有两题没有答对,可能甲乙各有一题没有答对. 甲、乙两人在三轮竞答活动中答对4题的概率32322211223333231321213131C C +C C 344433334496P ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯⨯⨯+⨯⨯⨯⨯⨯⨯⨯⨯= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 22.(1)答案见解析 (2)C 组(3)90分;160【分析】(1)可以用方差来度量每一组评委打分的相似性,方差越小,相似程度越高.根据方差公式计算出各组的方差即可.(2)根据第(1)问的结果,方差最小的即为结果.(3)根据题意每一组各有10人,所以选手的最终得分为123101010303030x x x x =++,同理方差为()()(){}2222222112233*********s s x x s x x s x x ⎡⎤⎡⎤⎡⎤=⨯+-+⨯+-+⨯+-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,代入计算即可得到结果.【详解】(1)(1)可以用方差来度量每一组评委打分的相似性,方差越小,相似程度越高.小组A 的平均数1(85918793888497949586)9010A x =+++++++++=,答案第7页,共7页 小组A 的方差2222221[(8590)(9190)(8790)(9390)(8890)10A s =-+-+-+-+- 22222(8490)(9790)(9490)(9590])19(8690)+-+-+-+-=-+,小组B 的平均数1(84879296899592919490)9110B x =+++++++++=, 小组B 的方差2222221[(8491)(8791)(9291)(9691)(8991)10B s =-+-+-+-+- 22222(9591)(9291)(9191)(9491)(90]12.91)2+-+-+-+-+-=,小组C 的平均数1(95899596979392908994)9310C x =+++++++++=, 小组C 的方差2222221[(9593)(8993)(9593)(9693)(9793)10C s =-+-+-+-+- 22222(9393)(9293)(9093)(8993)]7(9493).6+-+-+-+-+=-.(2)由于专业评委给分更符合专业规则,相似程度应该高,即方差小,因而C 组评委更像是专业人士组成的.(3)小华的得分12310101010101095939193303030303030x x x x =++=⨯+⨯+⨯=分. 方差()()(){}2222222112233110101030s s x x s x x s x x ⎡⎤⎡⎤⎡⎤=⨯+-+⨯+-+⨯+-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, {}22221108(9593)1012(9393)1020(9193)30s ⎡⎤⎡⎤⎡⎤=⨯+-+⨯+-+⨯+-⎣⎦⎣⎦⎣⎦, 2160s =.。

概率统计练习题

概率统计练习题

概率统计练习题 一.简答题1.用事件,, A B C 的运算关系式表示下列事件: (1)所有三个事件都出现(记为1E ); (2)A 出现,B C 、都不出现(记为2E )。

2.设事件A 与B 的概率分别为()()0.5,0.6,P A P B ==且()0.8P B A =,求()P A B +。

3.设总体X 具有分布律其中()01θθ<<为未知参数。

已知取得了样本值1231,2,1x x x ===,试求θ的矩估计值。

4.设A 、B 是两个事件,已知()()()0.5,0.7,0.8P A P B P A B ===,求()P A B -。

5.设随机变量X 服从0—1分布,求X 的分布函数()F X 。

6.设随机变量X 的分布函数为()0,10.4,110.8,131,3x x F x x x <-⎧⎪-≤<⎪=⎨≤<⎪⎪≥⎩求X 的数学期望()E X 。

二.计算题1.设二维随机变量(),X Y 的联合分布律为求(1)a 的值;(2)(),X Y 关于X 的边缘分布律。

2.据美国的一份资料报导,在美国总的来说患肺癌的概率约为0.1%,在人群中有20%是吸烟者,他们患肺癌的概率约为0.4%,求不吸烟者患肺癌的概率是多少?3.设X 的分布函数为200()0111.x F x x x x <⎧⎪=≤<⎨⎪≤⎩, , , ,,求:(1)密度函数()f x ; (2)()E X 。

4.设随机变量()~0,1X N ,求随机变量XY e =的概率密度函数()Y f y 。

5.设X 表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4,求()2E X 。

6.设随机变量X 服从正态分布()2,N μσ,且二次方程240y y X ++=无实根的概率为12,求μ。

三.解答题1.设总体X 服从泊松分布,其分布律为: ()()0,1,2,!kP X k e k k λλ-===其中0λ>是未知参数,12,,,n x x x 是来自总体样本X 的观察值,求参数λ的最大似然估计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、填空题1)()0.5,()0.6,()0.8P A P B P A B ==⋃=已知,()=P AB 则 0.3 2)已知()0.4,()0.5P A P B A ==, 则()P A B -= 0.23)设对于事件A,B,C,有P(A)=P(B)=P(C)=1/4,P(AB)=P(BC)=0,P(AC)=1/8,则A,B,C 三个事件至少出现一个的概率为_____5/8_____________4)从0,1,2,3,,9十个数字中任取三个,则取出的三个数字中不含0和5的概率为 7/155)从3黄12白共15个乒乓球中任取1个出来,取到白球的概率为 4/5 6)()0.5,,()P A A P B A =⊂=已知P(B)=0.3,且B 则 3/57)已知随机变量X 的分布律为{}2,1,2,33iP X i a i ⎛⎫=== ⎪⎝⎭,则常数a 为 27/388)随机变量X 的概率密度为2,01;()0,x x f x <<⎧=⎨⎩其它,以Y 表示X 的三次独立重复观察中事件1{}2X ≤出现的次数,则(2)P Y ==___9/64_____9)已知随机变量X 服从二项分布1(100,)25B ,则X 的数学期望为 4 10)已知随机变量X 的概率密度为51,0()50,0xe xf x x -⎧>⎪=⎨⎪≤⎩,则()E X = 511)设随机变量X 的方差为()=9D X ,则(35)D X += 81 12)0.4,()D X Y ρ=+=XY 设D(X)=25,D(Y)=36,则 8513)设()25D X =,()36D Y =,,0.4X Y ρ=,则()D X Y -= 37 。

14)已知),(Y X 服从二维正态分布),,,,(222121ρσσμμN ,且X 与Y 独立,则ρ为 0 15)(01)(0,1)X N Y N X Y 设,,,与相互独立,则X+Y 服从 N(0,2) 分布。

16)N 222129129设X ,X ,,X 相互独立且都服从(0,1),则X +X ++X 服从 29()χ 分布。

二、选择题1)某射手连续射击目标三次,事件i A 表示第i 次射击时击中)3,2,1(=i ,则“至少有一次击中”为( ) (A) 121323A A A A A A (B) 123A A A (C) 123A A A (D) 123A A A2)某人射击中靶的概率为43,独立射击3次,则恰有2次中靶的概率为( )。

(A) 3)43( (B) 41)43(2 (C) 43)41(2 (D) 3)41(3)将n 个球随机放入M 个盒子中去,设每个球放入各个盒子是等可能的,则第i 个盒子有球的概率( )(A)M n ; (B) n M ; (C )1(1)n M -; (D) 11()nM M--。

4)已知连续型随机变量X 的概率密度为x ae x f -=)(,则a 为( )。

(A )1 ( B)21 (C) 21- (D) 1- 5) 设X 服从参数为1的指数分布,则(12)P X <<为( ) (A)12e e ---; (B) 11e --; (C) 1e e --; (D) 1e e -- 6)设随机变量X 的方差为)(X D ,,a b 为常数,则()D aX b += ( ) 。

(A )()aD X (B) ()aD X - (C) )(X D (D) 2()a D X7)随机变量X 的概率密度函数为2(01)()0a bx x f x ⎧+<<=⎨⎩其它 ,且E(X)=35则a 为3/5____,b 为_6/5______;D(X)为___2/25___。

8) 已知随机变量X 的概率密度为2(3)4()x f x --=,)(+∞<<-∞x ,则X 的数学期望与方差为( )。

(A )2,3 (B) 2,3 (C) 2,3- (D) 3,8 9)设X 服从参数为5的指数分布,则()E X 为( )(A) 15 (B) 5 (C) 5- (D) 15-10)设随机变量X 与Y 的协方差为(,)0Cov X Y =,则随机变量X Y 与 ( ) (A )相互独立 (B)存在线性关系(C)不存在线性关系(D )选A 、B 、C 都不正确11)随机变量X 服从参数为2的Poisson 分布,则()E X 为( )(A) 1/4 ; (B)2 ; (C)1 ; (D)1/2。

12)若~()T t n ,则2T 服从( )(A) F(n,1) 分布 (B) 2()n χ分布 (C) ()t n 分布 (D) F(1,n) 分布三、计算题1、 灯泡耐用时间在1000小时以上的概率为0.3,求三个灯泡在使用1000小时以后最多有一个坏了的概率?解 记A={灯泡耐用时间在1000小时以上},随机变量{}1000X =三个灯泡在使用小时以后坏了的个数 由已知()0.3,()0.7,(3,0.7)P A P A XB ==,即{}330.70.3,0,1,2,3kk k P X k C k -===所以 {}{}{}3123271010.30.30.7125P X P X P X C ≤==+==+⋅=2、 已知随机变量X 的分布函数为 ⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤<=31321915211991,0)(x x x x x F ,求离散型随机变量X 的分布律。

解 随机变量1,2,3X =99{1}(1)(1)01919P X F F -==-=-= 1596{2}(2)(2)191919P X F F -==-=-=154{3}(3)(3)11919P X F F -==-=-=所以X 的分布律为3、 将3个球随机地放入编号分别为1,2,3,4的四个盒子中,以X 表示其中至少有一个球的盒子的最小号码(如3X =表示第1,2号盒空,第3号盒至少有一个球),求随机变量X 的分布律。

解 X 可取1,2,3,412213333333337{1}44C C C P X ++===;1223333332219{2}44C C C P X ++===;123333337{3}44C C C P X ++===;31{4}4P X ==4、 已知连续型随机变量X 的分布函数为0,0(),01,x F x kx b x x ππ<⎧⎪=+≤<⎨⎪≥⎩,求常数k 和b以及X 的概率密度。

解 由题意,可知00lim 0lim()(0)(0)(0),lim ()lim 11()()()x x x x kx b b F F F kx b F F F πππππ-+-+-+→→-+→→=+=⎧⎧==⎪⎨⎨+====⎩⎪⎩即,亦01b k b π=⎧⎨+=⎩ 所以1,0k b π==。

此时连续型随机变量X 的分布函数为0,0(),01,x x F x x x πππ<⎧⎪⎪=≤<⎨⎪≥⎪⎩其概率密度1,0()()0,x f x F x ππ⎧<<⎪'==⎨⎪⎩其它5、 设随机变量X 的概率密度为2,0()0,x x Af x <<⎧=⎨⎩其他,求常数A 以及概率(00.5)P X <<。

解 由题意,知()d 1f x x +∞-∞=⎰,即02d 1Ax x =⎰,有21A =,1(0)A A =>{}0.5100.52d 4P X x x <<==⎰6、设随机变量X 与Y 的分布相同,其概率密度为⎪⎩⎪⎨⎧<<=其他,020,83)(2x x x ϕ ,已知事件{}a X A >=与{}a Y B >=相互独立,且3()4P A B =,求常数a解 由题意,记{}()P A P X a p =>=,显然{}()P B P Y a p =>=________23()1()1()1()()1(1)4P A B P A B P AB P A P B p =-=-=-=--=所以12p =,即 {}2231()()d d 82aaP A P X a x x x x ϕ+∞=>===⎰⎰,有34a =,a =7、已知二维连续型随机变量的联合密度函数为(24),0,0(,)0,x y ce x y f x y -+⎧>>=⎨⎩其它,求()P X Y <。

解 由于(,)1f x y dxdy +∞+∞-∞-∞=⎰⎰,所以2401x y ce e dxdy +∞+∞--=⎰⎰,118c = 有8c =此时二维连续型随机变量(,)X Y 的联合密度函数为(24)8e ,0,0(,)0,x y x y f x y -+⎧>>=⎨⎩其它.故42420e ()8e e 8e ()4y x y x x x P XY dxdy dx +∞+∞+∞----+∞-<==⋅⎰⎰⎰ 13=8、已知二维随机变量(,)X Y 的分布函数为(,)(arctan )(arctan )F x y A B x C y =++,,x y -∞<<+∞, (1)确定常数,,A B C ;(2)求关于X 和Y 的边缘分布函数;解(1)由分布函数的性质(,)lim (arctan )(arctan )()()122(,)lim (arctan )(arctan )()(arctan )02(,)lim (arctan )(arctan )(arctan )()02x y x y F A B x C y A B C F y A B x C y A B C y F x A B x C y A B x C ππππ→+∞→+∞→-∞→-∞⎧+∞+∞=++=++=⎪⎪⎪⎪-∞=++=-+=⎨⎪⎪-∞=++=+-=⎪⎪⎩ 有21,2A B C ππ===此时二维随机变量(,)X Y 的分布函数为21(,)(arctan )(arctan )22F x y x y πππ=++,,x y -∞<<+∞ 211()(,)lim (arctan )(arctan )(arctan )222X y F x F x x y x πππππ→+∞=+∞=++=+211()(,)lim (arctan )(arctan )(arctan )222Y x F y F y x y y πππππ→+∞=+∞=++=+9、已知随机变量(,)X Y 的概率密度为101,(,)0x y xp x y ⎧<<<=⎨⎩,,其他 ,求:(1)关于X 的边缘概率密度;(2)概率1{X<}2P解12()(,)0,x x X dx xf x f x y dy +∞--∞⎧=⎪==⎨⎪⎩⎰⎰其它1111,10()(,)11,010,y Y y dx y y f y f x y dx dx y y -+∞-∞⎧=+-<≤⎪⎪⎪===-<≤⎨⎪⎪⎪⎩⎰⎰⎰其它1122011{X<}=(,)24x x P dx f x y dy dx dy +∞-∞-∞-==⎰⎰⎰⎰10、一袋子中有10个球,其中2个是红球,8个是白球。

相关文档
最新文档