超声波风速风向仪工作原理

合集下载

超声波风速风向仪设计说明

超声波风速风向仪设计说明

超声波风速风向仪设计1.研究背景及意义风速测量在工业生产和科学实验中都有广泛的应用,尤其在气象领域,风速测量更有着重要的价值。

风速测量,常用的仪表有杯状风速计、翼状风速计、热敏风速计和超声波风速计。

杯状风速计和翼状风速计使用方便,但其惰性和机械摩擦阻力较大,只适合于测定较大的风速。

热敏风速计利用热敏探头,其工作原理是基于冷冲击气体带走热元件上的热量,借助一个调节开元器件保持温度恒定,此时调节电流和流速成正比。

这种测量方法需要人为的干预,而且此仪表在湍流中使用时,来自各个方向的气流同时冲击热元件,会影响到测量结果的准确性。

现阶段常采用基于超声波传播速度受风速影响因而增减原理制成的超声波风速仪表,与其它各类仪表相比较,其优势在于:安装简单,维护方便;不需要考虑机械磨损,精度较高;不需要人为的参与,可完全智能化。

2.国外研究历史及发展状况超声波可用于测量,是因为在超声波在传播过程中,会加载流体的流速信息,这些信息经过分离处理,便可以得到流体的流速。

70年代中后期,大规模集成电路技术的飞速发展,高精度的时间测量成为一件轻而易举的事情,再加上高性能的、动作非常稳定的PLL(锁相环路)技术的应用,使得超声波流量计的稳定可靠性得到了初步的保证。

同时为了消除声速变化对测量精度的影响,出现了频差法、锁相频差法等。

该类方法测量周期短,响应速度快,而且几乎完全消除了声速对测量精度的影响。

80年代,超声波测量出现了新的方法,比如射束位移法、多普勒法和相关噪声法等等。

90年代才真正实现了高精度超声波气体流量计。

从国、外超声波气体测量发展来看,国外机构开展这项工作的时间较早,到现在为止已经形成较为成熟的产品。

当今世界,超声波流量计用于气体流量计的研究与开发方面,荷兰的工nstromet公司、英国的Dnaiel公司以及美国的Cnotrolotmo公司均做出了大量的工作并取得了较好的应用效果,其销售份额也排在前几位。

日本在超声波气体流量计的设计方面也具有很大的优势,在消除管外传播时间、提高仪器精度和缩短响应时间方面有独到之处。

(完整版)风速仪风向标原理

(完整版)风速仪风向标原理

风速仪风向标原理当前风场所使用的风速仪风向标种类主要有两种,机械式和超声波风速风向仪,其中使用较多的是机械式风速仪,利用机械部件旋转来敏感风速大小,并结合风向标获得风向,尽管这种方法简单可靠,但由于其测量部分具有机械活动部件,在长期暴露于室外的工作环境下容易磨损,寿命有限,维护成本较高。

另外,其检测精度也不高,而采用超声波风速风向测量系统,精度高,可靠性高,寿命长且维护成本相对较低。

1.超声波风速风向测量原理系统由超声波探头,发射接收电路,电源模块,发射接收控制及数据分析处理中心和数据结果显示单元组成。

四个超声波探头成90度布置。

可以测到两个方向的风速值,经矢量合成运算,可以得到风速风向值。

发射接收电路在不同时刻,即可以驱动探头发射超声波,又可以接受探头受到的超声波信号,可以地隔离、发射接收互不影响。

电源模块提供电路所需要的5V和12V直流稳压电源。

发射接收控制及数据分析处理中心产生超声波信号,经发射接收电路放大后驱动探头发射;对探头接收带的信号进行采样,将模拟信号转换为数字信号;对探头的发射接收顺序进行控制;对发射时刻和信号到达时刻进行判断,计算出传播时间;分析处理数据结果,计算出风速风向值,传输给数据结果显示单元,数据结果显示单元将以数字形式直观的现实出瞬时风速风向值或某一段时间的平均风速值2机械式风向标(NRG相同工作原理)图1图中:WIND ORIENTATION VANE :风向标风向标和风速计位于机舱的后部外侧。

风向标包括两个需要提供24V电源(白色+,棕色/黄色/粉红色-)的光耦合器:B302指示0°,B303指示90°。

在风向标(底部)的固定部分有底座,外加整个电子电路。

不固定部分(顶部)包括风向标本身和位于基座内部的金属半环。

金属半环的作用是随着风向标的转动,通过光耦合器起动它们或者停止它们的工作。

当金属半环通过光耦合器时信号为低电平(0V),而出现相反的情况时信号为高电平(24V)。

DC21超声波风速风向传感器说明支持自动加热姿态校准

DC21超声波风速风向传感器说明支持自动加热姿态校准

DC-21型超声波风速风向传感器说明书一、产品简介:应用领域:气象监测站点、建筑控制、公路、隧道、环境监测站点、港口码头、环境监测车、小型飞机场和直升机停机坪、钻井平台点等。

1、采用声波相位补偿技术,精度更高;2、采用随机误差识别技术,大风下也可以保证测量的低离散误差,使输出更平稳:3、数字滤波技术,抗电磁干扰能力更强;4、性能可匏,维护方便;5、独特的结构和先进的技术保证超声波风速风向传感器具有环境适应能力强、性能稳定可匏的特点,减少停机时间和运维人员的工作量。

DC-21型超声波风速风向仪是一款全数字化信号检测,高精度,其内部自带的加热装置可以在严冬下保证仪器正常工作。

1、风速风向测量超声波风速风向仪使用四个超声波探头在通过超声波在空气中传播的时差来测量风速和风向。

2、自动加热功能为防止冬天室外风速风向测量造成超声波探头的冻结,以至影响测量,甚至造成仪器严重损害,带有自动加热的装置,使仪器在严寒下仍可正常使用。

二、技术指标:风速0-60m/s ;0~70m/s ÷2%(≤2Oπ√s),±2%+0.03Vm/s020m/s) O.1m∕s 测量范围测量精度分辨率风向测量范围0~360°全方位,无盲区 准确性÷20 分辨率I 0 通讯协议Modbus-RTU 协议 输出方式RS485 操作电压仪器工作供电DC12V∕0.08Λ 仪器加热供电DC12V∕0.6Λ普通参数尺寸高X 直径=196X150(mm) 重量540g 材料工业级ABS 一次原料 防护等级IP68直径15Omm高196mm 直径150mm安装弧度直径安装弧度直径57-76mm六、安装说明1、用户必须对线缆进行适当的应力消除。

旋转插头并轻轻往里用力就可以把插头连接到1e-CF4的插座上。

2、把线缆(防水航空插头)穿过安装管,插入超声波传感器航空插座上,并拧紧航空插头紧固螺母。

3、安装时候需要注意保证仪器放置水平,并且指北标识指向正北方向。

超声波风速风向仪设计

超声波风速风向仪设计

超声波风速风向仪设计1.研究背景及意义风速测量在工业生产和科学实验中都有广泛的应用,尤其在气象领域,风速测量更有着重要的价值。

风速测量,常用的仪表有杯状风速计、翼状风速计、热敏风速计和超声波风速计。

杯状风速计和翼状风速计使用方便,但其惰性和机械摩擦阻力较大,只适合于测定较大的风速。

热敏风速计利用热敏探头,其工作原理是基于冷冲击气体带走热元件上的热量,借助一个调节开元器件保持温度恒定,此时调节电流和流速成正比。

这种测量方法需要人为的干预,而且此仪表在湍流中使用时,来自各个方向的气流同时冲击热元件,会影响到测量结果的准确性。

现阶段常采用基于超声波传播速度受风速影响因而增减原理制成的超声波风速仪表,与其它各类仪表相比较,其优势在于:安装简单,维护方便;不需要考虑机械磨损,精度较高;不需要人为的参与,可完全智能化。

2.国外研究历史及发展状况超声波可用于测量,是因为在超声波在传播过程中,会加载流体的流速信息,这些信息经过分离处理,便可以得到流体的流速。

70年代中后期,大规模集成电路技术的飞速发展,高精度的时间测量成为一件轻而易举的事情,再加上高性能的、动作非常稳定的PLL(锁相环路)技术的应用,使得超声波流量计的稳定可靠性得到了初步的保证。

同时为了消除声速变化对测量精度的影响,出现了频差法、锁相频差法等。

该类方法测量周期短,响应速度快,而且几乎完全消除了声速对测量精度的影响。

80年代,超声波测量出现了新的方法,比如射束位移法、多普勒法和相关噪声法等等。

90年代才真正实现了高精度超声波气体流量计。

从国、外超声波气体测量发展来看,国外机构开展这项工作的时间较早,到现在为止已经形成较为成熟的产品。

当今世界,超声波流量计用于气体流量计的研究与开发方面,荷兰的工nstromet公司、英国的Dnaiel公司以及美国的Cnotrolotmo公司均做出了大量的工作并取得了较好的应用效果,其销售份额也排在前几位。

日本在超声波气体流量计的设计方面也具有很大的优势,在消除管外传播时间、提高仪器精度和缩短响应时间方面有独到之处。

二维超声波风速风向仪

二维超声波风速风向仪

HberW系列二维超声波风速风向仪工作原理HberW系列的二维超声波风速风向仪没有任何移动部件,不需维护、不需现场校准。

HberW系列的二维超声波风速风向仪一直处在不停的研发当中,在不预先通知的情况下,保留对有些性能和设计加以改进的权利。

介绍HberW系列的HberW2/HberW2-1二维超声波风速风向仪,具有质量轻、坚固耐用的特点,没有任何移动部件,不需维护和现场校准,能同时输出风速和风向值。

HberW2/HberW2-1内置了加热模块,保证了即使在严寒情况下,传感器测试区域也不会受积雪或结冰影响测试数据。

HberW2/HberW2-1二维超声波风速风向仪可以与电脑、数据采集器或其它具有与HberW2/HberW2-1提供的通讯格式相一致的采集设备通讯和连用。

HberW2/HberW2-1有两种数字输出接口,即RS232或RS485两者任选其一。

HberW2/HberW2-1有多种数据通讯协议格式,比如:ModBus、NMEA0183。

HberW2/HberW2-1有两路4-20mA模拟量输出,与风速和风向的测量范围形成对应关系。

HberW2/HberW2-1都可以根据客户需求,增加部分选配模块,虽然外形没有变化,但可以增加额外的功能,比如:加装气压模块,就可以测试环境大气压力数据;增加3D模块,就可以检测出仪器在水平面和垂直面上的震动幅度。

工作原理HberW2/HberW2-1测量超声波从N传感器到S传感器传输的时间,并与S传感器到N传感器传输的时间相比较。

同理,比较超声波从W到E的时间和E到W 的时间。

(N= 北, S= 南, E= 东, W= 西)例如,如果风从北面吹来,超声波从N到S的时间就会比从S到N的时间短,而从W到E和从E到W的传输时间却是一样的。

通过计算超声波在两点之间的传输的时间差,就可以计算出风的速度和方向。

这种计算方法与其它因素如温度没有关系。

技术指标安装注意事项HberW2/HberW2-1能够满足甚至超过它所列出的各项规格说明,能够在世界各地不同的环境下使用(即使在强电磁干扰环境下也能正常使用),不需要维护与校准。

超声波风速风向测量装置的原理及应用

超声波风速风向测量装置的原理及应用
1超声波 的特点及应用 超声波是一种频率高于 20kHz的声 波 ,是基波和高
次谐 波的合成 ,由于谐 波声场 的存在 ,使 得超声 波这一 合成声场具有 良好 的指 向性 。超声 波频率高 ,波长短 , 衍射不严重 ,声学参量阵使得声波 能量在传播过程 中不 断得 到加强 ,因而沿直 线传播 时 ,在一定 距离 内具有 良 好 的束 射性 和指 向性 ,容易获得集 中的声能l 5I。
Song W en-can,Fu Shao—shuai(C0llege of electronic communication and physical,Shandong University of Science and Technology,Shandong Qingaao 2665l0)
and m ore w idely used
Key words:uIlras0nic:uItrasOnic sensOrs:uIlrasOnic measurement of wind speed and direcli0n:prInciple
CLC number:TP274.53 Document code:A
几年 ,超声波风速仪将降低生产成本 ,此外 ,其 陛能更稳定 、测量更精确、应用更广泛。 关键词 :超声波 ;超声波传感器 ;超声波风速仪 ;原理
中图分 类号 :TP274.53
文献标识码 :A
文章编号 :1003—0107(201 6106—0O49—04
Abstract:The measurement of wind speed and direction are measured by the traditional mechanical ane—
nd vector measurement device of the ultrasonic transducer.In the com ing years,it will reduce the production

测风速原理

测风速原理

测风速原理测风速是气象学和环境监测中非常重要的一项工作,它可以帮助我们了解风的情况,为气象预报和环境保护提供重要数据支持。

而要准确地测量风速,就需要了解测风速的原理。

首先,我们需要了解测风速所使用的仪器——风速计。

风速计是一种专门用来测量风速的仪器,它根据不同的原理可以分为多种类型,如旋翼式风速计、超声波风速计、热线风速计等。

这些风速计在测风速时,都是通过测量风对某种物理量的影响来实现的。

旋翼式风速计是一种常用的风速测量仪器,它的原理是利用风力使风速计上的旋翼转动,根据旋翼的转速来测量风速。

而超声波风速计则是利用超声波在空气中的传播速度与风速成正比的原理来测量风速。

热线风速计则是利用风速对热线的冷却效应来测量风速。

不同类型的风速计都有各自的测量原理,但它们的核心都是通过测量风对某种物理量的影响来实现测风速的目的。

除了了解风速计的原理,我们还需要了解测风速的一些基本知识。

在进行测风速时,需要考虑到测量的高度、风速计的安装位置、周围环境等因素。

通常情况下,测风速的高度越高,风速就越大,因此在不同高度进行测量可以得到不同的风速数据。

此外,风速计的安装位置也会影响到测量结果,需要选择在开阔无遮挡的地方进行安装,以确保测量的准确性。

在实际测风速时,我们还需要考虑到风速的变化情况。

风速是一个动态的参数,会随着时间和空间的变化而变化。

因此,在进行测风速时,需要考虑到风速的瞬时变化、平均风速等不同的参数,以全面了解风的情况。

总的来说,测风速的原理是通过测量风对某种物理量的影响来实现的,不同类型的风速计有不同的测量原理,但都是基于此核心原理。

在进行测风速时,需要考虑到测量的高度、风速计的安装位置、风速的变化情况等因素,以确保测量结果的准确性和全面性。

测风速是一项重要的工作,只有深入了解其原理和相关知识,才能更好地开展相关工作。

风速风向仪的原理

风速风向仪的原理

风速风向仪的原理风速风向仪是一种用来测量风的速度和风向的仪器。

它广泛应用于气象观测、环境监测、气象预报、航空航天等领域。

风速风向仪的原理主要包括静压孔原理和风压测量原理。

静压孔原理是通过在风速风向仪的风杆上设置一系列小孔,利用静压力差来测量风向。

当风速风向仪在风向上进行旋转时,气流从静压孔流过,并在后方的静压孔上形成一定的压力。

通过测量不同方向上的压力差,就可以确定风的方向。

风压测量原理是通过风压传感器测量空气对仪器产生的压力差,从而间接测量风速。

风压传感器通常由风挡和压电晶体组成。

当气流经过风挡时,由于风挡的形状和密度的不同,会在后方形成一个压力差。

这个压力差会导致压电晶体产生电荷,通过测量电荷的变化就可以确定风速。

风速风向仪还可以通过超声波测量风速。

超声波传感器将超声波发射到空气中,当空气中有风流经时,超声波的传播速度会受到风速的影响。

通过测量超声波传播的时间差,可以计算出风速的大小。

除了上述几种原理,还有一种常见的原理是通过风向传感器和风速传感器测量风速和风向。

风向传感器通常采用旋转鸭翼式结构,当风向改变时,鸭翼会随风进行旋转,通过传感器采集旋转信号,从而测量风向。

风速传感器通常采用热敏电阻式结构,通过测量传感器表面的温度差来测量风速,当风速变化时,温度差也会相应变化。

总结起来,风速风向仪的原理主要包括静压孔原理、风压测量原理和超声波测量原理等。

这些原理通过测量风对仪器产生的压力差、电荷变化或超声波传播时间差等来确定风速和风向。

风速风向仪的准确性和稳定性对于气象观测和其他应用领域至关重要,因此在设计和制造风速风向仪时需要充分考虑各种原理的优缺点,并进行合理的选择和组合。

超声波风速探测技术研究及应用分析

超声波风速探测技术研究及应用分析

超声波风速探测技术研究及应用分析随着风能的日益成熟和运用,风速的准确测量对于风能行业的发展变得越来越关键。

而超声波风速探测技术作为一种新型的、先进的风速探测技术,由于具有高精度、不受风向限制,同时安装方便、维护成本低等优点,已逐渐成为目前最为主流的风速探测技术之一。

一、超声波风速传感器的工作原理超声波风速传感器一般由发送器和接收器两部分组成,它们通过一定的距离发射和接收无线超声波信号,实现了对风速的探测。

当超声波信号离开发送器后,它会在气流中产生回音信号,接收器接收到这一信号后,就能够计算出空气的流速。

超声波风速探测技术在探测风速的时候,不同于传统的测风杆技术需要面向风向进行,它可以在任何角度的情况下,都能够准确地测量出气流的速度。

二、超声波风速传感器的应用目前超声波风速探测技术主要应用于风力发电、车辆气动性能测试等领域。

风力发电作为超声波风速探测技术的主要应用领域之一,目前已经有越来越多的超声波风速传感器应用于风机群的监测之中,它能够实时测量风机的风速,并将数据传输回控制中心进行分析。

在车辆气动性能测试领域,超声波风速探测技术目前已经得到了广泛的应用,它能够测量车辆行驶时的垂直速度、横向速度、旋转速度等数据,为汽车厂家提供了重要的数据参考。

三、超声波风速传感器的发展现状超声波风速探测技术在风力发电和车辆气动性能测试领域得到了广泛的应用,同时随着科技的不断发展,这种技术也在不断地完善。

近年来,国内外一些知名科研机构相继推出了一些新型的超声波风速传感器。

比如,加拿大Lufft公司推出了一款能够测量不同高度下的风速和风向的超声波风速传感器。

而国内一些厂商也开始专注于超声波波束技术的研究和应用,精度和稳定性也有了不小的提高。

随着社会的发展和技术的进步,超声波风速探测技术将会在未来得到更为广泛的应用。

相信在不久的未来,它将会成为风能行业和车辆气动性能测试领域的主流技术之一。

风速的测试原理

风速的测试原理

风速的测试原理风速的测试原理是通过测量风向和风速来对大气中的气体流动进行定量分析和评估。

风速的测试主要包括直接法和间接法两种方法。

直接法是通过安装在气象仪器上的风速计来直接测量风速。

常见的风速计有杯式风速计、热线风速计、超声波风速计和激光多普勒风速计等。

杯式风速计是一种最常用的直接测量方法,它通过在一个开口朝向风向的圆锥形框架上装设三个或四个杯子,通过转动杯子的方法测量风速。

当风吹过杯子时,由于风的作用,杯子开始转动,通过杯子转动的速度和台风之间的关系,可以计算出风速。

热线风速计则是利用热线在空气中传热的原理来测量风速。

热线风速计的原理是利用热敏电阻丝的电阻随温度的变化而变化,通过测量电阻的变化来判断热线的温度,进而计算出风速。

超声波风速计采用了超声波的测量原理,它通过发射和接收超声波来测量风速。

当超声波穿过气流时,其传播速度会受到气流速度的影响,通过计算超声波的传播时间差,就可以推算出风速。

激光多普勒风速计是一种先进的测量方法,它利用激光的多普勒效应来测量风速。

激光多普勒风速计会向大气中发射激光束,当激光束与空气中的颗粒发生散射时,根据多普勒效应可以计算出风速。

除了直接法外,间接法也可以用于测量风速。

间接法是通过测量其他与风速相关的参数,并利用数学模型进行计算来得出风速的估计值。

常见的间接法有动力学法、湍流物理学法和数值预报等方法。

动力学法是通过测量风力对物体的作用力来估算风速。

例如,可以通过测量风对风车叶片的旋转力矩来推算风速。

湍流物理学法是利用湍流现象来估算风速。

湍流是指流体中存在的一种无规则、不断变化的流动状态,其变化是随机的。

通过测量湍流参数,如湍流能量和湍流强度,可以推算出风速。

数值预报是利用大气动力学模型对大气运动进行数值计算来获得风速的估算值。

数值预报方法通过将大气划分成网格,并在每个网格内计算气体在各个方向上的运动状态,从而得到风速的分布。

总结起来,风速的测试原理主要包括直接法和间接法两种方法。

超声波风速风向测试仪的设计

超声波风速风向测试仪的设计

/ i

风向e 公式: c o s 设i F _ 东方向为 0 o , 角度按逆时针方 具体原理 图见 图 1 , 首先 l 探头作为发射探头, 2探头作 向增大。 为接收探头 , 进行 测量时得到一个 时间, 然后 2探头作为发射 将东西方 向上风速及 公式( 2 ) 求得风速代入 可得 : 探头, 1 探头作为接收探头得到相对方向上的另一个 时间 。
斟协论坛 ・2 0 1 3年第 7 期( 下 )——
4超声 波风速风 向测试仪 的实现
超 声波风速 风 向测试 仪硬件模 块主要有超 声波传感 器、 超声波发送驱动及接收处理电路、 实时时钟、 F L AS H、 R S 4 8 5 、 设计中使用的超声波探头为美 国AI RMA R公司的A T 2 0 0 ( 2 0 0 k h z ) 探 头, 探头推 荐的接收范围为 l O c m~ 2 m, 典型应用 A D采样 、 探头温度测量 也路、 探头力 f J 热 电路等。系统方框 图 为 1 2 c m ~2 m。为使测试仪结构 小巧,四个探 头分别在东、 如 图 4所 示 。
系列单片机进 行控制准确获取 时差 , 实现风速风 向测量。该测试仪在风洞测试时, 获得较高地精度和稳定度。 关键词: 超声波 风速风 向 时差法 中图分类号: T P 2 7 4 . 4 文献标识码: A 文章编号 : 1 0 0 7 . 3 9 7 3 ( 2 0 1 3 ) 0 0 7 . 1 0 4 . 0 3
同 理 可 求 得 南 北 方 向 上 风 速 为v w y : v = 导( ÷一 士)
进而得 出风速 V 与 v 、 v 、 v 的关系式: V , 2  ̄ - t - Vw y 。 代入化简可得风速 : Vw = : 一 a t 1) , + ( 1 1) 2( 2 )

风向仪的工作原理实践

风向仪的工作原理实践

一、引言风向仪,作为气象观测的重要仪器之一,广泛应用于农业、航海、航空、军事等领域。

它能够实时监测风向,为相关行业提供准确的数据支持。

本文将详细介绍风向仪的工作原理,并结合实际应用,探讨风向仪的实践操作。

二、风向仪的工作原理1. 概述风向仪的工作原理主要基于风速和风向的测量。

风速是指单位时间内通过某一截面的空气体积,风向是指风从哪个方向吹来。

风向仪通过测量风速和风向,为用户提供实时的气象数据。

2. 工作原理(1)风速测量风速测量是风向仪的核心功能。

目前,风速测量方法主要有以下几种:① 叶轮风速仪:叶轮风速仪通过叶轮旋转速度来测量风速。

当风吹动叶轮时,叶轮旋转速度与风速成正比。

叶轮风速仪具有结构简单、测量精度高、维护方便等优点。

② 热线风速仪:热线风速仪利用热丝在气流中产生热量,通过测量热丝温度变化来计算风速。

热线风速仪具有响应速度快、测量精度高、适用范围广等特点。

③ 超声波风速仪:超声波风速仪利用超声波在空气中传播速度与风速的关系来测量风速。

超声波风速仪具有测量范围广、抗干扰能力强、安装方便等优点。

(2)风向测量风向测量主要采用风向标和风向计两种方法:① 风向标:风向标是一种传统的风向测量工具,通过风向标指针指向来表示风向。

风向标具有结构简单、成本低廉、易于安装等优点。

② 风向计:风向计是现代风向测量仪器,通过风向计传感器来测量风向。

风向计具有测量精度高、抗干扰能力强、适用范围广等特点。

3. 风向仪的组成风向仪主要由以下几个部分组成:(1)传感器:包括风速传感器和风向传感器,负责测量风速和风向。

(2)数据处理单元:对传感器采集的数据进行处理,将模拟信号转换为数字信号。

(3)数据输出单元:将处理后的数据输出到显示屏或传输到计算机等设备。

(4)支架和底座:支撑风向仪的硬件部分,确保风向仪稳定运行。

三、风向仪的实践操作1. 风向仪的安装(1)选择合适的安装位置:安装风向仪时应选择开阔、无遮挡、远离高大楼房和树木的地方。

风力发电机组风向风速仪原理及注意事项

风力发电机组风向风速仪原理及注意事项

1. 二维超声波风速风向仪产品介绍:JC-NU60F-2D1型超声风速风向仪的工作原理是利用超声波时差法来实现风速的测量。

声音在空气中的传播速度,会和风向上的气流速度叠加。

若超声波的传播方向与风向相同,它的速度会加快;反之,若超声波的传播方向若与风向相反,它的速度会变慢。

因此,在固定的检测条件下,超声波在空气中传播的速度可以和风速函数对应。

通过计算即可得到精确的风速和风向。

由于声波在空气中传播时,它的速度受温度的影响很大;本风速仪检测两个通道上的两个相反方向,因此温度对声波速度产生的影响可以忽略不计。

它具有重量轻、没有任何移动部件,坚固耐用的特点,而且不需维护和现场校准,能同时输出风速和风向。

客户可根据需要选择风速单位、输出频率及输出格式。

也可根据需要选择加热装置(在冰冷环境下推荐使用)或模拟输出。

可以与电脑、数据采集器或其它具有RS485或模拟输出相符合的采集设备连用。

如果需要,也可以多台组成一个网络进行使用。

JC-NU60F-2D1型超声波风速风向仪是一种较为先进的测量风速风向的仪器。

由于它很好地克服了机械式风速风向仪固有的缺陷,因而能全天候地、长久地正常工作,越来越广泛地得到使用.它将是机械式风速仪的强有力替代品。

2.二维超声波风速风向仪产品技术参数说明:3. 二维超声波风速风向仪产品尺寸以及安装固定方式:对于对于风力发电机组来说红色标记必须对准机头,寻找风向。

问题一、这个东西怎么测量风速风向呢?超声波风速仪广泛应用于气象、风电、环境、桥梁、隧道等各种领域。

风速仪的种类繁多,其中风杯式和螺旋桨式应用最为广泛。

但是由于传统的风杯式和螺旋桨式风速仪存在旋转部件,存在摩擦损耗,而且很容易受到冰冻和雨雪天气的干扰,这种风速仪的精度不高。

超声波风速仪拟补了以上缺陷,它测量精度高、使用寿命长、体积小而且能够测量瞬时风速,超声波风速仪根据原理可分为时差法、反射法、多普勒法等类型,其中时差法的应用最为广泛。

超声波测风速和风向的原理

超声波测风速和风向的原理

超声波测风速和风向的原理超声波测风速和风向的原理1. 引言风是大自然中非常重要的自然元素之一,对气象、环境、能源等领域都有着重要的影响。

测量和监测风速和风向是非常必要的。

而超声波测风速和风向的技术成为了一种广泛应用的方法。

本文将介绍超声波测风速和风向的原理,以及这项技术的优势和限制。

2. 超声波测风速的原理超声波测风速是一种利用超声波传播和接收的原理来测量风速的方法。

其基本原理是通过发送超声波脉冲并测量超声波传播时间来计算风速。

2.1 发送超声波脉冲超声波传感器通过发射脉冲声波来测量风速。

这些脉冲声波由超声波传感器中的发射器产生,并在大气中传播。

2.2 接收被反射的声波传感器同时也是一个接收器,它能够接收到从目标物体反射回来的超声波信号。

当超声波波束遇到风时,风会导致声波传播路径的变化,从而改变传播时间。

2.3 计算风速基于超声波的传播时间以及风速引起的传播路径的变化,可以利用一些特定的算法计算出当前的风速。

通常,超声波测风速仪会采用多组传感器以增加测量的准确性。

3. 超声波测风向的原理超声波测风向则利用了超声波传播方向的变化来测量风的方向。

它和超声波测风速的原理相似,但有一些特定的改进。

3.1 发送超声波脉冲同样地,超声波测风向也需要发送超声波脉冲,这些脉冲声波由超声波传感器中的发射器产生。

3.2 接收被反射的声波超声波传感器不仅能接收到从目标物体反射回来的声波信号,还可以检测到声波传播方向的变化。

当风吹动时,声波的传播路径会发生改变,通过分析这种改变,可以确定风的方向。

3.3 计算风向利用接收到的超声波信号以及传播路径的变化,可以进行计算得出当前的风向。

与测风速类似,为了增加测量准确性,超声波测风向常常会采用多个传感器的组合。

4. 超声波测风速和风向技术的优势和限制4.1 优势- 非接触性:超声波测风速和风向不需要与风直接接触,可以远距离地进行测量,非常方便和安全。

- 高精度:通过使用多组传感器和精确的算法,超声波测风速和风向可以提供相对较高的测量精度。

风速风向传感原理

风速风向传感原理

风速风向传感原理风速风向传感器的原理是利用一系列的物理原理和技术来测量大气中的风速和风向。

以下是风速风向传感器的工作原理和几种常见的传感器类型。

1. 动力传感器原理:动力传感器多用于测量低速风,一般根据静压原理或动压原理进行测量。

静压原理是基于风流过传感器时产生的静压力与风速成正比的原理。

传感器内设有一个孔道,通过控制流过孔道的空气量和通过孔道的压力来测量风速。

动压原理是利用一个孔道,其中有一个管腔与空气相连接。

当风通过孔道时,管腔内会生成一定的压力差,该压力差与风速成正比。

通过测量压力差来计算风速。

2. 超声波传感器原理:超声波传感器利用超声波的传播速度与风速成正比的原理。

传感器首先发送一个超声波信号,然后测量超声波信号从传感器发射到接收器接收的时间间隔。

利用风速测量原理可以计算出风速。

3. 磁性敏感器原理:磁性敏感器通过测量地球磁场的变化来确定风向。

传感器中包含一个磁性材料,当风通过时,会改变磁性材料的方向。

通过测量这种方向变化的磁场来确定风向。

除了以上几种传感器原理外,还有一些其他的原理用于测量风速和风向。

4. 热线传感器原理:热线传感器利用电热线在风中被冷却的速度来测量风速。

传感器内部的电热线会受到风速的影响而变为不同的温度。

通过测量电热线的温度变化来计算风速。

5. 液体静压传感器原理:液体静压传感器通过液体和风之间的压力差来测量风速。

传感器内设有一个管道,风经过管道时会产生压力差。

通过测量这种压力差来计算风速。

总之,风速风向传感器利用各种物理原理和技术来测量大气中的风速和风向。

根据不同的传感器原理,可以选择适合的传感器类型来进行风速和风向的测量。

这些传感器可以广泛应用于天气预报、环境监测、航空航天等领域。

超声波风扇的工作原理

超声波风扇的工作原理

超声波风扇的工作原理
超声波风扇的工作原理是利用超声波的声压产生气流。

通常,超声波风扇由发生器和超声波振荡器组成。

发生器产生高频电信号,这些信号经过放大后,通过超声波振荡器。

超声波振荡器主要由压电陶瓷材料构成,当电信号通过压电陶瓷时,会引起压电陶瓷发生振荡,产生高频的机械振动。

这种高频的机械振动通过共振效应传递到风扇的表面。

风扇表面上的空气分子受到机械振动的影响,产生压力变化,从而形成气流。

这种气流可以通过风扇的出口喷出,形成风。

由于超声波的频率很高,所以超声波风扇产生的气流较为柔和,没有传统风扇的风力感,同时也很安静。

超声波风扇的工作原理使得其具有较高的能效和较低的运转噪音,适用于一些需要安静环境的场所。

超声波风向仪原理

超声波风向仪原理

超声波风向仪原理
超声波风向仪利用超声波的传播速度与风向的关系来测量风向。

其工作原理如下:
1. 发射超声波:风向仪中的超声发射器会发射一束超声波。

2. 超声波传播:超声波在空气中传播,其中一部分会被空气分子散射,一部分会经过空气而传播到目标处。

3. 接收超声波:设备中的超声接收器会接收到经过空气传播的超声波。

4. 计算风向:根据接收到的超声波信号与发射超声波的时间差,可以计算出超声波在空气中传播的速度。

5. 转换风向:根据超声波传播速度与风向的关系,可以将计算得到的超声速度转换为风向,从而得到风向的测量结果。

超声波风向仪的优点是精度高、响应快、不受温度和湿度等环境影响,并且可以远距离测量风向。

【产品推介】ZWIN-WS1006超声波风速风向仪

【产品推介】ZWIN-WS1006超声波风速风向仪

【产品推介】ZWIN-WS1006超声波风速风向仪产品介绍ZWIN-WS1006超声波风速风向仪,是一款基于超声波原理研发的风速风向测量仪器,利用发送的声波脉冲,测量接收端的时间或频率差别来计算风速风向。

本产品具有设计结构紧凑、集成化程度高,无需繁琐的人工维护,抗干扰能力强,精度高等特点。

在恶劣环境下,可选择增加加热单元模块,有效去除雨雪冰冻的影响,能全天候全地域工作,精确测定并提供可靠数据。

参数规格·可用测量气象参数:风速,风向,大气压,温度,湿度等·数字型号格式:支持485传输格式Modbus标准协议·输出信号:数字量·温度、湿度传感器:1.检测原理:采用高精度数字式传感技术,并且结合陶瓷式建模技术,能够非常精准地测量温度和相对湿度数据;2.分辨率:温度精度可达到±0.3°C,湿度精度可达±2%RH;·大气压:1.检测原理:电容式压力传感器技术2.分辨率:1 hPa;·超声波风速风向:1.测量原理:超声波时差法2.风速测量范围:0~60m/s3.风速测量精度:0.1m/s4.启动风速:0m/s5.风向测量范围:0-360°6.风向测量精度:3°7.供电电压:24V产品原理产品特点采用紧凑和轻量化结构设计;易于安装,各组件位置衔接集中,便于维护;标准Modbus协议,RS485通信格式;可监测风速,风向,大气压,温度,湿度,可根据需求定制其它功能;设备可通过立杆、基座安装固定,保证设备稳定性;顶盖隐藏式设计,避免雨雪堆积的干扰,避免自然风遮挡;一体式设计磨损小、使用寿命长、响应速度快应用领域可以广泛用于气象、水文、航空、环境、和科研等各领域。

智能超声波风速风向测量仪

智能超声波风速风向测量仪

龙源期刊网 智能超声波风速风向测量仪作者:谢飞宇温馨来源:《第二课堂(校外活动版)》2017年第08期目前,常用的风速测量仪器有风杯风速仪、毕托管(或称皮托管)风速仪、热线热膜风速仪、超声波风速仪等。

风杯风速仪一般由三四个半球形或抛物锥形的空心杯壳组成,杯壳固定在互成120°角的支架上或互成90°角的十字形支架的等长旋臂上。

由于风杯风速仪的体积较大,转动惯性会引起迟滞效应,响应速度慢,且转动部件易产生磨损;容易受到恶劣天气的损害,沙尘和雨雾也会对其造成腐蚀;由于摩擦的存在,低于某个风速时将无法测量。

毕托管风速仪属于单点、定长的接触式测量,测量风速时需要测量出流体的密度,而流体的密度随温度的变化而变化,其输出与风速的平方成正比,当风速较低时,产生的压差较小,灵敏度较低,难以实现精确测量;不适合在烟尘气体环境中进行风速测量,使用受到一定的限制。

热线热膜风速仪的工作原理,是将一根长度远大于热风仪直径的细金属丝探针或敷于玻璃材料支架上的一层金属薄膜元件作为敏感元件放置在风场中,通过电流对金属丝或者金属薄膜加热。

当风速变化时,金属丝或金属薄膜的温度也随之改变,从而改变其电阻值,得到與风速单调相关的输出信号。

热线热膜风速仪不能测量风向,属于接触式测量,探针会对被测流场流动产生一定扰动;同时由于加热丝存在被氧化和污染的问题,且热线容易断裂,所以需要对风速仪进行定期维护和校准;灵敏度随风速的增大而减小,具有明显的非线性,比较适合低风速的测量。

超声波风速仪没有机械转动部件,不存在机械磨损、阻塞、腐蚀等问题,使用寿命长,重量轻;属于非接触式测量,基本上不干扰风场,无压力损失,对测量环境要求不高,适应范围广,且安装维修方便。

传统的超声波风速风向测量大都采用对接收到的超声波信号进行整形成方波信号,然后计算出接收信号的延迟时间的方法得到风速和风向,但该方法精度较低,难以满足风速风向的测量精度要求。

我们的设备利用现代电子技术、通信技术和传感技术,为风速风向的测量提供解决方案,设备由5个部件、1个系统构成:1. 传感器部件主要由超声波传感器构成,实现原始信号的采集。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

超声波风速风向仪工作原理
超声波风速风向仪测量超声波从N传感器到S传感器传输的时间,并与S 传感器到N传感器传输的时间相比较。

同理,比较超声波从W到E的时间和E 到W的时间。

(N= 北,S= 南,E= 东,W= 西)
例如,如果风从北面吹来,超声波从N到S的时间就会比从S到N的时间短,而从W到E和从E到W的传输时间却是一样的。

通过计算超声波在两点之间的传输的时间差,就可以计算出风的速度和方向。

这种计算方法与其它因素
如温度没有关系。

超声波风速风向仪测量超声波从上面的发射器到达下面的接收器之间的时间,并且与相反方向传输的时间相比较。

同样地也比较其它上下两对发射器和接
收器之间超声波传输的时间。

相关文档
最新文档