与圆有关专题综合的讲义(五)

合集下载

圆的相关证明与计算(复习讲义)(原卷版)-中考数学重难点题型专题汇总

圆的相关证明与计算(复习讲义)(原卷版)-中考数学重难点题型专题汇总

题型五--圆的相关证明与计算(复习讲义)【考点总结|典例分析】考点01圆的有关概念1.与圆有关的概念和性质(1)圆:平面上到定点的距离等于定长的所有点组成的图形.(2)弦与直径:连接圆上任意两点的线段叫做弦,过圆心的弦叫做直径,直径是圆内最长的弦.(3)弧:圆上任意两点间的部分叫做弧,小于半圆的弧叫做劣弧,大于半圆的弧叫做优弧.(4)圆心角:顶点在圆心的角叫做圆心角.(5)圆周角:顶点在圆上,并且两边都与圆还有一个交点的角叫做圆周角.(6)弦心距:圆心到弦的距离.考点02垂径定理及其推论1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.关于垂径定理的计算常与勾股定理相结合,解题时往往需要添加辅助线,一般过圆心作弦的垂线,构造直角三角形.2.推论(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.考点03圆心角、弧、弦的关系1.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.圆心角、弧和弦之间的等量关系必须在同圆等式中才成立.2.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.考点04圆周角定理及其推论1.定理一条弧所对的圆周角等于它所对的圆心角的一半.2.推论(1)在同圆或等圆中,同弧或等弧所对的圆周角相等.(2)直径所对的圆周角是直角.考点05与圆有关的位置关系1.点与圆的位置关系设点到圆心的距离为d.(1)d<r⇔点在⊙O内;(2)d=r⇔点在⊙O上;(3)d>r ⇔点在⊙O 外.判断点与圆之间的位置关系,将该点的圆心距与半径作比较即可.2.直线和圆的位置关系位置关系相离相切相交图形公共点个数0个1个2个数量关系d>r d=r d<r考点06切线的性质与判定1.切线的性质(1)切线与圆只有一个公共点.(2)切线到圆心的距离等于圆的半径.(3)切线垂直于经过切点的半径.利用切线的性质解决问题时,通常连过切点的半径,利用直角三角形的性质来解决问题.2.切线的判定(1)与圆只有一个公共点的直线是圆的切线(定义法).(2)到圆心的距离等于半径的直线是圆的切线.(3)经过半径外端点并且垂直于这条半径的直线是圆的切线.切线判定常用的证明方法:①知道直线和圆有公共点时,连半径,证垂直;②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径.考点07三角形与圆1.三角形外接圆外心是三角形三条垂直平分线的交点,它到三角形的三个顶点的距离相等.2.三角形的内切圆内心是三角形三条角平分线的交点,它到三角形的三条边的距离相等.1.如图,点,,,,A B C D E 在O 上,,42AB CD AOB =∠=︒,则CED ∠=()A.48︒B.24︒C.22︒D.21︒2.如图,A,B,C 是半径为1的⊙O 上的三个点,若,∠CAB=30°,则∠ABC 的度数为()A.95°B.100°C.105°D.110°3.如图,AB 是⊙O 的直径,AC,BC 是⊙O 的弦,若20A ∠=︒,则B Ð的度数为()A.70°B.90°C.40°D.60°4.如图,Rt ABC 中,90ACB ∠=︒,AC =3BC =.点P 为ABC ∆内一点,且满足22PA PC +2AC =.当PB 的长度最小时,ACP ∆的面积是()A.3B.C.4D.25.如图,已知在⊙O 中, AB BCCD ==,OC 与AD 相交于点E.求证:(1)AD∥BC(2)四边形BCDE 为菱形.6.如图,A,B 是O 上两点,且AB OA =,连接OB 并延长到点C,使BC OB =,连接AC.(1)求证:AC 是O 的切线.(2)点D,E 分别是AC,OA 的中点,DE 所在直线交O 于点F,G,4OA =,求GF 的长.7.如图,Rt ABC 中,90ABC ∠=︒,以点C 为圆心,CB 为半径作C ,D 为C 上一点,连接AD 、CD ,AB AD =,AC 平分BAD ∠.(1)求证:AD 是C 的切线;(2)延长AD 、BC 相交于点E,若2EDC ABC S S = ,求tan BAC ∠的值.8.如图,在O 中,AB 是直径,弦CD AB ⊥,垂足为H ,E 为 BC上一点,F 为弦DC 延长线上一点,连接FE 并延长交直径AB 的延长线于点G ,连接AE 交CD 于点P ,若FE FP =.(1)求证:FE 是O 的切线;(2)若O 的半径为8,3sin 5F =,求BG 的长.9.如图,ABC 是O 的内接三角形,AC 是O 的直径,点D 是 BC的中点,//DE BC 交AC 的延长线于点E .(1)求证:直线DE 与O 相切;(2)若O 的直径是10,45A ∠=︒,求CE 的长.10.如图,已知点C 是以AB 为直径的圆上一点,D 是AB 延长线上一点,过点D 作BD 的垂线交AC 的延长线于点E ,连结CD ,且CD ED =.(1)求证:CD 是O 的切线;(2)若tan 2DCE ∠=,1BD =,求O 的半径.11.如图,AB 是⊙O 的直径,C 为⊙O 上一点,连接AC,CE⊥AB 于点E,D 是直径AB 延长线上一点,且∠BCE=∠BCD.(1)求证:CD 是⊙O 的切线;(2)若AD=8,BE CE=12,求CD的长.12.如图,△ABC内接于⊙O,AB为⊙O的直径,AB=10,AC=6,连结OC,弦AD分别交OC,BC于点E,F,其中点E是AD的中点.(1)求证:∠CAD=∠CBA.(2)求OE的长.13.如图,⊙O的半径OA=6,过点A作⊙O的切线AP,且AP=8,连接PO并延长,与⊙O 交于点B、D,过点B作BC∥OA,并与⊙O交于点C,连接AC、CD.(1)求证:DC∥AP;(2)求AC的长.=CD =DB ,连接AD,过点D作14.如图,AB为⊙O的直径,C、D为⊙O上的两个点,ACDE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线.(2)若直径AB=6,求AD的长.15.如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AD=BC,AC与BD相交于点F.BE是半圆O所在圆的切线,与AC的延长线相交于点E.(1)求证:△CBA≌△DAB;(2)若BE=BF,求证:AC平分∠DAB.16.如图,AB为⊙O的直径,C为⊙O上一点,AD与过C点的直线互相垂直,垂足为D,AC 平分∠DAB.(1)求证:DC为⊙O的切线.(2)若AD=3,DC=3,求⊙O的半径.17.如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,过点D作⊙O的切线交AC于点E.(1)求证:DE⊥AC;(2)若⊙O的半径为5,BC=16,求DE的长.。

(尖子生题库)专题05圆的面积-六年级数学思维拓展培优讲义(通用版)

(尖子生题库)专题05圆的面积-六年级数学思维拓展培优讲义(通用版)

(尖子生题库)专题05圆的面积的解题技巧六年级数学思维拓展拔高讲义(通用版)在解答圆的组合图形面积或求阴影部分面积时,除了正确运用圆的面积公式外,还可以巧妙地运用“重叠”“转化”“拼接”“对称”“割补结合"等技巧化繁为简、化不规则为规则进行解答。

一.选择题(共20小题)1.人民公园里有一个半径是6米的圆形花坛,花坛周围有一条1米宽的环形小路。

这条小路的占地面积是()平方米。

A.3.14B.37.68C.40.82D.153.862.下面四句话中,正确的是()①圆有无数条对称轴。

②所有的半径都相等。

③周长相等的两个圆,它们的面积也一定相等。

④甲圆的半径是乙圆半径的2倍,甲圆的周长也是乙圆周长的2倍。

A.①②④B.①③④C.①②③D.②③④3.(如图)已知大正方形的面积是4cm2。

那么圆的面积是()cm2。

妙招演练妙招总结424.一个半圆形的周长是25.7cm ,这个半圆形的面积是( )cm 2。

A .314B .78.5C .39.25D .31.45.下列说法中,正确的是( )①把5米长的绳子平均分成8份,每份是1米的58。

②在同一个圆中,半圆的周长等于圆周长的一半。

③水结成冰时,体积膨胀110,冰化成水后,体积就减少110。

④树木的成活率、上班的出勤率和小麦的出粉率都不可能超过100%。

A .①②B .②③C .③④D .①④6.把一个圆平均分成32份,剪开后拼成一个近似的长方形,关于这个过程,下面说法正确的是( )A .剪拼前后周长和面积都没变B .剪拼前后周长不变,面积变了C .剪拼前后周长变了,面积没变D .剪拼前后周长和面积都变了7.长度相等的三根铁丝,分别做成一个长方形、正方形和圆,( )面积最大。

A .长方形B .正方形C .圆8.研究圆的面积时,可以把圆平均分成32份,64份,128份……,平均分的份数越多,转化后的图形越接近长方形。

下列说法错误的是( )A .长方形的长相当于圆周长的一半B .长方形的宽相当于圆的半径C .长方形的周长等于圆的周长D .长方形的面积等于圆的面积9.把一张圆形纸对折3次后得到的图形的面积是原来圆面积的( )349810.下面是推导圆的面积的方法,哪种推导过程中有错误信息()A.B.C.D.11.如图,沿半径20m的半圆形草坪外围铺一条4m宽的小路,小路的面积是多少平方米?列式正确的是()A.3.14×42÷2B.3.14×(20+4﹣20)2÷2C.3.14×(20+4)2÷2﹣3.14×202÷212.游乐园要建一座圆形旋转木马,直径是8m,并在它的周围修建一条2m宽的小路,这条小路的面积是()m2。

圆的方程 高中数学讲义

圆的方程 高中数学讲义

圆的方程讲义一、圆的标准方程:1.以点),(b a C 为圆心,r 为半径的圆的标准方程为 特别的,圆心在原点,半径为r 的圆的标准方程为 注:特殊位置的圆的方程(1)圆心在原点(2)圆心在x 轴上(3)圆心在y 轴上(4)圆过原点(5)与x 轴相切的圆(6)与y 轴相切的圆2.点与圆的位置关系:已知点),(00y x M 和圆C :)0()()(222>=-+-r r b y a x ,点M 到圆心C 的距离为d ,则(1)点M 在圆上⇔ ⇔(2)点M 在圆内⇔ ⇔(3)点M 在圆外⇔ ⇔3.典型例题例1.ABC ∆的三个顶点)8,2(),3,7(),1,5(--C B A ,求它的外接圆的方程例2.已知圆心为C 的圆经过点)1,1(A 和)2,2(-B ,且圆心C 在直线 l :01=+-y x 上,求圆心为C 的圆的标准方程例 3.已知两点),(),,(2211y x B y x A ,求证:以AB 为直径的圆的方程为0))(())((2121=--+--y y y y x x x x二、圆的一般方程1.对于方程022=++++F Ey Dx y x(1)当0422>-+F E D 时,方程表示(2)当0422=-+F E D 时,方程表示(3)当0422<-+F E D 时,方程表示2.圆的一般方程:方程 叫做圆的一般方程,其圆心为 ,半径为注圆的一般方程的系数特点:(1)22,y x 项的系数(2)无xy 的项(3)3.点与圆的位置关系:已知点),(00y x M 和圆C :022=++++F Ey Dx y x ,则(1)点M 在圆上⇔(2)点M 在圆内⇔(3)点M 在圆外⇔例1.若方程01222222=-+++++a a ay ax y x 表示圆,求a 的取值范围变式:若原点在圆01222222=-+++++a a ay ax y x 外,求a 的取值范围例2.求过三点)2,4(),1,1(),0,,0(B A O 的圆的方程,并求出这个圆的半径长和圆心坐标.三、直线与圆的位置关系1.平面几何中,直线与圆有三种位置关系:(1)直线与圆相交,有 个公共点;(2)直线与圆相切,有 个公共点;(3)直线与圆相离,有 个公共点.2.直线与圆的位置关系的判定:已知直线l :0=++C By Ax ,圆C :)0()()(222>=-+-r r b y a x(1)方法1:(几何法)设圆心C 到直线l 的距离(弦心距)为22b a C bB aA d +++=,则 ① ⇔直线与圆相交② ⇔直线与圆相切③ ⇔直线与圆相离(2)方法2:(代数法)联立直线l 与圆C 的方程0)()(02222=++⇒⎩⎨⎧=-+-=++t qx px r b y a x C By Ax ① ⇔直线与圆相交② ⇔直线与圆相切③ ⇔直线与圆相离例1.如图,已知直线l :063=-+y x 和圆心为C 的圆04222=--+y y x ,判断直线l 与圆C 的位置关系例2.直线m x y +-=33与圆122=+y x 在第一象限内有两个交点,求实数m 的取值范围3.弦长公式:设直线l :b kx y +=与圆C :)0()()(222>=-+-r r b y a x 相交于B A ,两点,则弦长AB 的求法有:(1)几何法:由弦心距d ,半弦长2L ,圆的半径r 满足勾股定理222)2(r L d =+=⇒L (2)代数法:(弦长公式)=AB == =例3.已知直线l :012=--y x 与圆C :01222=--+y y x 交于B A ,,求弦长AB例4.过点)3,3(--M 的直线l 被圆C :021422=-++y y x 所截得的弦长为54,求直线l 的方程变式1:过点)3,3(--M 的直线l 被圆C :021422=-++y y x 所截得的弦长为8,求直线l 的方程变式2:过点)0,3(P 直线l 被圆C :0122822=+--+y x y x 截得的弦长为4,求直线l 的方程4.弦的中点(中点弦)问题:例5.过点)0,4(P 的直线l 与圆C :422=+y x 交于B A ,两点,求弦AB 的中点Q 的轨迹方程例6.直线kx y =与圆0104622=+--+y x y x 相交于B A ,,求弦AB 的中点P 的轨迹方程5.以弦为直径的圆过定点问题例7.已知圆0622=+-++m y x y x 与直线032=-+y x 交于Q P ,两点,且以PQ 为直径的圆过原点,求m 的值四、圆的切线问题1.求过圆上一点的圆的切线方程例8.求过点)3,1(P 的圆O :422=+y x 的切线l 的方程例9.证明:过圆222r y x =+上一点),(00y x P 的圆的切线方程为:200r y y x x =+注:常见的与圆的切线有关的结论(1)过圆222r y x =+上一点),(00y x P 的圆的切线方程为(2)过圆222)()(r b y a x =-+-上一点),(00y x P 的圆的切线方程为(3)过圆022=++++F Ey Dx y x 上一点),(00y x P 的圆的切线方程为(4)过二次曲线(包括圆、椭圆、双曲线、抛物线)022=++++F Ey Dx Cy Ax 上一点),(00y x P 的圆的切线方程为2.求过圆外一点的圆的切线方程例10.求过点)3,4(-A 的圆1)1()3(22=-+-y x 的切线l 的方程练习:求过点)4,3(A 的圆1)1()2(22=-+-y x 的切线l 方程3.求切线长例11.过圆C :1)2()2(22=-+-y x 外一点)2,0(P 作圆C 的切线PT ,T 为切点,求切线PT 的长注:圆的切线长公式:(1)设点),(00y x P 是圆222)()(r b y a x =-+-外任意一点,过点P 作圆的切线PT ,T 为切点,则切线长=PT(2)设点),(00y x P 是圆022=++++F Ey Dx y x 外任意一点,过点P 作圆的切线PT ,T 为切点,则切线长=PT例12.已知圆C :1)1()2(22=-+-y x ,在直线l :01243=--y x 上求一点P ,过点P 作圆C 的切线,使得切线段最短4.切点弦例13.设点),(00y x P 是圆222)()(r b y a x =-+-外任意一点,过点P 作圆的切线,切点为B A ,,则切点弦AB 所在直线方程为注:圆的切点弦所在直线方程(1)设点),(00y x P 是圆222)()(r b y a x =-+-外任意一点,过点P 作圆的切线,切点为B A ,,则切点弦AB 所在直线方程为(2)设点),(00y x P 是圆022=++++F Ey Dx y x 外任意一点,过点P 作圆的切线,切点为B A ,,则切点弦AB 所在直线方程为五、圆和圆的位置关系1.圆和圆的位置关系:(1)圆和圆相离,有 个公共点(2)圆和圆外切,有 个公共点(3)圆和圆相交,有 个公共点(4)圆和圆内切,有 个公共点(5)圆和圆内含,有 个公共点2.圆和圆的五种位置关系的判定(1)几何法:设两圆21,C C 的半径分别为21,r r ,圆心距为d ,则①圆和圆相离⇔②圆和圆外切⇔③圆和圆相交⇔④圆和圆内切⇔⑤圆和圆内含⇔(2)代数法:联立两圆的方程①圆和圆相离⇔②圆和圆外切⇔③圆和圆相交⇔注:用代数法判断出两圆相切后,若要进一步区分是外切还是内切,则还要判断小圆圆心是在大圆内还是在大圆外,若在大圆内,则两圆 ,若在大圆外,则两圆 , 类似可以区分外离与内含例14.已知圆1C :088222=-+++y x y x 和圆2C :024422=---+y x y x ,试判断圆1C 与圆2C 的位置关系例15.设圆1C :088222=-+++y x y x 和圆2C :024422=---+y x y x 相交于B A ,两点,求(1)两圆的公共弦AB 所在的直线方程(2)求两圆的公共弦AB 的长3.两圆的公切线条数(1)当两圆外离时,有 条公切线, 条外公切线, 条内公切线(2)当两圆外切时,有 条公切线, 条外公切线, 条内公切线(3)当两圆相交时,有 条公切线(4)当两圆内切时,有 条公切线(5)当两圆内含时,有 条公切线例16.(1)圆1C :122=+y x 与圆1C :1)3(22=-+y x 有 条公切线(2)点)1,0(A 和)5,4(B 到直线l 的距离分别为1和2,则符合条件的直线l 有 条4.两圆公切线的求法例17.已知圆1O :096222=++++y x y x ,2O :012622=++-+y x y x ,求两圆的公切线方程。

圆的方程专题讲义

圆的方程专题讲义

圆的方程专题讲义一、知识梳理圆的定义与方程注意:1确定圆的方程主要方法是待定系数法,大致步骤:(1)根据题意,选择标准方程或一般方程.(2)根据条件列出关于a,b,r或D,E,F的方程组.(3)解出a,b,r或D,E,F代入标准方程或一般方程.2.点与圆的位置关系点和圆的位置关系有三种.已知圆的标准方程(x-a)2+(y-b)2=r2,点M(x0,y0)(1)点在圆上:(x0-a)2+(y0-b)2=r2;(2)点在圆外:(x0-a)2+(y0-b)2>r2;(3)点在圆内:(x0-a)2+(y0-b)2<r2.二、基础检测题组一:思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)确定圆的几何要素是圆心与半径.()(2)已知点A(x1,y1),B(x2,y2),则以AB为直径的圆的方程是(x-x1)(x-x2)+(y-y1)(y-y2)=0.()(3)方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是A=C≠0,B=0,D2+E2-4AF>0.( )(4)方程x2+2ax+y2=0一定表示圆.()(5)若点M(x0,y0)在圆x2+y2+Dx+Ey+F=0外,则x20+y20+Dx0+Ey0+F>0.()(6)方程(x+a)2+(y+b)2=t2(t∈R)表示圆心为(a,b),半径为t的圆.()题组二:教材改编2.以点(3,-1)为圆心,并且与直线3x+4y=0相切的圆的方程是()A .(x -3)2+(y +1)2=1B .(x -3)2+(y -1)2=1C .(x +3)2+(y -1)2=1D .(x +3)2+(y +1)2=13.圆C 的圆心在x 轴上,并且过点A (-1,1)和B (1,3),则圆C 的方程为_______.题组三:易错自纠4.若方程x 2+y 2+mx -2y +3=0表示圆,则m 的取值范围是( )A .(-∞,-2)∪(2,+∞)B .(-∞,-22)∪(22,+∞)C .(-∞,-3)∪(3,+∞)D .(-∞,-23)∪(23,+∞)5.若点(1,1)在圆(x -a )2+(y +a )2=4的内部,则实数a 的取值范围是( )A .-1<a <1B .0<a <1C .a >1或a <-1D .a =±46.若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是( )A .(x -2)2+(y -1)2=1B .(x -2)2+(y +1)2=1C .(x +2)2+(y -1)2=1D .(x -3)2+(y -1)2=1三、典型例题题型一:圆的方典例 (1)过点A (4,1)的圆C 与直线x -y -1=0相切于点B (2,1),则圆C 的方程为__________.(2)已知圆C 经过P (-2,4),Q (3,-1)两点,且在x 轴上截得的弦长等于6,则圆C 的方程为______________. 思维升华:(1)直接法:直接求出圆心坐标和半径,写出方程.(2)待定系数法①若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程,求出a ,b ,r 的值;②选择圆的一般方程,依据已知条件列出关于D ,E ,F 的方程组,进而求出D ,E ,F 的值.跟踪训练 一个圆与y 轴相切,圆心在直线x -3y =0上,且在直线y =x 上截得的弦长为27,则该圆的方程为______________________.题型二:与圆有关的最值问题典例 已知点(x ,y )在圆(x -2)2+(y +3)2=1上,求x +y 的最大值和最小值.引申探究1.在本例的条件下,求y x的最大值和最小值. 2.在本例的条件下,求x 2+y 2+2x -4y +5的最大值和最小值.思维升华:与圆有关的最值问题的常见类型及解题策略(1)与圆有关的长度或距离的最值问题的解法.一般根据长度或距离的几何意义,利用圆的几何性质数形结合求解.(2)与圆上点(x ,y )有关代数式的最值的常见类型及解法.①形如u =y -b x -a型的最值问题,可转化为过点(a ,b )和点(x ,y )的直线的斜率的最值问题;②形如t =ax +by 型的最值问题,可转化为动直线的截距的最值问题;③形如(x -a )2+(y -b )2型的最值问题,可转化为动点到定点(a ,b )的距离的平方的最值问题.跟踪训练:已知点P (x ,y )在圆C :x 2+y 2-6x -6y +14=0上.(1)求y x的最大值和最小值; (2)求x +y 的最大值与最小值.题型三:与圆有关的轨迹问题典例已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点.(1)求线段AP 中点的轨迹方程;(2)若∠PBQ =90°,求线段PQ 中点的轨迹方程.思维升华:求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法(1)直接法:直接根据题目提供的条件列出方程.(2)定义法:根据圆、直线等定义列方程.(3)几何法:利用圆的几何性质列方程.(4)代入法:找到要求点与已知点的关系,代入已知点满足的关系式等.跟踪训练 已知Rt △ABC 的斜边为AB ,且A (-1,0),B (3,0).求:(1)直角顶点C 的轨迹方程;(2)直角边BC 的中点M 的轨迹方程.注意:利用几何性质巧设方程求半径典例 在平面直角坐标系xOy 中,曲线y =x 2-6x +1与坐标轴的交点都在圆C 上,求圆C 的方程.四、反馈练习1.已知点A (-4,-5),B (6,-1),则以线段AB 为直径的圆的方程为( )A .(x +1)2+(y -3)2=29B .(x -1)2+(y +3)2=29C .(x +1)2+(y -3)2=116D .(x -1)2+(y +3)2=1162.圆心在y 轴上,且过点(3,1)的圆与x 轴相切,则该圆的方程是( )A .x 2+y 2+10y =0B .x 2+y 2-10y =0C .x 2+y 2+10x =0D .x 2+y 2-10x =0 3.圆(x -2)2+y 2=4关于直线y =33x 对称的圆的方程是( ) A .(x -3)2+(y -1)2=4B .(x -2)2+(y -2)2=4C .x 2+(y -2)2=4D .(x -1)2+(y -3)2=44.若a ∈}431,0,2{ ,则方程x 2+y 2+ax +2ay +2a 2+a -1=0表示的圆的个数为( )A .0B .1C .2D .3 5.圆x 2+y 2-2x -2y +1=0上的点到直线x -y =2的距离的最大值是( )A .1+ 2B .2C.1+22D.2+226.点P(4,-2)与圆x2+y2=4上任一点连线的中点的轨迹方程是()A.(x-2)2+(y+1)2=1 B.(x-2)2+(y+1)2=4C.(x+4)2+(y-2)2=4 D.(x+2)2+(y-1)2=17.已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标是________,半径是________.8.若圆C经过坐标原点与点(4,0),且与直线y=1相切,则圆C的方程是__________________.9.已知圆C:x2+y2+kx+2y=-k2,当圆C的面积取最大值时,圆心C的坐标为__________.10.已知点M(1,0)是圆C:x2+y2-4x-2y=0内的一点,那么过点M的最短弦所在直线的方程是__________.11.在平面直角坐标系xOy中,已知圆P在x轴上截得的线段长为22,在y轴上截得的线段长为2 3. (1)求圆心P的轨迹方程;(2)若P点到直线y=x的距离为22,求圆P的方程.12.已知M为圆C:x2+y2-4x-14y+45=0上任意一点,且点Q(-2,3).(1)求|MQ|的最大值和最小值;(2)若M(m,n),求n-3m+2的最大值和最小值.13.已知圆C:(x-3)2+(y-4)2=1,设点P是圆C上的动点.记d=|PB|2+|P A|2,其中A(0,1),B(0,-1),则d的最大值为________.14.已知圆C截y轴所得的弦长为2,圆心C到直线l:x-2y=0的距离为55,且圆C被x轴分成的两段弧长之比为3∶1,则圆C的方程为_________________.。

第五单元 圆(期末复习讲义)六年级数学上册重难点知识点(人教版)

第五单元 圆(期末复习讲义)六年级数学上册重难点知识点(人教版)

人教版六年级数学上册期末复习重难点知识点第五单元圆同学们,经过一个学期的学习,你一定进步了吧!今天,让我们共同回顾一下本学期的知识吧,并且通过完成这些练习,看看自己在哪些方面做得还真不错,以便继续发扬;哪些方面存在不足,需要在今后的学习中注意赶上。

每个人的成功都要经历无数次历练,无论成功还是失败对我们都十分重要。

加油!知识点一:圆的认识1.连接圆心和圆上任意一点的线段叫做半径。

2.通过圆心并且两端都在圆上的线段叫做直径。

3.一个圆有无数条半径,无数条直径。

4.圆是轴对称图形,它有无数条对称轴,任意一条直径所在的直线都是它的对称轴。

5.同一圆内,所有的半径都相等,所有的直径都相等,直径的长度是半径长度的2倍。

把圆沿任意一条直径对折,两边可以重合。

6.圆心确定了,圆的中心位置就确定了。

半径决定了圆的大小。

7.画圆的方法:定好圆心;确定半径的长度;画圆的时候注意线条的流畅。

知识点二:圆的周长1.其实,早就有人研究了周长与直径的关系,发现任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率,用字母π表示。

它是一个无限不循环小数,π=3.1415926535……但在实际应用中常常只取它的近似值,例如π≈3.14。

2.围成圆的曲线的长是圆的周长。

3.圆的周长=直径×圆周率。

4.C=πd 或C=2πr 。

知识点三:圆的面积1.圆的面积公式是由长方形的面积公式推导出来的。

2.圆的面积 S=πr ²。

知识点四:圆的面积公式的应用已知圆的直径求圆的面积时,可以根据公式S=π(2d )²直接求解。

知识点五:圆环的面积S 环=πR 2−πr 2S 环=π(R 2−r 2)知识点六:不规则图形的面积1.外方内圆的图形称为圆外切正方形。

2.外圆内方的图形称为圆内接正方形。

3. 知识点七:扇形1.圆上A 、B 两点之间的部分叫做弧,读作“弧AB ”。

2.一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。

中考数学一轮复习 与圆有关的概念——专题培优、能力提升复习讲义(含答案)

中考数学一轮复习 与圆有关的概念——专题培优、能力提升复习讲义(含答案)

与圆有关的概念——专题培优、能力提升复习讲义中考考点梳理1、圆的定义在一个个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。

2、弦连接圆上任意两点的线段叫做弦。

(如图中的AB)3.直径经过圆心的弦叫做直径(如图中的CD);直径等于半径的2倍。

4.半圆圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。

5.弧、优弧、劣弧圆上任意两点间的部分叫做圆弧,简称弧。

弧用符号“⌒”表示,以A,B为端点的弧记作“”,读作“圆弧AB”或“弧AB”。

大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示)5、垂径定理及其推论垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。

推论2:圆的两条平行弦所夹的弧相等。

6、圆的对称性1、圆的轴对称性圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。

2、圆的中心对称性圆是以圆心为对称中心的中心对称图形。

7、弦心距从圆心到弦的距离叫做弦心距。

中考典例精选考点典例一、★★★垂径定理【例1】如图所示,⊙O 的半径为13,弦AB 的长度是24,AB ON ⊥,垂足为N ,则=ON ( )A.5B.7C.9D. 11【答案】A.【解析】考点:垂径定理;勾股定理.【点睛】根据“两条辅助线(半径和边心距),一个直角三角形,两个定理(垂径定理、勾股定理)”解决即可。

【举一反三】如图,在⊙O 中,弦AB=6,圆心O 到AB 的距离OC=2,则⊙O 的半径长为 . N OBA【答案】13.【解析】试题分析:已知弦AB=6,圆心O到AB的距离OC为2,根据垂径定理可得AC=BC=3,∠ACO=90°,由勾股定理可求得OA=13.考点:垂径定理;勾股定理.考点典例二、求边心距【例2】小颖同学在手工制作中,把一个边长为12cm的等边三角形纸片贴到一个圆形的纸片上,若三角形的三个顶点恰好都在这个圆上,则圆的半径为()A.23cm B.43cm C.63cm D.83cm【答案】B.【解析】考点:三角形的外接圆与外心;等边三角形的性质.【点睛】作出几何图形,再由外接圆半径、边心距和边长的一半组成的三角形中,已知外接圆半径和特殊角,可求得边心距.考查了等边三角形的性质.注意:等边三角形的外接圆和内切圆是同心圆,圆心到顶点的距离等于外接圆半径,边心距等于内切圆半径.【举一反三】 如图,半径为5的⊙A 中,弦BC ,ED 所对的圆心角分别是∠BAC ,∠EAD. 已知DE=6,∠BAC+∠EAD=180°,则弦BC 的弦心距等于( )A. 241B. 234 C. 4 D. 3 【答案】D .考点:1.圆周角定理;2.全等三角形的判定和性质;3.垂径定理;4.三角形中位线定理.【分析】如答图,过点A 作AH ⊥BC 于H ,作直径CF ,连接BF ,考点典例三、最短路线问题【例3】如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,点B为劣弧AN的中点.点P是直径MN上一动点,则PA+PB的最小值为()A. B.1 C. 2 D. 2【答案】A.【解析】作点B关于MN的对称点B′,连接OA、OB、OB′、AB′,则AB′与MN的交点即为PA+PB的最小时的点,PA+PB的最小值=AB′,∵∠AMN=30°,∴∠AON=2∠AMN=2×30°=60°,∵点B为劣弧AN的中点,∴∠BON=12∠AON=12×60°=30°,由对称性,∠B′ON=∠BON=30°,∴∠AOB′=∠AON+∠B′ON=60°+30°=90°,∴△AOB′是等腰直角三角形,∴AB′=2OA=2×1=2,即PA+PB的最小值=2.故选A.【点睛】本题考查了轴对称确定最短路线问题,在同圆或等圆中,同弧所对的圆心角等于圆周角的2倍的性质,作辅助线并得到△AOB′是等腰直角三角形是解题的关键.【举一反三】如图,在△ABC 中,AB =10,AC =8,BC =6,以边AB 的中点O 为圆心,作半圆与AC 相切,点P ,Q 分别是边BC 和半圆上的动点,连接PQ ,则PQ 长的最大值与最小值的和是( )A . 6B . 1132C . 9D .332 【答案】C .【解析】考点:切线的性质;最值问题. 课后能力提升自测小练习一.选择题1.若正六边形的半径长为4,则它的边长等于( )A .4B .2C .23D .43【答案】A .【解析】考点:正多边形和圆.2. 如图,线段AB是⊙O的直径,弦CD⊥AB,∠CAB=40°,则∠ABD与∠AOD分别等于()A.40°,80°B.50°,100°C.50°,80°D.40°,100°【答案】B.【解析】试题分析:∵CD⊥AB,∴∠AEC=90°,∵∠CAB=40°,∴∠C=50°,∴∠ABD=∠C=50°,∵OB=OD,∴∠ABD=∠ODB=50°,∴∠AOD=∠ABD+∠ODB=100°,故选B.考点:圆周角定理;垂径定理.3.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为()A. 25cmB. 45cmC. 25cm或45cmD.523cm或43cm【答案】C.【解析】考点:1.垂径定理;2.勾股定理;3.分类思想的应用.4.已知⊙O的面积为2π,则其内接正三角形的面积为【】A.33B.36C.332D.362【答案】C.【解析】5. 如图,MN是⊙O的直径,点A是半圆上的三等分点,点B是劣弧AN的中点,点P是直径MN上一动点.若MN=22,则PA+PB的最小值是()A.22 B.2 C.1 D.2【答案】D.【解析】作点A关于MN的对称点A′,连接A′B,交MN于点P,连接OA′,OA,OB,PA,AA′.∵点A与A′关于MN对称,点A是半圆上的一个三等分点,∴∠A′ON=∠AON=60°,PA=PA′,∵点B是弧AN的中点,∴∠BON=30°,∴∠A′OB=∠A′ON+∠BON=90°,又∵OA=OA′=2,∴A′B=2.∴PA+PB=PA′+PB=A′B=2.故选D .二.填空题6. 如图,已知⊙O 的半径为6cm ,弦AB 的长为8cm ,P 是AB 延长线上一点,BP =2cm ,则tan ∠OPA 的值是 .【答案】53. 【解析】考点:垂径定理;解直角三角形.7. 如图,⊙O 的直径CD =20cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,若OM =6cm ,则AB 的长为 cm .【答案】16.【解析】试题分析:连接OA ,∵⊙O 的直径CD =20cm ,∴OA =10cm ,在Rt △OAM 中,由勾股定理得:A M =22106 =8cm ,∴由垂径定理得:A B =2AM =16cm .故答案为:16.考点:垂径定理.8.如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=6cm,则OE= cm.【答案】4.【解析】考点:1.垂径定理;2.勾股定理.9.如图, AB为⊙O的直径,CD⊥AB,若AB=10,CD=8,则圆心O到弦CD的距离为.【答案】3.【解析】连接OC,由AB=10得出OC的长,再根据垂径定理求出CE的长,根据勾股定理求出OE即可.试题解析:连接OC,∵AB 为⊙O 的直径,AB=10, ∴OC=5,∵CD⊥AB,CD=8,∴CE=4, ∴OE=2222543OC CE -=-=.考点:1.垂径定理;2.勾股定理.10.如图,AB 为⊙O 的直径,CD⊥AB,若AB=10,CD=8,则圆心O 到弦CD 的距离为 .【答案】3.【解析】考点:1.垂径定理;2.勾股定理.11.⊙O的半径为2,弦BC=2,点A是⊙O上一点,且AB=AC,直线AO与BC交于点D,则AD的长为.【答案】1或3【解析】试题分析:如图所示:∵⊙O的半径为2,弦BC=23,点A是⊙O上一点,且AB=AC,∴AD⊥BC,∴BD=BC=3,在Rt△OBD中,∵BD2+OD2=OB2,即(3)2+OD2=22,解得OD=1,∴当如图1所示时,AD=OA﹣OD=2﹣1=1;当如图2所示时,AD=OA+OD=2+1=3.故答案为:1或3.考点:1、垂径定理;2、勾股定理.。

【单元复习指南】第五单元 圆-六年级上册数学单元复习精编讲义人教版(含答案)

【单元复习指南】第五单元 圆-六年级上册数学单元复习精编讲义人教版(含答案)

单元复习指南人教版六年级上册数学单元复习精编讲义第五单元圆单元知识要点认识圆,学会用圆规画圆,掌握圆的半径、直径之间的关系。

能用直尺和圆规设计一些和圆有关的图案。

通过实际操作,理解圆周率的实际意义,掌握圆的周长和面积的计算公式,并能运用圆的周长和面积的计算公式解决一些简单的实际问题。

认识圆环和扇形,理解圆心角的定义,掌握圆环和扇形的基本特征并能计算圆环的面积并能解决外圆内方、外方内圆中间部分的面积问题。

知识点归纳总结例1推导圆面积计算公式时,我们是把圆剪拼成一个近似的长方形,若圆的半径是r,长方形的长近似于(),宽近似于()。

因为长方形的面积=长×宽,所以圆的面积=()×()=()。

如果用S表示圆的面积,那么圆面积计算公式是()。

【分析】将圆平均分成若干个完全相同的小扇形,可以把这些扇形近似的看做是三角形,那么把它们拼成如图一个近似的长方形,由此可得长方形的长相当于圆周长的一半,宽相当于圆的半径,由此即可推理得出圆的面积公式,据此解答。

【解答】πr r πr r πr2 S=πr2例2用一张正方形纸片剪成一个最大的圆,若正方形的周长是40cm。

剪成的圆的面积是()cm2。

【分析】剪成的圆的直径和正方形的边长相等。

据此,先根据正方形的周长求出它的边长,再结合圆的面积公式求出圆的面积。

直径:40÷4=10(厘米)面积:3.14×(10÷2)2=78.5(平方厘米)所以,剪成的圆的面积是78.5平方厘米。

【解答】78.5例3为美化学校校园,学校在周长是18.84米的圆形花坛外围铺一条2米宽的环形小路。

这条环形小路的面积是()平方米。

A.28.26B.50.24C.25.12D.37.68【分析】内圆半径:18.84÷2÷3.14=3(米)内圆面积:3.14×32=28.26(平方米)外圆面积:3.14×(3+2)2=3.14×25=78.5(平方米)环形小路面积:78.5-28.26=50.24(平方米)【解答】B例4下面这些图形中,()图的角是圆心角。

第五讲:圆周运动讲义

第五讲:圆周运动讲义

第五讲 圆周运动【知能准备】1.直线运动中,速度等于 的比值,公式是 。

2.曲线运动中,质点在某一点的速度方向是 ,曲线运动中速度的方向时刻在变,所以曲线运动是 。

3.在数学中,可以用“弧度”来表示角的大小,它等于 的比值。

【同步导学】1.描述圆周运动的物理量 (1) 线速度①定义:质点沿圆周运动通过的弧长Δl 与所需时间Δt 的比值叫做线速度。

②物理意义:描述质点沿圆周运动的快慢. ③大小:tl v ∆∆=(m/s )如果Δt 取得很小,v 就为瞬时线速度,此时Δl 的方向就与半径垂直,即沿该点的切线方向。

④方向:质点在圆周上某点的线速度方向沿圆周上该点的切线方向。

(2) 角速度①定义:在圆周运动中,连接运动质点和圆心的半径转过的角度Δθ与所用时间Δt 的比值,就是质点运动的角速度。

②物理意义:描述质点绕圆心转动的快慢.③大小:t ∆∆=θω (单位为弧度/秒,符号是rad /s )(3) 周期T ,频率f 和转速n做圆周运动的物体运动一周所用的时间叫周期,用T 表示,单位为秒(s)。

做圆周运动物体在1秒内沿圆周绕圆心转过的圈数叫做频率,用f 表示,单位为赫兹(Hz )。

做圆周运动物体在单位时间内沿圆周绕圆心转过的圈数叫做转速,用n 表示,单位为转每秒(r /s )或转每分(r /min )。

显然,当单位时间取1 s 时,f = n 。

例1 如图所示,静止在地球上的物体都要随地球一起转动,下列说法正确的是( )A .它们的运动周期都是相同的B .它们的线速度都是相同的C .它们的线速度大小都是相同的D .它们的角速度是不同的解析 地球绕自转轴转动时,所有地球上各点的周期及角速度都是相同的,地球表面物体做圆周运动的平面是物体所在纬度线平面,其圆心分布在整条自转轴上。

不同纬度处物体做圆周运动的半径是不同的,只有同一纬度处的物体转动半径相等,线速度的大小才相等,但即使物体的线速度大小相同,方向也各不相同。

2023-2024年小学数学六年级上册期末考点复习 第五单元《圆》(人教版含详解)

2023-2024年小学数学六年级上册期末考点复习 第五单元《圆》(人教版含详解)

期末知识大串讲人教版数学六年级上册期末章节考点复习讲义第五单元圆知识点01:圆的认识1. 圆是轴对称图形,直径所在的直线是圆的对称轴。

2. 一个圆有无数条半径,有无数条直径。

圆有无数条对称轴。

3. 在同圆或等圆中,所有的半径都相等,所有的直径都相等。

4. 在同圆或等圆中,r=d 或d=2r 。

知识点02:圆的周长及圆周率的意义1.测量圆的周长的方法:绕绳法和滚动法。

2.圆的周长除以直径的商是一个固定的数。

我们把它叫做圆周率,用字母π表示。

3.圆的周长的计算公式:C=πd ,C=2πr知识点03:圆的面积公式的推导及应用1.圆的面积计算公式是 :S =πr ²2.求圆的面积,要根据圆的面积计算公式来求。

3.圆环面积的计算方法:S =πR2-πr ²或S =π(R -r)²。

4.“外方内圆”图形中,圆的直径等于正方形的边长。

如果圆的半径为r ,那么正方形和圆之间部分的面积为0.86r ²。

5.“外圆内方”图形中,这个正方形的对角线等于圆的直径。

如果圆的半径为r ,那么圆和正方形之间部分的面积为1.14r ²。

知识点04:扇形的认识1.一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形;2.顶点在圆心的角叫做圆心角;3.扇形的大小和半径的长短、圆心角的大小有关。

考点01:圆的认识1.(2018秋•朝阳区校级期中)圆的周长是直径的( )倍A .3.14B .3.1415926C .3D .π【思路引导】根据圆的周长公式,求出周长和直径的关系。

12【完整解答】解:C=πd=π所以圆的周长是直径的π倍。

故选:D。

2.(2015秋•龙泉驿区校级期中)在一个长10cm,宽5cm的长方形中画一个最大的圆,它的半径是()cm.A.10 B.5 C.2.5 D.1.5【思路引导】根据题意可知:在这个长方形中画一个最大的圆,这个圆的直径等于长方形的宽,根据同圆中直径是半径的2倍,半径是直径的,根据一个数乘分数的意义,用乘法解答.【完整解答】解:5×(厘米),答:它的半径是2.5厘米.故选:C。

2021年人教版永安街小学数学六年级上册:第五讲:圆的认识 --同步讲义+答案

2021年人教版永安街小学数学六年级上册:第五讲:圆的认识 --同步讲义+答案

圆的认识知识集结知识元圆的认识知识讲解知识点:圆的基本特征1.圆是由曲线围成的.2.圆上的任意一点到圆的中心点的距离都相等.知识点:认识圆的各部分名称1认识圆心画圆时,圆规带有针尖的脚所在的点叫圆心,通常用字母“O”表示,如下图:2认识半径圆心到圆上任意一点的距离叫半径,通常用字母“r”表示,如上图中的线段OC.3认识直径通过圆心,并且两端都在圆上的线段叫直径,通常用字母“d”表示,如上图中的线段BC.4半径与直径的关系在同圆中半径是直径的一半.知识点:圆的对称性1.轴对称图形如果一个图形沿着一条直线对折后两边完全重合,这样的图形叫轴对称图形.对称轴是一条直线,所以直径所在的直线是圆的对称轴.2.中心对称图形(了解)在平面内,一个图形绕着某个点旋转180度,如果旋转前后的图形完全重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心.圆的圆心是它的对称中心.知识点:圆的画法1.手指画圆法以拇指为固定点,食指与拇指间的距离不变,将纸旋转一周,就画成了一个圆.2.实物画圆法把圆形物体(如硬币,象棋等)放在纸上固定不动,用笔沿实物边缘描一周,就画成一个圆.3.系绳画圆法用一个图钉、一根线和一支笔画圆.用图钉将线的一端固定在一点上,用笔将线拉直并绕这个固定点旋转一周,就画成了一个圆.4.圆规画圆法(1)把圆规的两脚分开,定好两脚间的距离;(2)把带有针尖的一只脚固定在一点上;(3)把带有铅笔的一只脚绕这个固定点旋转一周,就画成了一个圆.知识点:圆的图案设计通过欣赏所绘制的图案,体会圆在图案设计中的作用和圆的对称性;由此感受图案的美,感受数学与生活的密切联系,会用圆设计简单图案.1欣赏图案,明确图案是由大小不同的圆组成.2.用圆规和直尺画简单图案.3利用平移,旋转设计简单图案.例题精讲圆的认识例1.'等圆的半径都相等().'【答案】正确【解析】题干解析:例2.'两端都在圆上的线段叫直径().'【答案】错误【解析】题干解析:需要加上“通过圆心”这个条件.例3.连接圆心和圆上任意一点的线段,叫做(),用字母()表示【答案】半径r【解析】题干解析:圆的周长知识讲解知识点:圆周长的认识及圆周长公式的熟悉1.圆的周长:围成圆的曲线的长度叫做圆的周长.2.圆周率:圆的周长总是直径的3倍多一些,这个比值是一个固定的数.我们把圆的周长和直径的比值叫做圆周率,用字母π表示.圆周率是一个无限不循环小数.注:计算时,经常取 3.14.世界上第一个把圆周率的值精确到7位小数的人是我国的数学家祖冲之.3.圆的周长公式:π×直径或圆周长=π×半径×2.用字母表示为:或.知识点:根据周长,求圆的半径与直径圆的直径公式:圆的半径公式:例题精讲圆的周长例1.两个圆的周长不同,是因为_______.A.圆心的位置B.圆周率C.直径长度D.圆周长【答案】C【解析】题干解析:例2.圆周率π的值_______A.等于3.14B.大于3.14C.小于3.14【答案】B【解析】题干解析:例3.一个圆形花坛的半径是15米,小红骑一辆车轮外直径为50厘米的自行车绕花坛一周,车轮要转动多少周?【答案】60周.【解析】题干解析:花园的半径为15米=1500厘米,车轮的半径为厘米,半径的比为,周长比也为60:1,所以车轮要转动60周.例4.下图为一个操场的平面图,求这个操场的周长是多少米?【答案】261.32米.【解析】题干解析:半圆的周长为米,再加上两条长,就是阴影部分的周长米.圆的面积知识讲解知识点:圆面积的意义与计算1.圆面积定义圆的面积:圆所占平面的大小叫做圆的面积。

人教版初中数学同步讲义九年级上册第05讲 直线与圆的位置关系(解析版)

人教版初中数学同步讲义九年级上册第05讲  直线与圆的位置关系(解析版)
【解答】解:直线 BD 是⊙O 的切线. 证明如下:∵OA=OD,∠A=∠ABD=30°, ∴∠A=∠ADO=30°, ∴∠DOB=∠A+∠ADO=60°, ∴∠ODB=180°﹣∠DOB﹣∠B=90°, ∵OD 是半径, ∴BD 是⊙O 的切线. 【即学即练 3】 8.如图,在△ABC 中,AB=AC,∠BAC=120°,点 D 在 BC 边上,⊙D 经过点 A 和点 B 且与 BC 边相交 于点 E,求证:AC 是⊙D 的切线.
∴直线 y=﹣x 与⊙A 的位置关系是相交,
故选:C.
【即学即练 4】 4.如图,已知 Rt△ABC 中,∠C=90°,AC=3,BC=4,如果以点 C 为圆心的圆与斜边 AB 有公共点,
那么⊙C 的半径 r 的取值范围是( )
A.0≤r≤
B. ≤r≤3
C. ≤r≤4
பைடு நூலகம்
【解答】解:过点 C 作 CD⊥AB 于点 D,
长线于点 E,且 AC 平分∠EAB.求证:DE 是⊙O 的切线.
【解答】证明:连接 0C, ∵OA=OC, ∴∠OAC=∠OCA, ∵AC 平分∠EAB, ∴∠EAC=∠OAC, 则∠OCA=∠EAC, ∴OC∥AE, ∵AE⊥DE, ∴OC⊥DE, ∴DE 是⊙O 的切线.
知识点 02 切线的判定
1. 切线的判定: 经过半径的 外端点 且与这条半径 垂直 的直线叫做圆的切线。
2. 切线的判定的方法: (1)直线与圆有公共点,连半径,证明垂直。 证明垂直的方法:①利用勾股定理证明垂直。 ②利用特殊角或一般角之间的转换证明垂直。 ③利用三角形的全等转换证明垂直。 ④利用平行线转换证明垂直。 (2)直线与圆无公共点:作垂直,证半径。
【即学即练 1】 6.如图,点 C 是⊙O 上一点,点 P 在直径 AB 的延长线上,⊙O 的半径为 3,PB=2,PC=4.求证:PC

圆的概念及相关定理(讲义及答案)

圆的概念及相关定理(讲义及答案)

圆的概念及相关定理(讲义)➢知识点睛1.平面上到_____的距离等于_____的所有点组成的图形叫做圆,其中,_____称为圆心,_____称为半径;圆O记作_____.2.圆中概念:弧:_________________________,弧包括______和_______;弦:_______________________________________________;圆周角:___________________________________________;圆心角:___________________________________________;弦心距:___________________________________________.3.圆的对称性:圆是轴对称图形,其对称轴是_________________________;圆是中心对称图形,其对称中心为_______.4.圆中基本定理:*(1)垂径定理:_____________________________________ ______________________________________________;推论:_______________________________________________________________________________________;总结:知二推三①_______________________________,②_____________________,③____________________,④_____________________,⑤____________________.(2)四组量关系定理:在_____________________中,如果_______________、______________、_______________、_______________中有一组量相等,那么它们所对应的其余各组量都分别相等.(3)圆周角定理:___________________________________.推论1:________________________________________.推论2:________________________________________,_______________________________________________.推论3:_______________________________________.注:四边形的四个顶点都在圆上,像这样的四边形叫做圆内接四边形,这个圆叫做四边形的外接圆.➢精讲精练1. 如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为M ,下列结论不一定成立的是( ) A .CM =DMB .CB ︵=BD ︵C .∠ACD =∠ADCD .OM =MB第1题 第2题2. 如图,⊙O 的弦AB 垂直平分半径OC,若AB ,求⊙O 的半径. 3. 工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10 mm ,测得钢珠顶端离零件表面的距离为8 mm ,如图所示,则这个小圆孔的宽口AB 的长度为__________mm .4. 如图,在⊙O 中,直径CD 垂直于弦AB ,垂足为E ,连接OB ,CB .已知⊙O的半径为2,AB =,则∠BCD =_______.AD BO ECB第4题图 第5题图5. 如图,⊙O 的弦CD 与直径AB 相交,若∠BAD =50°,则∠ACD =________.6. 一个圆形人工湖如图所示,弦AB 是湖上的一座桥,已知桥AB 长100 m ,测得圆周角∠ACB =45°,则这个人工湖的直径AD 为________.7. 如图,E 为正方形ABCD 的边CD 的中点,经过A ,B ,E 三点的⊙O 与边BC 交于点F ,P 为AB ︵上任意一点.若正方形ABCD 的边长为4,则sin P 的值为__________.8. 如图,点D 为边AC 上一点,点O 为边AB 上一点,AD =DO .以O 为圆心,OD 长为半径作半圆,交AC 于另一点E ,交AB 于F ,G 两点,连接EF .若∠BAC =22°,求∠EFG 的度数.ADF ECO G B9. 如图,已知四边形A B CD 内接于⊙O ,如果它的一个外角∠DCE =64°,那么∠BOD 的度数为__________.10. 如图,圆内接四边形ABCD 两组对边的延长线分别相交于点E ,F ,且∠A =55°,∠E =30°,则∠F =___________.与圆有关的位置关系➢ 知识点睛与圆有关的位置关系,关键是找d .和r .. 1. 点与圆的位置关系d 表示__________的距离,r 表示___________. ①点在圆外:_____________; ②点在圆上:_____________; ③点在圆内:_____________. 2. 直线与圆的位置关系d 表示__________________的距离,r 表示__________. ①直线与圆相交:____________; ②直线与圆相切:____________; ③直线与圆相离:____________.切线的性质定理:__________________________________; 切线的判定定理:__________________________________ __________________________________________________. 与三角形三边都相切的圆叫做三角形的__________,内切圆的圆心是_____________________,叫做三角形的_______.➢ 精讲精练1. 矩形ABCD 中,AB =8,BC=P 在AB 边上,且BP =3AP ,如果圆P 是以点P 为圆心,PD 为半径的圆,那么下列判断正确的是( ) A .点B ,C 均在圆P 外B .点B 在圆P 外、点C 在圆P 内 C .点B 在圆P 内、点C 在圆P 外D .点B ,C 均在圆P 内2. 如图,在Rt △ABC 中,∠C =90°,∠A =60°,BC =4 cm ,以点C 为圆心,以3 cm长为半径作圆,则⊙C 与AB 的位置关系是__________.CBA3. 在Rt △ABC 中,∠C =90°,AC =3,BC =4.以C 为圆心,R 为半径所作的圆与斜边AB 有且只有一个公共点,则R 的取值范围是_________________. 4. 如图,AB 是⊙O 的直径,C ,D 是⊙O 上的两点,∠CDB =20°,过点C 作⊙O的切线,交AB 的延长线于点E ,求∠E 的度数.A5.如图,PA,PB是⊙O的切线,A,B是切点,点C是劣弧AB上的一个动点,若∠P=40°,则∠ACB=_______.E第5题图第6题图6.如图,EB,EC是⊙O的两条切线,B,C是切点,A,D是⊙O上两点,如果∠E=46°,∠DCF=32°,那么∠A=______.7.如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD的延长线上,则∠CDE的度数为___________.圆中计算及综合➢知识点睛1.圆中的计算公式弧长公式:____________________.扇形面积公式:①________________;②________________.圆锥的侧面积公式:_________________________________.圆锥的全面积公式:__________=__________+__________.扇形及其所围圆锥间的等量关系:①________________________________________________;②________________________________________________.➢精讲精练1.如图,⊙O的半径是1,A,B,C是圆周上的三点,∠BAC=36°,则劣弧BC的长是___________.2.如图,Rt△ABC的边BC位于直线l上,AC,∠ACB=90°,∠A=30°.若Rt△ABC由现在的位置向右无滑动地翻转,则当点A第3次落在直线l上时,点A所经过的路径长为______.(结果保留π)l 3.如图,直径AB为6的半圆,绕A点逆时针旋转60°,此时点B到了点B′,则图中阴影部分的面积是________.【参考答案】圆的概念及相关定理➢知识点睛1.定点;定长;定点;定长;⊙O2.圆上任意两点间的部分叫做圆弧;优弧;劣弧;连接圆上任意两点的线段叫做弦;顶点在圆上,并且两边都与圆相交的角叫做圆周角;顶点在圆心的角叫做圆心角;圆心到弦的距离叫做弦心距3.任意一条过圆心的直线;圆心4.(1)垂直于弦的直径平分这条弦,并且平分弦所对的弧;平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧;过圆心的直线;垂直于弦;平分弦;平分优弧;平分劣弧(2)同圆或等圆;两个圆心角;两条弧;两条弦;两个弦心距(3)圆周角的度数等于它所对弧上的圆心角度数的一半;同弧或等弧所对的圆周角相等;直径所对的圆周角是直角;90°的圆周角所对的弦是直径;圆内接四边形对角互补➢精讲精练1. D2.⊙O3.84.30°5.40°6.7.3 58.∠EFG的度数为33°.9.128°10.40°与圆有关的位置关系及圆内接正多边形➢知识点睛1.点到圆心;圆的半径;d>r;d=r;d<r2.圆心O到直线l;圆的半径;d<r;d=r;d>r圆的切线垂直于过切点的半径;过半径外端且垂直于半径的直线是圆的切线;过圆外一点所画的圆的两条切线长相等; 内切圆;三角形三条角平分线的交点;内心➢ 精讲精练1. C2. 相交3. 3<R ≤4或125R =4. ∠E 的度数为50°.5. 110°6. 99°7. 68°圆中计算及综合➢ 知识点睛1. 180n r l π=;2360n r S π=;2lRS =(l 为弧长);S =πlr (l 为母线长,r 为底面半径);全面积;侧面积;底面积;圆锥的底面周长等于扇形的弧长;圆锥的侧面积等于扇形面积➢ 精讲精练1.25π2. (4π3. 6π。

高中数学与圆相关的题型(优秀讲义)

高中数学与圆相关的题型(优秀讲义)

高中数学与圆相关的题型(优秀讲义)目录一、基本知识点 (2)(1).圆的定义: (2)(2).圆的方程 (2)(3).直线与圆锥曲线的位置关系 (2)(4).圆锥曲线的弦长公式 (2)二、圆的一般或标准方程 (2)二、圆上点到直线的距离 (3)三、直线与圆的位置关系 (3)四、求圆或与圆有关直线的方程 (4)五、圆的切线方程 (4)六、圆里的最值问题 (5)七、弦长问题 (5)八、定点、定直线问题 (6)一、基本知识点 (1)圆的定义: 动点到定点距离等于定长的点的集合或轨迹,叫做圆 点集{M ||OM |=r },其中定点O 为圆心,定长r 为半径.(2)圆的方程:(1)标准方程:圆心在c(a,b),半径为r 的圆方程是(x-a)2+(y-b)2=r 2圆心在坐标原点,半径为r 的圆方程是x 2+y 2=r 2(2)一般方程:①当D 2+E 2-4F >0时,一元二次方程x 2+y 2+Dx+Ey+F=0叫做圆的一般方程,圆心为)2,2(E D --半径是2422FE D -+。

配方,将方程x 2+y 2+Dx+Ey+F=0化为(x+2D )2+(y+2E )2=44F -E D 22+ ②当D 2+E 2-4F=0时,方程表示一个点(-2D ,-2E ); ③当D 2+E 2-4F <0时,方程不表示任何图形.(3).直线与圆锥曲线的位置关系设直线l :Ax +By +C =0,圆锥曲线C :F (x ,y )=0,由⎩⎪⎨⎪⎧ Ax +By +C =0,F x ,y =0消去y 得到关于x 的方程ax 2+bx +c =0.(1)当a ≠0时,设一元二次方程ax 2+bx +c =0的判别式为Δ,则Δ>0⇔直线l 与圆锥曲线C 有两个公共点;Δ=0⇔直线l 与圆锥曲线C 有一个公共点;Δ<0⇔直线l 与圆锥曲线C 有零个公共点.(2)当a =0,b ≠0时,圆锥曲线C 为抛物线或双曲线.当C 为双曲线时,l 与双曲线的渐近线平行或重合,它们的公共点有1个或0个.当C 为抛物线时,l 与抛物线的对称轴平行或重合,它们的公共点有1个.(4).圆锥曲线的弦长公式设斜率为k 的直线l 与圆锥曲线C 相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),则|AB |=x 1-x 22+y 1-y 22=1+k 2·|x 1-x 2|=1+k 2·x 1+x 22-4x 1x 2=1+k 2·Δ|a |.二、圆的一般或标准方程1、已知R a ∈,方程222(2)4850a x a y x y a +++++=表示圆,则圆心坐标是________,半径是________.2、若方程220x y x y m -++=+表示一个圆,则m 的取值范围是( )A .12m <B .2m <C .12m ≤ D .2m ≤ 3、已知圆的方程22290x y ax +++=圆心坐标为()5,0,则它的半径为( )。

九年级(上)培优讲义-第5讲圆的基本性质

九年级(上)培优讲义-第5讲圆的基本性质

第5讲:圆的基本性质一、建构新知1.圆的定义:(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的点的集合.2.圆的性质:(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.(3)垂径定理及推论:①垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.③弦的垂直平分线过圆心,且平分弦对的两条弧.④平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.⑤平行弦夹的弧相等.3.两圆的性质:(1)两个圆是一个轴对称图形,对称轴是两圆连心线.(2)相交两圆的连心线垂直平分公共弦,相切两圆的连心线经过切点.4.与圆有关的角:(1)圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数.(2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角.圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等.③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.⑤圆内接四边形的对角互补;外角等于它的内对角.二、经典例题例1.如图所示,△ABC的三个顶点的坐标分别为A(-1,3)、B (-2,-2)、C (4,-2),则△ABC外接圆半径的长度为.例2.如图所示,⊙O的直径AB和弦CD相交于点E,已知AE=1cm,EB=5cm,∠DEB=60°,求CD的长.变式:如图,AB 、AC 都是圆O 的弦,OM ⊥AB ,ON ⊥AC , 垂足分别为M 、N ,如果MN =3,那么BC= .例3.如图,在⊙O 中,半径OC 垂直于弦AB ,垂足为点E .(1)若OC =5,AB =8,求tan ∠BAC ;(2)若∠DAC =∠BAC ,且点D 在⊙O 的外部,判断直线AD 与⊙O 的位置关系,并加以证明.例4. 如图,⊙O 是△ABC 的外接圆,FH 是⊙O 的切线,切点为F ,FH ∥BC ,连结AF 交BC 于E ,∠ABC 的平分线BD 交AF 于D ,连结BF .(1)证明:AF 平分∠BAC ; (2)证明:BF =FD .N MO C BA例5. 已知射线OF交⊙O于B,半径OA⊥OB,P是射线OF上的一个动点(不与O、B重合),直线AP交⊙O于D,过D作⊙O的切线交射线OF于E.(1)如图所示是点P在圆内移动时符合已知条件的图形,请你在图中画出点P在圆外移动时符合已知条件的图形.(2)观察图形,点P在移动过程中,△DPE的边、角或形状存在某些规律,请你通过观察、测量、比较写出一条与△DPE的边、角或形状有关的规律.(3)点P在移动过程中,设∠DEP的度数为x,∠OAP的度数为y,求y与x的函数关系式,并写出自变量x的取值范围.例6.如图,AB是⊙O的直径,弦CD⊥AB与点E,点P在⊙O上,∠1=∠C,(1)求证:CB∥PD;(2)若BC=3,sin∠P=35,求⊙O的直径.三、基础演练1.如图所示,AB、AC为⊙O的切线,B和C是切点,延长OB到D,使BD=OB,连接AD.如果∠DAC=78°,那么∠ADO等于().A.70°B.64°C.62°D.51°2.在半径为27m的圆形广场中心点O的上空安装了一个照明光源S,S射向地面的光束呈圆锥形,其轴截面SAB的顶角为120°(如图所示),则光源离地面的垂直高度SO为().A.54m B.m C.m D.m3.设计一个商标图案,如图所示,在矩形ABCD中,AB=2BC,且AB=8cm,以A为圆心、AD的长为半径作半圆,则商标图案(阴影部分)的面积等于().A. (4π+8)cm2B. (4π+16)cm2C. (3π+8)cm2D. (3π+16)cm24.如图,的半径为5,弦的长为8,点在线段(包括端点)上移动,则的取值范围是().A. B. C. D.5.“圆材埋壁”是我国古代著名的数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用数学语言可表示为:如图所示,CD为⊙O的直径,弦AB⊥CD于E,CE=1寸,AB=10寸,则直径CD的长为() A.12.5寸B.13寸C.25寸D.26寸6.在平面直角坐标系中如图所示,两个圆的圆心坐标分别是(3,0)和(0,-4),半径分别是和,则这两个圆的公切线(和两圆都相切的直线)有()A. 1条B. 2条C. 3条D. 4条7.一条弦的两个端点把圆周分成4:5两部分,则该弦所对的圆周角为( ).A .80°B .100°C .80°或100°D .160°或200°8.如图所示,AB 、AC 与⊙O 分别相切于B 、C 两点,∠A =50°,点P 是圆上异于B 、C 的一动点,则∠BPC 的度数是( ).A .65°B .115°C .65°或115°D .130°或50° 9.如下左图,是的内接三角形,,点P 在上移动(点P 不与点A 、C 重合),则的变化范围是_____.10.如图所示,EB 、EC 是⊙O 是两条切线,B 、C 是切点,A 、D 是⊙O 上两点,如果∠E =46°,∠DCF =32°,那么∠A 的度数是____________.11.已知⊙O 1与⊙O 2的半径、分别是方程的两实根,若⊙O 1与⊙O 2的圆心距=5.则⊙O 1与⊙O 2的位置关系是______________ .12.已知圆的直径为13 cm ,圆心到直线的距离为6cm ,那么直线和这个圆的公共点的个数是______.13. 两个圆内切,其中一个圆的半径为5,两圆的圆心距为2,则另一个圆的半径是______. 14. 已知正方形ABCD 外接圆的直径为,截去四个角成一正八边形,则这个正八边形EFGHIJLK 的边长为_______________,面积为_______________. 四、直击中考1.(2013年湖北)如,在Rt ABC 中,90ACB ∠=,3AC =,4BC =,以点C 为圆心,CA 为半径的圆与AB 交于点D ,则AD 的长为( ) A .95 B . 245 C . 185 D . 522.(2013黑龙江)如图,点A ,B ,C ,D 为⊙O 上的四个点,AC 平分∠BAD ,AC 交BD 于点E ,CE =4,CD =6,则AE 的长为( )CADBA .4B .5C .6D .73.(2013江苏)如图,已知AB 是⊙O 的直径,AD 切⊙O 于点A ,点C 是的中点,则下列结论不成立的是( ) A .OC ∥AE B .EC =BCC .∠DAE =∠ABED .AC ⊥OE4.(2013湖北)如图,DC 是⊙O 直径,弦AB ⊥CD 于F ,连接BC ,DB ,则下列结论错误的是( ) A .B . A F =BFC . O F =CFD . ∠DBC =90°5.(2013湖北)如图,M 是CD 的中点,EM ⊥CD ,若CD =4,EM =8,则所在圆的半径为 .6.(2013年广东)如图,在平面直角坐标系中,点O 为坐标原点,点P 在第一象限,P Θ与x 轴交于O ,A 两点,点A 的坐标为(6,0),P Θ的半径为13,则点P 的坐标为____________.7.(2013四川)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点G ,点F 是CD 上一点,且满足=31,连接AF 并延长交⊙O 于点E ,连接AD 、DE ,若CF =2,AF =3.给出下列结论:①△ADF ∽△AED ;②FG =2;③tan ∠E =;④S △DEF =4.其中正确的是(写出所有正确结论的序号).8.(2013浙江)如图,AE 是半圆O 的直径,弦AB =BC =4,弦CD =DE =4,连结OB ,OD ,则图中两个阴影部分的面积和为 . 9. (2013江苏)在平面直角坐标系xOy 中,已知点A (6,0),点B (0,6),动点C 在以半径为3的⊙O 上,连接OC ,过O 点作OD ⊥OC ,OD 与⊙O 相交于点D (其中点C 、O 、D 按逆时针方向排列),连接AB .(1)当OC ∥AB 时,∠BOC 的度数为 ; (2)连接AC ,BC ,当点C 在⊙O 上运动到什么位置时,△ABC的面积最大?并求出△ABC的面积的最大值.(3)连接AD,当OC∥AD时:①求出点C的坐标;②直线BC是否为⊙O的切线?请作出判断,并说明理由.10.(2013四川)在⊙O中,AB为直径,点C为圆上一点,将劣弧沿弦AC翻折交AB于点D,连结CD.(1)如图1,若点D与圆心O重合,AC=2,求⊙O的半径r;(2)如图2,若点D与圆心O不重合,∠BAC=25°,请直接写出∠DCA的度数.五、挑战竞赛1.如图所示,△ABC的三边满足关系BC=12(AB+AC),O,I分别为△ABC的外心和内心,∠BAC的外角平分线交⊙O于点E,AI的延长线交⊙O于点D,DE交BC于点H.求证:(1)AI=BD;(2)OI=12 AE.第22题图②OPCBA六、每周一练1.在△ABC 中,∠C 为锐角,分别以AB ,AC 为直径作半圆,过点B ,A ,C 作,如图所示.若AB =4,AC =2,S 1﹣S 2=,则S 3﹣S 4的值是( ) A .B .C .D .2.如图,在平面直角坐标系中,△ABC 是⊙O 的内接三角形, AB =AC ,点P 是⋂AB 的中点,连接P A ,PB ,PC . 如图②, 若2524sin =∠BPC ,则PAB ∠tan 的值为 . 3. 如图1,正方形ABCD 的边长为2,点M 是BC 的中点,P 是线段MC 上的一个动点(不与M 、C 重合),以AB 为直径作⊙O ,过点P 作⊙O 的切线,交AD 于点F ,切点为E . (1)求证:OF ∥BE ;(2)设BP =x ,AF =y ,求y 关于x 的函数解析式,并写出自变量x 的取值范围; (3)延长DC 、FP 交于点G ,连接OE 并延长交直线DC 与H (图2),问是否存在点P ,使△EFO ∽△EHG (E 、F 、O 与E 、H 、G 为对应点)?如果存在,试求(2)中x 和y 的值;如果不存在,请说明理由.。

初中数学《圆周角定理及点圆关系》讲义及练习

初中数学《圆周角定理及点圆关系》讲义及练习

内容基本要求略高要求较高要求圆的有关概念 理解圆及其有关概念 会过不在同一直线上的三点作圆;能利用圆的有关概念解决简单问题圆的性质 知道圆的对称性,了解弧、弦、圆心角的关系能用弧、弦、圆心角的关系解决简单问题能运用圆的性质解决有关问题圆周角 了解圆周角与圆心角的关系;了解直径所对的圆周角是直角会求圆周角的度数,能用圆周角的知识解决与角有关的简单问题能综合运用几何知识解决与圆周角有关的问题一、圆周角定理圆心角和圆周角1. 圆心角:顶点在圆心的角叫做圆心角.将整个圆分为360等份,每一份的弧对应1︒的圆心角,我们也称这样的弧为1︒的弧.圆心角的度数和它所对的弧的度数相等. 2. 圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角. 3. 圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等. 推论2:半圆(或直径)所对的圆周角是直角,90︒的圆周角所对的弦是直径.推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.4. 圆心角、弧、弦、弦心距之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量分别相等.圆是平面几何中的一个重要内容.由于圆与直线型图形可组合成一些复杂的几何问题,所以它经常出现在数学竞赛中. 圆的基本性质有:⑴ 直径所对的圆周角是直角. ⑵ 同弧所对的圆周角相等.⑶ 经过圆心及一弦中点的直线垂直平分该弦.二、圆心角、弧、弦、弦心距之间的关系在同圆或等圆中,两个圆心角、两条弧、两条弦、两条弦的弦心距中有一组量相等,其它各组量都相等。

三、点与圆的位置关系点与圆的位置关系知识点睛中考要求第十讲圆周角定理及点与圆关系点与圆的位置关系有:点在圆上、点在圆内、点在圆外三种,这三种关系由这个点到圆心的距离与半径的大小关系决定.设O⊙的半径为r,点P到圆心O的距离为d,则有:点在圆外⇔d r>;点在圆上⇔d r<.=;点在圆内⇔d r确定圆的条件1. 圆的确定确定一个圆有两个基本条件:①圆心(定点),确定圆的位置;②半径(定长),确定圆的大小.只有当圆心和半径都确定时,圆才能确定.2. 过已知点作圆⑴经过点A的圆:以点A以外的任意一点O为圆心,以OA的长为半径,即可作出过点A的圆,这样的圆有无数个.⑵经过两点A B、、的圆:以线段AB中垂线上任意一点O作为圆心,以OA的长为半径,即可作出过点A B 的圆,这样的圆也有无数个.⑶过三点的圆:若这三点A B C、、三点不共线时,圆心是线段AB、、共线时,过三点的圆不存在;若A B C与BC的中垂线的交点,而这个交点O是唯一存在的,这样的圆有唯一一个.n≥个点的圆:只可以作0个或1个,当只可作一个时,其圆心是其中不共线三点确定的圆的圆⑷过n()4心.3. 定理:不在同一直线上的三点确定一个圆.注意:⑴”不在同一直线上”这个条件不可忽视,换句话说,在同一直线上的三点不能作圆;⑵”确定”一词的含义是”有且只有”,即”唯一存在”.4. 三角形的外接圆⑴经过三角形三个顶点的圆叫做三角形的外接圆,外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心,这个三角形叫做这个圆的内接三角形.⑵三角形外心的性质:①三角形的外心是指外接圆的圆心,它是三角形三边垂直平分线的交点,它到三角形各顶点的距离相等;②三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合.⑶锐角三角形外接圆的圆心在它的内部;直角三角形外接圆的圆心在斜边中点处(即直角三角形外接圆半径等于斜边的一半);钝角三角形外接圆的圆心在它的外部.四、相交弦定理(选讲)相交弦定理:圆内的两条相交弦被交点分成的两条线段长的乘积相等.如图,弦AB和CD交于O⋅=⋅.⊙内一点P,则PA PB PC PDP ODC BA相交弦定理的推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项.教学重点:圆周角的概念和圆周角定理教学难点:圆周角定理的证明中由“一般到特殊”的数学思想方法和完全归纳法的数学思想.一、圆周角定理【例1】 (08山西太原)如图,AB 是⊙O 的直径,CD 是⊙O 的弦,连接AC AD ,,若35CAB ∠=,则ADC ∠的度数为 .【解析】 直径所对圆周角是90°且同弧所对圆周角相等. 所以得55°. 【巩固】⑴(08龙岩)如图,量角器外沿上有A B 、两点,它们的度数分别是7040︒︒、,则1∠的度数为_________.⑵ 如图,ABC △的三个顶点都在O ⊙上,302cm C AB ∠==,,则O ⊙的半径为______cm .O1BAOCBAOCBA【解析】 ⑴ ()117040152∠=︒-︒=︒. ⑵ 连接OA ,OB∵30C ∠=︒,∴260O C ∠=∠=︒,又∵OA OB =,∴OAB ∆为等边三角形, ∴2OA AB ==,即O 的半径为2.【巩固】⑴ 已知O ⊙的弦AB 长等于圆的半径,求该弦所对的圆周角.⑵ (06年安徽课改)如图所示,在ABC ∆中,45C ∠=︒,4AB =,则O ⊙的半径为( )A.22B.4C.23D.5CBD OA重、难点例题精讲BABA【解析】 ⑴ 连接OA 、OB ,设弦AB 所对的圆周角为ACB ∠.∵AB OA OB ==∴AOB ∆是等边三角形 ∴60AOB ∠=︒∴当点C 在AB 上时(劣弧上),1(360)2ACB AOB ∠=︒-∠1(36060)1502=⨯︒-︒=︒.当点C 在AmB 上时(优弧上),1302ACB AOB ∠=∠=︒故该弦所对的圆周角为30︒或150︒. ⑵ 如右图所示连接OA 、OB ,因为45C ∠=︒,290AOB C ∠=∠=︒4AB=,所以半径为OA OB ==.【例2】 (07年威海中考题)如图,AB 是O 的直径,点C ,D ,E 都在O 上,若C D E ==∠∠∠,求A B +∠∠.B ABA【解析】 连接AC 、BC∵AB 是O 的直径,∴90ACB ∠=︒,∴90CAB CBA ∠+∠=︒, 又∵D CBA ∠=∠,E CAB ∠=∠,∴90D E ∠+∠=︒, 又∵DCE D E ∠=∠=∠,∴45DCE D E ∠=∠=∠=︒,∴9045135DAB EBA DCB ECA ACB DCE ∠+∠=∠+∠=∠+∠=︒+︒=︒, 即135A B +=︒∠∠【巩固】(08年济宁改编)如图,四边形ABCD 中,AB AC AD ==,若7613CAD BDC ∠=︒∠=︒,,则CBD ∠=_________,BAC ∠=__________.DCBA【解析】 以A 为圆心,AB 为半径作辅助圆则C D 、均在A ⊙上,∴1382CBD CAD ∠=∠=︒,226BAC BDC ∠=∠=︒.【例3】 如图,AB 为O ⊙的直径,CD 是O ⊙的弦,AB CD 、的延长线交于点E ,若218AB DE E =∠=︒,,求AOC ∠的度数.EE【解析】 连结OD∵AB 是直径,2AB DE =,∴12DE AB OD ==∴18DOE E ∠=∠=︒,∴36ODC DOE E ∠=∠+∠=︒∵OC OD =,∴36OCD ODC ∠=∠=︒, ∴54AOC OCD E ∠=∠+∠=︒.【巩固】如图所示CD 是O ⊙的直径,87EOD ∠=︒,AE 交O ⊙于B ,且AB OC =,求A ∠ 的度数.DD【解析】 连结OB∵AB OC =,OB OC =,∴OB AB = 设A x ∠=,则BOA x ∠=. ∴2OBE BOA A x ∠=∠+∠=. ∵OE OB =,∴2OEA OBE x ∠=∠=.∴387EOD E A x ∠=∠+∠==︒ ∴29x =︒,即29A ∠=︒.【巩固】如图,已知AB 为⊙O 的直径,20E ∠=︒,50DBC ∠=︒,则CBE ∠=______.B【解析】 连结AC .设∠DCA =x°,则∠DBA =x°,所以∠CAB =x°+20°.因为AB 为直径,所以∠BCA=90°,则∠CBA +∠CAB =90°.又 ∠DBC =50°,∴ 50+x +(x +20)=90. ∴ x =10.∴∠CBE =60°.所以答案是60°.【例4】 (07重庆)已知,如图:AB 为O ⊙的直径,AB AC =,BC 交O ⊙于点D ,AC 交O ⊙于点E ,45BAC ∠=︒.给出以下五个结论:①22.5EBC ∠=︒,;②BD DC =;③2AE EC =;④劣弧AE 是劣弧DE 的2倍;⑤AE BC =.其中正确结论的序号是 .【解析】 由题意可知122.52EBC BAC ∠=∠=︒,故①正确,连接AD 可得90ADB ∠=︒,由等腰三角形三线合一的性质可知BD DC =,故②正确;2ABE EBD ∠=∠,由弧的度数和它所对的圆心角是相等的,可知2AE DE =,故④正确, ∴正确结论的序号是:①②④.【例5】 如图AB 是半圆O 的直径,点C D 、在弧AB 上,且AD 平分CAB ∠,已知106AB AC ==,,求AD的长.【解析】 延长AC 交BD 的延长线于E ,∵AB 是半圆的直径,AD 平分CAB ∠, 则可得10AE AB ==,BD ED =, ∴4CE AE AC =-=,∵90ACB ∠=︒,∴8BC =,在RtBCE ∆中,BE =,∴BD DE ==∴AD =【例6】 (08乌鲁木齐)如图所示的半圆中,AD 是直径,且32AD AC ==,,则sin B 的值是________.DCA B【例7】 ⑴(09河北)如下左图,四个边长为1的小正方形拼成一个大正方形,A B O 、、是小正方形顶点,O ⊙的半径为1,P 是O ⊙上的点,且位于右上方的小正方形内,则APB ∠等于__________.PO BAB⑵(09四川成都)如上右图,ABC ∆内接于O ⊙,120AB BC ABC =∠=︒,,AD 为O ⊙的直径,6AD =,那么BD =_________.⑶(09山东泰安)O ⊙的半径为1,AB 是O ⊙的一条弦,且AB =AB 所对圆周角的度数为_____________.【解析】 ⑴45︒;⑵60︒或120︒.【例 1】 (07年枣庄中考题)如图,ABC ∆内接于O ⊙,120BAC ∠=︒,AB AC =,BD 为O ⊙的直径,6AD =,则BC = .A【解析】 连接CD .证明ABD CDB ∆∆≌,∴6BC AD ==.【例8】 如图,过O ⊙的直径AB 上两点M N ,,分别作弦CD EF ,,若CD EF AC BF =,∥.求证:⑴BEC ADF =;⑵ AM BN =.【解析】 ⑴ ∵AC BF =,∴AC BF =, ∵AB 是直径,∴AEB ADB =,∴AEB AC ADB BF -=-,即BEC ADF =. ⑵ 由⑴可知CAM FBN ∠=∠,∵CD EF ∥,∴CMA DMB FNB ∠=∠=∠,又AC BF =,∴ACM BFN ∆∆≌,∴AM BN =.【例9】 如图,点A B C 、、是O ⊙上的三点,AB OC ∥.⑴ 求证:AC 平分OAB ∠;⑵ 过点O 作OE AB ⊥于点E ,交AC 于点P .若230AB AOE =∠=︒,,求PE 的长.【解析】 ⑴ ∵AB OC ∥,∴BAC C ∠=∠,∵OA OC =,∴OAC C ∠=∠,∴BAC OAC ∠=∠,∴AC 平分OAB ∠.⑵ ∵OE AB ⊥,∴112AE AB ==,在Rt AOE ∆中,9030OEA AOE ∠=︒∠=︒,,∴22AO AE OE ==,以下可以用两种不同方法解答:解法一:∵AB OC ∥,∴12AE PE OC OP ==∴13PE OE =解法二:由⑴得AC 平分OAB ∠,∴2OA OPAE PE==,∴13PE OE =【例10】 ⑴如图,AB 是O ⊙的直径,CD AB ⊥,设COD α∠=,则2sin 2AB AD α⋅=_____________.O PFEDC B A⑵ 如图,AB 是O ⊙的直径,弦PC 交OA 于点D ,弦PE 交OB 于点F ,且OC DC OF EF ==,.若C E ∠=∠,则CPE ∠=___________.⑶ 已知:如图,MN 是O ⊙的直径,点A 是半圆上一个三等分点,点B 是AN 的中点,P 是MN 上一动点,O ⊙的半径为1,则PA PB +的最小值是_____________.【解析】 ⑴1;⑵40︒;⑶作B 点关于MN 的对称点B ′,连结AB ′与MN 交于点P , 易证得,此时PA PB +取得最小值.根据圆的对称性,B ′点在O ⊙上,且B N BN =′, ∵A 是半圆的三等分点,∴13AN MAN =,∴60AON ∠=︒,∵B 是AN 的中点,∴1302BON AON ∠=∠=︒,∴30B ON ∠=︒′,∴90AOB AON B ON ∠=∠+∠=︒′′, ∵O ⊙半径为1,∴1OA OB ==′,∴AB ′,∴PA PB +【巩固】(09浙江衢州)如图,AD 是O ⊙的直径.⑴ 如图1,垂直于AD 的两条弦11B C ,22B C 把圆周4等分,则1B ∠的度数是___________,2B ∠的度数是____________;⑵ 如图2,垂直于AD 的三条弦112233B C B C B C 、、把圆周6等分,分别求123B B B ∠∠∠,,的度数;⑶ 如图3,垂直于AD 的n 条弦112233n n B C B C B C B C ,,,…,把圆周2n 等分,请你用含n 的代数式表示n B ∠的度数(只需直接写出答案).图3图2图1-1n -2B n 3B B 2【解析】 ⑴ 22.567.5︒︒,;⑵ ∵圆周被6等分,∴111223360660B C C C C C ===÷=︒.∵直径11AD B C ⊥,∴1111302AC B C ==︒,∴()()12311153060453060607522B B B ∠=︒∠=⨯︒+︒=︒∠=⨯︒+︒+︒=︒,,.⑶ ()()90451136036012222n n B n n n n -︒︒︒⎡⎤∠=⨯+-⋅=⎢⎥⎣⎦(或3604590908nB n n ︒︒∠=︒-=︒-)【例11】 已知如图,ACD ∆的外角平分线CB 交其外接圆于B ,连接BA 、BD ,求证:BA BD =.N【解析】 ∵ACB BCN ∠=∠,又∵ACB ADB ∠=∠;BCN BAD ∠=∠, ∴BAD BDA ∠=∠, ∴BA BD =.【巩固】已知如图,ACD ∆的外角平分线CB 交其外接圆于B ,连接BA 、BD ,过B 作BM AC ⊥于M ,BN CD ⊥于N ,则下列结论中一定正确的有 .①CM CN =;②MBN ABD ∠=∠;③AM DN =;④BN 为⊙O 的切线.【解析】 可证得BCM ∆≌BCN ∆.∴CM CN =,故①正确;四边形BMCN 的内角和为360︒可知,180MBN MCN ∠+∠=︒, 又∵180MCN ACD ∠+∠=︒, ∴MBN ACD ∠=∠, ∵ACD ABD ∠=∠,∴MBN ABD ∠=∠,故②正确;利用外角平分线易证AB BD =,又∵BM BN =,AMB DNB ∠=∠, ∴ABM DBN ∆∆≌,∴AM DN =,故③正确;若BN 为⊙O 的切线,则NBC BAC ∠=∠, ∵90NBC BCN ∠+∠=︒,而BCN ACB ∠=∠, ∴90BAC ACB ∠+∠=︒, ∴AC 为O ⊙直径.而AC 不一定为O ⊙直径,故④不正确.【巩固】(09辽宁)已知∆ABC 中,=AB AC ,D 是∆ABC 外接圆劣弧AC 上的点(不与点A C ,重合),延长BD 至E .⑴ 求证:AD 的延长线平分∠CDE ;⑵ 若30∠=︒BAC ,∆ABC 中BC边上的高为2∆ABC 外接圆的面积.AB CD【解析】 ⑴ 如图,设F 为AD 延长线上一点∵D 在∆ABC 外接圆上(A B C D 、、、四点共圆) ∴∠=∠CDF ABC又=AB AC ,∴∠=∠ABC ACB , 且∠=∠ADB ACB ,∴∠=∠ADB CDF对顶角∠=∠EDF ADB ,故∠=∠EDF CDF , 即AD 的延长线平分∠CDE .⑵ 设O 为外接圆圆心,连接AO 交BC 于H ,则⊥AH BC . 连接OC ,由题意15∠=∠=︒OAC OCA ,75∠=︒ACB , ∴60∠=︒OCH .设圆半径为r,则2+=r 2=r ,外接圆的面积为4π.二、圆心角、弧、弦、弦心距之间的关系【例12】 如图所示在O ⊙中,2AB CD =,那么( )A.2AB CD >B.2AB CD <C.2AB CD =D.AB 与2CD的大小关系不能确定【解析】 如图所示,作DE CD =,则2CE CD =,∵在CDE ∆中CD DE CE +>,∴2CD CE >, ∵2AB CD =,∴AB CE >,∴AB CE >,即2AB CD >. 故选A .【例13】 已知AB AC 、是O ⊙的弦,AD 平分BAC ∠交O ⊙于D ,弦DE AB ∥交AC 于P ,求证:OP 平分APD ∠.【解析】 过O 点分别作OF AC OG DE ⊥⊥,,垂足分别为F G 、.∵DE AB ∥,∴BAD D ∠=∠,∵AD 平分BAC ∠,∴BAD CAD ∠=∠,∴CAD D ∠=∠, ∴AE CD =,∴AE EC CD EC +=+,即AC DE = ∴AC DE =, ∵OF AC OG DE ⊥⊥,,∴OF OG =,∴点O 在APD ∠的平分线上,即OP 平分APD ∠.【巩固】已知,如图M N ,为O 中劣弧AB 的三等分点,E F ,为弦AB 的三等分点,连接ME 并延长,交直线MF 于点P ,连接AP BP ,交O 于C D ,两点,求证:3AOB APB ∠=∠.PNMOFEDCBAQPNMOFEDCBA【解析】 连接CN AN ,,ON OM ,,连接MN 并延长,交PA 的延长线于Q .∵M N ,三等分AB ,∴AM BN =,故MN AB ∥,由AE EF =,可证得QM MN =, 由AM MN =得AM MN =, ∴MA MQ MN ==, ∴QAN ∠为直角,∴90CAN ∠=︒,故CN 为O 直径, 故O 在CN 上∴22AON ACN MON ∠=∠=∠∴MON ACN ∠=∠,故OM AP ∥, 同理可证:ON AB ∥于是可证得:MON APB ∠=∠,∵3AOB MON ∠=∠,∴3AOB APB ∠=∠.【例14】 (2008年广州市数学中考试题)如图,射线AM 交一圆于点B C ,,射线AN 交该圆于点D 、E ,且BC DE =.⑴ 求证:AC AE =⑵ 分别作线段CE 的垂直平分线与MCE ∠的平分线,两线交于点F .求证:EF 平分CEN ∠.NME【解析】 ⑴ 作OP AM ⊥,OQ AN ⊥,由BC DE =,得OP OQ =,证APO AQO ∆∆≌,可得AP AQ =, 由BC CD =,得CP EQ = ∴AC AE =. ⑵ ∵AC AE =,∴ACE AEC ∠=∠,∴MCE NEC ∠=∠, ∵F 在线段CE 的中垂线上, ∴FC FE =,∴FCE FEC ∠=∠,∵12FCE MEC ∠=∠,∴12FEC NEC ∠=∠,即EF 平分CEN ∠.三、点与圆的位置关系【例15】 一个已知点到圆周上的点的最大距离为5cm ,最小距离为1cm ,则此圆的半径为______.【解析】 ⑴ 当点在圆外时,512cm 2r -==,⑵ 当点在圆内时,513cm 2r +==.【例16】 已知:四边形ABCD 中,AB CD ∥,AD BC =,135BAD ∠=︒,20AB =,40CD =,以A 为圆心,AB 长为半径作圆.求证:在A ⊙上,在A ⊙内,A ⊙外都有线段DC 上的点.C【解析】 如图所示,作AE CD ⊥于E∵ABCD 是等腰梯,AE CD ⊥,135BAD ∠=︒,20AB =,40CD =∴20AD =<,20AC = ∴D 点在A ⊙内,C 点在A ⊙外,圆内一点与圆外一点的连线,必与圆有一交点, 所以A ⊙上,A ⊙内, A ⊙外都有线段DC 上的点.【例17】 在平面直角坐标系内,以原点O 为圆心,5为半径作O ⊙,已知A ,B ,C 三点的坐标分别为()34A ,,()33B --,,(4C ,,试判断A ,B ,C 三点与O ⊙的位置关系.【解析】∵5OA =5OB =5OC >∴点A 在O ⊙上,点B 在O ⊙内,点C 在O ⊙外.【点评】要判定点与圆的位置关系,就是要比较点到圆心的距离与半径的大小关系.【例18】 在ABC ∆ 中,90C ∠=︒,4AC =,5AB =,以点C 为圆心,以r 为半径作圆,请回答下列问题,并说明理由.⑴ 当r 取何值时,点A 在C ⊙上,且点B 在C ⊙内部?⑵ 当r 在什么范围内取值时,点A 在C ⊙外部,且点B 在C ⊙的内部? ⑶ 是否存在这样的实数r ,使得点B 在C ⊙上,且点A 在C ⊙内部?CBA【解析】 如右图所示在Rt ABC ∆中,90C ∠=︒,4AC =,5AB =,根据勾股定理得:3BC ==⑴ 当4r =时,点A 在C ⊙上,且点B 在C ⊙内.因为4AC r ==,所以点A 在C ⊙上,34BC r =<=,所以B 在C ⊙内; ⑵ 当34r <<时,点A 在C ⊙的外部,且点B 在C ⊙的内部.由于3BC =,要使点B 在C ⊙的内部,必须C ⊙的半径3r >;又由于4AC =,要使点A 在C ⊙的外部,必须C ⊙的半径4r <. 综合上述两方面可知,34r <<.⑶ 不存在这样的实数r ,使得点B 在C ⊙上,且点A 在C ⊙内部.因为3BC =,要使点B 在C ⊙上,必须3r =,此时,由于4AC r =>,所以点A 在C ⊙的外部,点A 不在C ⊙的内部,所以这样的实数r 不存在.【例19】 已知ABC ∆中,90C ∠=︒,2AC =,3BC =,AB 的中点为M ,⑴ 以C 为圆心,2为半径作C ⊙,则点A ,B ,M 与C ⊙的位置关系如何? ⑵ 若以C 为圆心作C ⊙,使A ,B ,M 三点至少有一点在C ⊙内,且至少有一点在C ⊙外,求C ⊙半径r 的取值范围.M CBA【解析】 如右图所示⑴ ∵2AC =,且C ⊙的半径也为2,即AC r =∴点A 在C ⊙上.又∵3BC =,2R =,BC r > ∴点B 在C ⊙外.在ABC ∆中,AB = ∵M 为AB 的中点∴122MC AB ==<∴点M 在C ⊙内; ⑵ ∵2AC =,3BC =,MC ∴BC AC MC >>∴要使A ,B ,M 三点中至少有一点在C ⊙内,且至少有一点在C ⊙外,则C ⊙的半径r 的3r <<.【点评】⑴ 要判定点A ,B ,M 与C ⊙的位置关系,只要比较AC ,BC ,MC 的长度与C ⊙的半径的大小关系即可;⑵ 由⑴求得AC ,BC ,MC 的长度即可确定C ⊙的半径r 的取值范围.【例20】 ABC ∆中,10AB AC ==,12BC =,求其外接圆的半径.【解析】 作高AD ,设点O 是ABC ∆OB∵AB AC =,AD BC ⊥,∴16BD BC ==在Rt ABD ∆中,8AD 设O ⊙的半径为R ,则OB AO R ==,8OD R =-. 在Rt OBD ∆中, 222OB BD OD =+∴2226(8)R R =+-,解得254R =.∴外接圆的半径为254.【点评】运用外心到三角形的三个顶点的距离相等这一性质,注意,三角形的外心在等腰三角形底边的中垂线上.四、相交弦定理(选讲)相交弦定理:圆内的两条相交弦被交点分成的两条线段长的乘积相等.如图,弦AB 和CD 交于O ⊙内一点P ,则PA PB PCPD ⋅=⋅.相交弦定理的推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项. 【例21】 ⑴ 如下左图,在O ⊙中,弦AB 与CD 相交于点P ,已知3cm 4cm 2cm PA PB PC ===,,,那么PD = cm .⑵ 如下中图,在O ⊙中,弦AB 与半径OC 相交于点M ,且OM MC =,若 1.54AM BM ==,,则OC 的长为( )A. BC. D .⑶ 如下右图,在O ⊙中,P 为弦AB 上一点,PO PC ⊥,PC 交O ⊙于C ,那么( )A .2OP PA PB =⋅ B .2PC PA PB =⋅C .2PA PB PC =⋅D .2PB PA PC =⋅【解析】 ⑴6;⑵D ;⑶B .【例22】如图,圆的半径是A C 、两点在圆上,点B 在圆内,6AB =,2BC =,90ABC ∠=︒求点B到圆心的距离.【解析】 连结OB ,则线段OB 的长就是所求点B 到圆心的距离.连结OA ,延长AB 交O ⊙于D ,过O 点作OE AD ⊥于E ,延长CB 交O ⊙于F . 设BD x =,由相交弦定理可得AB BD BC BF ⋅=⋅,则3AB BDBF x BC⋅==,∵OE AD ⊥,∴()()11166222AE AD x BE x ==+=-,,()()11132232222OE CF BC x x =-=+-=-,在Rt AOE ∆中,90AEO ∠=︒,∴222OE AE OA +=,即()()22113265044x x -++=,解得4x =,∴()()1134256412OE BE=⨯-==-=,,OB =【例23】 如图,正方形ABCD 内接于O ⊙,点P 在劣弧AB 上,连结DP 交AC 于点Q .若QP QO =,则QCQA的值为___________.【解析】 连结DO ,设O ⊙半径为r ,QO m =,则QP m QC r m QA r m ==+=-,,.在O ⊙中,根据相交弦定理得QA QC QP QD ⋅=⋅,即()()r m r m mQD -+=,∴22r m QD m-=,由勾股定理得222QD DO QO =+,即22222r m r m m ⎛⎫-=+ ⎪⎝⎭,解得33m r =. ∴313231QC r m QA r m ++===+--.【习题1】 (2007浙江温州)如图,已知ACB ∠是O 的圆周角,50ACB ∠=︒,则圆心角AOB ∠是( )A .40︒B . 50︒C . 80︒D . 100︒【解析】 考察同弧所对圆心角圆周角关系.答案选:D .【习题2】 如图,将圆沿AB 折叠后,圆弧恰好经过圆心,则AmB 等于 .A . 60°B . 90°C . 120°D . 150°mBAO【解析】 答案选C .【习题3】 (09四川凉山)如图,O ⊙是ABC ∆的外接圆,已知50ABO ∠=︒,则ACB ∠的大小为__________.OCBA【解析】 40︒.【习题4】 (09四川南充)如图,AB 是O ⊙的直径,点C D 、在O ⊙上,110BOC ∠=︒,AD OC ∥,则AOD ∠=___________.OD CBA家庭作业【解析】 40︒.【习题5】 如果两条弦相等,那么( )A .这两条弦所对的弧相等B .这两条弦所对的圆心角相等C .这两条弦的弦心距相等D .以上答案都不对【解析】 考察圆心角定理,关键是这些条件成立的前提是在同圆或等圆中.所以选D .【习题6】 如图,AB 为⊙O 的直径,AC 交⊙O 于E 点,BC 交⊙O 于D 点,CD =BD ,∠C =70°. 现给出以下四个结论:①∠A =45°; ②AC =AB ; ③AE BE =; ④22CE AB BD ⋅=. 其中正确结论的序号是A .①②B .②③C .②④D .③④ED C BAO【解析】 考察利用圆中角可推出等弧,等弦,相似.答案选 C .【习题7】 如图,量角器外缘边上有A P Q ,,三点,它们所表示的读数分别是180,70,30,则PAQ ∠的大小为( )A .10B .20C .30D .40【解析】 考察同弧所对圆心角是圆周角的2倍.答选 B .【习题8】 (首师大附中2008-2009初三月考)定义:定点A 与O ⊙上的任意一点之间的距离的最小值称为点A 与O ⊙之间的距离.现有一矩形ABCD 如图,14cm 12cm AB BC ==,,K ⊙与矩形的边AB BC CD 、、分别相切于点E F G 、、,则点A 与K ⊙的距离为______________.GEK DB A【解析】 连结KE AK 、,由题意可知K ⊙的半径为6cm ,6cm EK AB BE ⊥=,,∴8cm AE =,∴2210cm AK AE EK =+=, ∴点A 与K ⊙的距离为1064cm -=.【备选1】 如图,CD 为O ⊙的直径,过点D 的弦DE 平行于半径OA ,若D ∠的度数是50︒,则C ∠的度数是 A .25︒ B .40︒ C .30︒ D .50︒O EDCA【解析】 A .【备选2】 (08泰安)如图,在O ⊙中,AOB ∠的度数为m ,C 是ACB 上一点,D E 、是AB 上不同的两点(不与A B 、两点重合),则D E ∠+∠的度数为____________.OEDCBA【解析】 ()136018022mD E m ∠+∠=︒-=︒-.【备选3】 如图,已知⊙O 的弦AB 、CD 相交于点E ,AC 的度数为60°,BD 的度数为100°,则AEC∠等于( )A . 60°B . 100°C . 80°D . 130°EDC BO A【解析】 连结BC ,则∠AEC =∠B +∠C =21×60°+21×100°=80°.所以答案是C .【备选4】 设Rt ABC ∆的两条直角边长分别为3,4则此直角三角形的内切圆半径为 ,外接圆半径为【解析】 内切圆半径为1()12r a b c =+-=;外接圆半径为 2.52cR ==.【备选5】 等边三角形的外接圆的半径等于边长的( )倍.月测备选A .23B .33C .3D .21【解析】 考察等边三角形与外接圆半径的关系,所以选B【备选6】 (08山东滨州)如图所示,AB 是⊙O 的直径,AD=DE ,AE 与BD 交于点C ,则图中与∠BCE相等的角有( )BAA . 2个B . 3个C . 4个D . 5个【解析】 考察同弧,等弧所对圆周角相等,所以选B .【备选7】 (宜宾)已知:如图,四边形ABCD 是O ⊙的内接正方形,点P 是劣弧CD 上不同于点C 的任意一点,则BPC ∠的度数是( )A.45︒ B .60︒ C.75︒ D.90︒P【解析】 连接BO ,CO ,可得90BOC ∠=︒,∴1452BPC BOC ∠=∠=︒,故选A .【备选8】 (09浙江温州)如图,80AOB ∠=︒,则弧AB 所对圆周角ACB ∠的度数是A .40︒B .45︒C .50︒D .80︒【解析】 A .【备选9】 Rt ABC ∆的两条直角边3BC =,4AC =,斜边AB 上的高为CD ,若以C 为圆心,分别以12r =,2 2.4r =,33r =为半径作圆,试判断D 点与这三个圆的位置关系.DCBA【解析】 在Rt ABC ∆中,90ACB ∠=︒,4AC =,3BC =,∴5AB =由面积相等得,AC BC AB CD ⋅=⋅.∴122.45AC BC CD AB ⋅===∴ 2.4d CD ==∴1d r >, 2d r =, 3d r <∴点D 与三个圆的位置关系分别是:在圆外,在圆上,在圆内.【点评】要判定点与圆的位置关系,就是要比较点到圆心的距离与半径的大小关系.。

第5讲 圆-六年级上册数学讲义(含答案)

第5讲 圆-六年级上册数学讲义(含答案)

第5讲圆(思维导图+知识梳理+例题精讲+易错专练)一、思维导图二、知识点梳理知识点一:圆的认识1.圆心、半径、直径用圆规画圆时,针尖所在的点叫做圆心,一般用字母O表示,连接圆心和圆上任意一点的线段叫做半径,一般用字母r表示,通过圆心并且两端都在圆上的线段叫做直径,一般用字母d表示。

在任意一个圆中都可以画出无数条半径和无数条直径。

2.同圆或等圆中半径、之间的关系在同圆或等圆中,所有的半径都相等,所有的直径也都相等,直径是半径的2倍;圆心相同,半径不同的圆叫做同心圆;圆是轴对称图形,它有无数条对称轴。

3.用圆规画圆用圆规画圆的方法:先定好两脚之间的距离,再把带有针尖的脚固定在一点上,最后把装有铅笔的脚旋转一周,就画出了一个圆。

知识点二:圆的周长1.意义:围成圆的曲线的长叫做圆的周长,周长一般用字母C来表示。

2.测量方法:滚动法、绕绳法、直接测量法。

3.圆周率:圆的周长总是它的直径的3倍多一些,这个固定的比值叫做圆周率,用字母Π来表示,Π是一个无线不循环小数。

C=Πd或2Πr。

已知圆的半径,求周长时,用C=2Πr进行计算;已知圆的直径,求周长时,用C=Πd进行计算。

知识点三:圆的面积1.意义:圆所占平面的大小叫做圆的面积,圆的面积一般用S表示。

2.已知圆的半径为r,S=Πr2已知直径或周长求面积时,都要先求出半径,再求出面积。

3.圆环:两个半径不相等的同心圆之间的部分叫做圆环,也叫做环形。

S=ΠR2-Πr23.圆与正方形组合的面积问题的应用(1)“外方内圆”图形中,圆的直径等于正方形的边长。

如果圆的半径为r,那么正方形和圆之间部分的面积为0.86r2。

(2)“外圆内方”图形中,这个正方形的对角线等于圆的直径。

如果圆的半径为r,那么圆和正方形之间部分的面积为1.14r2。

知识点四:扇形1.意义:圆上两点之间的部分叫做弧;一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。

注意:扇形的大小由圆心角的度数和半径的长短决定。

第5单元 圆(讲义)-2024-2025学年六年级上册数学人教版

第5单元 圆(讲义)-2024-2025学年六年级上册数学人教版

圆(思维导图+考点梳理+典例分析+高频考题+答案解析)【圆的认识与圆周率】1.圆的认识:圆是一种几何图形.当一条线段绕着它的一个端点在平面内旋转一周时,它的另一个端点的轨迹叫做圆.2.圆周率:圆周率符号一般以π来表示,是一个在数学及物理学普遍存在的数学常数.它定义为圆形之周长与直径之比.它也等于圆形之面积与半径平方之比.【圆及其性质】1、圆的概念:(1)、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。

圆心一般用字母O 表示。

它到圆上任意一点的距离都相等。

(2)、半径:连接圆心到圆上任意一点的线段叫做半径。

一般用字母r表示。

把圆规两脚分开,两脚之间的距离就是圆的半径。

(3)、直径:通过圆心并且两端都在圆上的线段叫做直径。

一般用字母d表示。

直径是一个圆内最长的线段。

直径的长度是半径的2倍。

2、圆的性质:(1)、在同圆或等圆内,有无数条半径,有无数条直径。

同圆中所有的半径、直径都相等。

(2).在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的一半。

(3)、圆心确定圆的位置,半径确定圆的大小。

如果已知的是直径,我们要把直径除以2换成半径,确定圆心,然后才开始画圆。

要比较两个圆的大小,就是比较两个圆的直径或半径。

(4)、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。

折痕所在的这条直线叫做对称轴。

【圆、圆环的面积】1、圆的面积公式:S=πr22、圆环的面积等于大圆的面积减去小圆的面积即可得,公式:S=πr22﹣πr12=π(r22﹣r12)【圆、圆环的周长】1、圆的周长=πd=2πr,2、半圆的周长等于圆周长一半加上直径,即;半圆周长=πr+2r.3、圆环的周长等于两个圆的周长,即:圆环的周长=πd1+πd2=2πr1+2πr2.【扇形的面积】扇形面积可以用扇形所在圆的面积除以360再乘以扇形圆心角的角度n,即:S=nπr 2360.【扇形的认识】1、一条圆弧和经过这条圆弧两端的两条半径所围成的图形叫扇形2、扇形弧长计算公式,l是弧长,n是扇形圆心角,π是圆周率,R是扇形半径。

高中数学 圆 板块五 圆的规划问题完整讲义(学生版) 教案

高中数学 圆 板块五 圆的规划问题完整讲义(学生版) 教案

【例1】 如果实数x 、y 满足22(2)3x y -+=,则yx 的最大值为( ) A .12B 3C 3D 3【考点】圆的规划问题 【难度】3星 【题型】选择 【关键字】无【解析】等式22(2)3x y -+=有明显的几何意义,它表坐标平面上的一个圆,圆心为(20),,半径3r =,(如图),而0y x x x -=-则表示圆上的点()x y ,与坐标原点(00),的连线的斜率.如此以来,该问题可转化为如下几何问题:动点A 在以(20),3OA 的斜率的最大值,由图可见,当A ∠在第一象限,且与圆相切时,OA 的斜率最大,经简单计算,得最大值为tan 603︒= yxMOA【答案】D ;【例2】 若集合3cos ()(0π)3sin x M x y y θθθ⎧=⎧⎫⎪=<<⎨⎨⎬=⎩⎭⎪⎩,,集合{}()|N x y y x b ==+,且M N ∅≠,则b 的取值X 围为______________.【考点】圆的规划问题 【难度】3星 【题型】填空 【关键字】无典例分析【解析】{}22()|901M x y x y y =+=<,,≤,显然,M 表示以(00),为圆心,以3为半 径的圆在x 轴上方的部分,(如图),而N 则表示一条直线,其斜率1k =,纵截距为b ,由图形易知,欲使MN ∅≠,即是使直线y x b =+与半圆有公共点,显然b 的最小逼近值为3-,最大值为3b -<≤【答案】3b -<≤【例3】 试求圆2cos ,2sin x y θθ=⎧⎨=⎩(θ为参数)上的点到点(3,4)A 距离的最大(小)值.【考点】圆的规划问题 【难度】3星 【题型】解答 【关键字】无【解析】分析 利用两点间距离公式求解或数形结合求解.解法一 设P 是圆2cos ,2sin x y θθ=⎧⎨=⎩上任一点,则(2cos,2sin )P θθ.所以PA3arctan )4φ==.因为R θ∈,所以R θφ+∈,因此当sin()1θφ+=-时,7PA 最大值.当sin()1θφ+=时,3PA =最小值.解法二 将圆2cos ,2sin x y θθ=⎧⎨=⎩代入普通方程得224x y +=.如图所示可得,1P A 、2P A 分别是圆上的点到(3,4)A 的距离的最小值和最大值. 易知:13P A =,27P A =.说明⑴ 在圆的参数方程cos ,sin x a r y b r θθ=+⎧⎨=+⎩(θ为参数)中,(,)A a b 为圆心,(0)r r >为半径,参数θ的几何意义是:圆的半径从x 轴正向绕圆心按逆时针方向旋转到P 所得圆心角的大小.若原点为圆心,常常用(cos ,sin )r r θθ来表示半径为r 的圆上的任一点. ⑵ 圆的参数方程也是解决某些代数问题的一个重要工具.【答案】最大值为7,最小值为4.【例4】 已知(2,0)A -,(2,0)B ,点P 在圆22(3)(4)4x y -+-=上运动,则22PA PB +的最小值是.【考点】圆的规划问题 【难度】3星 【题型】填空 【关键字】无【解析】设(,)P x y ,则222222(2)(2)PA PB x y x y +=+++-+2222()828x y OP =++=+.设圆心为(3,4)C ,则min 523OP OC r =-=-=,∴22PA PB +的最小值为223826⨯+=.【答案】26.【例5】 已知圆22:(2)1C x y ++=,(,)P x y 为圆上任一点,求21y x --的最大、最小值,求2x y -的最大、最小值.【考点】圆的规划问题 【难度】3星 【题型】解答 【关键字】无【解析】方法一 由22(2)1x y ++=知,可设P 的坐标为(2cos ,sin )θθ-+,θ是参数.则2sin 21cos 3y x θθ--=--,令sin 2cos 3t θθ-=-,得sin cos 23t t θθ-=-)23t θϕ-=-sin()1θϕ⇒=-≤t ⇒.所以max t,min t =. 即21y x --.此时22cos 2sin 2)x y θθθϕ-=-+-=-++. 所以2x y -的最大值为2-+2-- 方法二21y x --表示点(,)P x y 与点(1,2)连线的斜率,其中P 点为圆上的动点,结合图象知,要求斜率的最值,只须求出过(1,2)点的圆的切线的斜率即可, 设过(1,2)点的直线方程为:20kx y k --+=. 由1d==,得k , 所以21y x --令2x y m -=,同理两条切线在x 轴上的截距分别是 2x y-的最大、最小值. 由1d ==,得2m =-.所以2x y -的最大值为2-+2--【答案】最大值为2-2-【例6】 求函数sin 12cos 4x y x -=+的值域.【考点】圆的规划问题 【难度】3星 【题型】填空 【关键字】无 【解析】sin 11sin 12cos 42cos 2x x y x x --==⨯++,于是sin 12cos 2x y x -=+, 其几何意义为单位圆上的任一点(cos ,sin )x x 与点(2,1)-的连线的斜率.结合图象知:过点(2,1)-与单位圆相切的直线的斜率为10k =,243k =-,连线的斜率的取值X 围为4,03⎡⎤-⎢⎥⎣⎦,从而此函数的值域为2,03⎡⎤-⎢⎥⎣⎦.【答案】2,03⎡⎤-⎢⎥⎣⎦【例7】 设||1a ≤,,a b ∈R ,求22()25)a b b -+-的最小值. 【考点】圆的规划问题 【难度】3星 【题型】填空 【关键字】无【解析】分析式子的几何意义,它表示两点(,a 与(,25)b b +的距离的平方,前者在半圆221(0)x y y +=≥上,后者在直线25y x =+上,11,从而所求的最小值为21)6=-【答案】6-【例8】 实数,x y 满足221x y +=,求22x y u x y ++=-+的最大值与最小值.【考点】圆的规划问题 【难度】3星【关键字】无【解析】方法一变形得:(1)(1)2(1)0(2)u x u y u y x-+++-=≠+,此方程表示一条直线.又∵,x y满足221x y+=,故直线与圆221x y+=有公共点.1,解得22u-≤cosxθ=由于直线2y x=+与圆221x y+=无公共点,因此,22u+≤即22x yux y++=-+的最大值为2,最小值为2方法二设,sinyθ=,则π22cos sin24π2cos sin224x yux yθθθθθθ⎛⎫++⎪++++⎝⎭===-+-+⎛⎫++⎪⎝⎭πsin4πcos4θθ⎛⎫+⎪⎝⎭=⎛⎫+⎪⎝⎭,① 几何意义为单位圆221x y+=上的点ππcos sin44θθ⎛⎫⎛⎫⎛⎫++⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,与点(连线的斜率,求过点(-的单位圆切线的斜率:12k=22k=-从而22x yux y++=-+的最大值为22② 由此式得πππcos sin444uθθθφ⎛⎫⎛⎫⎛⎫+-+==++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,1,解得22u≤因此22x yux y++=-+的最大值为22【答案】最大值为22【例9】已知圆22(3)(4)1C x y-+-=:,(,)P x y为圆C上的动点,求22d x y=+的最大、最小值.【考点】圆的规划问题【难度】3星【关键字】无【解析】方法一 由圆的标准方程22(3)(4)1x y -+-=.可设点P 的坐标为(3cos ,4sin )θθ++(θ是参数). 则222296cos cos 168sin sin d x y θθθθ=+=+++++ 266cos 8sin 2610cos()θθθϕ=++=+-(其中4tan 3ϕ=). 所以max 261036d =+=,min 261016d =-=.方法二 d 是圆上点到原点距离的平方,∴要求d 的最值,即求圆上距离原点距离最远和最近的点.结合图象知:距离的最大值等于圆心到原点的距离加上半径1,距离的最小值等于圆心到原点的距离减去半径1.所以2max1)36d ==,2min 1)16d ==.【答案】最大值为36,最小值为16.【例10】 若220x y -+=,求函数2224u x y x y =+-+的最小值. 【考点】圆的规划问题 【难度】2星 【题型】解答 【关键字】无【解析】222224(1)(2)5u x y x y x y =+-+=-++-,先求点(1,2)-与直线220x y -+=的距离为d =, 2min 49245555u d =-=-=.【答案】245.【例11】 设点(,)P x y 是圆221x y +=是任一点,求21y u x -=+的取值X 围. 【考点】圆的规划问题 【难度】2星 【题型】解答 【关键字】无【解析】方法一 设(cos ,sin )P θθ,则有cos x θ=,sin y θ=,[0,2π)θ∈∴sin 2cos 1u θθ-=+,∴cos sin 2u u θθ+=-∴cos sin (2)u u θθ-=-+.)2u θφ-=+(tan u φ=) ∴sin()θφ-=.又∵sin()1θφ-≤∴1 解之得:34u -≤.方法二 根据几何意义求解21y u x -=+的几何意义是过圆221x y +=上一动点和定点(1,2)-的连线的斜率, 利用此直线与圆221x y +=有公共点,可确定出u 的取值X 围. 由21y u x -=+得:2(1)y u x -=+,此直线与圆221x y +=有公共点, 故点(0,0)到直线的距离1d ≤.∴1,解得:34u -≤.另外,直线2(1)y u x -=+与圆221x y +=的公共点还可以这样来处理: 由222(1)1y u x x y -=+⎧⎨+=⎩消去y 后得:2222(1)(24)(43)0u x u u x u u ++++++=, 此方程有实根,故2222(24)4(1)(43)0u u u u u ∆=+-+++≥,解之得:34u -≤.【答案】34u -≤.【例12】 已知对于圆22(1)1x y +-=上任一点(,)P x y ,不等式0x y m ++≥恒成立,某某数m 的取值X 围.【考点】圆的规划问题 【难度】3星 【题型】解答 【关键字】无 【解析】方法一 ∵0x y m ++=右上方面的点满足:0x y m ++>, 结合图象知,要圆上的任一点的坐标都满足0x y m ++≥, 只需直线在如图所示的切线的左下方,图中切线的纵截距1m -=+,故只需1m -≤,即1m 即可.方法二 分析 设圆上一点(cos ,1sin )P θθ+,问题转化为利用三角函数求X 围. 解 设圆22(1)1x y +-=上任一点(cos ,1sin )P θθ+,[0,2π)θ∈ ∴cos x θ=,1sin y θ=+,∵0x y m ++≥恒成立,∴cos 1sin 0m θθ+++≥恒成立, 即(1cos sin )m θθ-++≥恒成立.∴只须m 不小于(1cos sin )θθ-++的最大值.设π(sin cos )1)14u θθθ=-+-=+-,∴max 1u =即1m .【答案】1m .【例13】 实数x 、y 满足2286210x y x y +--+=,求yx的取值X 围. 【考点】圆的规划问题 【难度】2星 【题型】解答 【关键字】无 【解析】方法一 设yk x=,方程2286210x y x y +--+= 可化为 22(1)(86)210k x k x +-++=,由0∆≥得:2122450k k k -+≤ 方法二 方程 2286210x y x y +--+=表示圆心为(4,3)A 、半径为4的圆,yx表示原点O 与该圆上的点P 连线的斜率. 设OP 方程为y kx =,由点A 到OP 距离2得:2122450k k k -+≤∴ 所求yx的取值Xy xy x【例14】 已知点(,)P x y 在圆22(1)1x y +-=上运动.⑴ 求12y x --的最大值与最小值; ⑵ 求2x y +的最大值与最小值.【考点】圆的规划问题 【难度】3星 【题型】解答 【关键字】无 【解析】⑴ 设12y k x -=-,则k 表示点(,)P x y 与点(2,1)连线的斜率.当该直线与圆相切时, k 取得最大值与最小值.1=,解得k =,∴12y x --,最小值为. ⑵ 设2x y m +=,则m 表示直线2x y m +=在y 轴上的截距. 当该直线与圆相切时,m 取得最1=,解得1m =2x y +的最大值为1+,最小值为1-.【答案】⑴12y x --,最小值为⑵2x y +的最大值为11【例15】 若集合3cos (,),0π3sin x M x y y θθθ⎧⎫=⎧⎪⎪=<<⎨⎨⎬=⎩⎪⎪⎩⎭,集合{}(,)|0N x y x y b =-+=,且MN ≠∅,则b 的取值X 围是.【考点】圆的规划问题 【难度】2星 【题型】填空 【关键字】无【解析】M 是一个圆心在原点,半径为3的半圆(不包括端点),N 代表斜率为1,截距为b 的直线.原问题对应的几何问题为:若直线与圆有交点,则直线的截距X 围是多少?如图,容易得到,P Q 是截距的极限位置,经过计算求出(3,0)P -,0)Q .于是b 的取值X 围是3b -<≤【答案】3b -<≤【例16314x a +-的解集为[4,0]-,求a 的取值X 围.【考点】圆的规划问题 【难度】3星 【题型】解答【关键字】无【解析】函数y =可化为22(2)4x y++=,所以y =(2,0)C -,半径为2的圆在x 轴上方的部分,于是40x -≤≤.314y x a =+-表示斜率为34,截距为1a -的直线.如图,l 为极限位置,此时14a -=,所以a 的取值需要满足为14a -≥,解之得 a 的取值X 围是3a -≤.【答案】3a ≤-.【例17】 求函数y x =+ 【考点】圆的规划问题【难度】3星 【题型】解答 【关键字】无【解析】解法1 ()f x x =+(,1][2,)-∞+∞.配方,有()f x x =32t x =-,即3()2x g t t ==+,有3(,1][2,)2t +∈-∞+∞,即11,,22t ⎛⎤⎡⎫∈-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭.于是 3()(())2f x f g t t ==+当1,2t ⎡⎫∈+∞⎪⎢⎣⎭时,(())f g t 为增函数,所以1(),2f x fg ⎡⎫⎛⎫⎛⎫∈+∞⎪⎢ ⎪ ⎪⎝⎭⎝⎭⎣⎭[2,)=+∞;当1,2t ⎛⎤∈-∞-⎥⎝⎦时,33()(())22t t f x f g t t ⎛⎛⋅+==++=+132=, 为减函数,所以13(),22f x fg ⎡⎫⎛⎫⎛⎫∈-⎪⎢ ⎪ ⎪⎝⎭⎝⎭⎣⎭31,2⎡⎫=⎪⎢⎣⎭. 综上,()f x 的值域为[)31,2,2⎡⎫+∞⎪⎢⎣⎭.解法2 同解法1,将函数()f x 化为3()(())2f x f g t t ==++以原点为圆心,12为半径作圆,设(,0)P t 在x 轴上运动,则12t ≥时,如图中A 位置,过A 作圆的切线,切点为C ,显然OA t =,AC =,分析AOC ∆,当A 位于1,02⎛⎫ ⎪⎝⎭时 OA AC +最小,为12,于是32t +[2,)∈+∞;12t -≤时,如图中B 位置,过B 作圆的切线,切点为D ,显然OA t =-,BD =DOB ∆,有102BD OB <-≤(当 B 位于1,02⎛⎫- ⎪⎝⎭时,BDOB -最大,为12,于是32t ++31,2⎡⎫∈⎪⎢⎣⎭;综上,()f x 的值域为31,[2,)2⎡⎫+∞⎪⎢⎣⎭.解法 3 ()f x x =的定义域为(,1][2,)-∞+∞.设y x =,则可以:f xy 涉及的实数对(,)x y 转化为满足22()32y x x x y x ⎧-=-+⎨⎩≥的解(,)x y ,由22()32y x x x y x ⎧-=-+⎨⎩≥得2223y x y y x⎧-=⎪-⎨⎪⎩≥.由x 的X 围(,1][2,)-∞+∞,可以求得()f x 的值域为31,[2,)2⎡⎫+∞⎪⎢⎣⎭.解法4 y x =的定义域为1x ≤或2x ≥ 求导,有1y '=+=当2x ≥时,0y '>,所以原函数为增函数,取值X 围为[)2,+∞;当1x ≤时,230x -=,∴0y '<,原函数为减函数,取值X 围为31,2⎡⎫⎪⎢⎣⎭.从而,原函数值域为[)31,2,2⎡⎫+∞⎪⎢⎣⎭.解法5 设1y =2y x =-,则12y y y =-.1y =于是2213124x y ⎛⎫--= ⎪⎝⎭(10y ≥),其几何意义是中心在3,02⎛⎫ ⎪⎝⎭的双曲线在x 轴上方的部分.2y x =-是过原点,斜率为1-的一条直线.如图,1l 为双曲线的一条渐近线,方程为32y x =-+,22:l y x =-,显然12l l ∥. 当1x ≤时,12y y PQ -=,随着x 越来越小,P 到1l 的距离越来越小,于是P 到2l 的距离越来越大(12,l l 之间的距离为定值),从而PQ 越来越大,取值X 围为31,2⎡⎫⎪⎢⎣⎭;当2x ≥时,随着x 越来越大,PQ 也越来越大,取值X 围为[)2,+∞; 综上,原函数的值域为[)31,2,2⎡⎫+∞⎪⎢⎣⎭.【答案】[)31,2,2⎡⎫+∞⎪⎢⎣⎭.【例18】 设90XOY ∠=︒,P 为XOY ∠内一点,且1OP =,30XOP ∠=︒,过P 任意作一条直线分别交射线OX 、OY 于点M 、N ,求OM ON MN +-的最大值.【考点】圆的规划问题 【难度】5星 【题型】填空 【关键字】无【解析】如图1,作OMN ∆的内切圆,设其半径为r ,则2OM ON MN r +-=,问题转化为OMN ∆的内切圆半径的最大值.图 3分析图形可得当P 在C ⊙上时,OMN ∆内切圆的半径最大,设此时C ⊙半径为0r ,如图2.若不然,设在某情形下C ⊙半径大于0r ,那么P 点将会在C ⊙内,这与C ⊙是OMN ∆的内切圆矛盾(如图3,圆心C 只能在射线l 上运动).显然,此时P 点为切点.设00(,)C r r ,而()cos30,sin 30P ︒︒,于是CP r =,即()()222000cos30sin30r r r -︒+-︒=,化简有2002(sin30cos30)10r r -︒+︒+=∴0sin 30cos30r ==︒+︒-从而题中所求为021r =.【答案】021r =【例19】 设90XOY ∠=︒,P 为XOY ∠内一点,且1OP =,XOP θ∠=,过P 任意作一条直线分别交射线OX 、OY 于点M 、N ,求: ⑴ OM ON MN +-的最大值m 与θ的函数关系式; ⑵ 当θ在π0,2⎡⎤⎢⎥⎣⎦内变化时,求m 的取值X 围.【考点】圆的规划问题 【难度】6星 【题型】解答 【关键字】无 【解析】⑴ 求得2(sin cos m θθ=+-π4θ⎛⎫=+- ⎪⎝⎭⑵ 设π4s θ⎛⎫+ ⎪⎝⎭,t =2()m s t =-.22π1cos 2π22sin 21sin 242s θθθ⎛⎫-+ ⎪⎛⎫⎝⎭=+=⋅=+ ⎪⎝⎭;2sin 2t θ=.于是221s t -=.由于π0,2θ⎡⎤∈⎢⎥⎣⎦,所以12s ≤≤,01t ≤≤.如图,当2s =时,m 取得最小值,此时π4θ=,s 1t =,)21m =;当1s =时,m 取得最大值,此时0θ=或π2,1s =,0t =,2m =.【答案】⑴ 求得2(sin cos m θθ=+π4θ⎛⎫=+- ⎪⎝⎭⑵)2,21⎡⎤⎣⎦【例20】 已知实数x 、y 满足()2233x y -+=,则1yx -的最大值是. 【考点】圆的规划问题 【难度】2星 【题型】填空 【关键字】无 【解析】1yx -可看作是过点()P x y ,与()10M ,的直线的斜率,其中点P 在圆 ()2233x y -+=上,当直线处于图中切线位置时,斜率1yx -最大,最大值为tan θ=【例21】 不论k 为何实数,直线1y kx =+与曲线2222240x y ax a a +-+--=恒有交点,则实数a 的取值X 围是.【考点】圆的规划问题【难度】2星 【题型】填空 【关键字】无【解析】题设条件等价于点()01,在圆内或圆上,或等价于点()01,到圆 ()2224x a y a -+=+的圆心距离≤半径,∴13a -≤≤.【答案】13a -≤≤【例22】 如果实数x 、y 满足22(2)3x y -+=,则yx的最大值为. 【考点】圆的规划问题 【难度】2星 【题型】填空 【关键字】无 【解析】23y =,即点P (,)x y 的轨迹是圆心为C (2,0),半此时0y y k x x -==-,为连接点(0,0)O 与(,)P x y 直线的斜率. 这样,该代数问题可转化为如下几何问题:圆C 的圆心为(2,0)P 在圆C 上移动,求直线OP 的斜率的最大值.过O 作圆C 的切线,设0P 为第一象限的切点,当动点P 在0P 位置时,直线OA 的斜率最大. 0OP k 容易在OCP ∆中求出:01OP=,000OP CP k OP ===yx显然,当动点P 在0P '位置时,yx取最小值为【例23】 函数sin 2cos xy x=+的最大值为________,最小值为________.【考点】圆的规划问题 【难度】2星 【题型】填空 【关键字】无 【解析】表示点(cos sin )P x x ,与点(20)A -,连线的斜率的取值X 围,点P 在单位圆上,如图,过A 作单位圆的切线AB 、AC .易知AB k =AC k =为斜率的最大值和最小值,那么y,最小值为.,最小值为.【例24】 若直线y x m =-与曲线y =m 的取值X 围是___________.【考点】圆的规划问题 【难度】2星 【题型】填空【关键字】无【解析】y x m=-表示倾斜角为45°,纵截距为m-的直线,而y=(00),为圆心,以1为半径的圆在x轴上方的部分(包括圆与x轴的交点),如图所示,显然,欲使直线与半圆有两个不同交点,只需直线的纵截距[1m-∈,即(1]m∈-.明确方程的几何意义,在同一坐标系中画出相应的几何图形,根据直线系的特点,由图形研究直线与半圆的位置关系.【答案】(1]m∈-【例25】曲线1y=+(22)x-≤≤与直线(2)4y k x=-+有两个交点时,实数k的取值X围是.【考点】圆的规划问题【难度】2星【题型】填空【关键字】无【解析】曲线1y=+22(1)4x y+-=,为如图所示的半圆C;直线(2)4y k x =-+,表示过定点(2,4)P 的直线系;要使半圆与直线有两个交点,则:(2)4l y k x =-+只能在12,l l 之间移动,设12,l l 的斜率分别为12,k k ,则12k k k <≤. 解得1512k =,234k =,从而53124k <≤. 【答案】53124k <≤ 【例26】 过点(1的直线l 将圆22(2)4x y -+=分成两段弧,当劣弧所对的圆心角最小时,直线l 的斜率k =【考点】圆的规划问题【难度】2星【题型】填空【关键字】无【解析】由图形可知点(1A 在圆22(2)4x y -+=的内部,圆心为(20)O ,,要使得劣弧所对的圆心角最小,即l 被圆截得的弦长最短,只能是直线l OA ⊥,所以1l OA k k =-==. 对于直线与圆的位置关系以及一些相关的夹角、弦长问题,往往要转化为点到线的距离问题来解决..【例27】 一束光线从点()11A -,发出,经x 轴反射到圆()()22231C x y -+-=∶上,其最短路程是()A .4B .5C .1D .【考点】圆的规划问题【难度】3星【题型】选择【关键字】无【解析】设光线与x 轴交于点()0B x ,,依题意0BC BA k k +=,即31021x x -+=-+,解得 14x =-,于是最短路程为14d ==.或者求出A 关于x 轴的对称点()11A '--,,114d A C '=-=-=.【答案】A【考点】圆的规划问题【难度】3星【题型】选择【关键字】2010年,某某高考【解析】略.【答案】C ;【例29】 在平面直角坐标系xOy 中,已知圆224x y +=上有且仅有四个点到直线1250x y c -+=的距离为1,则实数c 的取值X 围是.【考点】圆的规划问题【难度】3星【题型】填空【关键字】2010年,某某高考【解析】略.【答案】()-;13,13。

圆幂定理讲义

圆幂定理讲义

STEP 1:进门考理念:1.检测垂径定理的基本知识点与题型2.垂径定理典型例题的回顾检测。

3. 分析学生圆部分的薄弱环节。

(1)例题复习1. (2015?夏津县一模)一副量角器与一块含 30°锐角的三角板如图所示 放置,三角板的直角顶点C 落在量角器的直径MNt ,顶点A, B 恰好都落在量角 器的圆弧上,且 AB// MN 若AB=8cm 则量角器的直径 MN _______ cm【考点】M3垂径定理的应用;KQ 勾股定理;T7:解直角三角形.【分析】 作CD 丄AB 于点D,取圆心O,连接OA 作OE ± AB 于点E ,首先求得CD 的长,即 OE 的长,在直角厶AOE 中,利用勾股定理求得半径 OA 的长,贝U MN 即可求解.【解答】 解:作CDLAB 于点D,取圆心O,连接OA 作OELAB 于点E.在直角△ ABC 中,/ A=30°,贝U BC=AB=4cm 在直角△ BCD 中, Z B=90°-Z A=60°,/• CD=BC?si nB=4 =2 (cm ), /• OE=CD=2在厶 AOE 中,AE=AB=4cm则 OA===2 (cm ),贝 U MN=2OA=( cm ). 故答案是:4.【点评】本题考查了垂径定理的应用,在半径或直径、弦长以及弦心距之间的计算中, 的方法是转化为解直角三角形.圆幕定理常用2. (2017?阿坝州)如图将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为()A.2cm B.cm C.2cm D.2cm【考点】M2垂径定理;PB:翻折变换(折叠问题).【分析】通过作辅助线,过点O作ODL AB交AB于点D,根据折叠的性质可知OA=2OD根据勾股定理可将AD的长求出,通过垂径定理可求出AB的长.【解答】解:过点O作ODL AB交AB于点D,连接OA■/ OA=2OD=2cm 二AD=== (cm),•••ODL AB,••• AB=2AD=2cm 故选:D.【点评】本题考查了垂径定理和勾股定理的运用,正确应用勾股定理是解题关键.3. (2014?泸州)如图,在平面直角坐标系中,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档