运筹学4单纯形法迭代原理课件
运筹学单纯形法
只要取 x5=min{-,8/2,12}=4 就有上式成立。 x5=4时, x4=0,故决定用x5换x4 x1 =4- 1/4 x4 x5 =4-1/2 x4 +2 x3 x2 =2+1/8 x4–1/2 x3 代入得 z=14-3/2 x3 –1/8 x4 ,令x3 ,x4=0得z=14。新基可 行解为 X(3) =(4,2,0,0,4) T –为最优解,新顶点Q2 最优目标值z=14 。
§3.4 最优性检验和判别定理
线性规划解的四种可能: 1、有唯一解; 2、无穷多最优解; 3、无界解; 4、无可行解。 何时达最优解, 何种最优解?
将基本可行解X(0)和X(1)分别代入目标函数得
z z
(0)
= ∑ ci xi0
i =1 m
mቤተ መጻሕፍቲ ባይዱ
(1)
= ∑ ci [ xi0 − θ aij ] + θ ci
§3.3 从初始基可行解转换为另一基可行解
0 0 记初始基可行解为X(0),有 X ( 0 ) = (x10 x 2 L x m 0 L 0
)
Pi xi0 = b 该解满足约束方程, 即 ∑
i =1
m
(1)
非基向量可以用基向量的线性组合表示
Pj = ∑ aij Pj
i =1 m
m
(2) (3)
Pj − ∑ aij Pj = 0
从实际例子中分析单纯形法原理的基本框架为 •第一步:将LP线性规划变标准型,确定一个初始可行解 (顶点)。 •第二步:对初始基可行解最优性判别,若最优,停止;否 则转下一步。 •第三步:从初始基可行解向相邻的基可行解(顶点)转 换,且使目标值有所改善—目标函数值增加,重复第二和 第三步直到找到最优解。
运筹学课件1-4单纯形法计算步骤
b 21 4
9 4
3 x1 1 -1 3 4 -1 12
9 x2 3 1 9 0 1 0
0 x3 1 0 0 1 0 0
0 x4 0 1 0 -3 1 -9
θ 7 4
9/4 -
所以把x3换出为非基变量,x1为换入变量即新的基变量。
第20页
cj
CB 0 0
0 9 3
XB x3 x4 cj-zj x3 x2 cj-zj x1
cj-zj
x3 x1 x5 cj-zj
6
0 1 0
5
5/2 1/2 1
0
1 0 0
0
-1/2 1/2 -1
0
0 0 1
75 5
0
2
0
-3
0
5
x2
5
0
1
0
-1
1
第10页
cj CB 0 0 0 0 6 0 XB x3 x4 x5 b 90 75 80 105/2 75/2 5
6 x1 1 2 2
5 x2 3 1 2
9/4
-
3 9
9/4 25/4
1 0 0
25
第24页
cj CB 0 0 XB x3 x4 cj-zj b 21 4
3 x1 1 -1 3
9 x2 3 1 9
0 x3 1 0 0
0 x4 0 1 0 θ 7 4
0
9
x3
x2 cj-zj x1 x2 cj-zj
9
4
4
-1 12
0
1 0 0 1 0
1
0 0 1/4 1/4 -3
i 1
第1页
单纯形表求解线性规划问题
运筹学单纯形法
单纯形表
max z=x1+2x2 s.t. x1+x23 x2 1 x1, x2 0
Cj CB XB b 0 0 Z X3 3 X4 1 0 1 2 0 0
标准化
max z=x1+2x2 s.t. x1+x2+ x3 =3 x2 +x4=1 x1, x2 ,x3, x40
X1 X2 X3 X4 1 0 1 1 1 2 1 0 0 0 1 0
Z=x1+2x2 x1+x2+ x3 =3 x2 +x4=1 单纯形表
Cj
1
2
0
0
单纯形法原理 单纯形表 CB XB b
z=x1+2x2 x3 =3-x1-x2 x4=1 -x2
x2进基,x4离基
X1 X2 X3 X4
3/1 11
0
1 0
1 1
1 1
2 2 0 1 0 2 0 1 0 0 1 0 -1 0
max z=x1+2x2 s.t. x1+x2+x3 =3 x2 +x4=1 x1, x2, x3, x40
x1=0
(x1,x2,x3,x4)= (0,1,2,0), z=2 C (x1,x2,x3,x4)= (2,1,0,0), z=4,最优解
B
x4=0 x3=0
(x1,x2,x3,x4)= (0,0,3,1), z=0
1 0
0 0
0 1
0
CB XB b 0 2 Z Cj CB XB b 1 2 Z X1 2 X2 1 4 X3 2 X2 1 2 1 1 0 0
X1 X2 X3 X4 1 0 1 1 0 0 0 -1 1 -1
应用运筹学基础:线性规划(4)-对偶与对偶单纯形法
应⽤运筹学基础:线性规划(4)-对偶与对偶单纯形法这⼀节课讲解了线性规划的对偶问题及其性质。
引⼊对偶问题考虑⼀个线性规划问题:$$\begin{matrix}\max\limits_x & 4x_1 + 3x_2 \\ \text{s.t.} & 2x_1 + 3x_2 \le 24 \\ & 5x_1 + 2x_2 \le 26 \\ & x \ge0\end{matrix}$$ 我们可以把这个问题看作⼀个⽣产模型:⼀份产品 A 可以获利 4 单位价格,⽣产⼀份需要 2 单位原料 C 和 5 单位原料 D;⼀份产品 B 可以获利 3 单位价格,⽣产⼀份需要 3 单位原料 C 和 2 单位原料 D。
现有 24 单位原料 C,26 单位原料 D,问如何分配⽣产⽅式才能让获利最⼤。
但假如现在我们不⽣产产品,⽽是要把原料都卖掉。
设 1 单位原料 C 的价格为 $y_1$,1 单位原料 D 的价格为 $y_2$,每种原料制定怎样的价格才合理呢?⾸先,原料的价格应该不低于产出的产品价格(不然还不如⾃⼰⽣产...),所以我们有如下限制:$$2y_1 + 5y_2 \ge 4 \\ 3y_1 + 2y_2 \ge3$$ 当然也不能漫天要价(也要保护消费者利益嘛- -),所以我们制定如下⽬标函数:$$\min_y \quad 24y_1 + 26y_2$$ 合起来就是下⾯这个线性规划问题:$$\begin{matrix} \min\limits_y & 24y_1 + 26y_2 \\ \text{s.t.} & 2y_1 + 5y_2 \ge 4 \\ & 3y_1 + 2y_2 \ge 3 \\ & y \ge 0\end{matrix}$$ 这个问题就是原问题的对偶问题。
对偶问题对于⼀个线性规划问题(称为原问题,primal,记为 P) $$\begin{matrix} \max\limits_x & c^Tx \\ \text{s.t.} & Ax \le b \\ & x \ge 0\end{matrix}$$ 我们定义它的对偶问题(dual,记为 D)为 $$\begin{matrix} \min\limits_x & b^Ty \\ \text{s.t.} & A^Ty \ge c \\ & y \ge 0\end{matrix}$$ 这⾥的对偶变量 $y$,可以看作是对原问题的每个限制,都⽤⼀个变量来表⽰。
运筹学单纯形法
16
三、其他解旳情况 1、无穷多种解 例2 解LP问题:
min Z x1 2 x2 x3 0 x4 0 x5
xx51
1 2c 5 3c
其中c是满足非负性旳任意常数。
21
再由
x1,
x5
旳非负性,知:
x1 x2
1 2c c
0 0
x5 5 3c 0
解出 0 c 5 3
最优解为:
(2c 1, c,0,0,5 3c)T (其中0 c 5 )
3
最优值为:max S 1.
22
2、无最优解旳两种情况:
相应地,将 X 0代入目的函数得 Z ( X 0 ) 0
从数学角度看,若让非基变量 x1, x2 取值从零增长,
6
min Z 2x1 x2 0x3 0x4 0x5
相应旳目旳函数值Z也将随之降低。所以有可能找到一种 新旳基本可行解,使其目旳函数值有所改善。即进行基变
换,换一种与它相邻旳基。再注意到 x1 前旳系数-2比 x2
x3
6 x1 x1
2x2 x2
x4 x5
xi 0
i 1,,5
15 24 5
目前可行基{ x3, x4 , x5 }所相应旳基本可行解
X 0 (0,0,15,24,5)T
(相应可行域旳 o(0,0) )
显然不是最优。 因为从经济意义上讲, x1 0, x2 0
意味着该厂不安排生产,所以没有利润。
2
运筹学课件PPT课件
整数规划的解法
总结词
整数规划的解法可以分为精确解法和近似解法两大类。
详细描述
整数规划的解法可以分为两大类,一类是精确解法,另一类是近似解法。精确解法包括割平面法、分支定界法等, 这些方法可以找到整数规划的精确最优解。而近似解法包括启发式算法、元启发式算法等,这些方法可以找到整 数规划的近似最优解,但不一定能保证找到最优解。
模拟退火算法采用Metropolis准则来 判断是否接受一个较差解,即如果新 解的能量比当前解的能量低,或者新 解的能量虽然较高但接受的概率足够 小,则接受新解。
模拟退火算法的应用
01
模拟退火算法在旅行商问题中得到了广泛应用。通过模拟退火算 法,可以求解旅行商问题的最优解,即在给定一组城市和每对城 市之间的距离后,求解访问每个城市恰好一次并返回出发城市的 最短路径。
动态规划的解法
确定问题的阶段和状态
首先需要确定问题的阶段和状态,以便将问 题分解为子问题。
建立状态转移方程
根据问题的特性,建立状态转移方程,描述 状态之间的转移关系。
求解子问题
求解每个子问题,并存储其解以供将来使用。
递推求解
从最后一个阶段开始,通过递推方式向前求 解每个阶段的最优解。
动态规划的应用
线性规划的解法
单纯形法
01
单纯形法是求解线性规划问题的经典方法,通过迭代过程逐步
找到最优解。
对偶理论
02
对偶理论是线性规划的一个重要概念,它通过引入对偶问题来
简化求解过程。
分解算法
03
分解算法是将大规模线性规划问题分解为若干个小问题,分别
求解后再综合得到最优解。
线性规划的应用
生产计划
线性规划可以用于生产计划问题, 通过优化资源配置和生产流程, 提高生产效率和利润。
第1章-线性规划及单纯形法-课件(1)
✓ x1、 x2 0
IБайду номын сангаас
设备
1
原材料 A 4
原材料 B 0
利润
2
II 资源限量
2 8 台时
0
16kg
4
12kg
3
第一章 线性规划及单纯形法 运筹学
该计划的数学模型
✓ 目标函数 ✓ 约束条件
Max Z = 2x1 + 3x2
x1 + 2x2 8 4x1 16 4x2 12 x1、 x2 0
x1
✓ 美国航空公司关于哪架飞机用于哪一航班和哪些 机组人员被安排于哪架飞机的决策。
✓ 美国国防部关于如何从现有的一些基地向海湾运 送海湾战争所需要的人员和物资的决策。
✓ ……
第一章 线性规划及单纯形法 运筹学
二、线性规划问题的数学模型
✓ 1、一般形式 ✓ 2、简写形式 ✓ 3、表格形式 ✓ 4、向量形式 ✓ 5、矩阵形式
1、唯一最优解
max Z 2 x 1 3 x 2
2 x 1 2 x 2 12 ⑴
x1 4 x1
2 x2
8 16
⑵ ⑶
4 x 2 12 ⑷
x 1 0 , x 2 0
1 234 56
x2
⑶ ⑷
(4,2)
0 1 234 5678
x1
⑵
⑴
✓最优解:x1 = 4,x2 = 2,有唯一最优解Z=14。
第一章 线性规划及单纯形法 运筹学
三、线性规划模型的标准形式
✓ 1、标准形式 ✓ 2、转换方式
第一章 线性规划及单纯形法 运筹学
1、标准形式
maZx cjxj
xj
aijxj 0
bi
运筹学单纯形法
第二步:寻求初始可行基,确定基变量
1 2 1 0 0
1 0 0
A
4 0
0 4
0 0
1 0
10
B P3,
P4 ,
P5
0
0
1 0
0 1
对应的基变量是 x3,x4,x5; 第三步:写出初始基本可行解和相应的
目标函数值
两个关键的基本表达式:
写出用非基变量表示基变量的表达式:
由 x4 3 x1 x2 x3 → x1 3 x2 x3 x4
x5 9 x1 4x2 7x3
x5
6
3x2
6x3
x4
得新的基本可行解 X(1)=(3,0,0,0,6)T
⑤ 写出用非基变量表示目标函数的表达式:
Z 2x1 3x2 3x3 2(3 x2 x3 x4 ) 3x2 3x3 6 x2 x3 x4
可得相应的目标函数值为Z(1)=6
检验数仍有正的, 返回①进行讨论。
三、单纯形法的一般描述:
1、初始可行解的确定
(1)初始可行基的确定 观察法——观察系数矩阵中是否含有现成 的单位阵?
于是,若LP只有唯一最优解,这个最 优解所对应的点一定是可行域的一个顶点; 若LP有多个最优解,那么肯定在可行域的 顶点中可以找到至少一个最优解。
转移条件?
转移结果?
使目标函数值得到改善
得到LP最优解,目标函数达到最优值
2.需要解决的问题:
(1)为了使目标函数逐步变优,怎么转移? (2)目标函数何时达到最优——
要求:
第4章 单纯形法
不为0,是否会带来目标函数值变大? 需要最优性
检验,即如果x1或x2不论取其他任何非负值都不会
带来目标函数值增大,那该基本可行解就是最优解。
管理运筹学
18
§1 单纯形法的基本思路和原理
所谓最优性检验就是判断已求得的基本可行解是否是最优解。 (1) 最优性检验的依据——检验数σ j 一般来说目标函数中既包括基变量,又包括非基变量。现在我们要求 只用非基变量来表示目标函数,或者说目标函数中基变量的系数都为零了。 此时目标函数中所有变量的系数即为各变量的检验数,把变量xi的检验数 记为σ i。显然所有基变量的检验数必为零。在本例题中目标 函数为3x1+5x2。由于初始可行解中x1,x2为非基变量,所以此目标函 数已经用非基变量表示了,不需要再代换出基变量了。这样我们可知 σ 1=3,σ 2=5,σ 3=0,σ 4=0,σ 5=0。 检验数:用非基变量来代换基变量,使得目标函数只用非基变量来表示。
• Z=3x1+5x2 • 非基变量的检验数都大于0,说明增加x1或x2都可以使目标
函数值变大。故非最优解。 • 3、基变换。 通过检验,我们知道这个初始基本可行解不是最优解。下面
介绍如何进行基变换找到一个新的可行基,具体的做法是从
可行基中换一个列向量,得到一个新的可行基,使得求解得
到的新的基本可行解,其目标函数值更优。为了换基就要确
§1 单纯形法的基本思路和原理
由线性代数的知识知道,如果我们在约束方程组系数矩阵中找到一个
基,令这个基的非基变量(n-m个)为零,再求解这个m元线性方程组就可得 到唯一的解了,这个解我们称之为线性规划的基本解(基解)。
在此例中我们不妨找到了
运筹学4单纯形法迭代原理
在引入人工变量后,与原先的约束方程不完全等价,为此, 需要在目标函数上做些“修正”——大M法或两阶段法
x1
x2
a1m1xm1 a1nxn b1 a2m1xm1 a2nxn b2
xm am x m1 m1 amnxn bm xj 0 ( j 1,2,,n)
非基变量取0,算出基变量,搭配在一起构成 初始基本可行解:
a2m1xm1 a2nxn b2
xm am x m1 m1 amnxn bm
xj 0 ( j 1,2,,n)
xik ai',mtxmt
若mt 0且pm' t 0
则该LP无最优解。
>
当
a' i,mt
0 时,为使
xikai',mtxmt 0,需要
最小比 值原则
xmt
xik a'
i,m t
x k 1 mt
x 从而, m t
最大可取到 m精i品i课n件 aix',mikt
a' i,mt
0
x
k l
a' l ,m t
Z
Z0 jxj
jm1
jm1
jm1
j精品课件检验数
n
Z Z0 jxj
m
其中 Z0 cibi',
i 1
jm1
j cj zj,
m
z j ciai'j
i 1
(1)最优性判别定理 j 0,jm1,..n.,
(2)有无穷多个“最优解”的判别 定理 j 0 且mt 0
精品课件
n
3、进行基变换
jm1
m
mn
n
cibi'
运筹学第4章
3x15x2d332
综合考虑后,得到结果
3x15x2d3 d3 32 其中 d3 , d3 0
目标规划的数学模型
产品 甲 乙 资源量
可以用同样的方式来处理其它提出的 资源
决策要求:
设备/台时 3
2
18
原料A/吨
1
0
4
(1)要求甲产品产量不大于乙产品产量。 原料B/吨 0 2 12
如:在引例中,利润的目标值为32, 可能目标值会达不到,所以加上一个
产品 资源
甲 乙 资源量
设备/台时 3
2
18
负偏差变量d3-≥0,把目标函数变成
原料A/吨
1
0
4
3x15x2d332
原料B/吨 单位赢利/
0 3
2 5
12
万元
但是同样,目标值也有可能会超出,所以减去一个正偏差变量
d3+≥0,把目标函数变成
A)恰好达到目标值 B)允许超过目标值 C)不允许超过 目标值
构造一个由优先因子和权系数相对应的偏差变量组成的,要求实 现极小化的目标函数.
用目标规划求解问题的过程:
明确问题,列出 目标的优先级和
权系数
构造目标规 划模型
N
满意否?
Y
据此制定出决策方案
目标规划的数学模型
求出满意解 分析各项目标
完成情况
p (3 3)计划利润指标32,并且尽可能达到或超过这个利润指标.
问:如何安排生产可以使得获利最大?
分析:
p(1 1)要求甲产品的产量不大于乙产品的产量;
(1)产量偏差变量
d1 , d1 0
p 2(2)尽可能充分利用设备台时,不希望加班生产;
运筹学单纯形法ppt课件
• 第二阶段:将第一阶段计算所得的单纯形表划去人工变量 所在的列,并将目标函数换为原问题的目标函数作为第二 阶段的初始单纯形表,进行进一步的求解。
14
s.t.
32x1x133xx2 22
x3 x3
100 120
x1, x2 , x3 0
cj
40 45 25 0 0
CB XB bi x1 x2 x3 x4 x5 θ
0 x4 100 2 [ 3 ] 1
1
0
100/3
0 x5 120 3 3 2 0 1
40
σj
40 45 25
两阶段法的算法流程图
MaxZ=-3x1+x3 x1+ x2+ x3≤4
-2x1+ x2- x3≥1 3x2+x3=9
xi ≥0,j=1,2,3
求解辅助问题,得到辅助 问题的最优解
引进人工变量x6,x7,构造辅助 问题,辅助问题的目标函数为
所有人工变量之和的极小化
Max W= -x6 - x7
x1+ x2+ x3+x4
取值
xj无约束 令xj = xj′- xj″
xj ≤ 0 令 xj′= - xj
xj′ ≥0 xj″ ≥0
右端项
bi < 0
约束条 件两端 同乘以
-1
等式或不等式
≤
=
≥
加松 弛变 量xs
加入 人工 变量
xa
减去 剩余 变量xs
加入 人工 变量xa
单纯形法的迭代步骤与解的讨论
计算结果分析
01
最优解解释
通过单纯形法迭代得到的最优解满足所有约束条件,并使目标函数达到
最大值(或最小值)。
02
解的性质讨论
根据问题的不同,最优解可能是唯一的、不唯一的、无界的或不存在的。
对于不同情况,需要具体分析并给出相应的解释和处理方法。
03
敏感性分析
对于某些参数的变化,可以通过敏感性分析来探讨最优解的稳定性和变
单纯形法缺点
对初始解敏感
单纯形法的求解过程依赖于初始解的选择, 不同的初始解可能导致不同的迭代路径和收 敛速度。
可能陷入循环
在某些情况下,单纯形法可能会陷入无限循环,无 法在给定的时间内找到最优解。
对大规模问题求解效率低
对于大规模的线性规划问题,单纯形法的求 解效率可能会显著降低,甚至无法在实际应 用中接受。
改进方向探讨
内点法
内点法是一种不依赖于初始解的求解方法,通过在内部可行域中进行搜索来逼近最优解。内点法具有较快的收敛速度 和较好的数值稳定性,适用于大规模问题。
原始对偶法
原始对偶法将原问题和对偶问题结合起来进行求解,能够充分利用两个问题的信息,提高求解效率。该方法适用于具 有特殊结构的问题,如网络流问题等。
计算过程演示
01 1. 初始化单纯形表
02
构建初始单纯形表,包括目标函数系数、约束条件系
数和右侧常数项。
03
选择一个初始基可行解,通常将所有非基变量设为0
。
计算过程演示
01
2. 迭代过程
02
检查当前解是否最优。通过比较目标函数值或检验数来判断 。
03
若非最优,则选择一个入基变量。通常选择具有最大正检验 数的非基变量。
运筹学第四版第二章线性规划及单纯形法
方案的制定受到那些现实条件制约:
确定约束条件
人力资源(劳动力)的限制: 9x1 4x2 360
设备工时的限制:
4x1 5x2 200
原材料资源的限制:
3x1 10x2 300
此外,决策变量的取值不应为负值即 x1 0, x2 0
6
综上所述,我们得到了这个问题的数学模型
目标函数 约束条件
大?
项目
Ⅰ
设备A (h)
0
设备B (h)
6
调试工序(h) 1
利润(元) 2
Ⅱ 每天可用能力
5
15
2
24
表1-2
1
5
1
12
其数学模型为:
max Z 2x1 x2
5x2 15
6xx11
2x2 x2
24 5
x1, x2 0
13
例3:捷运公司在下一年度的1~4月份的4个月内拟租用仓库
堆放物资。已知各月份所需仓库面积列于下表1-3。仓库租
借费用随合同期而定,期限越长,折扣越大,具体数字见表
1-4。租借仓库的合同每月初都可办理,每份合同具体规定
租用面积和期限。因此该厂可根据需要,在任何一个月初办
理租借合同。每次办理时可签一份合同,也可签若干份租用
面积和租用期限不同的合同。试确定该公司签订租借合同的
最优决策,目的是使所租借费用最少。
14
max Z 70 x1 120 x2
9x1 s.t. 43xx11
x1,
4x2 5x2 10x2 x2 0
360 200 300
资源约束
非负约束
其中 约束条件可记 s.t (subject to), 意思为“以… 为条件“、”假定“、”满足“之意。
运筹学第4章 单纯形法的对偶问题
管理运筹学
3
§1 线性规划的对偶问题
如果我们把求目标函数最大值的线性规划问题看成原问题,则把求目标函数最小值的线 性规划问题看成对偶问题。下面来研究这两个问题在数学模型上的关系。
1 求目标函数最大值的线性规划问题中有n 个变量 m个约束条件,它的约束条件都是小于 等于不等式。而其对偶则是求目标函数为最小值的线性规划问题,有m个变量n个约束条件, 其约束条件都为大于等于不等式。
5x1 3x2 x3 200
管理运筹学
10
§1 线性规划的对偶问题
通过上面的一些变换,我们得到了一个和原线性规划等价的线性规划 问题:
max z 3x1 4x2 6x3
s.t. 2x1 3x2 6x3 440,
6x1 4x2 x3 100, 5x1 3x2 x3 200 5x1 3x2 x3 200 x1, x2 , x3 0
进一步,我们可以令y3
y
' 3
y
'' 3
,这时当
y
' 3
y
'' 3
时,y
0,当
y
' 3
y
'' 3
时, y3 0 。这也就是说,尽管
y
' 3
,
y
'' 3
0,
但 y3 的取值可以为正,可以为0,
可以为负,即 y3 没有非负限制。
这样我们把原规划的对偶问题化为
min f 440 y1 100 y2 200 y3
这样第二个约束条件也就符合要求。对于第三个约束条件,我们可以 用小于等于和大于等于两个约束条件来替代它。即有
运筹学单纯形法
解:本例中,A
1 2
2 1
1 0
10,A 中的2阶可逆子阵有
1
B 1
0
10,其相应的基向量为P3
,
P 4
,
基变量为x
3
,
x
,X
4
1
x 3 ; x 4
1
B 2
2
21,
其相应的基向量为P 1
,
P 2
,
基变量为x
1
,
x
2
,
X
2
x 1 。 x 2
a21
a22
a2n
am1
am2
amn
的秩为m,用Pj表示A中第j列的列向量,即
由此,矩阵A可表示为A=[P1 P2 … Pn]
(2)基矩阵与基变量
基矩阵(基):设A是m×n阶约束系数矩阵(m≤n),秩 为m。 A=( P1,P2,…,Pn ),则A中m阶可逆子阵 B=( P1,P2,…,Pm )为线性规划的一个基。其余部 分称为非基矩阵,记为N
3. 寻找更好的基可行解(基变换)
由于基可行解与基对应,即寻找一个新的基可行
解,相当于从上一个基B0变换为下一个新的基B1,因
此,本步骤也称为基变换。
进基
基变换的原则
改善:z 可行:B
b
z
0
变换的方法:( P ,, P ,, P ,, P )
出基
进基 保证“改善” 令 0对应的P 进基;
二、单纯形法的步骤
单纯形法是一 种迭代的算法,它 的思想是在可行域 的角点——基本可 行解中寻优。由于 角点是有限个(为 什么?),因此, 算法经有限步可终 止。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a' i,mt
0
k l ' l ,m t
xik1xikai',mtxmt
x k 1 mt
x
k l
a' l ,m t
x ik 1 x ik a i',m tx m k 1 t,i 1 ,.m .,i. ,l
xk1 l
0
x 离基变量: l
X(k)(x1 k,x2 k,.x .m k.,0 ,,.0 .)T ., X ( k 1 ) ( x 1 k 1 ,x .l k 1 1 .,0 , .x l k 1 1 ,0 .0 .,x .m k 1 t,,0 ,.0 ) T .是 解.可 !,行
顶点转移的依据?
根据线性规划问题的可行域是凸多边形 或凸多面体,一个线性规划问题有最优解, 就一定可以在可行域的顶点上找到。
于是,若某线性规划只有唯一的一个最 优解,这个最优解所对应的点一定是可行域 的一个顶点;若该线性规划有多个最优解, 那么肯定在可行域的顶点中可以找到至少一 个最优解。
运筹学4单纯形法迭代原理
运筹学4单纯形法迭代原理
在引入人工变量后,与原先的约束方程不完全等价,为此, 需要在目标函数上做些“修正”——大M法或两阶段法
x1
x2
a1m1xm1 a1nxn b1 a2m1xm1 a2nxn b2
xm amm1xm1 amnxn bm xj 0 ( j 1,2,,n)
非基变量取0,算出基变量,搭配在一起构成 初始基本可行解:
n
xi bi' ai'jxj, jm1
n
若BI, xi 运b筹i学4单纯形a法ij迭x代j 原理 jm1
i1,2 ,m
用非基变量表示目标函数的表达式:
n
m
n
m
n
Z c j x j cjxj cjxj cixi cjxj
j 1
m
j1
n
jm1
i1
n
jm1
ci(bi' ai'jxj) cjxj
Z
Z0 jxj
jm1
jm1
jm1
运筹学4单j 纯形法检迭代验原数理
n
Z Z0 jxj
m
其中 Z0 cibi',
i 1
jm1
j cj zj,
m
z j ciai'j
i 1
(1)最优性判别定理
j 0,jm1,..n.,
(2)有无穷多个“最优解”的判别定
理
j 0 且mt 0
运筹学4单纯形法迭代原理
jm1
xj 0; j m 1,...,n
xik bi'
xm t 0
xj0;jm 1,.m .. ,t1,m t1,.n ..,
x ba x x a x k1 ' ' i 运筹学4单i纯形法迭代i,m 原理t mt
k' i i,mt mt
xik1xikai',mtxmt 0
n
Z Z0 jxj
三 单纯形法 迭代原理
运筹学4单纯形法迭代原理
三. 单纯形法的基本思想
1、顶点的逐步转移
• 即从可行域的一个顶点(基本可行解) 开始,转移到另一个顶点(另一个基本可 行解)的迭代过程,转移的条件是使目标 函数值得到改善(逐步变优),当目标函 数达到最优值时,问题也就得到了最优解。
运筹学4单纯形法迭代原理
n
3、进行基变换
Z Z0 jxj
jm1
(1)进基变量的确定——原则:正检验数(或最大正检验
数)所对应的变量进基,目的是使目标函数得到改善。
xmt
(2)离基变量的确定——在保持解的可行性的前提下, 使目标函数较快增大。
X(k)(x1 k,x2 k,.x .m k.,0 ,,.0 .)T .,
n
xi bi' ai'jxj
运筹学4单纯形法迭代原理 是否还是基本解?是
Z(k1) Z0
n
jxj
Z0
xk
mt mt
jm1
Z 0 Z(k)
从而,目标函数得到了改善。
运筹学4单纯形法迭代原理
第四节 单纯形表
初始基本可行解
检验数
进基变量:检验数 运筹离学4基单纯形变法迭量代原:理最小比值准则
1.确定初始基本可行解
LP:
n
maxz cjxj
j1
n
s.t. j1
Pj xj
b
xj 0( j 1,2,3,n)
希望在化LP的标准形 式时,A中都含有一 个m阶单位阵。
?
x1
a1m1xm1 a1nxn b1
i1
jm1
jm1
m
mn
n
cibi'
ciai'jxj cjxj
n
xi bi' ai'jxj
jm1
i1
i1jm1
jm1
m
nm
n
cibi'
ciai'jxj cjxj
i1
jm1i1
jm1
典式
m
n
m
cibi' (cj ciai' j)xj
zj
Z0
i1
jm 1
i1
n
n
n
Z0 (cj zj)xjZ0 jxj
x2
a2m1xm1 a2nxn b2
xm amm1xm1 amnxn bm xj 0 ( j 1,2,,n)
运筹学4单纯形法迭代原理
➢观察法 ——观察系数矩阵中是否含有现成的单位阵? ➢LP限制条件中全部是“≤”类型的约束 ——将新增的松弛变量(+)作为初始基变量,对应的 系数列向量构成单位阵; ➢LP限制条件有“≥”类型的约束 ——左端新增剩余变量(-)后,再加上一个非负的新 变量—人工变量。 ➢LP限制条件有“=”类型的约束 ——直接在左端加上人工变量。
jm1
a' i,m t < =
xmt
xik ai',mtxmt
若mt 0且pm' t 0
则该LP无最优解。
>
当
a' i,mt
0 时,为使
xik ai',mtxmt 0,需要
最小比 值原则
xmt
x
k i
a' i,m t
x k 1 mt
从而,x 最大可取到 m t
a x 运筹学m 4单i纯i形n法迭a代ix',原mik理t
转移条件?
转移结果?
使目标函数值得到改善
得到LP最优解,目标函数达到最优值变优,怎么转移? (2)目标函数何时达到最优——
判断标准是什么?
运筹学4单纯形法迭代原理
解LP问题单纯形法的基本思路: 初始可行基:设法在约
束矩阵 ARmn 中
构造出一个m阶单位阵
X(0)(b 1,b2,.b .m .,0 ,,.0 .)T .,
运筹学4单纯形法迭代原理
2.建立判别准则
判断:初始基本可行解或经过若干次迭代后得到的新基 本可行解—当前解—是否为最优解?
一般(经过若干次迭代),对于基B,用 非基变量表出基变量的表达式 为:
Axb BB xNN xb
xBB1bB1NN x 典式