最新浙教版八年级数学上册单元测试题及答案
最新浙教版八年级数学上学期《三角形的初步认识》单元测试及答案解析.docx
《第1章三角形的初步认识》一、填空题1.已知三角形的两边分别为4和9,则此三角形的第三边可能是()A.4 B.5 C.9 D.132.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数等于()A.50° B.30° C.20° D.15°3.如图所示,△ACB≌A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20° B.30° C.35° D.40°4.长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A.1种B.2种C.3种D.4种5.尺规作图是指()A.用直尺规范作图B.用刻度尺和圆规作图C.用没有刻度的直尺和圆规作图D.直尺和圆规是作图工具6.如图,BE、CF都是△ABC的角平分线,且∠BDC=110°,则∠A=()A.50° B.40° C.70° D.35°7.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是()A.45° B.54° C.40° D.50°8.一副三角板如图叠放在一起,则图中∠α的度数为()A.75° B.60° C.65° D.55°9.如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△ADE的位置,连接EC,满足EC∥AB,则∠BAD的度数为()A.30° B.35° C.40° D.50°10.如图所示,△ABC与△BDE都是等边三角形,AB<BD.若△ABC不动,将△BDE绕点B旋转,则在旋转过程中,AE与CD的大小关系为()A.AE=CD B.AE>CD C.AE<CD D.无法确定二、认真填一填11.若三角形的两边长分别为3、4,且周长为整数,这样的三角形共有个.12.如图,在△ABC和△DEF中,已知:AC=DF,BC=EF,要使△ABC≌△DEF,还需要的条件可以是.(只填写一个条件)13.若△ABC≌△DEF,且∠A=110°,∠F=40°,则∠E= 度.14.在△ABC中,∠A:∠B:∠C=1:2:3,则∠A= ,∠C= .15.如图,在△ABC中,∠B=60°,∠C=40°,AD⊥BC于D,AE平分∠BAC;则∠DAE= .16.如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADC的面积为S1,△ACE的面积为S2,若S△ABC=6,则S1﹣S2的值为.17.如图,将纸片△ABC沿DE折叠,点A落在点P处,已知∠1+∠2=100°,则∠A的大小等于度.18.如图,△ABC中,∠BAC=100°,EF,MN分别为AB,AC的垂直平分线,如果BC=12cm,那么△FAN的周长为cm,∠FAN= .三、解答题19.如图,点A、C、D、B 四点共线,且AC=DB,∠A=∠B,∠E=∠F.求证:DE=CF.20.如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.21.如图,在△ABC中,∠B=40°,∠C=110°.(1)画出下列图形:①BC边上的高AD;②∠A的角平分线AE.(2)试求∠DAE的度数.22.作图,如图已知三角形ABC内一点P(1)过P点作线段EF∥AB,分别交BC,AC于点E,F(2)过P点作线段PD使PD⊥BC垂足为D点.23.如图,在△ABC中,AD平分∠BAC,AD的垂直平分线EF交BC的延长线于点F,连接AF,求证:∠CAF=∠B.24.如图,点D为锐角∠ABC内一点,点M在边BA上,点N在边BC上,且DM=DN,∠BMD+∠BND=180°.求证:BD平分∠ABC.25.如图,在长方形ABCD中,AB=8cm,BC=6cm,点E是CD的中点,动点P从A点出发,以每秒2cm的速度沿A→B→C→E运动,最终到达点E.若设点P运动的时间是t秒,那么当t取何值时,△APE的面积会等于10?26.(14分)课本拓展旧知新意:我们容易证明,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?1.尝试探究:(1)如图1,∠DBC与∠ECB分别为△ABC的两个外角,试探究∠A与∠DBC+∠ECB之间存在怎样的数量关系?为什么?2.初步应用:(2)如图2,在△ABC纸片中剪去△CED,得到四边形ABDE,∠1=130°,则∠2﹣∠C= ;(3)小明联想到了曾经解决的一个问题:如图3,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案.3拓展提升:(4)如图4,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,∠P与∠A、∠D有何数量关系?为什么?(若需要利用上面的结论说明,可直接使用,不需说明理由)《第1章三角形的初步认识》参考答案与试题解析一、填空题1.已知三角形的两边分别为4和9,则此三角形的第三边可能是()A.4 B.5 C.9 D.13【考点】三角形三边关系.菁优网版权所有【分析】根据三角形的第三边大于两边之差,而小于两边之和求得第三边的取值范围,再进一步选择.【解答】解:根据三角形的三边关系,得第三边大于5,而小于13.故选C.【点评】本题考查了三角形的三边关系,即三角形的第三边大于两边之差,而小于两边之和,此题基础题,比较简单.2.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数等于()A.50° B.30° C.20° D.15°【考点】平行线的性质;三角形的外角性质.菁优网版权所有【专题】计算题.【分析】首先根据平行线的性质得到∠2的同位角∠4的度数,再根据三角形的外角的性质进行求解.【解答】解:根据平行线的性质,得∠4=∠2=50°.∴∠3=∠4﹣∠1=50°﹣30°=20°.故选:C.【点评】本题应用的知识点为:三角形的外角等于与它不相邻的两个内角的和.两直线平行,同位角相等.3.如图所示,△ACB≌A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20° B.30° C.35° D.40°【考点】全等三角形的性质.菁优网版权所有【分析】根据全等三角形性质求出∠ACB=∠A′CB′,都减去∠A′CB即可.【解答】解:∵△ACB≌A′CB′,∴∠ACB=∠A′CB′,∴∠ACB﹣∠A′CB=∠A′CB′﹣∠A′CB,∴∠ACA′=∠BCB′,∵∠BCB′=30°,∴∠ACA′=30°,故选B.【点评】本题考查了全等三角形性质的应用,注意:全等三角形的对应角相等.4.长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A.1种B.2种C.3种D.4种【考点】三角形三边关系.菁优网版权所有【专题】常规题型.【分析】要把四条线段的所有组合列出来,再根据三角形的三边关系判断能组成三角形的组数.【解答】解:四根木条的所有组合:9,6,5和9,6,4和9,5,4和6,5,4;根据三角形的三边关系,得能组成三角形的有9,6,5和9,6,4和6,5,4.故选:C.【点评】本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边,两边之差小于第三边是解题的关键.5.尺规作图是指()A.用直尺规范作图B.用刻度尺和圆规作图C.用没有刻度的直尺和圆规作图D.直尺和圆规是作图工具【考点】作图—尺规作图的定义.菁优网版权所有【分析】根据尺规作图的定义作答.【解答】解:根据尺规作图的定义可知:尺规作图是指用没有刻度的直尺和圆规作图.故选C.【点评】尺规作图是指用没有刻度的直尺和圆规作图.6.如图,BE、CF都是△ABC的角平分线,且∠BDC=110°,则∠A=()A.50° B.40° C.70° D.35°【考点】三角形内角和定理;角平分线的定义.菁优网版权所有【分析】根据数据线的内角和定理以及角平分线的定义,可以证明.【解答】解:∵BE、CF都是△ABC的角平分线,∴∠A=180°﹣(∠ABC+∠ACB),=180°﹣2(∠DBC+∠BCD)∵∠BDC=180°﹣(∠DBC+∠BCD),∴∠A=180°﹣2(180°﹣∠BDC)∴∠BDC=90°+∠A,∴∠A=2(110°﹣90°)=40°.故选B.【点评】注意此题中的∠A和∠BDC之间的关系:∠BDC=90°+∠A.7.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是()A.45° B.54° C.40° D.50°【考点】平行线的性质;三角形内角和定理.菁优网版权所有【分析】根据三角形的内角和定理求出∠BAC,再根据角平分线的定义求出∠BAD,然后根据两直线平行,内错角相等可得∠ADE=∠BAD.【解答】解:∵∠B=46°,∠C=54°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣46°﹣54°=80°,∵AD平分∠BAC,∴∠BAD=∠BAC=×80°=40°,∵DE∥AB,∴∠ADE=∠BAD=40°.故选:C.【点评】本题考查了平行线的性质,三角形的内角和定理,角平分线的定义,熟记性质与概念是解题的关键.8.一副三角板如图叠放在一起,则图中∠α的度数为()A.75° B.60° C.65° D.55°【考点】三角形的外角性质;三角形内角和定理.菁优网版权所有【分析】因为三角板的度数为45°,60°,所以根据三角形内角和定理即可求解.【解答】解:如图,∵∠1=60°,∠2=45°,∴∠α=180°﹣45°﹣60°=75°,故选A.【点评】本题利用三角板度数的常识和三角形内角和定理,熟练掌握定理是解题的关键.9.如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△ADE的位置,连接EC,满足EC∥AB,则∠BAD的度数为()A.30° B.35° C.40° D.50°【考点】旋转的性质.菁优网版权所有【分析】根据两直线平行,内错角相等可得∠ACB=∠CAB,根据旋转的性质可得AC=AE,∠BAC=∠DAE,再根据等腰三角形两底角相等列式求出∠CAE,然后求出∠DAB=∠CAE,从而得解.【解答】解:∵CE∥AB,∴∠ACB=∠CAB=75°,∵△ABC绕点A逆时针旋转到△AED,∴AC=AE,∠BAC=∠DAE,∴∠CAE=180°﹣70°×2=40°,∵∠CAE+∠CAD=∠DAE,∠DAB+∠CAD=∠BAC,∴∠DAB=∠CAE=40°.故选C.【点评】本题考查了旋转的性质,平行线的性质,等腰三角形两底角相等的性质,熟记各性质并求出∠DAB=∠CAE是解题的关键.10.如图所示,△ABC与△BDE都是等边三角形,AB<BD.若△ABC不动,将△BDE绕点B旋转,则在旋转过程中,AE与CD的大小关系为()A.AE=CD B.AE>CD C.AE<CD D.无法确定【考点】全等三角形的判定与性质;等边三角形的性质.菁优网版权所有【分析】本题可通过证△ABE和△CBD全等,来得出AE=CD的结论.两三角形中,已知了AB=BC、BE=BD,因此关键是证得∠ABE=∠CBD;由于△ABC和△BED都是等边三角形,因此∠EBD=∠ABC=60°,即∠ABE=∠CBD=120°,由此可得证.【解答】解:∵△ABC与△BDE都是等边三角形,∴AB=BC,BE=BD,∠ABC=∠EBD=60°;∴∠ACB+∠CBE=∠EBD+∠CBE=120°,即:∠ABE=∠CBD=120°;∴△ABE≌△CBD;∴AE=CD.故选A.【点评】本题考查了全等三角形的判定与性质,等边三角形的性质,当出现两个等边三角形时,一般要利用等边三角形的边和角从中找到一对全等三角形.二、认真填一填11.若三角形的两边长分别为3、4,且周长为整数,这样的三角形共有 5 个.【考点】三角形三边关系;一元一次不等式组的整数解.菁优网版权所有【分析】设第三边的长为x,根据三角形的三边关系的定理可以确定x的取值范围,进而得到答案.【解答】解:设第三边的长为x,则4﹣3<x<4+3,所以1<x<7.∵x为整数,∴x可取2,3,4,5,6.故答案为5.【点评】此题主要考查了三角形的三边关系,关键是掌握三角形三边关系定理:三角形两边之和大于第三边.三角形的两边差小于第三边.12.如图,在△ABC和△DEF中,已知:AC=DF,BC=EF,要使△ABC≌△DEF,还需要的条件可以是AB=DE .(只填写一个条件)【考点】全等三角形的判定.菁优网版权所有【专题】开放型.【分析】根据“SSS”添加条件.【解答】解:若加上AB=DE,则可根据“SSS”判断△ABC≌△DEF.故答案为AB=DE.【点评】本题考查了全等三角形的判定:判定方法有“SSS”、“SAS”、“ASA”、“AAS”.13.若△ABC≌△DEF,且∠A=110°,∠F=40°,则∠E= 30 度.【考点】全等三角形的性质.菁优网版权所有【分析】根据全等三角形的性质得出∠D=∠A=110°,∠C=∠F=40°,进而得出答案.【解答】解:∵△ABC≌△DEF,∠A=110°,∠F=40°,∴∠D=∠A=110°,∠C=∠F=40°,∴∠DEF=180°﹣110°﹣40°=30°.故答案为:30;【点评】此题主要考查了全等三角形的性质,利用其性质得出对应角相等是解题关键.14.在△ABC中,∠A:∠B:∠C=1:2:3,则∠A= 30°.,∠C= 90°..【考点】三角形内角和定理.菁优网版权所有【分析】有三角形内角和180度,又知三角形内各角比,从而求出.【解答】解:由三角形内角和180°,又∵∠A:∠B:∠C=1:2:3,∴∠A=180°×=30°,∠C=180°×=90°.故填:30°,90°.【点评】本题考查三角形内角和定理,结合已知条件,从而很容易知道各角所占几分之几.而解得.15.如图,在△ABC中,∠B=60°,∠C=40°,AD⊥BC于D,AE平分∠BAC;则∠DAE= 10°.【考点】三角形内角和定理;三角形的外角性质.菁优网版权所有【分析】根据∠B=60°,∠C=40°可得∠BAC的度数,AE平分∠BAC,得到∠BAE和∠CAE 的度数,利用外角的性质可得∠AED的度数,再根据垂直定义,得到直角三角形,在直角△ABD中,可以求得∠DAE的度数.【解答】解:∵∠C=40°,∠B=60°,∴∠BAC=180°﹣40°﹣60°=80°,∵AE平分∠BAC,∴∠BAE=∠CAE=40°,∴∠AED=80°,∵AD⊥BC于D,∴∠ADC=90°,∴∠DAE=180°﹣80°﹣90°=10°,故答案为:10°.【点评】本题主要考查角平分线的定义和垂直的定义,外角性质,三角形内角和定理,综合利用各定理及性质是解答此题的关键.16.如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADC的面积为S1,△ACE的面积为S2,若S△ABC=6,则S1﹣S2的值为 1 .【考点】三角形的面积.菁优网版权所有【专题】压轴题.【分析】根据等底等高的三角形的面积相等求出△AEC的面积,再根据等高的三角形的面积的比等于底边的比求出△ACD的面积,然后根据S1﹣S2=S△ACD﹣S△ACE计算即可得解.【解答】解:∵BE=CE,∴S△ACE=S△ABC=×6=3,∵AD=2BD,∴S△ACD=S△ABC=×6=4,∴S1﹣S2=S△ACD﹣S△ACE=4﹣3=1.故答案为:1.【点评】本题考查了三角形的面积,主要利用了等底等高的三角形的面积相等,等高的三角形的面积的比等于底边的比,需熟记.17.如图,将纸片△ABC沿DE折叠,点A落在点P处,已知∠1+∠2=100°,则∠A的大小等于50 度.【考点】三角形内角和定理;翻折变换(折叠问题).菁优网版权所有【分析】根据已知求出∠ADP+∠AEP=360°﹣(∠1+∠2)=260°,根据折叠求出∠ADE+∠AED=×260°=130°,根据三角形内角和定理求出即可.【解答】解:∵∠1+∠2=100°,∴∠ADP+∠AEP=360°﹣(∠1+∠2)=260°,∵将纸片△ABC沿DE折叠,点A落在点P处,∴∠ADE=∠ADP,∠AED=∠AEP,∴∠ADE+∠AED=×260°=130°,∴∠A=180°﹣(∠ADE+∠AED)=50°,故答案为:50.【点评】本题考查了三角形的内角和定理和折叠的性质的应用,注意:三角形的内角和等于180°,题目比较好,难度适中.18.如图,△ABC中,∠BAC=100°,EF,MN分别为AB,AC的垂直平分线,如果BC=12cm,那么△FAN的周长为12 cm,∠FAN= 20°.【考点】线段垂直平分线的性质.菁优网版权所有【分析】由EF,MN分别为AB,AC的垂直平分线,可得AF=BF,AN=CN,即可得△FAN的周长等于BC;又由∠BAC=100°,求得∠BAF+∠CAN=∠B+∠C=180°﹣∠BAC=80°,继而求得答案.【解答】解:∵EF,MN分别为AB,AC的垂直平分线,∴AF=BF,AN=CN,∴△FAN的周长为:AF+FN+AN=BF+FN+CN=BC=12cm;∴∠BAF=∠B,∠CAN=∠C,∵△ABC中,∠BAC=100°,∴∠BAF+∠CAN=∠B+∠C=180°﹣∠BAC=80°,∴∠FAN=∠BAC﹣(∠BAF+∠CAN)=20°.故答案为:12,20°.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的判定与性质.此题难度不大,注意掌握数形结合思想与转化思想的应用.三、解答题19.如图,点A、C、D、B 四点共线,且AC=DB,∠A=∠B,∠E=∠F.求证:DE=CF.【考点】全等三角形的判定与性质.菁优网版权所有【专题】证明题.【分析】根据条件可以求出AD=BC,再证明△AED≌△BFC,由全等三角形的性质就可以得出结论.【解答】证明:∵AC=DB,∴AC+CD=DB+CD,即AD=BC,在△AED和△BFC中,∴△AED≌△BFC.∴DE=CF.【点评】本题考查了线段的数量关系,全等三角形的判定及性质的运用,解答时证明△AED≌△BFC是解答本题的关键.20.如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.【考点】全等三角形的判定.菁优网版权所有【专题】证明题.【分析】(1)根据题目所给条件可分析出△ABE≌△CDF,△AFD≌△CEB;(2)根据AB∥CD可得∠1=∠2,根据AF=CE可得AE=FC,然后再证明△ABE≌△CDF 即可.【解答】解:(1)△ABE≌△CDF,△AFD≌△CEB;(2)∵AB∥CD,∴∠1=∠2,∵AF=CE,∴AF+EF=CE+EF,即AE=FC,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS).【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.21.如图,在△ABC中,∠B=40°,∠C=110°.(1)画出下列图形:①BC边上的高AD;②∠A的角平分线AE.(2)试求∠DAE的度数.【考点】作图—复杂作图.菁优网版权所有【分析】(1)利用直角三角板一条直角边与BC重合,沿BC平移使另一直角边过A 画BC边上的高AD即可;再根据角平分线的做法作∠A的角平分线AE;(2)首先计算出∠BAE的度数,再计算出∠BAD的度数,利用角的和差关系可得答案.【解答】解:(1)如图所示:(2)在△ABC中,∠BAC=180°﹣11°﹣40°=30°,∵AE平分∠BAC,∴∠BAE=∠BAC=15°,在Rt△ADB中,∠BAD=90°﹣∠B=50°,∴∠DAE=∠DAB﹣∠BAE=35°.【点评】此题主要考查了复杂作图,以及角的计算,关键是正确画出图形.22.作图,如图已知三角形ABC内一点P(1)过P点作线段EF∥AB,分别交BC,AC于点E,F(2)过P点作线段PD使PD⊥BC垂足为D点.【考点】作图—基本作图.菁优网版权所有【分析】(1)根据过直线外一点作已知直线平行线的方法作图即可;(2)利用直角三角板,一条直角边与BC重合,沿BC平移,使另一条直角边过点P 画垂线即可.【解答】解:如图所示:.【点评】此题主要考查了基本作图,关键是掌握利用直尺做平行线的方法.23.如图,在△ABC中,AD平分∠BAC,AD的垂直平分线EF交BC的延长线于点F,连接AF,求证:∠CAF=∠B.【考点】线段垂直平分线的性质.菁优网版权所有【专题】证明题.【分析】EF垂直平分AD,则可得AF=DF,进而再转化为角之间的关系,通过角之间的平衡转化,最终得出结论.【解答】证明:∵EF垂直平分AD,∴AF=DF,∠ADF=∠DAF,∵∠ADF=∠B+∠BAD,∠DAF=∠CAF+∠CAD,又∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠CAF=∠B.【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.24.如图,点D为锐角∠ABC内一点,点M在边BA上,点N在边BC上,且DM=DN,∠BMD+∠BND=180°.求证:BD平分∠ABC.【考点】全等三角形的判定与性质;角平分线的性质.菁优网版权所有【专题】证明题.【分析】在AB上截取ME=BN,证得△BND≌△EMD,进而证得∠DBN=∠MED,BD=DE,从而证得BD平分∠ABC.【解答】解:如图所示:在AB上截取ME=BN,∵∠BMD+∠DME=180°,∠BMD+∠BND=180°,∴∠DME=∠BND,在△BND与△EMD中,,∴△BND≌△EMD(SAS),∴∠DBN=∠MED,BD=DE,∴∠MBD=∠MED,∴∠MBD=∠DBN,∴BD平分∠ABC.【点评】本题考查了三角形全等的判定和性质,等腰三角形的判定和性质.25.如图,在长方形ABCD中,AB=8cm,BC=6cm,点E是CD的中点,动点P从A点出发,以每秒2cm的速度沿A→B→C→E运动,最终到达点E.若设点P运动的时间是t秒,那么当t取何值时,△APE的面积会等于10?【考点】一元一次方程的应用;三角形的面积.菁优网版权所有【专题】几何动点问题.【分析】分为三种情况讨论,如图1,当点P在AB上,即0<t≤4时,根据三角形的面积公式建立方程求出其解即可;如图2,当点P在BC上,即4<t≤7时,由S△APE=S﹣S△PCE﹣S△PAB建立方程求出其解即可;如图3,当点P在EC上,即7<t≤9四边形AECB时,由S△APE==10建立方程求出其解即可.【解答】解:如图1,当点P在AB上,即0<t≤4时,∵四边形ABCD是矩形,∴AD=BC=6,AB=CD=8.∵AP=2t,∴S△APE=×2t×6=10,∴t=.如图2,当点P在BC上,即4<t≤7时,∵E是DC的中点,∴DE=CE=4.∵BP=2t﹣8,PC=6﹣(2t﹣8)=14﹣2t.∴S=(4+8)×6﹣×(2t﹣8)×8﹣(14﹣2t)×4=10,解得:t=7.5>7舍去;当点P在EC上,即7<t≤9时,PE=18﹣2t.∴S△APE=(18﹣2t)×6=10,解得:t=.总上所述,当t=或时△APE的面积会等于10.【点评】本题考查了矩形的性质的运用,三角形的面积公式的运用,梯形的面积公式的运用.解答时灵活运用三角形的面积公式求解是关键.26.课本拓展旧知新意:我们容易证明,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?1.尝试探究:(1)如图1,∠DBC与∠ECB分别为△ABC的两个外角,试探究∠A与∠DBC+∠ECB之间存在怎样的数量关系?为什么?2.初步应用:(2)如图2,在△ABC纸片中剪去△CED,得到四边形ABDE,∠1=130°,则∠2﹣∠C= 50°;(3)小明联想到了曾经解决的一个问题:如图3,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案∠P=90°﹣∠A .3拓展提升:(4)如图4,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,∠P与∠A、∠D有何数量关系?为什么?(若需要利用上面的结论说明,可直接使用,不需说明理由)【考点】三角形的外角性质;三角形内角和定理.菁优网版权所有【专题】探究型.【分析】(1)根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠DBC+∠ECB ,再利用三角形内角和定理整理即可得解;(2)根据(1)的结论整理计算即可得解;(3)表示出∠DBC+∠ECB ,再根据角平分线的定义求出∠PBC+∠PCB ,然后利用三角形内角和定理列式整理即可得解;(4)延长BA 、CD 相交于点Q ,先用∠Q 表示出∠P ,再用(1)的结论整理即可得解.【解答】解:(1)∠DBC+∠ECB=180°﹣∠ABC+180°﹣∠ACB=360°﹣(∠ABC+∠ACB )=360°﹣(180°﹣∠A )=180°+∠A ;(2)∵∠1+∠2=∠180°+∠C ,∴130°+∠2=180°+∠C ,∴∠2﹣∠C=50°;(3)∠DBC+∠ECB=180°+∠A ,∵BP 、CP 分别平分外角∠DBC 、∠ECB ,∴∠PBC+∠PCB=(∠DBC+∠ECB )=(180°+∠A ),在△PBC 中,∠P=180°﹣(180°+∠A )=90°﹣∠A ;即∠P=90°﹣∠A ;故答案为:50°,∠P=90°﹣∠A ;(4)延长BA、CD于Q,则∠P=90°﹣∠Q,∴∠Q=180°﹣2∠P,∴∠BAD+∠CDA=180°+∠Q,=180°+180°﹣2∠P,=360°﹣2∠P.【点评】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,角平分线的定义,熟记性质并读懂题目信息是解题的关键.。
第五章 一次函数单元测试卷(标准难度)(含答案)
浙教版初中数学八年级上册第五章《一次函数》单元测试卷考试范围:第五章;考试时间:120分钟;总分:120分学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共12小题,共36分。
在每小题列出的选项中,选出符合题目的一项)1.如图所示的图象(折线ABCDE)描述了一辆汽车在某一直线上的行驶过程中,汽车离出发地的距离s(千米)与行驶时间t(时)之间的关系,根据图中提供的信息,给出下列说法:①汽车共行驶了140千米;②汽车在行驶途中停留了1小时;③汽车在整个行驶过程中的平均速度为30千米/时;④汽车出发后6小时至9小时之间行驶的速度在逐渐减小.其中正确的说法共有( )A. 1个B. 2个C. 3个D. 4个2.根据如图所示的计算程序计算y的对应值,若输入变量x的值为12,则输出的结果为( )A. 12B. −12C. −32D. 543.在矩形ABCD中,动点P从A出发,沿A→D→C运动,速度为1m/s,同时动点Q从点A出发,以相同的速度沿路线A→B→C运动,设点P的运动时间为t(s),△CPQ的面积为S(m2),S与t的函数关系的图象如图所示,则△CPQ面积的最大值是( )A. 3B. 6C. 9D. 184.学枝组织部分师生去烈士陵园参加“不忘初心,牢记使命”主题教育活动.师生队伍从学校出发,匀速行走30分钟到达烈士陵园,用1小时在烈主陵园进行了祭扫和参观学习等活动,之后队伍按原路匀速步行45分钟返校.设师生队伍离学校的距离为y米,离校的时间为x分钟,则下列图象能大致反映y与x关系的是( )A. B.C. D.5.小聪某次从家出发去公园游玩的行程如图所示,他离家的路程为s米,所经过的时间为t分钟.下列选项中的图象,能近似刻画s与t之间关系的是( )A. B.C. D.6.下列函数中,一次函数是( )+2 B. y=−2xA. y=1xC. y=x2+2D. y=mx+n(m,n是常数)7.函数①y=πx,②y=−2x+1,③y=1,④y=x2−1中,是一次函数的有( )xA. 4个B. 3个C. 2个D. 1个8.下列函数:(1)y=πx2(2)y=2x−1(3)y=1(4)y=2−3x(5)y=x2−1中,x是一次函数的有( )A. 4个B. 3个C. 2个D. 1个9.一次函数y=2(x+1)−1不经过第象限.( )A. 一B. 二C. 三D. 四10.如图,已知直线l1:y=−2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(−2,0),则k的取值范围是( )A. −2<k<2B. −2<k<0C. 0<k<4D. 0<k<2x+4与x轴、y轴分别交于A、B两点,C、D分别为线段AB、OB的11.如图,直线y=23中点,P为OA上一动点,当PC+PD的值最小时,点P的坐标为( )A. (−52,0) B. (−3,0) C. (−32,0) D. (−6,0)12.甲、乙两人在一条长400米的直线跑道上同起点、同终点、同方向匀速跑步,先到终点的人原地休息.已知甲先出发3秒,在跑步过程中,甲、乙两人间的距离y(米)与乙出发的时间x(秒)之间的函数关系如图所示,则下列结论中正确的个数是( )①乙的速度为5米/秒;②离开起点后,甲、乙两人第一次相遇时,距离起点60米;③甲、乙两人之间的距离为40米时,甲出发的时间为55秒和90秒;④乙到达终点时,甲距离终点还有80米.A. 4个B. 3个C. 2个D. 1个第II卷(非选择题)二、填空题(本大题共4小题,共12分)13.一根长为20cm的蜡烛,每分钟燃烧2cm,蜡烛剩余长度y(厘米)与燃烧时间t(分)之间的关系式为______(不必写出自变量的取值范围).14.某公司生产一种产品,前期投资成本为100万元,在此基础上,每生产一吨又要投入5万元成本,那么生产的总成本y万元与产量x吨之间的数量关系是______.15.新定义:[a,b]为一次函数y=ax+b(a≠0,a,b为实数)的“关联数”.若“关联数”[3,m+2]所对应的一次函数是正比例函数,则关于x的方程1x−1+1m=1的解为.16.如图,直线y=kx+b与y=mx+n分别交x轴于点A(−0.5,0),B(2,0),则不等式(kx+b)(mx+n)>0的解集为______.三、解答题(本大题共9小题,共72分。
浙教版八年级数学上册单元测试题全套(含答案)
浙教版八年级数学上册单元测试题全套(含答案)第1章三角形的初步知识检测卷(时间:60分钟满分:100分)一、选择题(每题2分,共20分)1.如图,为估计池塘两岸A,B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么AB间的距离不可能是( )(第1题图)A.5m B.15m C.20m D.28m2.一个三角形三个内角的度数之比为2∶3∶5,这个三角形一定是( )A.锐角三角形 B.直角三角形C.钝角三角形 D.等腰三角形3.张师傅不小心将一块三角形玻璃打破成如图中的三块,他准备去店里重新配置一块与原来一模一样的,最省事的做法是( )(第3题图)A.带1去 B.带2去C.带3去 D.三块都带去4.下列说法:①全等三角形的面积相等;②全等三角形的周长相等;③全等三角形的对应角相等;④全等三角形的对应边相等.其中正确的有( )A.1个 B.2个 C.3个 D.4个5.如图,下列A,B,C,D四个三角形中,能和模板中的△ABC完全重合的是( )(第5题图)6.BD是△ABC的中线,若AB=5cm,BC=3cm,则△ABD与△BCD的周长之差是( )A.1cm B.2cm C.3cm D.5cm7.如图,已知MB=ND,∠MBA=∠NDC,下列不能判定△ABM≌△CDN的条件是( ) A.∠M=∠N B.AB=CD C.AM=CN D.AM∥CN(第7题图)(第8题图)8.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是( ) A.3 B.4 C.6 D.59.如图,锐角三角形ABC中,直线l为BC的中垂线,直线m为∠ABC的角平分线,l与m相交于点P.若∠BAC=60°,∠ACP=24°,则∠ABP是( )A.24° B.30° C.32° D.36°(第9题图)(第10题图)10.如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是( )①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3. A.1个 B.2个 C.3个 D.4个二、填空题(每题3分,共30分)11.木工师傅在做完门框后,为防止变形常常像图中那样钉上两条斜拉的木板条(即图中AB,CD两个木条),这样做根据的数学道理是____.(第11题图)(第12题图)(第13题图)12.如图,点D,E分别在线段AB,AC上,BE,CD相交于点O,AE=AD,要使△ABE≌△ACD,需添加一个条件是____________________(只要求写一个条件).13.一副具有30°和45°角的直角三角板,如图叠放在一起,则图中∠α的度数是____.14.可以用来证明命题“如果a,b是有理数,那么|a+b|=|a|+|b|”是假命题的反例可以是____ .15.如图,在△ABC中,∠C=90°,BD平分∠ABC,交AC于点D.若DC=3,则点D到AB的距离是_______.(第15题图)(第16题图)16.如图,在△ABC中,AB=12,EF为AC的垂直平分线,若EC=8,则BE的长为____.17.一个三角形的两边长分别是3和7,且第三边长为奇数,这样的三角形的周长最大值是___________. 18.如图,在△ABC中,高BD,CE相交于点H,若∠BHC=110°,则∠A等于____.19.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,∠A,∠1,∠2之间有一种数量关系始终保持不变,这种关系是___ .(第18题图)(第19题图)(第20题图)20.如图,在△ABC中,BC边不动,点A竖直向上运动,∠A越来越小,∠B,∠C越来越大,若∠A减少α度,∠B增加β度,∠C增加γ度,则α,β,γ三者之间的等量关系是__ _.三、解答题(共50分)21.(6分)已知线段a,b及∠α,用直尺和圆规作△ABC,使∠B=∠α,AB=a,BC=b.(第21题图)22.(7分)如图,△ABC≌△ADE,且∠CAD=35°,∠B=∠D=20°,∠EAB=105°,求∠BFD和∠BED的度数.(第22题图)23.(6分)如图,在△ABC与△BAD中,AD与BC相交于点M,∠1=∠2,________,试说明△ABC≌△BAD.请你在横线上添加一个条件,使得它可以用“AAS”来说明△ABC≌△BAD,并写出说理过程.(第23题图)24.(7分)如图,在四边形ABCD中,∠A=∠BCD=90°,BC=DC,延长AD到点E,使DE=AB.(1)求证:∠ABC=∠EDC;(2)求证:△ABC≌△EDC.(第24题图)25.(8分)如图,在△ABC中,∠C=90°,BE平分∠ABC,AF平分外角∠BAD,BE与FA交于点E.求∠E的度数.(第25题图)26.(8分)如图,在△ABC中,AC=6cm,AB=9cm,D是边BC上一点,AD平分∠BAC,在AB上截取AE=AC,连结DE,已知DE=2cm,BD=3cm.求:(1)线段BC的长;(2)若∠ACB的平分线CF交AD于点O,且点O到AC的距离是a cm,请用含a的代数式表示△ABC的面积.(第26题图)27.(8分)如图,在△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD交BD的延长线于点E,求证:BD=2CE.(第27题图)参考答案一、1.D 2.B 3.C 4.D 5.A 6.B 7.C 8.A 9.C 10.D二、11.三角形的稳定性12.AB =AC 或∠B=∠C 或∠ADC=∠AEB13.75°14.答案不唯一,如a =-1,b =3等异号两数15.316.417.1918.70°19.2∠A=∠1+∠220.α=β+γ三、21.略22.∠BFD=90°,∠BED =70°23.答案不唯一,如横线上添加的条件是∠C=∠D.理由如下:在△ABC 与△BAD 中,⎩⎪⎨⎪⎧∠C =∠D(已知),∠2=∠1(已知),AB =BA (公共边),∴△ABC ≌△BAD(AAS).(第24题答图)24.(1)证明:在四边形ABCD 中,∵∠A =∠BCD=90°,∴∠B +∠ADC=180°.又∵∠ADC+∠EDC=180°,∴∠ABC =∠EDC.(2)证明:连结AC.在△ABC 和△EDC 中,⎩⎪⎨⎪⎧BC =DC ,∠ABC =∠EDC,AB =ED ,∴△ABC ≌△EDC.25.∠E=45°26.(1)BC =5cm (2)10acm 227.证明:延长CE 与BA 的延长线交于点F ,∵∠BAC =90°,CE ⊥BD ,∴∠BAC =∠DEC,∵∠ADB =∠CDE,∴∠ABD =∠DCE,在△BAD 和△CAF 中,⎩⎪⎨⎪⎧∠BAD =∠CAF,AB =AC ,∠ABD =∠DCE,∴△BAD ≌△CAF(ASA),∴BD =CF ,在△BEF 和△BEC 中,⎩⎪⎨⎪⎧∠1=∠2,BE =BE ,∠BEF =∠BEC,∴△BEF ≌△BEC(ASA),∴CE =EF ,∴DB =2CE.(第27题答图)第2章 特殊三角形检测卷(时间:60分 满分:100分)一、选择题(每题2分,共20分)1.下列图形不是..轴对称图形的是( ) A .线段 B .等腰三角形C .角D .有一个内角为60°的直角三角形2.下列命题的逆命题正确的是( )A .全等三角形的面积相等B .全等三角形的周长相等C .等腰三角形的两个底角相等D .直角都相等3.等腰三角形的两条边长是3和6,则它的周长是( )A .12B .15C .12或15D .15或184.如图,在△ABC 中,AB =AC =5,BC =6,AD 是BC 边上的中线,点E ,F ,M ,N 是AD 上的四点,则图中阴影部分的总面积是( )A .6B .8C .4D .12(第4题图) (第6题图)5.有一个角是36°的等腰三角形,其他两个角的度数是( )A .36°,108°B .36°,72°C .72°,72°D .36°,108°或72°,72°6.如图,在Rt △ABC 中,∠C =90°,∠ABC 的平分线BD 交AC 于点D.若BC =4cm ,BD =5cm ,则点D 到AB 的距离是( )A .5cmB .4cmC .3cmD .2cm7.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是( )A .1,2,3B .1,1, 2C .1,1, 3D .1,2, 38.如图,△ABC 的顶点都在正方形网格的格点上,若小方格的边长为1,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰直角三角形(第8题图)9.如图,已知:∠MON=30°,点1A ,2A , 3A …在射线ON 上,点6B 1B 、2B 、3B …在射线OM 上,△1A 1B 2A 、△2A 2B 3A 、△3A 3B 4A …均为等边三角形,若O 1A =1,则△6A 6B 7A 的边长为( )A .6B .12C .32D .64(第9题图) (第10题图)10.如图,△ABC 和△ADE 都是等腰直角三角形,∠BAC =∠DAE=90°,连结CE 交AD 于点F ,连结BD 交CE 于点G ,连结BE.下列结论中,正确的结论有( )①CE =BD ;②△ADC 是等腰直角三角形;③∠ADB=∠AEB;④S 四边形BCDE =12BD ·CE ;⑤BC 2+DE 2=BE 2+CD 2. A .1个 B .2个 C .3个 D .4个二、填空题(每题3分,共30分)11.命题“角平分线上的点到角两边的距离相等”的逆命题是______.12.如图,在△ABC 中,AB =AC ,BC =6,AD ⊥BC 于点D ,则BD =________.(第12题图) (第13题图)13.如图,在Rt △ABC 中,CD 是斜边AB 上的中线,若∠A=20°,则∠BDC=____.14.如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的面积分别为5和12,则b 的面积为____.(第14题图) (第15题图)15.如图,在等边三角形ABC 中,AB =6,D 是BC 的中点,将△ABD 绕点A 旋转后得到△ACE,那么线段DE 的长度为________.(第16题图) (第17题图)16.如图,△ABC 中,CD ⊥AB 于点D ,E 是AC 的中点.若AD =6,DE =5,则CD 的长等于_____.17.如图,折叠长方形的一边AD ,使点D 落在BC 边的点F 处,已知AB =8cm ,BC =10cm ,则EC 的长为___cm.18.如图,在△ABC 中,∠BAC =90°,AB =AC ,AE 是经过点A 的一条直线,且B ,C 在AE 的两侧,BD ⊥AE 于点D ,CE ⊥AE 于点E ,CE =2,BD =6,则DE 的长为_____.19.如图,在Rt △ABC 中,∠C =90°,AC =BC ,将其绕点A 逆时针旋转15°得到Rt △AB ′C ′,B ′C ′交AB 于点E ,若图中阴影部分面积为23,则B′E 的长为__________.(第18题图) (第19题图) 20.在Rt △ABC 中,∠C =90°,BC =8 cm ,AC =4 cm ,在射线BC 上一动点D ,从点B 出发,以5厘米每秒的速度匀速运动,若点D 运动t 秒时,以A ,D ,B 为顶点的三角形恰为等腰三角形,则所用时间t 为_______秒(结果可含根号).三、解答题(共50分)21.(7分)如图,在Rt △ABC 中,∠B =90°,分别以点A ,C 为圆心,大于12AC 长为半径画弧,两弧相交于点M ,N ,连结MN ,与AC ,BC 分别交于点D ,E ,连结AE.(1)求∠ADE;(直接写出结果)(2)当AB =3,AC =5时,求△ABE 的周长.(第21题图)22.(8分)如图,在等边三角形ABC 中,点D ,E 分别在边BC ,AC 上,DE ∥AB ,过点E 作EF⊥DE,交BC 的延长线于点F.(1)求∠F 的度数;(2)若CD =2,求DF 的长.(第22题图)23.(8分)给出两个三角形(如图),请你把图1分割成两个等腰三角形,把图2分割成三个等腰三角形,并在图上标出分割后等腰三角形的顶角的度数.(第23题图)24.(8分)如图,在△ABC 中,D 是BC 边上一点,且BA =BD ,∠DAC =12∠B ,∠C =50°.求∠BAC 的度数.(第24题图)25.(9分)已知:如图,在△ABC 中,AD 是△ABC 的高,作∠DCE=∠ACD,交AD 的延长线于点E ,点F 是点C 关于直线AE 的对称点,连结AF.(1)求证:CE =AF ;(2)若CD =1,AD =3,且∠B=20°,求∠BAF 的度数.(第25题图)26.(10分) 在△ABC中,AB=AC,点D是直线BC上一点(不与B,C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连结CE.(1)如图1,当点D在线段BC上时,如果∠BAC=90°,则∠BCE=__ _°.(2)设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动时,α,β之间有怎样的数量关系?请说明理由.②当点D在直线BC上移动时,α,β之间有怎样的数量关系?请你在备用图上画出图形,并直接写出你的结论.(第26题图)参考答案一、1.D 2. C 3. B 4. A 5. D 6. C 7.D 8. B 9.C 10.C 二、11.角的内部到角两边距离相等的点在角平分线上 12.3 13.40° 14.17 15.3 3 16.8 17.3 18.4 19.23-2 20.5,4,165 5三、21.(1)∵由题意可知MN 是线段AC 的垂直平分线,∴∠ADE =90°. (2)∵在Rt △ABC 中,∠B =90°,AB =3,AC =5,∴BC =52-32=4. ∵MN 是线段AC 的垂直平分线,∴AE =CE , ∴△ABE 的周长=AB +(AE +BE)=AB +BC =3+4=7. 22.(1)∵△ABC 是等边三角形,∴∠B =60°. ∵DE ∥AB ,∴∠EDC =∠B=60°. ∵EF ⊥DE ,∴∠DEF =90°, ∴∠F =90°-∠EDC=30°.(2)∵∠ACB=60°,∠EDC =60°,∴△EDC 是等边三角形.∴ED=DC =2. ∵∠DEF =90°,∠F =30°,∴DF =2DE =4. 23.略24.设∠DAC=x °,则∠B=2x °,∠BDA =∠C+∠DAC=50°+x °. ∵BD =BA ,∴∠BAD =∠BDA=50°+x °(等边对等角). ∵∠B +∠BAD+∠BDA=180°, 2x +50+x +50+x =180.解得x =20. ∴∠BAD =∠BDA=50°+20°=70°, ∠BAC =∠BAD+∠DAC=70°+20°=90°.25.(1)证明:如答图.∵AD 是△ABC 的高,∴∠ADC =∠ADF=90°. 又∵点F 是点C 关于直线AE 的对称点,∴FD =CD.∴AF=AC.又∵∠1=∠2,∴∠CAD =∠CED.∴EC=AC.∴CE=AF.(2)在Rt △ACD 中,CD =1,AD =3,∴AC =2,∴∠DAC =30°.同理可得∠DAF=30°,在Rt △ABD 中,∠B =20°,∴∠BAF =40°.(第25题答图)26.(1)90. ∵∠DAE=∠BAC,∠BAC =∠BAD+∠DAC=∠EAC+∠DAC;∴∠CAE=∠BAD;在△ABD 和△ACE中,⎩⎪⎨⎪⎧AB =AC ,∠BAD =∠CAE,AD =AE ,∴△ABD ≌△ACE(SAS); ∴∠B =∠ACE;∴∠BCE =∠BCA+∠ACE=∠BCA+∠B=180°-∠BAC=90°.(2)①由(1)中可知,β=180°-α,∴α、β存在的数量关系为α+β=180°;②当点D 在射线BC 上时,如答图1,α+β=180°;当点D 在射线BC 的反向延长线上时,如答图2,α=β.(第26题答图)第3章 一元一次不等式检测卷 (时间:60分钟 满分:100分)一、选择题(每题2分,共20分) 1.不等式2x>3-x 的解集是( )A .x<2B .x>2C .x>1D .x<12.甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是( )A .1℃~3℃B .3℃~5℃C .5℃~8℃D .1℃~8℃ 3.已知a<b ,c 是有理数,下列各式正确的是( ) A .ac 2<bc 2B .c -a<c -bC .a -3c<b -3c D. a c <b c4.不等式组⎩⎪⎨⎪⎧2x >-4,3x -5≤7的解集在数轴上可以表示为( )5.若2a +3b -1>3a +2b ,则a ,b 的大小关系为( )A .a<bB .a>bC .a =bD .不能确定6.设a ,b ,c 表示三种不同物体的质量,用天平称两次,情况如图,则这三种物体的质量从小到大排序正确的是( )(第6题图)A .c <b <aB .b <c <aC .c <a <bD .b <a <c7.若0<x<1,则x ,1x,x ²的大小关系是( )A.1x <x<x 2 B .x<1x <x 2 C .x 2<x<1x D. 1x<x 2<x 8.如果不等式组⎩⎪⎨⎪⎧2x -1>3(x -1),x >m 无解,那么m 的取值范围是( )A .m =2B .m >2C .m <2D .m ≥29.某种商品的进价为1000元,出售时的标价为1500元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则最多可打( )A .6折B .7折C .8折D .9折10.如果关于x 的不等式组⎩⎪⎨⎪⎧5x -2a>0,7x -3b≤0的整数解仅有7,8,9,那么适合这个不等式组的整数a ,b 的有序数对(a ,b)共有( )A .4对B .6对C .8对D .9对 二、填空题(每题3分,共30分)11.用不等式表示“7与m 的3倍的和是正数“就是____. 12.如果a<b ,那么3-2a___3-2b(用不等号连接). 13.满足不等式2x -1<6的最大负整数为________. 14.已知3x -2y =0,且x -1>y ,则x 的取值范围是___.15.若不等式组⎩⎪⎨⎪⎧x -m >4,n -2x >0的解集是-1<x <1,则m +n =____.16.若关于x 的不等式3m -2x <5的解集是x >2,则实数m 的值为______.17.某企业向银行贷款100万元,一年后归还银行106.6多万元,则年利率高于__ %. 18.下课时老师在黑板上抄了一道题:x +22≥2x -13+,是被一学生擦去的一个数字,又知其解集为x≤2,则被擦去的数字是_______.19.已知关于x 的方程2x +mx -2=3的解是正数,则m 的取值范围为___ .20.小军的期末总评成绩由平时、期中、期末成绩按权重比1∶1∶8组成,现小军平时考试得90分,期中考试得60分,要使他的总评成绩不低于79分,那么小军的期末考试成绩x 满足的条件是____ . 三、解答题(共50分)21.(6分)解不等式:x 3>1-x -36.22.(6分)解不等式组,并把它们的解集在数轴上表示出来. ⎩⎪⎨⎪⎧x -32+3≥x,1-3(x -1)<8-x.23.(6分)已知a =x +43,b =2x -74,并且2b≤52<a.请求出x 的取值范围,并将这个范围在数轴上表示出来.24.(7分)已知关于x ,y 的方程组⎩⎪⎨⎪⎧x -y =2m +7,①x +y =4m -3.②的解为负数,求m 的取值范围.25.(8分)为了提高饮水质量,越来越多的居民开始选购家用净水器.一商场抓住商机,从厂家购进了A ,B 两种型号家用净水器共160台,A 型号家用净水器进价是150元/台,B 型号家用净水器进价是350元/台,购进两种型号的家用净水器共用去36000元. (1)求A ,B 两种型号的家用净水器分别购进了多少台.(2)为了使每台B 型号家用净水器的毛利润是A 型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,求每台A 型号家用净水器的售价至少是多少元. (注:毛利润=售价-进价)26.(8分)先阅读理解下面的例题,再按要求解答: 例题:解一元二次不等式x ²-9>0.解:∵x²-9=(x +3)(x -3),∴(x +3)(x -3)>0.由有理数的乘法法则“两数相乘,同号得正”,得(1)⎩⎪⎨⎪⎧x +3>0,x -3>0,(2)⎩⎪⎨⎪⎧x +3<0,x -3<0. 解不等式组(1),得x>3,解不等式组(2),得x<-3, 故(x +3)(x -3)>0的解集为x>3或x<-3, 即一元二次不等式x ²-9>0的解集为x>3或x<-3. 问题:求分式不等式5x +12x -3<0的解集.27.(9分)为了更好地治理流溪河水质,保护环境,市治污公司决定购买10台污水处理设备.现有A ,B 两种型号的设备,其中每台的价格,月处理污水量如表:经调查:购买一台A 型号设备比购买3台B 型号设备少6万元. (1)求a ,b 的值;(2)经预算:市治污公司购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案. (3)在(2)问的条件下,若每月要求处理流溪河两岸的污水量不低于2 040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.参考答案一、1.C 2.B 3.C 4.B 5.A 6.A 7.C 8.D 9.B 10.D 二、11.7+3m>0 12.> 13.-1 14.x <-2 15.-3 16.3 17.6.6 18.1 19.m>-6且m≠-4 20.x≥80 三、21.2x >6-(x -3),2x >6-x +3, 3x >9,x >3.所以,不等式的解集为x >3. 22.-2<x≤3,图略. 23.72<x ≤6,图略. 24.⎩⎪⎨⎪⎧x =3m +2,y =m -5.由⎩⎪⎨⎪⎧3m +2<0,m -5<0得m <-23.25.(1)设A 型号家用净水器购进了x 台,B 型号家用净水器购进了y 台.由题意,得⎩⎪⎨⎪⎧x +y =160,150x +350y =36000.解得⎩⎪⎨⎪⎧x =100,y =60.所以,A 型号家用净水器购进了100台,B 型号家用净水器购进了60台.(2)设每台A 型号家用净水器的毛利润为z 元,则每台B 型号家用净水器的毛利润为2z 元. 由题意,得100z +60×2z≥11000, 解得z≥50,又150+50=200.所以,每台A 型号家用净水器的售价至少为200元.26.∵5x +12x -3<0,∴①⎩⎪⎨⎪⎧5x +1<0,2x -3>0,或②⎩⎪⎨⎪⎧5x +1>0,2x -3<0.解不等式组①无解;解不等式组②,得-15<x<32. 即不等式5x +12x -3<0的解集是-15<x<32.27.(1)根据题意,得⎩⎪⎨⎪⎧a -b =2,3b -2a =6,∴⎩⎪⎨⎪⎧a =12,b =10; (2)设购买A 型号设备x 台,B 型号设备(10-x)台,则12x +10(10-x)≤105,∴x ≤2.5. ∵x 取非负整数,∴x =0,1,2,∴有三种购买方案:①A 型号设备0台,B 型号设备10台;②A 型号设备1台,B 型号设备9台;③A 型号设备2台,B 型号设备8台.(3)由题意,得240x +200(10-x)≥2040,∴x ≥1.又∵x≤2.5,x 取非负整数,∴x 为1,2.当x =1时,购买资金为12×1+10×9=102(万元);当x =2时,购买资金为12×2+10×8=104(万元).∴为了节约资金,应选购A 型号设备1台,B 型号设备9台.第4章 图形与坐标检测卷 (时间:60分钟 满分:100分)一、选择题(每题2分,共20分)1.点P(-1,2)关于y 轴对称的点的坐标是( ) A .(1,2) B .(-1,-2) C .(1,-2) D .(2,-1) 2.如果P(m +3,2m +4)在y 轴上,那么点P 的坐标是( )A .(-2,0)B .(0,-2)C .(1,0)D .(0,1) 3.点P(m -1,2m +1)在第二象限,则m 的取值范围是( ) A .m>-12或m>1 B .-12<m<1 C .m<1 D .m>-124.点P 在第四象限且到x 轴的距离为4,到y 轴的距离为5,则点P 的坐标是( ) A .(4,-5) B .(-4,5) C .(-5,4) D .(5,-4)5.如图,将四边形ABCD 先向左平移3个单位,再向上平移2个单位,那么点A 的对应点A′的坐标是( ) A .(6,1) B .(0,1) C .(0,-3) D .(6,-3)(第5题图) (第6题图) (第7题图)6.如图,在平面直角坐标系中,已知点A(a ,0),B(0,b),如果将线段AB 绕点B 顺时针旋转90°至CB ,那么点C 的坐标是( )A .(-b ,b +a)B .(-b ,b -a)C .(-a ,b -a)D .(b ,b -a)7.如图,△ABC 与△DEF 关于y 轴对称,已知A(-4,6),B(-6,2),E(2,1),则点D 的坐标为( ) A .(-4,6) B .(4,6) C .(-2,1) D .(6,2)8.丽丽家的坐标为(-2,-1),红红家的坐标为(1,2),则红红家在丽丽家的( ) A .东南方向 B .东北方向 C .西南方向 D .西北方向9.在平面直角坐标系中,任意两点A(1x ,1y ),B(2x ,2y )规定运算:①A⊕B=(1x +2x ,1y +2y );②A ⊗B =1x 2x +1y 2y ;③当1x =2x 且1y =2y 时,A =B.有下列四个命题:(1)若A(1,2),B(2,-1),则A⊕B=(3,1),A ⊗B =0;(2)若A⊕B=B⊕C,则A =C ;(3)若A ⊗B =B ⊗C ,则A =C ;(4)对任意点A ,B ,C ,均有(A⊕B)⊕C=A⊕(B⊕C)成立;其中正确命题的个数为( ) A .1个 B .2个 C .3个 D .4个10.如图,一个动点P在平面直角坐标系中按箭头的方向做折线运动,即第一次从原点运动到(1,1),第二次从(1,1)运动到(2,0),第三次从(2,0)运动到(3,2),第四次从(3,2)运动到(4,0),第五次从(4,0)运动到(5,1),…,按这样的运动规律,经过第2013次运动后,动点P的坐标是( ) A.(2012,1) B.(2012,2) C.(2013,1) D.(2013,2)(第10题图)二、填空题(每题3分,共30分)11.如果电影院里的二排六号用(2,6)表示,则(1,5)的含义是____.12.若B地在A地的南偏东50°方向5km处,则A地在B地的____方向___处.13.已知点P(3,-1)关于y轴的对称点Q的坐标是(a+b,1-b),则ab的值为_______.14.△ABC在直角坐标系中的位置如图,若△A′B′C′与△ABC关于y轴对称,则点A的对应点A′的坐标为__ .(第14题图)(第15题图)(第16题图)15.如图,如果所在的位置坐标为(-1,-2),所在的位置坐标为(2,-2),则所在位置坐标为____.16.如图,已知A(0,1),B(2,0),把线段AB平移后得到线段CD,其中C(1,a),D(b,1),则a+b=______.17.在直角坐标系中,O为坐标原点,△ABO是正三角形,若点B的坐标是(-2,0),则点A的坐标是______.18.已知点P(2m-1,m)可能在某个象限的角平分线上,则点P坐标为______.19.已知点A(4,y),B(x,-3),若AB∥x轴,且线段AB的长为5,x=___ ,y=___ .20.如图,等边三角形OAB的顶点O在坐标原点,顶点A在x轴上,OA=2,将等边三角形OAB绕原点顺时针旋转105°至OA′B′的位置,则点B′的坐标为______.(第20题图)三、解答题(共50分)21.(7分)在棋盘中建立如图的直角坐标系,三颗棋子A,O,B的位置如图,它们的坐标分别是(-1,1),(0,0),(1,0).(1)如图2,添加棋子C ,使四颗棋子A ,O ,B ,C 成为一个轴对称图形,请在图中画出该图形的对称轴; (2)在其他格点位置添加一颗棋子P ,使四颗棋子A ,O ,B ,P 成为轴对称图形,请直接写出棋子P 的位置的坐标.(写出2个即可)(第21题图)22.(7分)已知四边形ABCD 各顶点的坐标分别是A(0,0),B(3,6),C(6,8),D(8,0). (1)请建立适当的平面直角坐标系,并描出点A ,点B ,点C ,点D. (2)求四边形ABCD 的面积.(第22题图) 23.(8分)如图,图形中每一小格正方形的边长为1,已知△ABC. (1)AC 的长等于________,△ABC 的面积等于____.(2)先将△ABC 向右平移2个单位得到△A′B′C′,则A 点的对应点A′的坐标是______. (3)再将△ABC 绕点C 按逆时针方向旋转90°后得到111A B C ,则A 点对应点1A 的坐标是___.(第23题图)24.(8分)已知边长为4的正方形OABC 在直角坐标系中,(如图)OA 与y 轴的夹角为30°,求点A,点C,点B 的坐标.(第24题图)25.(10分)如图,在平面直角坐标系中,A(0,1),B(2,0),C(4,3).(1)求△ABC的面积;(2)设点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.(第25题图)26.(10分)在某河流的北岸有A,B两个村子,A村距河北岸的距离为1千米,B村距河北岸的距离为4千米,且两村相距5千米,现以河北岸为x轴,A村在y轴正半轴上(单位:千米).·B·A(第26题图)(1)请建立平面直角坐标系,并描出A,B两村的位置,写出其坐标.(2)近几年,由于乱砍滥伐,生态环境受到破坏,A,B两村面临缺水的危险.两村商议,共同在河北岸修一个水泵站,分别向两村各铺一条水管,要使所用水管最短,水泵站应修在什么位置?在图中标出水泵站的位置,并求出所用水管的长度.参考答案一、1.A 2.B 3.B 4.D 5.B 6.B 7.B 8.B 9.C 10.C二、11.一排五号 12.北偏西50° 5km 13.25 14.(3,2) 15.(-3,1)16.5 17.(-1,3)或(-1,-3) 18.(1,1)或⎝ ⎛⎭⎪⎫-13,13 19.9或-1 -3 20.(2,-2) 三、21.(1)如答图2,直线l 即为所求;(2)如答图1,P(0,-1),P ′(-1,-1)都符合题意.(第21题答图)22.(1)图略(2)过点B 作BE⊥AD 于点E ,过点C 作CF⊥AD 于点111A B C F ,则ABCD S 四边形=ABES +BEFC S 梯形+CFD S=38.23.(1)10 3.5 (2)(1,2) (3)(-3,-2) 24.A(2,23),B(-23+2,2+23),C(-23,2) 25.(1)过点C 作CH⊥x 轴于点H ,ABC S=AOHC S 梯形-AOB S-CHB S=12(1+3)×4-12×1×2-12×2×3=4; (2)当点P 在x 轴上时,设P(x ,0),得ABP S=12BP ·AO =12|x -2|×1=4,解得x =-6或10,故P(-6,0)或P(10,0),当点P 在y 轴上时,设P(0,y),得S △ABP =12BO ·AP =12|y -1|×2=4,解得y =-3或5,故P(0,-3)或P(0,5),综上,P 的坐标为(-6,0)或(10,0)或(0,-3)或(0,5). 26.(1)如答图①,点A(0,1),点B(4,4).(2)作A 关于x 轴的对称点A′,连结A′B 交x 轴于点P ,则P 点即为水泵站的位置,PA +PB =PA′+PB =A′B 且最短(如图②).过B,A′分别作x 轴,y 轴的垂线交于E ,作AD⊥BE,垂足为D ,则BD =3,在Rt △ABD 中,AD =52-32=4,所以A 点坐标为(0,1),B 点坐标为(4,4);A′点坐标为(0,-1),由A′E =4,BE =5知,在Rt △A ′BE 中,A ′B =42+52=41.故所用水管最短长度为41千米.① ②(第26题图)第5章 一次函数检测卷 (时间:60分钟 满分:100分) 一、选择题(每题2分,共20分)1.关于直线y =-2x ,下列结论正确的是( )A .图象必过点(1,2)B .图象经过第一、三象限C .与y =-2x +1平行D .y 随x 的增大而增大2.在平面直角坐标系上,一直线过(-3,4)和(-7,4)两点,则此直线会过的两象限是( ) A .第一象限和第二象限 B .第一象限和第四象限 C .第二象限和第三象限 D .第二象限和第四象限3.若点A(-3,3y 1y ),B(2,2y ),C(3,3y )是函数y =-x +2图象上的点,则( ) A .y 1>y 2>y 3 B .y 1<y 2<y 3 C .y 1<y 3<y 2 D .y 2>y 1>y 34.某星期天下午,小强和同学小明相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中折线表示小强离开家的路程y(公里)和所用时间x(分)之间的函数关系.下列说法错误的是( )(第4题图)A .小强从家到公共汽车站步行了2公里B .小强在公共汽车站等小明用了10分钟C .公共汽车的平均速度是30公里/小时D .小强乘公共汽车用了20分钟5.下列图形,表示一次函数y =mx +n 与正比例函数y =mnx(m ,n 为常数,且mn≠0)的图象的是( )6.把直线y =-x +3向上平移m 个单位后,与直线y =2x +4的交点在第一象限,则m 的取值范围是( ) A .1<m <7 B .3<m <4 C .m >1 D .m <4 7.下表给出的是关于某个一次函数的自变量x 及其对应的函数值y 的若干信息.A .5B .6C .7D .88.如图1,在矩形ABCD 中,动点P 从点B 出发,沿矩形的边由B→C→D→A 运动,设点P 运动的路程为x ,△ABP 的面积为y ,把y 看作x 的函数,函数的图象如图2,则△ABC 的面积为( ) A .10 B .16 C .18 D .20(第8题图) (第9题图)9.如图,直线y =-43x +8与x 轴、y 轴分别交于A ,B 两点,点M 是OB 上一点,若直线AB 沿AM 折叠,点B 恰好落在x 轴上的点C 处,则点M 的坐标是( )A .(0,4)B .(0,3)C .(-4,0)D .(0,-3)10.如图,点A ,B ,C 在一次函数y =-2x +m 的图象上,它们的横坐标依次为-1,1,2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积之和是( ) A .1 B .3 C .3(m -1) D. 32(m -2)(第10题图)二、填空题(每题3分,共30分)11.在圆的周长C =2πR 中,常量是______.12.若点(m ,m +3)在函数y =-x +2的图象上,则m =____.13.在一次函数y =2x -2的图象上,到x 轴的距离等于1的点的坐标是_______. 14.在函数x -2x -4中,自变量x 的取值范围是____. 15.已知点(3,5)在直线y =ax +b(a ,b 为常数,且a≠0)上,则ab -5的值为______.16.已知函数y =(2m -3)x +(3m +1)的图象经过第二、三、四象限,则m 的取值范围是________. 17.如图,已知函数y =x +b 和y =ax +3的图象交点为P ,则不等式x +b>ax +3的解集为___ .(第17题图) (第18题图)18.如图,是在同一坐标系内作出的一次函数1y 、2y 的图象1l 、2l ,设1y =1k x +1b ,2y =2k x +2b ,则方程组2t 的解是_______.19.如图,把Rt △ABC 放在直角坐标系内,其中∠CAB=90°,BC =5,点A ,B 的坐标分别为(1,0),(4,0),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x -6上时,线段BC 扫过的面积为________.(第19题图) (第20题图)20.如图,点M 是直线y =2x +3上的动点,过点M 作MN 垂直x 轴于点N ,y 轴上是否存在点P ,使△MNP 为等腰直角三角形,请写出符合条件的点P 的坐标_______. 三、解答题(共50分)21.(7分)已知1y 与x 成正比例,2y 与x +2成正比例,且y =1y +2y ,当x =2时,y =4;当x =-1时,y =7,求y 与x 之间的函数关系式.22.(8分)已知一次函数y =kx +b 的图象经过点A(-4,0),B(2,6)两点. (1)求一次函数y =kx +b 的表达式; (2)在直角坐标系中,画出这个函数的图象; (3)求这个一次函数与坐标轴围成的三角形面积.(第22题图)23.(8分)某市生态公园计划在园内的坡地上造一片有A ,B 两种树的混合林,需要购买这两种树苗2000棵.种植A ,B 两种树苗的相关信息如表:设购买A 种树苗x (1)写出y(元)与x(棵)之间的函数关系式;(2)如果要求A 种树苗的数量不超过B 种树苗数量的两倍,问:造这片树林最多能种多少棵A 种树苗?24.(8分)如图,直线1l 过点A(0,4),点D(4,0),直线2l :y =12x +1与x 轴交于点C ,两直线1l ,2l 相交于点B.(1)求直线1l 的函数关系式; (2)求点B 的坐标; (3)求△ABC 的面积.(第24题图)25.(9分)某水果店计划购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如下表.(1)(2)若该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?此时利润为多少元?26.(10分)甲、乙两人匀速从同一地点到1500米处的图书馆看书,甲出发5分钟后,乙以50米/分的速度沿同一路线行走.设甲、乙两人相距s(米),甲行走的时间为t(分),s关于t的函数图象的一部分如图.(1)求甲行走的速度;(2)在坐标系中,补画s关于t的函数图象的其余部分;(3)问:甲、乙两人何时相距360米?(第26题图)参考答案一、1.C 2.A 3.A 4.D 5.A 6.C 7.B 8.A 9.B 10.B 二、11.2,π 12.-0.5 13.(0.5,-1)或(1.5,1)14.x≥2且x≠4 15.-13 16.m <-13 17.x >1 18.⎩⎪⎨⎪⎧x =-2,y =319.16 20.(0,0),(0,1),(0,34),(0,-3)三、21.设1y =kx ,2y =m(x +2).∵y =1y +2y ,∴y =kx +m(x +2), 当x =2时,y =4;当x =-1时,y =7,可得方程组为⎩⎪⎨⎪⎧4=2k +4m ,7=-k +m ,解得k =-4,m =3, ∴y 与x 之间的函数关系式为y =-x +6. 22.(1)y =x +4 (2)图略 (3)823.(1)y =(15+3)x +(20+4)(2000-x)=-6x +48000. (2)由题意得,x ≤2(2000-x),解得x≤133313.∵A 种树苗的棵数为整数,∴x 的最大值为1333. 答:造这片树林最多能种1333棵A 种树苗.24.(1)设1l 的函数关系式为y =kx +b ,根据题意得⎩⎪⎨⎪⎧b =4,4k +b =0,解得k =-1,所以1l :y =-x +4.(2)由题意得⎩⎪⎨⎪⎧y =-x +4,y =12x +1,解得⎩⎪⎨⎪⎧x =2,y =2, 所以B(2,2).(3)把y =0代入2l :y =12x +1,得x =-2,∴C(-2,0),∴ABC S=ACD S-BCD S=12×6×4-12×6×2=6. 25.(1)设购进甲种水果x 千克,则购进乙种水果(140-x)千克,根据题意可得: 5x +9(140-x)=1000,解得x =65, ∴140-x =75(千克),答:购进甲种水果65千克,乙种水果75千克;(2)由图表,可得甲种水果每千克利润为3元,乙种水果每千克利润为4元. 设总利润为W ,由题意可得出W =3x +4(140-x)=-x +560, 故W 随x 的增大而减小,则x 越小W 越大.因为该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍, ∴140-x≤3x,解得x≥35,∴当x =35时,W 最大=-35+560=525(元), 故140-35=105(kg).答:当购进甲种水果35千克,乙种水果105千克时,此时利润最大为525元. 26.(1)甲行走的速度:150÷5=30(米/分); (2)补画的图象如答图 (横轴上对应的时间为50);(第26题答图)(3)由函数图象可知,当t =12.5时,s =0. 当12.5≤t≤35时,s =20t -250. 当35<t≤50时,s =-30t +1500.∵甲、乙两人相距360米,即s =360,解得1t =30.5,2t =38. ∴当甲行走30.5分钟或38分钟时,甲、乙两人相距360米.。
浙教版数学八年级上册 第一章 三角形的初步知识单元测试(含答案)
浙教版数学八上第一章一、单选题1.下列长度的三条线段,能组成三角形的是( )A.5,6,10B.5,6,11C.3,4,8D.6,6,132.在证明命题“若a2>1,则a>1”是假命题时,下列选项中所举反例不正确的是( )A.a=2B.a=―2C.a=―3D.a=―43.如图,在△ABC和△BAD中,AC=BD,BC=AD,在不添加任何辅助线的条件下,可判断△ABC≌△BAD,判断这两个三角形全等的依据是( )A.ASA B.AAS C.SSS D.SAS4.如图,△ABC≌△EBD,AB=4cm,BD=7cm,则CE的长度为( )A.1cm B.2cm C.3cm D.4cm5.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列符合题意的是( )A.B.C.D.6.如图所示,已知AB∥CD,AD∥BC,AC与BD交于点O,AE⊥BD于E,CF⊥BD于E,图中全等三角形有( )A.3对B.5对C.6对D.7对7.如图,已知AE是ΔABC的角平分线,AD是BC边上的高.若∠ABC=34°,∠ACB=64°,则∠DAE的大小是( )A.5°B.13°C.15°D.20°8.如图,在△ABC中,∠BAC和∠ABC的平分线AE,BF相交于点O,AE交BC于E,BF交AC于F,过点O作OD⊥BC于D,下列四个结论:①∠AOB=90°+ 1∠C;②当∠C=60°时,AF+BE=AB;2③若OD=a,AB+BC+CA=2b,则S△ABC=ab.其中正确的是( )A.①②B.②③C.①②③D.①③9.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,AB=10,∠CAB和∠ABC的平分线交于点O,OM⊥BC于点M,则OM的长为( )A.1B.2C.3D.410.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点MMN的长为半径画弧,两弧交于点P,连结AP并延长交BC于和N,再分别以M、N为圆心,大于12点D,则下列说法中正确的个数是①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.A.1B.2C.3D.4二、填空题11.一个命题由“条件”和“结论”两部分组成,则命题“同角的余角相等”的条件是 .12.如图,∠BAD=∠CAE.BC=DE.若添加一个条件可得ΔABC≌ΔADE,则添加的条件及对应的理由是 .(写出所有满足条件的答案)13.如图,△ABC中,AB=15,BC=9,BD是AC边上的中线.若△ABD的周长为35,则△BCD的周长是 .14.如图,在△ABC中,AB=a,AC=b,BC边上的垂直平分线DE交BC、AB分别于点D、E,则△AEC的周长等于 。
浙教版八上数学第一章 三角形的初步知识 单元练习卷(含答案)
浙教版八上数学第一章一、单选题1.下列生活实例中,利用了“三角形稳定性”的是( )A.B.C.D.2.如图,△ABC≌△EBD,AB=4cm,BD=7cm,则CE的长度为( )A.1cm B.2cm C.3cm D.4cm3.如图,在△ABC中,∠C=90°,AD是∠A角平分线,DE⊥AB于点E,CD=2,BC=6,则BE=( )A.2B.22C.23D.64.如图,下面是利用尺规作∠AOB的角平分线OC的作法,在用尺规作角平分线过程中,用到的三角形全等的判定方法是( )作法:①以O为圆心,适当长为半径画弧,分别交OA,OB于点D,E;②分别以D,E为圆心,大于1DE的长为半径画弧,两弧在∠AOB内交于一点C;2③画射线OC,射线OC就是∠AOB的角平分线.A.ASA B.SAS C.SSS D.AAS5.如图,将△ABC绕点A逆时针旋转一定的角度,得到△ADE,且AD⊥BC.若∠CAE=45°,∠E=60°,则∠BAC的大小是( )A.60°B.65°C.75°D.95°6.如图,已知锐角∠AOB,根据以下要求作图.(1)在射线OA上取点C和点E,以点O为圆心,OC,OE的长为半径画弧,分别交射线OB于点D,F;(2)连接CF,DE交于点P.则下列结论错误的是( )A.CE=DFB.点P在∠AOB的平分线上C.PE=PFD.若∠AOB=60°,则∠CPD=120°7.三边长度都是整数的三角形称为整数边三角形,若一个三角形的最长边长为8,则满足条件的整数边三角形共有( )A.8个B.10个C.12个D.20个8.如图所示,在△ABC中,点O是∠BCA与∠ABC的平分线的交点,已知△ABC的面积是12,周长是8,则点O到边BC的距离OD是( )A.1B.2C.3D.49.如右图,将△ABC沿DE、HG、EF翻折,三个顶点均落在点O处,若∠1=129°,则∠2的度数为( )A.49°B.50°C.51°D.52°10.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90∘;②∠ADE=∠CDE;③DE=BE;④AD=AB+CD,四个结论中成立的是( )A.①②④B.①②③C.③④D.①③二、填空题11.已知三角形的三边长分别是2、7、x,且x为奇数,则x= .12.“两直线平行,同位角相等”是 命题(真、假).13.如图,在△ABC中,∠BDC=125°,如果∠ABC与∠ACB的平分线交于点D,那么∠A= 度.14.在△ABC中,BD平分∠ABC,如果AB=12,BC=8,△ABD的面积为24,则△CBD的面积为 15.如图,在Rt△ABC中,DE是斜边AB的垂直平分线,连接BD,若∠CBD=26°,则∠A= 度.16.如图,已知AD为△ABC的中线,AB=10cm,AC=7cm,△ACD的周长为20cm,则△ABD的周长为 cm.三、解答题17.如图,在△ABC中,∠ADB=∠ABD,∠DAC=∠DCA,∠BAD=32°,求∠BAC的度数.18.如图,AB=CB,BE=BF,∠1=∠2,证明:△ABE≌△CBF.19.如图,△ABC中,∠ABC=30°,∠ACB=50°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)∠BAC的度数为______,∠DAF的度数为______;(2)若△DAF的周长为20,求BC的长.20.如图,已知在△ABC中,AB=AC=10cm,BC=8cm,D为AB的中点.点P在线段BC上以3cm/s 的速度由点B出发向终点C运动,同时点Q在线段CA上以acm/s的速度由点C出发向终点A运动,设点P的运动时间为ts.(1)求CP的长;(用含t的式子表示)(2)若以C、P、Q为顶点的三角形和以B,D,P为顶点的三角形全等,且∠B和∠C是对应角,求t,a 的值.21.定义:在一个三角形中,如果有一个角是另一个角的1,我们称这两个角互为“和谐角”,这个2三角形叫做“和谐三角形” .例如:在△ABC中,如果∠A=70°,∠B=35°,那么∠A与∠B互为“和谐角”,△ABC为“和谐三角形”.问题1:如图1,△ABC中,∠ACB=90°,∠A=60°,点D是线段 A BB 上一点(不与A、B 重合),连接CD(1)如图1,△ABC 是“和谐三角形”吗?为什么?(2)如图1,若CD⊥AB,则△ACD、△BCD是“和谐三角形” 吗?为什么?(3)问题2:如图2,△ABC 中,∠ACB=60°,∠A=80°,点 D 是线段AB 上一点(不与A、B 重合),连接CD,若△ACD 是“和谐三角形”,求∠ACD 的度数.22.“转化”是数学中的一种重要思想,即把陌生的问题转化成熟悉的问题,把复杂的问题转化成简单的问题,把抽象的问题转化为具体的问题.(1)请你根据已经学过的知识求出下面星形图(1)中∠A+∠B+∠C+∠D+∠E的度数;(2)若对图(1)中星形截去一个角,如图(2),请你求出∠A+∠B+∠C+∠D+∠E+∠F的度数;(3)若再对图(2)中的角进一步截去,你能由题(2)中所得的方法或规律,猜想图3中的∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N的度数吗?只要写出结论,不需要写出解题过程)23.(1)阅读理解:问题:如图1,在四边形ABCD中,对角线BD平分∠ABC,∠A+∠C=180°.求证:DA=DC.思考:“角平分线+对角互补”可以通过“截长、补短”等构造全等去解决问题.方法1:在BC上截取BM=BA,连接DM,得到全等三角形,进而解决问题;方法2:延长BA到点N,使得BN=BC,连接DN,得到全等三角形,进而解决问题.结合图1,在方法1和方法2中任选一种,添加辅助线并完成证明.(2)问题解决:如图2,在(1)的条件下,连接AC,当∠DAC=60°时,探究线段AB,BC,BD之间的数量关系,并说明理由;(3)问题拓展:如图3,在四边形ABCD中,∠A+∠C=180°,DA=DC,过点D作DE⊥BC,垂足为点E,请直接写出线段AB、CE、BC之间的数量关系.答案解析部分1.【答案】B2.【答案】D3.【答案】C4.【答案】C5.【答案】C6.【答案】D7.【答案】C8.【答案】C9.【答案】C10.【答案】A11.【答案】712.【答案】真13.【答案】7014.【答案】1615.【答案】3216.【答案】2317.【答案】解:在三角形ABD中,(180°﹣32°)=74°,∠ADB=∠ABD=12在三角形ADC中,∠ADB=37°,∠DAC=∠DCA=12∴∠BAC=∠DAC+∠BAD=37°+32°=69°.18.【答案】证明:∵∠1=∠2,∴∠1+∠FBE=∠2+∠FBE,即∠ABE=∠CBF在△ABE与△CBF中,{AC=CB∠ABE=∠CBFBE=BF∴△ABE≌△CBF(SAS).19.【答案】(1)100°,20°;(2)20.20.【答案】(1)CP =(8﹣3t )cm(2)t =43,a =154或t =1,a =321.【答案】(1)解:ΔABC 是“和谐三角形”,理由如下:∵∠ACB =90°,∠A =60°,∴∠B =30°,∴∠B =12∠A ,∴ΔABC 是“和谐三角形”;(2)解:ΔACD 、ΔBCD 是“和谐三角形”,理由如下:∵∠ACB =90°,∠A =60°,∴∠B =30°,∵CD ⊥AB ,∴∠ADC =∠BDC =90°,∴∠ACD =30°,∠BCD =60°.在ΔACD 中,∵∠A =60°,∠ACD =30°,∴∠ACD =12∠A ,∴ΔACD 为和谐三角形”;在ΔBCD 中,∵∠BCD =60°,∠B =30°,∴∠B =12∠BCD ,∴ΔBCD 为和谐三角形”;(3)解:若ΔACD 是“和谐三角形”,由于点D 是线段AB 上一点(不与A 、B 重合),则∠ACD =12∠A 或∠ACD =12∠ADC .当∠ACD =12∠A 时,∠ACD =12∠A =40°;当∠ACD =12∠ADC 时,∠A +3∠ACD =180°,即3∠ACD =100°,∴∠ACD =100°3.综上,∠ACD 的度数为40°或100°3.22.【答案】(1)解:如图,∵∠1=∠2+∠D=∠B+∠E+∠D ,∠1+∠A+∠C=180°,∴∠A+∠B+∠C+∠D+∠E=180°(2)解:∵∠1=∠2+∠F=∠B+∠E+∠F ,∠1+∠A+∠C+∠D=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°(3)解:∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N=180×5+180=1080°.23.【答案】(1)解:方法1:在 BC 上截 BM =BA ,连接 DM ,如图.∵BD 平分 ∠ABC ,∴∠ABD =∠CBD .在 ΔABD 和 ΔMBD 中, {BD =BD∠ABD =∠MBD BA =BM ,∴ΔABD≌ΔMBD ,∴∠A =∠BMD , AD =MD .∵∠BMD +∠CMD =180° , ∠C +∠A =180° .∴∠C =∠CMD .∴DM =DC ,∴DA =DC .方法2:延长 BA 到点N ,使得 BN =BC ,连接 DN ,如图.∵BD 平分 ∠ABC ,∴∠NBD =∠CBD .在 ΔNBD 和 ΔCBD 中, {BD =BD∠NBD =∠CBD BN =BC ,∴ΔNBD≌ΔCBD .∴∠BND =∠C , ND =CD .∵∠NAD +∠BAD =180° ,∠C +∠BAD =180° .∴∠BND =∠NAD ,∴DN =DA ,∴DA =DC .(2)解: AB 、 BC 、 BD 之间的数量关系为: AB +BC =BD . (或者: BD ―CB =AB , BD ―AB =CB ).延长 CB 到点P ,使 BP =BA ,连接 AP ,如图2所示.由(1)可知 AD =CD ,∵∠DAC =60° .∴ΔADC 为等边三角形.∴AC =AD , ∠ADC =60° .∵∠BCD +∠BAD =180° ,∴∠ABC =360°―180°―60°=120° .∴∠PBA =180°―∠ABC =60° .∵BP =BA ,∴ΔABP 为等边三角形.∴∠PAB =60° , AB =AP .∵∠DAC =60° ,∴∠PAB +∠BAC =∠DAC +∠BAC ,即 ∠PAC =∠BAD .在 ΔPAC 和 ΔBAD 中, {PA =BA∠PAC =∠BAD AC =AD ,∴ΔPAC≌ΔBAD .∴PC =BD ,∵PC =BP +BC =AB +BC ,∴AB +BC =BD .(3)BC ―AB =2CE。
浙教版数学八年级上册单元检测试题及答案(全册)
浙教版数学八年级上册第一章测试卷一、选择题(每题3分,共30分)1.如图,∠ACD=120°,∠B=20°,则∠A的度数是()A.120°B.90°C.100°D.30°(第1题)(第3题)2.下列各组数分别是三根小木棒的长度,将它们首尾相连能摆成三角形的是()A.3 cm,4 cm,8 cm B.4 cm,4 cm,8 cmC.5 cm,6 cm,8 cm D.5 cm,5 cm,12 cm3.用直尺和圆规作一个角等于已知角的示意图如图所示,则说明∠A′O′B′=∠AOB的依据是()A.SSS B.SAS C.ASA D.AAS4.如图,△ABC≌△A′B′C′,则∠C的度数是()A.56°B.51°C.107°D.73°(第4题)(第5题)(第7题)5.如图,在△ABC中,边AB的垂直平分线交BC于点D,连结AD.若AB=7,BC=8,AC=5,则△ADC的周长为()A.12 B.13 C.15 D.166.下列命题是假命题的是()A.如果a∥b,b∥c,那么a∥cB.锐角三角形中最大的角一定大于或等于60°C.两条直线被第三条直线所截,内错角相等D.同角或等角的补角相等7.如图,点B,E在线段FC上,且CE=BF,AB=DE,增加以下条件能判定△ABC≌△DEF的是()A.∠A=∠D B.∠C=∠FC.BC=EF D.AC=DF8.在△ABC中,∠C=90°,点O为△ABC三条角平分线的交点,OD⊥BC于D,OE⊥AC于E,OF⊥AB于F,且AB=10 cm,BC=8 cm,AC=6 cm,则点O到三边AB,AC,BC的距离分别为()A.2 cm,2 cm,2 cm B.3 cm,3 cm,3 cmC.4 cm,4 cm,4 cm D.2 cm,3 cm,5cm9.如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,若△ABC 的面积为16,则图中阴影部分的面积为()A.8 B.6 C.4 D.2(第9题) (第12题)(第15题)10.已知△ABC中,AB=BC≠AC,作与△ABC只有一条公共边,且与△ABC全等的三角形,这样的三角形一共能作出()A.3个B.5个C.6个D.7个二、填空题(每题3分,共24分)11.把命题“同角或等角的余角相等”改写成“如果……那么……”的形式为__________________________.12.如图,若△OAD≌△OBC,且∠O=70°,∠C=25°,则∠AEB=________.13.在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD 的面积之比是________.14.已知△ABC的三边长分别为a,b,c,若a=3,b=4,则c的取值范围是__________,设△ABC的周长是l,则l的取值范围是________.15.如图,在△ABC中,AB,AC的垂直平分线l1,l2相交于点O,若∠BAC=82°,则∠OBC=________.16.如图,在△ABC中,AD是BC边上的高,BE是AC边上的高,且AD,BE 交于点F,若BF=AC,CD=3,BD=8,则线段AF的长度为________.(第16题)(第17题)(第18题)17.如图,要测量河两岸相对的两点A,B间的距离(AB垂直于河岸BF),先在BF上取两点C,D,使CD=CB,再作出BF的垂线DE,且使A,C,E三点在同一条直线上,可以得到△EDC≌△ABC,所以ED=AB.因此测得ED 的长就是AB的长.判定△EDC≌△ABC的理由是____________.18.在探索“尺规三等分角”这个数学名题的过程中,曾利用了如图,该图中,四边形ABCD是长方形,E是BA延长线上一点,F是CE上一点,∠ACF=∠AFC,∠F AE=∠FEA.若∠ACB=24°,则∠ECD的度数是________.三、解答题(19,20题每题6分,21,22,23题每题8分,24题10分,共46分)19.写出下列命题的条件和结论:(1)两条直线被第三条直线所截,同旁内角互补;(2)如果两个三角形全等,那么它们对应边上的高相等.20.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.求证:AB=CD.(写上证明的依据)(第20题)21.已知a,b,c为△ABC的三边长,且b,c满足(b-5)2+c-7=0,a为方程|a-3|=2的解,求△ABC的周长,并判断△ABC的形状.22.如图,AB∥CD,AM平分∠CAB,交CD于点M.(1)过点C作AM的垂线,垂足为N;(要求:用直尺和圆规作图,保留作图痕迹,不要求写出作法)(2)求证:△MCN≌△ACN.(第22题)23.在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.(1)当点D在AC上时,如图①,线段BD,CE有怎样的数量关系和位置关系?直接写出你猜想的结论.(2)将图①中的△ADE绕点A顺时针旋转α(0°<α<90°),如图②,线段BD,CE有怎样的数量关系和位置关系?请说明理由.(第23题)24.如图①,已知线段AB,CD相交于点O,连结AC,BD,则我们把形如这样的图形称为“8字型”.(1)求证:∠A+∠C=∠B+∠D.(2)如图②,若∠CAB和∠BDC的平分线AP和DP相交于点P,AP与CD交于点M,AB与DP交于点N.①以线段AC为边的“8字型”有________个,以点O为交点的“8字型”有________个;②若∠B=100°,∠C=120°,求∠P的度数;③若角平分线中角的关系改为“∠CAP=13∠CAB,∠CDP=13∠CDB”,试探究∠P与∠B,∠C之间存在的数量关系,并说明理由.(第24题)答案一、1.C 2.C 3.A 4.D 5.B 6.C 7.D 8.A 9.C 10.D 二、11.如果两个角是同角或等角的余角,那么这两个角相等 12.120° 13.4:314.1<c <7;8<l <14 15.8°16.5 点拨:由已知可得∠ADC =∠BDF =∠BEC =90°,易得∠DAC =∠DBF .又因为AC =BF ,所以△ADC ≌△BDF .所以AD =BD =8,DC =DF =3.所以AF =AD -DF =8-3=5. 17.ASA18.22° 点拨:∵四边形ABCD 是长方形,∴AB ∥CD .∴∠ECD =∠BEC .∵∠F AE =∠FEA ,∴∠ACF =∠AFC =2∠BEC ,∴∠ACD =∠ACF +∠ECD =3∠ECD .∵∠ACB =24°,∴∠ACD =90°-24°=66°, ∴∠ECD =13∠ACD =22°.三、19.解:(1)条件:两条直线被第三条直线所截;结论:同旁内角互补.(2)条件:两个三角形全等;结论:它们对应边上的高相等. 20.证明:∵AB ∥CD (已知),∴∠B =∠C (两直线平行,内错角相等). 在△ABE 和△DCF 中,⎩⎨⎧∠B =∠C (已证),∠A =∠D (已知),AE =DF (已知),∴△ABE ≌△DCF (AAS )∴AB =CD (全等三角形的对应边相等). 21.解:∵(b -5)2+c -7=0,∴⎩⎨⎧b -5=0,c -7=0,解得⎩⎨⎧b =5,c =7. ∵a 为方程|a -3|=2的解, ∴a =5或a =1.当a =1,b =5,c =7时,1+5<7,不能组成三角形, 故a =1不符合题意. ∴a =5,∴△ABC 的周长=5+5+7=17. ∵a =b =5,∴△ABC 是等腰三角形. 22.(1)解:作图略.(2)证明:∵CN ⊥AM , ∴∠CNA =∠CNM =90°. ∵AB ∥CD ,∴∠CMA =∠MAB . ∵AM 平分∠CAB ,∴∠MAB =∠CAM .∴∠CMA =∠CAM . 在△MCN 和△ACN 中,∵⎩⎨⎧∠CMN =∠CAN ,∠CNM =∠CNA ,CN =CN ,∴△MCN ≌△ACN (AAS ). 23.解:(1)BD =CE ,BD ⊥CE .(2)BD =CE ,BD ⊥CE .理由如下:∵∠BAC =∠DAE =90°,∴∠BAC -∠DAC =∠DAE -∠DAC .∴∠BAD =∠CAE .在△ABD 与△ACE 中,AB =AC ,∠BAD =∠CAE ,AD =AE ,∴△ABD ≌△ACE ,∴BD =CE ,∠ABD =∠ACE .延长BD 交AC 于点F ,交CE 于点H .在△ABF 与△HCF 中,∵∠ABF =∠HCF ,∠AFB =∠HFC ,∴∠CHF =∠BAF =90°,∴BD ⊥CE .24.(1)证明:∵∠A +∠C =180°-∠AOC ,∠B +∠D =180°-∠BOD ,∠AOC=∠BOD ,∴∠A +∠C =∠B +∠D . (2)解:①3;4②以M 为交点的“8字型”中,有∠P +∠CDP =∠C +∠CAP , 以N 为交点的“8字型”中,有∠P +∠BAP =∠B +∠BDP ,∴2∠P +∠BAP +∠CDP =∠B +∠C +∠CAP +∠BDP . ∵AP ,DP 分别平分∠CAB 和∠BDC , ∴∠BAP =∠CAP ,∠CDP =∠BDP , ∴2∠P =∠B +∠C . ∵∠B =100°,∠C =120°,∴∠P =12(∠B +∠C )=12×(100°+120°)=110°. ③3∠P =∠B +2∠C ,其理由是: ∵∠CAP =13∠CAB ,∠CDP =13∠CDB ,∴∠BAP =23∠CAB ,∠BDP =23∠CDB .以M 为交点的“8字型”中,有∠P +∠CDP =∠C +∠CAP , 以N 为交点的“8字型”中,有∠P +∠BAP =∠B +∠BDP , ∴∠C -∠P =∠CDP -∠CAP =13(∠CDB -∠CAB ),∠P -∠B =∠BDP -∠BAP =23(∠CDB -∠CAB ), ∴2(∠C -∠P )=∠P -∠B , ∴3∠P =∠B +2∠C .第二章 测试卷一、选择题(每题3分,共30分)1.下列四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的是( )2.如图,在△ABC 中,AB =AC ,∠A =36°,BD 是AC 边上的高,则∠DBC 的度数是( ) A .18°B .24°C .30°D .36°(第2题) (第4题) (第8题)3.在直角三角形ABC 中,∠C =90°,AC =9,BC =12,则点C 到AB 的距离是( ) A.365B.1225C.94D.3344.如图,已知∠C =∠D =90°,添加一个条件,可使用“HL”判定Rt △ABC ≌Rt △ABD ,以下给出的条件合适的是( ) A .AC =ADB .BC =ADC .∠ABC =∠ABD D .∠BAC =∠BAD5.已知一个等腰三角形的两个内角度数之比为1:4,则这个等腰三角形顶角的度数为( ) A .20°B .120°C .20°或120°D .36°6.在△ABC 中,AB 2=(a +b )2,AC 2=(a -b )2,BC 2=4ab ,且a >b >0,则下列结论中正确的是( ) A .∠A =90° B .∠B =90°C .∠C =90°D .△ABC 不一定是直角三角形7.直角三角形两条直角边长分别是5和12,则第三条边上的中线长是( ) A .5B .6C .6.5D .128.如图,在△ABC 中,AD ,CE 分别是△ABC 的中线和角平分线,若AB =AC ,∠CAD =20°,则∠ACE 的度数是( ) A .20°B .35°C .40°D .70°9.如图,在直线l 上依次摆放着七个正方形.已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积从左往右依次是S 1,S 2,S 3,S 4,则S 1+S 2+S 3+S 4等于( ) A .3B .4C .5D .6(第9题)(第10题)10.如图,点A,B,C在一条直线上,△ABD,△BCE均为等边三角形,连结AE和CD,AE分别交CD,BD于点M,P,CD交BE于点Q,连结PQ,BM,下面结论:①△ABE≌△DBC;②∠DMA=60°;③△BPQ为等边三角形.其中正确的有()A.0个B.1个C.2个D.3个二、填空题(每题3分,共24分)11.请写出“三个角都相等的三角形是等边三角形”的逆命题:______________________.12.若等腰三角形一腰上的高等于腰长的一半,则这个等腰三角形的底角为____________.13.已知实数x,y满足(x-4)2+(y-8)2=0,则以x,y的值为两边长的等腰三角形的周长是________.14.已知a,b,c是△ABC的三边长,且满足关系式(c2-a2-b2)2+|a-b|=0,则△ABC的形状为____________.15.如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有________对全等三角形.(第15题)(第16题)(第17题)(第18题)16.如图,由四个边长为1的小正方形构成一个大正方形,连结小正方形的三个顶点,可得到△ABC,则△ABC中BC边上的高是________.17.如图,在正方形网格中,阴影部分是涂黑7个小正方形所形成的图案,再将网格内一个空白小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有________种.18.如图,在等腰三角形ABC中,AB=AC,∠BAC=50°,∠BAC的平分线与AB的垂直平分线交于点O,沿EF折叠后,点C与点O重合,则∠OEC的度数是________.三、解答题(19,20题每题6分,21,22,23题每题8分,24题10分,共46分)19.已知命题“等腰三角形两腰上的高相等”.(1)写出该命题的逆命题.(2)该逆命题是真命题还是假命题?如果是真命题,请画出“图形”,写出“已知”“求证”,再进行“证明”;如果是假命题,请举反例说明.20.如图,点E,F在△ABC的边BC上.若AE=AF,BE=CF,则AB=AC,并说明理由.(第20题)21.如图,AB∥CD,EG,FG分别是∠BEF和∠DFE的平分线.求证:△EGF 是直角三角形.(第21题)22.如图,∠ABC的平分线BF与△ABC中∠ACB的邻补角的平分线CF相交于点F,过F作DF∥BC,交AB于D,交AC于E,则:(1)图中有哪几个等腰三角形?为什么?(2)BD,DE,CE之间存在着什么数量关系?并说明理由.(第22题)23.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB交AB于E,F在AC上,BD=DF.求证:(1)CF=EB;(2)AB=AF+2EB.(第23题)24.如图,等腰直角三角形DBC中,∠BDC=90°,BF平分∠DBC,与CD相交于点F,延长BD到A,使DA=DF,连结AC.(1)求证:△FBD≌△ACD;(2)如图,延长BF交AC于点E,且BE⊥AC,求证:CE=12BF.(3)在(2)的条件下,H是BC边的中点,连结DH,与BE相交于点G.试探索CE,GE,BG之间的数量关系,并证明你的结论.(第24题)答案一、1.D 2.A3.A 点拨:利用等积法解答.根据勾股定理求得AB =15,设点C 到AB 的距离是x ,可列方程12×9×12=12×15x ,解之即可. 4.A 5.C6.C 点拨:由题意可得,AB 2=AC 2+BC 2,所以△ABC 为直角三角形,AB 所对的角为直角,所以∠C =90°. 7.C8.B 点拨:因为△ABC 是等腰三角形,AD 是其底边上的中线,所以AD 也是底边上的高线,所以∠ACB =90°-∠CAD =70°.又因为CE 是∠ACB 的平分线,所以∠ACE =12∠ACB =35°.9.B 点拨:本题不能直接求出S 1,S 2,S 3,S 4,但我们可以利用三角形全等和勾股定理求出S 1+S 2+S 3+S 4.根据“AAS ”很容易证明△ABC ≌△CDE ,所以AB =CD .又因为CD 2+DE 2=CE 2,AB 2=S 3,CE 2=3,DE 2=S 4,所以S 3+S 4=3.同理可得S 1+S 2=1,所以S 1+S 2+S 3+S 4=1+3=4.10.D 点拨:∵△ABD ,△BCE 为等边三角形,∴AB =DB ,∠ABD =∠CBE =60°,BE =BC ,∴∠ABE =∠DBC ,∠PBQ =60°. 在△ABE 和△DBC 中,⎩⎨⎧AB =DB ,∠ABE =∠DBC ,BE =BC ,∴△ABE ≌△DBC (SAS ). ∴①正确. ∵△ABE ≌△DBC , ∴∠BAE =∠BDC .∵∠BDC +∠BCD =∠ABD =60°,∴∠DMA =∠BAE +∠BCD =∠BDC +∠BCD =60°. ∴②正确.易证△ABP ≌△DBQ (ASA), ∴BP =BQ .又∵∠DBQ =60°, ∴△BPQ 为等边三角形. ∴③正确.二、11.等边三角形的三个角都相等 12.75°或15° 13.20 14.等腰直角三角形15.3 点拨:△OPE ≌△OPF ,△OP A ≌△OPB ,△AEP ≌△BFP ,所以共有3对全等三角形.16.322 点拨:在网格中求三角形的高,应借助三角形的面积求解.以AC ,AB ,BC 为斜边的三个直角三角形的面积分别为1,1,12,因此△ABC 的面积为2×2-1-1-12=32.用勾股定理计算出BC 的长为2,因此BC 边上的高为322. 17.318.100° 点拨:连结OB ,OC .易得△AOB ≌△AOC (SAS). ∴∠ACO =∠ABO .又∵OD 垂直平分AB ,∴OB =OA , ∴∠ABO =∠BAO =12∠BAC =25°. ∴∠ACO =25°.在△ABC 中,∵∠BAC =50°,AB =AC , ∴∠ACB =12×(180°-50°)=65°. ∴∠ECO =∠ACB -∠ACO =40°. 由折叠可知,OE =EC . ∴∠EOC =∠ECO =40°. ∴∠OEC =100°.三、19.解:(1)两边上的高相等的三角形是等腰三角形.(2)真命题.已知:如图,在△ABC 中,BE ⊥AC 于E ,CD ⊥AB 于D ,且CD =BE . 求证:AB =AC .证明:∵BE ⊥AC ,CD ⊥AB , ∴∠BEA =∠CDA =90°, 又∵∠A =∠A ,BE =CD , ∴△ABE ≌△ACD ,∴AB =AC .(第19题)20.解:∵AE =AF ,∴∠AEF =∠AFE .∵BE =CF ,∴BE +EF =CF +EF ,∴BF=CE .在△ACE 和△ABF 中,⎩⎨⎧AE =AF ,∠AEC =∠AFB ,CE =BF ,∴△ACE ≌△ABF (SAS), ∴AB =AC .21.证明:∵AB ∥CD ,∴∠BEF +∠DFE =180°(两直线平行,同旁内角互补). ∵EG ,FG 分别是∠BEF 和∠DFE 的平分线, ∴∠GEF =12∠BEF ,∠GFE =12∠DFE ,∴∠GEF +∠GFE =12(∠BEF +∠DFE )=12×180°=90°, ∴△EGF 是直角三角形. 22.解:(1)△BDF 和△CEF .∵BF 平分∠ABC , ∴∠ABF =∠FBC ,∵DF ∥BC ,∴∠FBC =∠DFB , ∴∠DFB =∠DBF ,∴DB =DF , ∴△BDF 是等腰三角形. 同理,△CEF 也是等腰三角形.(2)BD =DE +CE .由(1)知△CEF 是等腰三角形,且EC =EF ,∵BD =DF =DE +EF ,∴BD =DE +CE .点拨:“平行线+角平分线”是等腰三角形中常见的基本图形之一,应注意在其他图形中的发掘与应用.23.证明:(1)∵AD 是∠BAC 的平分线,DE ⊥AB ,DC ⊥AC ,∴DE =DC .又∵BD =DF ,∴Rt △CDF ≌Rt △EDB (HL). ∴CF =EB .(2)由(1)可知DE =DC ,又∵AD =AD , ∴Rt △ADC ≌Rt △ADE .∴AC =AE .∴AB =AE +BE =AC +EB =AF +CF +EB =AF +2EB .点拨:(1)根据角平分线的性质“角平分线上的点到角的两边的距离相等”,可得点D 到AB 的距离等于点D 到AC 的距离,即CD =DE ,再根据Rt △CDF ≌Rt △EDB ,得CF =EB .(2)利用(1)中结论证明Rt △ADC ≌R t △ADE ,∴AC =AE ,再将线段AB 进行转化.24.(1)证明:∵△BCD 是等腰直角三角形,且∠BDC =90°,∴BD =CD ,∠BDC =∠CDA =90°. 在△FBD 和△ACD 中,⎩⎨⎧BD =CD ,∠BDF =∠CDA ,DF =DA ,∴△FBD ≌△ACD (SAS). (2)证明:∵BE ⊥AC , ∴∠BEA =∠BEC =90°.∵BF 平分∠DBC ,∴∠ABE =∠CBE , 又∵BE =BE ,∴△ABE ≌△CBE (ASA), ∴AE =CE .∴CE =12AC . 由(1)知△FBD ≌△ACD , ∴BF =AC ,∴CE =12BF . (3)解:BG 2=GE 2+CE 2.证明:连结CG ,∵H 是BC 边的中点,BD =CD ,∴DH 垂直平分BC ,∴BG =CG (线段垂直平分线上的点到这条线段两个端点的距离相等).∵BE ⊥AC ,∴CG 2=GE 2+CE 2,∴BG 2=GE 2+CE 2. 点拨:本题综合考查全等三角形的判定与性质,以及通过添加辅助线利用勾股定理解决问题.第3章 测试卷一、选择题(每题3分,共30分)1.下列各式中,是一元一次不等式的是( )A .5+4>8B .2x -1C .2x ≤5D.1x -3x ≥02.若x >y ,则下列式子中错误的是( )A .x -3>y -3B.x 3>y 3C .x +3>y +3D .-3x >-3y3.下列选项中的不等式,其解集是在如图所示的数轴上表示的是( )(第3题)A .x +1<0B .x -1≤0C .x -1<0D .x -1>04.关于x 的方程4x -2m +1=5x -8的解是负数,则m 的取值范围是( )A .m >92B .m <0C .m <92D .m >05.若不等式组⎩⎨⎧x -a >2,b -2x >0的解集是-1<x <2,则(a +b )2 019=( )A .1B .-1C .2 019D .-2 0196.不等式组⎩⎨⎧x <4,x >m 无解,则m 的取值范围是( )A .m <4B .m >4C .m ≥4D .m ≤47.若关于x 的不等式组⎩⎨⎧x <1,x >m -1恰有两个整数解,则m 的取值范围是( )A .-1≤m <0B .-1<m ≤0C .-1≤m ≤0D .-1<m <08.方程组⎩⎨⎧2x +y =k +1,x +2y =3的解满足0<x +y <1,则k 的取值范围是( )A .-4<k <0B .-1<k <0C .-4<k <-1D .k >-49.一次智力测验,有20道选择题,评分标准:答对1题给5分,答错1题扣2分,不答题不给分也不扣分,小明有两道题未答,他最后的总分不低于60分,则小明至少答对的题数是( ) A .14道 B .13道C .12道D .11道10.我们定义⎪⎪⎪⎪⎪⎪ab cd =ad -bc ,其中的运算为通常的减法和乘法,例如⎪⎪⎪⎪⎪⎪2 34 5=2×5-3×4=-2,若x 满足-2≤⎪⎪⎪⎪⎪⎪423 x <2,则x 的整数值有( ) A .0个B .1个C .2个D .3个二、填空题(每题3分,共24分)11.x 与23的差的一半是正数,用不等式表示为____________.12.如图是某机器零件的设计图纸(单位:mm),用不等式表示零件长度的合格尺寸,则合格零件长度l 的取值范围是________________.(第12题)13.不等式2x +3<-1的解集为________.14.用“>”或“<”填空:若a <b <0,则-a 5________-b 5;1a ________1b ;2a-1________2b -1.15.不等式6-4x ≥3x -8的非负整数解有________个.16.某校规定期中考试成绩的40%与期末考试成绩的60%的和作为学生的学期总成绩.该校李红同学期中考试数学考了86分,她希望自己这学期数学总成绩不低于95分,她在期末考试中数学至少应考多少分?设她在期末考试中数学考x 分,可列不等式为__________________.17.不等式组⎩⎪⎨⎪⎧3x +4≥0,12x -24≤1的所有整数解的积为________.18.已知实数x ,y 满足2x -3y =4,并且x ≥-1,y <2,现有k =x -y ,则k 的取值范围是____________.三、解答题(19,20题每题6分,21,22,23题每题8分,24题10分,共46分)19.解下列不等式或不等式组,并把它们的解集在数轴上表示出来. (1)5x +15>4x -13; (2)2x -13≤3x -46;(3)⎩⎨⎧x -5>1+2x ,①3x +2<4x ;② (4)⎩⎪⎨⎪⎧x -x -22≤1+4x 3,①1+3x >2(2x -1).②20.若式子5x +46的值不小于78-1-x3的值,求满足条件的x 的最小整数值.21.先阅读,再解题.解不等式:2x +5x -3>0. 解:根据两数相除,同号得正,异号得负,得 ①⎩⎨⎧2x +5>0,x -3>0或②⎩⎨⎧2x +5<0,x -3<0.解不等式组①,得x >3,解不等式组②,得x <-52. 所以原不等式的解集为x >3或x <-52.参照以上解题过程所反映的解题思想方法,试解不等式:2x -31+3x<0.22.若关于x ,y 的方程组⎩⎨⎧x +y =30-k ,3x +y =50+k 的解都是非负数.(1)求k 的取值范围;(2)若M =3x +4y ,求M 的取值范围.23.今年某区为绿化行车道,计划购买甲、乙两种树苗共计n棵.设购买甲种树苗x棵,有关甲、乙两种树苗的信息如图所示.(第23题)(1)当n=500时,①根据信息填表(用含x的式子表示):②如果购买甲、乙两种树苗共用去25 600元,那么甲、乙两种树苗各购买了多少棵?(2)要使这批树苗的成活率不低于92%,且使购买这两种树苗的总费用为26 000元,求n的最大值.24.某镇水库的可用水量为12 000万m3,假设年降水量不变,能维持该镇16万人20年的用水量.为实施城镇化建设,新迁入了4万人后,水库只够维持居民15年的用水量.(1)年降水量为多少万立方米?每人年平均用水量为多少立方米?(2)政府号召节约用水,希望将水库的使用年限提高到25年,则该镇居民人均每年需节约多少立方米水才能实现目标?(3)某企业投入1 000万元购买设备,每天能淡化5 000 m3海水,淡化率为70%.每淡化1 m3海水所需的费用为1.5元,政府补贴0.3元.企业将淡化水以3.2元/m3的价格出售,每年还需各项支出40万元.按每年实际生产300天计算,该企业至少几年后能收回成本?(结果精确到个位)答案一、1.C 2.D 3.C4.A 点拨:方程4x -2m +1=5x -8的解为x =9-2m .由题意得9-2m <0,则m >92. 5.A 6.C7.A 点拨:不等式组⎩⎨⎧x <1,x >m -1的解集为m -1<x <1.又∵不等式组⎩⎨⎧x <1,x >m -1恰有两个整数解,∴-2≤m -1<-1,解得-1≤m <0.8.C 点拨:两个方程相加得3x +3y =k +4,∴x +y =k +43,又∵0<x +y <1,∴0<k +43<1,∴-4<k <-1. 9.A10.B 点拨:根据题意得-2≤4x -6<2,解得1≤x <2,则x 的整数值是1,共1个.故选B. 二、11.12⎝ ⎛⎭⎪⎫x -23>012.39.8 mm≤l ≤40.2 mm 13.x <-2 14.>;>;< 15.3 16.86×40%+60%x ≥95 17.018.1≤k <3 点拨:由已知条件2x -3y =4,k =x -y 可得x =3k -4,y =2k -4.又∵x ≥-1,y <2,∴⎩⎨⎧3k -4≥-1,2k -4<2,解得⎩⎨⎧k ≥1,k <3.∴k 的取值范围是1≤k <3.三、19.解:(1)移项,得5x -4x >-13-15,所以x >-28.不等式的解集在数轴上表示如图.[第19(1)题](2)去分母,得2(2x -1)≤3x -4,去括号、移项,得4x -3x ≤2-4,所以x ≤-2.不等式的解集在数轴上表示如图.[第19(2)题](3)解不等式①,得x <-6;解不等式②,得x >2.不等式①②的解集在数轴上表示如图.[第19(3)题]所以原不等式组无解.(4)解不等式①,得x ≥45;解不等式②得,x <3.故原不等式组的解集为45≤x <3.不等式组的解集在数轴上表示如图.[第19(4)题]20.解:由题意得5x +46≥78-1-x 3,解得x ≥-14,故满足条件的x 的最小整数值为0.21.解:根据两数相除,同号得正,异号得负,得①⎩⎨⎧2x -3>0,1+3x <0或②⎩⎨⎧2x -3<0,1+3x >0.不等式组①无解,解不等式组②,得-13<x <32,所以原不等式的解集为-13<x <32. 22.解:(1)解关于x ,y 的方程组⎩⎨⎧x +y =30-k ,3x +y =50+k ,得⎩⎨⎧x =k +10,y =20-2k , ∴⎩⎨⎧k +10≥0,20-2k ≥0,解得-10≤k ≤10. 故k 的取值范围是-10≤k ≤10.(2)M =3x +4y =3(k +10)+4(20-2k )=110-5k ,∴k =110-M5,∴-10≤110-M5≤10,解得60≤M ≤160,即M 的取值范围是60≤M ≤160. 23.解:(1)①500-x ;50x ;80(500-x )②50x +80(500-x )=25 600,解得x =480,500-x =20.答:甲种树苗购买了480棵,乙种树苗购买了20棵.(2)依题意,得90%x +95%(n -x )≥92%×n ,解得x ≤35n .又50x +80(n -x )=26 000,解得x =8n -2 6003,∴8n -2 6003≤35n ,∴n ≤4191131.∵n 为整数,∴n 的最大值为418.24.解:(1)设年降水量为x 万m 3,每人年平均用水量为y m 3.由题意,得⎩⎨⎧12 000+20x =16×20y ,12 000+15x =(16+4)×15y ,解得⎩⎨⎧x =200,y =50.答:年降水量为200万m 3,每人年平均用水量为50 m 3. (2)设该镇居民人均每年用水量为z m 3才能实现目标. 由题意,得12 000+25×200=(16+4)×25z ,解得z =34, 50-34=16(m 3).答:该镇居民人均每年需节约16 m 3水才能实现目标.(3)设该企业n 年后能收回成本.由题意,得[3.2×5 000×70%-(1.5-0.3)×5 000]×300n 10 000-40n ≥1 000,解得n ≥81829. 答:该企业至少9年后能收回成本.解题归纳:本题考查了一元一次不等式、二元一次方程组的应用,解答本题的关键是仔细审题,建立等量关系与不等关系.第4章 测试卷一、选择题(每题3分,共30分) 1.下列各点中,在第三象限的是( )A .(1,7)B .(-1,-7)C .(1,-7)D .(-1,7)2.给新同学指路,介绍文具店的位置时,其中表达正确的是( )A .在学校的右边B .距学校900 m 处C .在学校的西边D .在学校的西边距学校900 m 处3.如图,已知棋子“相”的坐标为(-2,3),棋子“兵”的坐标为(1,3),则棋子“炮”的坐标为( ) A .(3,2)B .(3,1)C .(2,2)D .(-2,2)(第3题) (第9题)4.在平面直角坐标系中,点P (-20,a )与点Q (b ,13)关于x 轴对称,则a +b的值为( ) A .33B .-33C .-7D .75.若点P (3,-4),Q (x ,-4)之间的距离是5,则x 的值为( )A .-2B .-2或2C .8D .-2或86.在平面直角坐标系xOy 中,若点A 的坐标为(-3,3),点B 的坐标为(2,0),则三角形ABO 的面积是( ) A .15B .7.5C .6D .37.在平面直角坐标系中,点A (1,2)平移后的坐标是A ′(-3,3),按照此平移方式平移其他点,则下列变换符合这种要求的是( ) A .(3,2)→ (4,2) B .(-1,0) → (-5,-4) C.⎝ ⎛⎭⎪⎫2.5,-13 →⎝ ⎛⎭⎪⎫-1.5,23 D .(1.2,5) → (-3.2,6)8.在平面直角坐标系中,下列各点关于y 轴的对称点在第一象限的是( )A .(2,1)B .(2,-1)C .(-2,1)D .(-2,-1)9.如图,A,B两点的坐标分别为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2B.3 C.4D.510.在平面直角坐标系xOy中,已知点A(2,-2),在y轴上确定一点P,使△AOP 为等腰三角形,则符合条件的点P有()A.1个B.2个C.3个D.4个二、填空题(每题3分,共24分)11.下列结论:①点(3,2)与(2,3)是同一个点;②点(0,-2)在x轴上;③点(0,0)是坐标原点;④点(1,1)在第二象限;⑤点(2,0)在x轴的正半轴上.其中正确的是________.(填序号)12.某市区有3个自行车站点,位置如图所示,若站点1的位置表示为(B,1),站点2的位置表示为(C,3),则站点3的位置可表示为____________.(第12题)(第15题)(第16题)(第17题)13.若点A(3,x-1)在x轴上,点B(2y+2,1)在y轴上,则x2+y2的值为________.14.在平面直角坐标系中,点A(-3,2)关于x轴对称的点B,将点B向右平移3个单位得到点C,则点C的坐标是________.15.如图,在平面直角坐标系中,平行于x轴的线段AB上所有点的纵坐标都是-1,横坐标x的取值范围是1≤x≤5,则线段AB上任意一点的坐标可以用“(x,-1)(1≤x≤5)”表示.若射线CD垂直平分AB于点C,那么按照类似这样的规定,射线CD上任意一点的坐标可以表示为____________.16.如图,在平面直角坐标系中,点A的坐标为(1,3),将线段OA向左平移2个单位,得到线段O′A′,则点A的对应点A′的坐标为________.17.如图,长方形OABC的边OA,OC分别在x轴,y轴上,点B的坐标为(3,2).点D,E分别在AB,BC边上,BD=BE=1.沿直线DE将三角形BDE翻折,点B落在点B′处,则点B′的坐标为________.18.将正整数按以下规律排列:第一列第二列第三列第四列第五列第一行 1 4 5 16 17 …第二行 2 3 6 15 …第三行9 8 7 14 …第四行10 11 12 13…第五行……表中数2在第二行,第一列,与有序数对(2,1)对应,数5与(1,3)对应,数14与(3,4)对应.根据这一规律,数2 019对应的有序数对为________.三、解答题(19,20题每题6分,21,22,23题每题8分,24题10分,共46分)19.如果规定北偏东30°的方向记做30°,从O点出发沿这个方向走50米记做50,图中点A记做(30°,50);北偏西45°的方向记做-45°,从O点出发沿着该方向的反方向走20米记做-20,图中点B记做(-45°,-20).(1)(-75°,-15),(10°,-25)分别表示什么意义?(2)在图中标出点(60°,-30)和(-30°,40).(第19题)20.根据下列条件建立适当的直角坐标系,标出学校、少年宫、体育馆、新华书店的位置.从学校向东走300 m,再向北走300 m是少年宫;从学校向西走100 m,再向北走200 m是体育馆;从学校向南走150 m,再向东走250 m,再向南走50 m是新华书店.21.已知点P(2x,3x-1)是平面直角坐标系内的点.(1)若点P在第一象限的角平分线上,求x的值;(2)若点P在第三象限,且到两坐标轴的距离之和为16,求x的值.22.如图,已知A(0,4),B(-2,2),C(3,0).(第22题)(1)作△ABC关于x轴对称的△A1B1C1;(2)写出点A1,B1,C1的坐标A1(________),B1(________),C1(________);(3)△A1B1C1的面积为________.23.如图,梯形ABCD是直角梯形.(1)直接写出点A,B,C,D的坐标;(2)画出直角梯形ABCD关于y轴的对称图形;(3)直角梯形ABCD与其关于y轴的对称图形构成一个等腰梯形,将这个等腰梯形向上平移4个单位,画出平移后的图形.(不写画法)(第23题)24.如图,在平面直角坐标系中,A,B,C三点的坐标分别为(0,1),(2,0),(2,1.5).(1)求△ABC的面积.(2)如果在第二象限内有一点P(a,2),试用含a的式子表示四边形ABOP的面积.(3)在(2)的条件下,是否存在点P,使得四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标;若不存在,请说明理由.(第24题)答案一、1.B 2.D 3.A4.B点拨:因为P,Q关于x轴对称,所以a=-13,b=-20,所以a+b=-33.5.D6.D点拨:此题首先运用数形结合思想,在平面直角坐标系中描点连线画出三角形ABO,然后运用转化思想将点的坐标转化为线段的长度,底BO=2,BO边上的高为3,所以三角形ABO的面积=12×2×3=3.7.C8.C9.A点拨:由A点的横坐标的变化可知线段AB向右平移了1个单位,由B 点的纵坐标的变化可知线段AB向上平移了1个单位.10.D点拨:本题利用分类讨论思想.当OA为等腰三角形的腰时,以O为圆心,OA为半径的圆与y轴有两个交点,以A为圆心,AO为半径的圆与y轴除点O外还有一个交点;当OA为等腰三角形的底时,作线段OA的垂直平分线,与y轴有一个交点.∴符合条件的点一共有4个.故选D.二、11.③⑤点拨:两个点的横纵坐标均不相等,表示的不是同一个点,所以①错误;横坐标为0的点在y轴上,所以②错误;第二象限的点的符号的特征是(-,+),所以④错误.12.(D,2)13.214.(0,-2)15.(3,y)(y≥-1)16.(-1,3)17.(2,1)点拨:由题意知四边形BEB′D是正方形,∴点B′的横坐标与点E 的横坐标相同,点B′的纵坐标与点D的纵坐标相同,∴点B′的坐标为(2,1).18.(45,7)三、19.解:(1)(-75°,-15)表示南偏东75°距O点15米处,(10°,-25)表示南偏西10°距O点25米处.(2)略.20.解:选取学校所在的位置为原点,以正东方向为x轴的正方向,以正北方向为y轴的正方向建立平面直角坐标系,学校、少年宫、体育馆、新华书店的位置如图所示.(第20题)21.解:(1)由题意得2x =3x -1,解得x =1.(2)∵点P (2x ,3x -1)在第三象限,∴⎩⎨⎧2x <0,3x -1<0,∴x <0,∴点P (2x ,3x -1)到坐标轴的距离之和为|2x |+|3x -1|=-2x -3x +1=16,解得x =-3. 22.解:(1)如图.(第22题)(2)0,-4;-2,-2;3,0 (3)723.解:(1)点A ,B ,C ,D 的坐标分别为(-2,-1),(-4,-4),(0,-4),(0,-1).(2)略. (3)略.24.解:(1)由点B (2,0),点C (2,1.5),可知CB ⊥x 轴.过点A 作AD ⊥BC ,垂足为D ,则S △ABC =12BC ·AD =12×1.5×2=1.5.(2)过点P 作PE ⊥y 轴,垂足为E .则S 四边形ABOP =S △AOB +S △AOP =12AO ·OB +12AO ·PE =12×1×2+12×1×(-a )=1-12a .(3)存在点P ,使得四边形ABOP 的面积与△ABC 的面积相等.依题意,得1-12a =1.5,解得a =-1.所以存在点P (-1,2),使得四边形ABOP 的面积与△ABC 的面积相等.第5章测试卷一、选择题(每题3分,共30分)1.函数y=1x-2+x-2的自变量x的取值范围是()A.x≥2 B.x>2 C.x≠2 D.x≤2 2.有一本书,每20页厚1 mm,设从第1页到第x页的厚度为y mm,则y关于x的函数表达式是()A.y=120x B.y=20x C.y=120+x D.y=20x3.已知点(-1,y1),(6,y2)在一次函数y=2x-3的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0 D.y2<0<y1 4.已知一次函数y=kx+b(k,b是常数,且k≠0)中x与y的部分对应值如下表,则不等式kx+b<0的解集是()A.x<0 B.x>0 C.x<1 D.x>15.已知一次函数y=kx+b,y随x的增大而减小,且kb>0,则这个函数的大致图象是()6.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的位置如图所示,则关于x的不等式k2x<k1x+b的解集为()A .x <-1B .x >-1C .x >2D .x <2(第6题) (第7题)7.如图,过A 点的一次函数的图象与正比例函数y =2x 的图象相交于点B ,则这个一次函数的表达式是( ) A .y =2x +3B .y =x -3C .y =2x -3D .y =-x +38.如图,在等腰三角形ABC 中,直线l 垂直于底边BC ,现将直线l 沿线段BC从B 点匀速平移至C 点,直线l 与△ABC 的边相交于E ,F 两点,设线段EF 的长度为y ,平移时间为t ,则能较好地反映y 与t 的函数关系的图象是( )(第8题)9.如图,点A 的坐标为(-1,0),点B 在直线y =x 上运动,当线段AB 最短时,点B 的坐标为( ) A .(0,0) B.⎝ ⎛⎭⎪⎫22,-22C.⎝ ⎛⎭⎪⎫-12,-12 D.⎝ ⎛⎭⎪⎫-22,-22(第9题) (第10题) (第14题)10.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后分别按原速同时驶往甲地,两车之间的距离s(km)与慢车行驶时间t (h )之间的函数图象如图所示,下列说法:①甲、乙两地之间的距离为560 km ;②快车速度是慢车速度的1.5倍;③快车到达甲地时,慢车距离甲地60 km ;④相遇时,快车距甲地320 km.其中正确的个数是( )A.1个B.2个C.3个D.4个二、填空题(每题3分,共24分)11.若函数y=(m-2)x+m2-4是正比例函数,则m=________.12.一次函数y=2x-6的图象与y轴的交点坐标为________.13.如果直线y=12x+n与直线y=mx-1的交点坐标为(1,-2),那么m=________,n=________.14.如图,一次函数y=kx+b的图象与x轴的交点坐标为(2,0),则下列说法:①y随x的增大而减小;②b>0;③关于x的方程kx+b=0的解为x=2.其中说法正确的有____________(把你认为说法正确的序号都填上).15.若一次函数y=(2m-1)x+3-2m的图象经过第一、二、四象限,则m的取值范围是__________.16.如图,直线l1,l2交于点A,观察图象,点A的坐标可以看作方程组__________的解.(第16题)(第18题)17.在平面直角坐标系中,点O是坐标原点,过点A(1,2)的直线y=kx+b与x 轴交于点B,且S△AOB=4,则k的值是______________.18.一次越野跑中,当小明跑了1 600 m时,小刚跑了1 400 m,小明、小刚在此后距离出发点的路程y(m)与时间t(s)之间的函数关系如图,则这次越野跑的全程为________m.三、解答题(19,20题每题6分,21,22,23题每题8分,24题10分,共46分)19.已知关于x的一次函数y=(6+3m)x+(n-4).(1)当m,n为何值时,y随x的增大而减小?(2)当m,n为何值时,函数的图象与y轴的交点在x轴的下方?(3)当m,n为何值时,函数图象经过原点?。
第3章 一元一次不等式 浙教版数学八年级上册单元测试卷(含答案)
一元一次不等式单元测试一、选择题1.下列命题是真命题的是( )A .若ab >0,则a >0,b >0B .若ab <0,则a <0,b <0C .若a >b ,则ac >bcD .若a >b ,则―5a <―5b2.若x <y 成立,则下列不等式成立的是( )A .x 2>y 2B .x ―2>y ―2C .―2x >―2yD .x ―y >03.将不等式组x <1x ≥2的解集表示在数轴上,下列正确的是( )A .B .C .D .4. 若一个三角形的三条边长分别为3,2a-1,6,则整数a 的值可能是( )A .2,3B .3,4C .2,3,4D .3,4,55.下列各式:①x 2+2>5;②a +b ;③x3≥2x ―15;④x ―1;⑤x +2≤3.其中是一元一次不等式的有( )A .2个B .3个C .4个D .5个6. 若关于x 的不等式组2x +3>12x ―a <0恰有3个整数解,则实数a 的取值范围是( )A .7<a <8B .7≤a <8C .7<a ≤8D .7≤a ≤87.已知0≤a ﹣b ≤1且1≤a +b ≤4,则a 的取值范围是( )A .1≤a ≤2B .2≤a ≤3C .12⩽a⩽52D .32⩽a⩽528.若x <y ,且ax >ay ,当x ≥―1时,关于x 的代数式ax ―2恰好能取到两个非负整数值,则a 的取值范围是( )A .―4<a ≤―3B .―4≤a <―3C .―4<a <0D .a ≤―39.若整数m使得关于x的方程mx―1=21―x+3的解为非负整数,且关于y的不等式组4y―1<3(y+3)y―m⩾0至少有3个整数解,则所有符合条件的整数m的和为( )A.7 B.5 C.0 D.-210.对于任意实数p、q,定义一种运算:p@q=p-q+pq,例如2@3=2-3+2×3.请根据上述定义解决问题:若关于x的不等式组2@x<4x@2≥m有3个整数解,则m的取值范围为是( )A.-8≤m<-5B.-8<m≤-5C.-8≤m≤-5D.-8<m<-5二、填空题11.关于x的不等式3⩾k―x的解集在数轴上表示如图,则k的值为 .12.小明用200元钱去购买笔记本和钢笔共30件,已知每本笔记本4元,每支钢笔10元,则小明至少能买笔记本 本.13.在数轴上存在点M=3x、N=2―8x,且M、N不重合,M―N<0,则x的取值范围是 .14.关于x的不等式组x>m―1x<m+2的整数解只有0和1,则m= .15.关于x的不等式组a―x>3,2x+8>4a无解,则a的取值范围是 .16.若数a既使得关于x、y的二元一次方程组x+y=63x―2y=a+3有正整数解,又使得关于x x+a―3的解集为x≥15,那么所有满足条件的a的值之和为 .三、计算题17.(1)解一元一次不等式组:x+3(x―2)⩽6 x―1<2x+13.(2)解不等式组:3(x+1)≥x―1x+152>3x,并写出它的所有正整数解.四、解答题18.先化简:a2―1a2―2a+1÷a+1a―1―aa―1;再在不等式组3―(a+1)>02a+2⩾0的整数解中选取一个合适的解作为a的取值,代入求值.19.解不等式组2―3x≤4―x,①1―2x―12>x4.②下面是某同学的部分解答过程,请认真阅读并完成任务:解:解不等式①,得―3x+x≤4―2第1步合并同类项,得―2x≤2第2步两边都除以―2,得x≤―1第3步任务一:该同学的解答过程中第▲步出现了错误,这一步的依据是▲,不等式①的正确解是▲.任务二:解不等式②,并写出该不等式组的解集.20.由于受到手机更新换代的影响,某手机店经销的甲种型号手机二月份售价比一份月每台降价500元.如果卖出相同数量的甲种型号手机,那么一月销售额为9万元,二月销售额只有8万元.(1)一月甲种型号手机每台售价为多少元?(2)为了提高利润,该店计划三月购进乙种型号手机销售,已知甲种型号每台进价为3500元,乙种型号每台进价为4000元,预计用不多于7.6万元且不少于7.5万元的资金购进这两种手机共20台,请问有几种进货方案?21.新定义:若某一元一次方程的解在某一元一次不等式组解集范围内,则称该一元一次方程为该不等式组的“关联方程”,例如:方程x―1=3的解为x=4,而不等式组x―1>2x+2<7的解集为3<x<5,不难发现x=4在3<x<5的范围内,所以方程x―1=3是不等式组x―1>2x+2<7的“关联方程”.(1)在方程①3(x+1)―x=9;②4x―8=0;③x―12+1=x中,关于x的不等式组2x―2>x―13(x―2)―x≤4的“关联方程”是;(填序号)(2)若关于x的方程2x+k=61≤2x2≤x―12的“关联方程”,求k的取值范围;22.若不等式(组)①的解集中的任意解都满足不等式(组)②,则称不等式(组)①被不等式(组)②“容纳”,其中不等式(组)①与不等式(组)②均有解.例如:不等式x>1被不等式x>0“容纳”;(1)下列不等式(组)中,能被不等式x<―3“容纳”的是________;A.3x―2<0B.―2x+2<0C.―19<2x<―6D.3x<―84―x<3(2)若关于x的不等式3x―m>5x―4m被x≤3“容纳”,求m的取值范围;(3)若关于x的不等式a―2<x<―2a―3被x>2a+3“容纳”,若M=5a+4b+2c 且a+b+c=3,3a+b―c=5,求M的最小值.答案解析部分1.【答案】D2.【答案】C3.【答案】B4.【答案】B5.【答案】A6.【答案】C7.【答案】C8.【答案】A9.【答案】A10.【答案】B11.【答案】212.【答案】1713.【答案】x<21114.【答案】015.【答案】a≥116.【答案】―1517.【答案】解:解不等式x+3(x﹣2)≤6,x+3x-6≤6,4x≤12,x≤3,∴不等式x+3(x﹣2)≤6的解为:x≤3,,解不等式x﹣1 <2x+133(x-1)<2x+1,3x-3<2x+1,x<4,的解为:x<4,∴不等式x﹣1 <2x+13∴不等式组的解集为x≤3.(2)【答案】解:3(x+1)≥x―1①x+152>3x②,由①得,x≥―2,由②得,x<3,∴不等式组的解集为―2≤x<3,所有正整数解有:1、2.18.【答案】解:解不等式3-(a+1)>0,得:a<2,解不等式2a+2≥0,得:a≥-1,则不等式组的解集为-1≤a<2,其整数解有-1、0、1,∵a≠±1,∴a=0,则原式=1.19.【答案】解:任务一:该同学的解答过程中第3步出现了错误,这一步的依据是不等式的基本性质3,不等式①的正确解是故答案为:3,不等式的基本性质3,x≥―1任务二:解不等式②,得x<65,∴不等式组的解为―1≤x<65.20.【答案】(1)解:设一份月甲种型号手机每台售价为x元.由题意得90000x=80000 x―500解得x=4500经检验x=4500是方程的解.答:一份月甲种型号手机每台售价为4500元.(2)解:设甲种型号进a台,则乙种型号进(20―a)台.由题意得75000≤3500a+4000(20―a)≤76000解得8≤a≤10a为整数,a为8,9,10有三种进货方案:甲型号8台,乙型号12台;甲型号9台,乙型号11台;甲型号10台,乙型号10台.21.【答案】(1)①②(2)k≥8 22.【答案】(1)C (2)m≤2(3)19。
浙教版八年级数学上册第1章 三角形的初步认识 单元测试卷(含答案)
浙教版八年级数学上册第1章三角形的初步认识单元测试卷题号一二三总分得分一、选择题(本大题共10小题,共30分)1.在下列长度的四根木棒中,能与两根长度分别为4cm和9cm的木棒构成一个三角形的是()A. 4cmB. 5cmC. 9cmD. 13cm2.如图,∠ABC=∠DCB,添加下列条件,不能判定△ABC≌△DCB的是()A. ∠A=∠DB. ∠ACB=∠DBCC. AC=DBD. AB=DC3.如图,△ABC中,AB=AC,AD⊥BC,下列结论中不正确的是()A. D是BC中点B. AD平分∠BACC. AB=2BDD. ∠B=∠C4.下列判断:①三角形的三个内角中最多有一个钝角;②三角形的三个内角中至少有两个锐角;③三角形的角平分线、中线、高线均在三角形内部;④三角形的外角大于任何一个内角.正确的有几个()A. 1个B. 2个C. 3个D. 4个5.如图,将一个三角形纸片ABC沿过点B的直线折叠,使点C落在AB边上的点E处,折痕为BD,则下列结论一定正确的是()A. AD=BDB. AE=ACC. ED+EB=DBD. AE+CB=AB6.下列两个三角形全等的是()A. ①②B. ②③C. ③④D. ①④7.BD是∠ABC的角平分线,DE⊥AB于E,△ABC的面积是15cm2,AB=9cm,BC=6cm,则DE=()cm.A. 1B. 2C. 3D. 48.如图,在矩形ABCD中,点O为对角线AC、BD的交点,点E为BC上一点,连接EO,并延长交AD于点F,则图中全等三角形共有()A. 5对B. 6对C. 8对D. 10对9.如图,在△ABC中,∠C=90∘,AD平分∠BAC,DE⊥AB于E,下列结论:①CD=ED;②AC+BE=AB;③∠BDE=∠BAC;④BE=DE;⑤S BDE:S△ACD=BD:AC,其中正确的个数为()A. 5个B. 4个C. 3个D. 2个10.如图,的两条中线AM,BN相交于点O,已知的面积为4,的面积为2,则四边形MCNO的面积为()A. 4B. 3C. 6D. 2二、填空题(本大题共8小题,共24分)11.12.如图,∠ACD是△ABC的外角,若∠B=50°,∠ACD=120°,则∠A=_________12.如图,AD是△ABC的中线,CE是△ACD的中线,S△ACE=3cm2,则S△ABC=________cm2.13.如图,∠ACB=90°.AC=BC,AD⊥CE,BE⊥CE.垂足分别为D、E,AD=5,DE=3,则BE=________.14.如图,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=________.15.阅读下面材料:尺规作图:作一条线段等于已知线段.已知:线段AB.求作:线段CD,使CD=AB.在数学课上,老师提出如下问题:小亮的作法如下:老师说:“小亮的作法正确”请回答:小亮的作图依据是______.16.如图,已知Rt△ABC中,∠B=90°,∠A=60°,AB=3,点M、N分别在线段AC、AB上,将△ANM沿直线MN折叠,使点A的对应点O恰好落在线段BC上,当△DCM为直角三角形时,则AM的长为________.17.如图,四边形ABCD中,对角线AC、BD交于点O,AB=AD,CB=CD,则图中共有______对全等三角形.18.如图,已知∠3=∠4,要说明△ABC≌△DCB,(1)若以“SAS”为依据,则需添加的条件是_______;(2)若以“AAS”为依据,则需添加的条件是_______;(3)若以“ASA”为依据,则需添加的条件是_______.三、解答题(本大题共7小题,共66分)19.如图,△ABC≌△ADE,∠DAC=60°,∠BAE=100°,BC,DE相交于点F,求∠DFB的度数.20.在△ABC中,CD是AB边上高,BE为角平分线,若∠BFC=113°,求∠BCF的度数.21.如图,AC,BD相交于点O,且AB=DC,AC=DB.求证:∠ABO=∠DCO.22.如图,在△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,AD与BE交于点F,∠BAD=45°,求证:BF=2AE.23.如图,长方形ABCD中,AD=BC=4,AB=CD=2.点P从点A出发以每秒1个单位的速度沿A→B→C→D→A的方向运动,回到点A停止运动.设运动时间为t秒.(1)当△ABP的面积为3时,求t的值;(2)△ABP面积的最大值是______,此时t的取值范围是______.24.已知:AD为△ABC的中线,分别以AB和AC为一边在△ABC的外部作等腰三角形ABE和等腰三角形ACF,且AE=AB,AF=AC,连接EF,∠EAF+∠BAC=180°.(1)若∠ABE=65°,∠ACF=75°,求∠BAC的度数.(2)求证:EF=2AD.25.26、(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF 的形状.(不需要证明)答案和解析1.【答案】C【解析】【分析】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.设选取的木棒长为Lcm,再根据三角形的三边关系求出L的取值范围,选出合适的L的值即可.【解答】解:设选取的木棒长为Lcm,∵两根木棒的长度分别为4m和9m,∴9cm−4cm<L<9cm+4cm,即5cm<L<13cm,∴9cm的木棒符合题意.故选C.2.【答案】C【解析】【分析】本题考查了全等三角形的判定的应用,能正确根据全等三角形的判定定理进行推理是解此题的关键,注意:全等三角形的判定方法有SAS,ASA,AAS,SSS,HL,根据定理逐个判断即可.【解答】解:A、∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS,即能推出△ABC≌△DCB,故本选项不符合题意;B、∠ABC=∠DCB,BC=CB,∠ACB=∠DBC,符合ASA,即能推出△ABC≌△DCB,故本选项不符合题意;C、∠ABC=∠DCB,AC=BD,BC=BC,不符合全等三角形的判定定理,即不能推出△ABC≌△DCB,故本选项符合题意;D、AB=DC,∠ABC=∠DCB,BC=BC,符合SAS,即能推出△ABC≌△DCB,故本选项不符合题意;故选:C.3.【答案】C【解析】解:∵AB=AC,AD⊥BC,∴∠B=∠C,∠BAD=∠CAD,BD=DC.∴AD平分∠BAC,无法确定AB=2BD.故A、B、D正确,C错误.故选:C.由在△ABC中,AB=AC,AD⊥BC,根据等边对等角与三线合一的性质,即可求得答案.此题考查了等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.4.【答案】B【解析】【分析】本题主要考查三角形的内角和定理,三角形的外角性质,三角形的中线、高线、角平分线.掌握三角形的内角和定理,三角形的外角性质,三角形的中线、高线、角平分线是解题的关键.根据三角形的内角和等于180°判断①②,根据角形的中线、高线、角平分线的定义判断③,根据三角形的外角性质判断④即可.【解答】解:因为三角形的内角和为180°,所以三角形的三个内角中最多有一个钝角,三角形的三个内角中至少有两个锐角,所以①②是正确的;锐角三角形的角平分线、中线、三条高均在三角形内部,而直角三角形有两条高与直角边重合,另一条高在三角形内部;钝角三角形有两条高在三角形外部,一条高在三角形内部,所以③不正确;例如钝角三角形三角形中有一个角等于120°,外角小于一个钝角,所以④不正确.综上,正确的有①②共2个.故选B.5.【答案】D【解析】【分析】本题考查的是翻折变换,熟知图形翻折不变性的性质是解答此题的关键.先根据图形翻折变换的性质得出BE=BC,根据线段的和差,可得AE+BE=AB,根据等量代换,可得答案.【解答】解:由折叠的性质知,BC=BE,∴AE+CB=AE+BE=AB.故选D.6.【答案】A【解析】【分析】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS,SAS,ASA,AAS,HL.根据全等三角形判定方法对各图形中的条件进行分析得出答案即可.【解答】解:在图①和图②所给的条件中,具备了两边和它们的夹角对应相等,∴根据SAS可以判断三角形①和三角形②全等,∴两个三角形全等的是①②.故选A.7.【答案】B【解析】【分析】本题考查了角平分线的性质和三角形的面积,能根据角平分线的性质得出DE=DF是解此题的关键.过D作DF⊥BC于F,根据角平分线的性质得出DE=DF,根据三角形的面积公式得出关于DE的方程,求出方程的解即可.【解答】解:过D作DF⊥BC于F,∵BD是∠ABC的角平分线,DE⊥AB于E,∴DE=DF,∵△ABC的面积是15cm2,AB=9cm,BC=6cm,∴12×AB×DE+12×BC×DF=15cm2,∴9DE+6DE=30,解得:DE=2,故选B.8.【答案】D【解析】【分析】本题考查矩形的性质、全等三角形的判定和性质,解题的关键是熟练掌握全等三角形的判定方法,属于基础题,中考常考题型.根据已知及全等三角形的判定方法进行分析,从而得到答案.【解答】解:∵四边形ABCD为矩形,其矩形的对角线相等且相互平分,∴AB=CD,AD=BC,AO=CO,BO=DO,EO=FO,∠DAO=∠BCO,又∠AOB=∠COD,∠AOD=∠COB,∠AOE=∠COF,易证△ABC≌△DCB,△ABC≌△CDA,△ABC≌△BAD,△BCD≌△ADC,△BCD≌△DAB,△ADC≌△DAB,△AOF≌△COE,△DOF≌△BOE,△DOC≌△AOB,△AOD≌△BOC故图中的全等三角形共有10对.故选D.9.【答案】C【解析】【分析】此题考查了角平分线的性质以及全等三角形的判定与性质.此题比较适中,注意掌握数形结合思想的应用.根据角平分线的性质,可得CD=ED,易证得△ADC≌△ADE,可得AC+BE=AB;由等角的余角相等,可证得∠BDE=∠BAC;然后由∠B的度数不确定,可得BE不一定等于DE;又由CD=ED,△ABD和△ACD的高相等,所以S△BDE:S△ACD=BE:AC.【解答】解:①正确,∵在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,∴CD=ED;②正确,因为由HL可知△ADC≌△ADE,所以AC=AE,即AC+BE=AE+BE=AB;③正确,因为∠BDE和∠BAC都与∠B互余,根据同角的补角相等,所以∠BDE=∠BAC;④错误,因为∠B的度数不确定,故BE不一定等于DE;⑤错误,因为CD=ED,△ABD和△ACD的高相等,所以S△BDE:S△ACD=BE:AC.故选C.10.【答案】A【解析】【分析】本题主要考查了三角形的面积,解题的关键是利用中线找出三角形面积关系.只应用三角形中线平分面积的性质得结论【解答】解:∵AM和BN是中线,∴S△BNC=1S△ABC=S△ABM,即S△ABO+S△BOM=S△BOM+S四边形MCNO,S△ABO=S四边形MCNO,2∵△ABO的面积为4,∴S四边形MCNO=4.故答案为A.11.【答案】70°【解析】【分析】根据三角形的外角的性质计算.【详解】解:由三角形的外角的性质可知,∠A=∠ACD−∠B=70°,故答案为:70°.【点睛】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.12.【答案】 12【解析】【分析】本题考查了三角形的中线和三角形的面积,根据三角形的面积公式和三角形的中线的定义可知S△ABC=2S△ACD,S△ACD=2S△ACE,进而得到答案.【解答】解:∵AD是△ABC的中线,CE是△ACD的中线,∴S△ABC=2S△ACD,S△ACD=2S△ACE,∴S△ABC=4S△ACE=12cm2.故答案为12.13.【答案】2【解析】【分析】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等).可先证明△BCE≌△CAD,可求得CE=AD,CD=BE,结合条件可求得CD,则可求得BE.【解答】解:∵∠ACB=90°,∴∠BCE+∠ACD=90°,又∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠BCE+∠CBE=90°,∴∠CBE=∠ACD,在△CBE和△ACD中,{∠E=∠ADC∠CBE=∠ACD BC=AC,∴△CBE≌△ACD(AAS),∴BE=CD,CE=AD=5,∵DE=3,∴CD=CE−DE=AD−DE=5−3=2,∴BE=CD=2.故答案是2.14.【答案】55°【解析】【分析】本题考查了全等三角形的性质和判定,三角形的外角性质的应用,解此题的关键是推出△BAD≌△CAE,求出∠BAD=∠EAC,证△BAD≌△CAE,推出∠2=∠ABD=30°,根据三角形的外角性质求出即可.【解答】解:∵∠BAC=∠DAE,∴∠BAC−∠DAC=∠DAE−∠DAC,∴∠1=∠EAC,在△BAD和△CAE中,{AB=AC ∠BAD=∠EAC AD=AE∴△BAD≌△CAE,∴∠2=∠ABD=30°,∵∠1=25°,∴∠3=∠1+∠ABD=25°+30°=55°,故答案为:55°.15.【答案】圆的半径相等【解析】【分析】本题考查了作图−基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).利用圆的半径相等可判断CD=AB.【解答】解:小亮的作图依据为圆的半径相等.故答案为圆的半径相等.16.【答案】2或3√3−3【解析】【分析】本题考查了翻折变换−折叠问题,含30度角的直角三角形的性质,勾股定理,正确的作出图形是解题的关键.折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.依据△DCM为直角三角形,需要分两种情况进行讨论:当∠CDM=90°时,△CDM是直角三角形;当∠CMD=90°时,△CDM是直角三角形,分别依据含30°角的直角三角形的性质以及勾股定理,即可得到AM的长.【解答】解:分两种情况:①如图,当∠CDM=90°时,△CDM是直角三角形.∵在Rt△ABC中,∠B=90°,∠A=60°,AB=3,∴∠C=30°,AC=6,由折叠可得,AM =DM ,又∵DM =12CM , ∴AM =12CM =13AC =2; ②如图,当∠CMD =90°时,△CDM 是直角三角形.∵在Rt △ABC 中,∠B =90°,∠A =60°,AB =3,∴∠C =30°,AC =6,∴CD =2MD ,在直角△CDM 中,根据勾股定理得:CM 2=CD 2−MD 2,∴CM =√3MD ,又∵根据折叠可得AM =MD ,∴CM =√3AM ,所以AM +√3AM =6,解得AM =3√3−3.故答案为2或3√3−3.17.【答案】3【解析】解:图中有3对全等三角形,是△ABC≌△ADC ,△ABO≌△ADO ,△CBO≌△CDO ,理由是:∵在△ABC 和△ADC 中{AB =AD AC =AC BC =DC∴△ABC≌△ADC(SSS),∴∠BAO =∠DAO ,∠BCO =∠DCO ,在△BAO 和△DAO 中{AB =AD ∠BAO =∠DAO AO =AO∴△ABO≌△ADO(SAS),同理△CBO≌△CDO,故答案为:3.根据SSS能推出△ABC≌△ADC,根据全等得出∠BAO=∠DAO,∠BCO=∠DCO,根据SAS推出△ABO≌△ADO、△CBO≌△CDO即可.本题考查了全等三角形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键.18.【答案】(1)AC=DB;(2)∠5=∠6;(3)∠ABC=∠DCB(答案不唯一).【解析】【分析】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关健.本题要判定△ABC≌△DCB,已知∠3=∠4,和一个公共边,根据SAS,AAS,ASA可添加一对边,一组角.【解答】解:已知一组角相等,和一个公共边,则以SAS为依据,则需要再加一对边,即AC=DB以“AAS”为依据,则需添加一组角,即∠5=∠6以“ASA”为依据,则需添加一组角,即∠ABC=∠DCB.故分别填AC=DB,∠5=∠6,∠1=∠2.故答案为:(1)AC=DB;(2)∠5=∠6;(3)∠ABC=∠DCB.19.【答案】解:∵△ABC≌△ADE,∴∠BAC=∠DAE,∠B=∠D,∴∠BAD=∠CAE=1×(∠BAE−∠DAC)=20°,2∵∠B=∠D,∠BGA=∠DGF,∴∠DFB=∠BAD=20°.【解析】本题考查的是全等三角形的性质,三角形内角和及对顶角,掌握全等三角形的对应角相等是解题的关键.根据全等三角形的性质得到∠BAC=∠DAE,∠B=∠D,求出∠BAD=∠CAE=20°,根据对顶角相等计算即可.20.【答案】解:∵CD是AB边上高,∴∠BDF=90°,∠ABE=∠BFC−∠BDF=113°−90°=23°,∵BE为角平分线,∴∠CBF=∠ABE=23°,∴∠BCF=180°−∠BFC−∠CBF=180°−113°−23°=44°.【解析】本题考查了三角形的高线角平分线的概念,三角形内角和定理以及三角形的外角的性质,掌握三角形内角和等于180°是解题的关键.根据三角形的外角的性质求出∠ABE,由角平分线的定义求出∠CBF的度数,运用三角形内角和定理即可求出∠BCF的度数.21.【答案】证明:连接BC.在△ABC和△DCB中,{AB=DC AC=DB BC=CB,∴△ABC≌△DCB(SSS),∴∠A=∠D,在△AOB和△DOC中,∴△AOB≌△DOC(AAS).∴∠ABO=∠DCO.【解析】本题考查了全等三角形的判定与性质,注意:全等三角形的判定有SAS,ASA,AAS,SSS,HL,全等三角形的对应边相等.连接BC,先证明△ABC≌△DCB,然后证明△AOB≌△DOC,即可证得.22.【答案】证明:∵AD⊥BC,∠BAD=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵BE⊥AC,AD⊥BC,∴∠CAD+∠ACD=90°,∠CBE+∠ACD=90°,∴∠CAD=∠CBE,在△ADC和△BDF中,{∠CAD=∠CBEAD=BD∠ADC=∠BDF=90°,∴△ADC≌△BDF(ASA),∴BF=AC,∵AB=BC,BE⊥AC,∴AC=2AE,∴BF=2AE.【解析】此题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,等腰三角形三线合一的性质.先判定出△ABD是等腰直角三角形,根据等腰直角三角形的性质可得AD=BD,再根据同角的余角相等求出∠CAD=∠CBE,然后利用“角边角”证明△ADC和△BDF全等,根据全等三角形对应边相等可得BF=AC,再根据等腰三角形三线合一的性质可得AC=2AE,从而得证.23.【答案】解:(1)当P点在BC上时,BP=t−2,则12⋅2⋅(t−2)=3,解得t=5;当P点在AD上时,AP=12−t,则12⋅2⋅(12−t)=3,解得t=9;综上所述,t的值为5或9;(2)4;6≤t≤8.【解析】解:(1)当P点在BC上时,BP=t−2,则12⋅2⋅(t−2)=3,解得t=5;当P点在AD上时,AP=12−t,则12⋅2⋅(12−t)=3,解得t=9;综上所述,t的值为5或9;(2)点P在CD上时,△ABP的边AB上的高最大,△ABP的面积有最大值:12×2×4=4,此时t的范围为6≤t≤8.故答案为4,6≤t≤8.(1)讨论:当P点在BC上时,BP=t−2,根据三角形面积公式得到12⋅2⋅(t−2)=3;当P点在AD上时,则AP=12−t,根据三角形面积公式12⋅2⋅(12−t)=3,然后分别解方程即可;(2)根据三角形面积公式,点P点在CD上时△ABP的面积有最大值,然后求出P点运动到C点和D点的时间得到t 的范围.本题考查了三角形的面积:三角形的面积等于底边长与高线乘积的一半,即S△=12×底×高.24.【答案】(1)解:∵AE=AB,∴∠AEB=∠ABE=65°,∴∠EAB=50°,∵AC=AF,∴∠ACF=∠AFC=75°,∴∠CAF=30°,∵∠EAF+∠BAC=180°,∴∠EAB+2∠ABC+∠FAC=180°,∴50°+2∠BAC+30°=180°,∴∠BAC=50°;(2)证明:延长AD至H,使DH=AD,连接BH,∵EF=2AD,∴AH=EF,在△BDH和△CDA中,{BD=CD∠BDH=∠CDA DH=AD,∴△BDH≌△CDA,∴HB=AC=AF,∠BHD=∠CAD,∴AC//BH,∴∠ABH+∠BAC=180°,∵∠EAF+∠BAC=180°,∴∠EAF=∠ABH,在△ABH和△EAF中,{AE=AB∠EAF=∠ABH AF=BH,∴△ABH≌△EAF,∴∠AEF=∠ABH,∴EF=AH=2AD.【解析】本题考查三角形综合题、全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.(1)利用三角形的内角和定理求出∠EAB,∠CAF,再根据∠EAF+∠BAC=180°构建方程即可解决问题;(2)延长AD至H,使DH=AD,连接BH,想办法证明△ABH≌△EAF即可解决问题.25.【答案】(1)证明:∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,∵在△ADB和△CEA中{∠ABD=∠CAE ∠BDA=∠AEC AB=AC,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)解:成立,理由如下:∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°−α,∴∠CAE=∠ABD,∵在△ADB和△CEA中{∠ABD=∠CAE ∠BDA=∠AEC AB=AC,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(3)解:△DEF是等边三角形.【解析】【分析】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了等边三角形的判定与性质.(1)根据BD⊥直线m,CE⊥直线m得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,然后根据“AAS”可判断△ADB≌△CEA,则AE=BD,AD=CE,于是DE=AE+AD=BD+CE;(2)与(1)的证明方法一样;(3)由前面的结论得到△ADB≌△CEA,则BD=AE,∠DBA=∠CAE,根据等边三角形的性质得∠ABF=∠CAF=60°,则∠DBA+∠ABF=∠CAE+∠CAF,则∠DBF=∠FAE,利用“SAS”可判断△DBF≌△EAF,所以DF=EF,∠BFD=∠AFE,于是∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,根据等边三角形的判定方法可得到△DEF为等边三角形.【解答】(1)见答案;(2)见答案;(3)△DEF是等边三角形.由(2)知,△ADB≌△CEA,BD=AE,∠DBA=∠CAE,∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°,∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠FAE,∵BF=AF在△DBF和△EAF中{FB=FA∠FBD=∠FAE BD=AE,∴△DBF≌△EAF(SAS),∴DF=EF,∠BFD=∠AFE,∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DEF为等边三角形.。
2023-2024学年浙教版八年级数学上册第一章《三角形的初步认识》单元试题卷附答案解析
2023-2024学年八年级数学上册第一章《三角形的初步认识》单元试题卷(满分120分)一、选择题(本大题共有10个小题,每小题3分,共30分)1.下面各组线段中,能组成三角形的是()A.6,9,14B.8,8,16C.10,5,4D.5,11,62.在ABC 中,A ∠是钝角,下列图中画BC 边上的高线正确的是()A. B.C. D.3.用直尺和圆规作一个角等于已知角,如图,能得出AOB AO B '''∠=∠的依据是()A.SASB.SSS C.ASA D.AAS 4.如图,在ABC 中,90C ∠=︒,4AC =,13DC AD =,BD 平分ABC ∠,则点D 到AB 的距离等于()A.83B.43C.2D.15.如图,工人师傅设计了一种测零件内径AB 的卡钳,卡钳交叉点O 为AA '、BB '的中点,只要量出A B ''的长度,就可以道该零件内径AB 的长度.依据的数学基本事实是()A.两边及其夹角分别相等的两个三角形全等B.两角及其夹边分别相等的两个三角形全等C.两余直线被一组平行线所截,所的对应线段成比例D.两点之间线段最短6.如图,点B E C F 、、、在一条直线上,已知AB DF ∥,AB DF =,下列条件中,不能判断ABC DEF ≌△△的是()A.BE CF =B.AC DE =C.A D ∠=∠D.AC DE∥7.下列说法正确的是()A.三角形的角平分线是一条射线B.三角形的三条中线总在三角形内部C.钝角三角形的三条高都在三角形内部D.三角形的三条中线的交点可能在三角形外部8.如图,在Rt ABC △中,90C ∠=︒,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M N ,,再分别以点M N ,为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若3CD =,10AB =,则ABD △的面积是()A.15B.30C.45D.609.如图,已知C D ∠=∠,AC AD =,增加下列条件:①AB AE =;②BC ED =;③12∠=∠;④B E ∠∠=.其中能使ABC ≌AED △的条件有()A.4个B.3个C.2个D.1个10.如图,直线12l l ∥,点C 、A 分别在1l 、2l 上,以点A 为圆心,适当长为半径画弧,交AC 、2l 于点D 、E ;分别以D 、E 为圆心,大于12DE 长为半径画弧,两弧交于点F ;作射线AF 交1l 于点B .若130BCA ∠=︒,则1∠的度数为()A.20︒B.25︒C.30︒D.50︒二、填空题(本大题共有6个小题,每小题3分,共18分)11.如图,在△ABC 中,D,E 分别是AB,AC 上的点,点F 在BC 的延长线上,DE∥BC,若∠1=50°,∠2=110°,则∠A=____.12.如图,在ABC 和BAD 中,ABC BAD ∠=∠,若要使ABC BAD ≌,则需要补充的条件是______.(写出一个即可)13.如图,△ADB≌△ECB,若∠CBD=40°,BD⊥EC,则∠D 的度数为____.14.如图,△ABC 中,AD⊥BC,AE 平分∠BAC,∠B=60°,∠BAC=110°,则∠DAE=_____.15.一个三角形的两边长分别为3和5,第三边长为偶数,则第三边长可能为________【答案】4或616.如图,AD 是ABC ∆的中线,CE 是ACD ∆的中线,DF 是CDE ∆的中线,若2DEF S ∆=,则ABC S ∆等于_______17.如图,在△ABC 中,90C ∠=︒,以A 为圆心,任意长为半径画弧,分别交AC ,AB 于点M ,N 再分别以M ,N 为圆心,大于12MN 长为半径画弧,两弧交于点O ,作射线AO ,交BC 于点E ,已知AB =10,20ABE S =△,则CE 的长为_______18.如图,在ABC 中,BD 和CD 分别平分ABC ∠和ACB ∠,若40A ∠=︒,则D ∠的大小为______.三、解答题(本大题共有4个小题,共52分)19.如图,已知//AB CD ,AB CD =,BF CE =.求证:AE DF =且//AE DF .20.如图,点B ,F ,C ,E 在直线l 上(F ,C 之间不能直接测量),点A ,D 在l 异侧,测得AB DE =,AB DE ∥,A D ∠=∠.(1)求证:ABC DEF ≌△△;(2)若10BE =,3BF =,求FC 的长度.21.如图,点A 、D 、C 、F 在同一条直线上,AD =CF ,AB =DE ,BC =EF .(1)求证:△ABC ≌△DEF ;(2)若∠A =60°,∠B =80°,求∠F 的度数.22.(1)问题发现:如图1,△ACB 和△DCE 均为等边三角形,点A 、D 、E 在同一直线上,连接BE .①请直接写出∠AEB 的度数为_____;②试猜想线段AD 与线段BE 有怎样的数量关系,并证明;(2)拓展探究:图2,△ACB 和△DCE 均为等腰三角形,∠ACB =∠DCE =90°,点A 、D 、E 在同-直线上,CM 为△DCE 中DE 边上的高,连接BE ,请判断∠AEB 的度数线段CM 、AE 、BE 之间的数量关系,并说明理由.一选择题(本大题共有10个小题,每小题3分,共30分)1.A2.D3.B4.D5.A6.B7.B8.A9.B10.B二填空题(本大题共有6个小题,每小题3分,共18分)11.60°12.BC AD =(答案不唯一)13.50°14.25°.15.4或616.1617.418.110︒三、解答题(本大题共有4个小题,共52分)19.证明:BF CE = ,BF EF CE EF ∴+=+,即BE CF =,//AB CD Q ,B C ∴∠=∠,在ABE 与CDF 中,AB CDB C BE CF=⎧⎪∠=∠⎨⎪=⎩,()ABE CDF SAS ∴△≌△,AEB DFC ∴∠=∠,AE DF=//AE DF ∴.20.解:(1)证明:∵AB DE ∥,∴ABC DEF ∠=∠,在ABC 和DEF 中,A DAB DE ABC DEF∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ASA ABC DEF ≌△△;(2)解:由(1)知()ASA ABC DEF ≌△△,∴BC EF =,∴BF FC CE FC +=+,∴3BF CE ==,∵10BE =,∴10334FC BE BF CE =--=--=,∴FC 的长度是4.21.解:(1)∵AD=CF,∴AD+CD=CD+CF,即AC=DF,在 ABC 和 DEF 中,AB=DEBC=EF AC=DF⎧⎪⎨⎪⎩∴ ABC≌ DEF(SSS);(2)由(1)可得 ABC≌ DEF,∴∠F=∠ACB,根据三角形内角和180°,∠A=60°,∠B=80°,∴∠ACB=180°-60°-80°=40°,∴∠F=40°22.解:(1)①∵∠ACB =∠DCE ,∠DCB =∠DCB ,∴∠ACD =∠BCE ,在△ACD 和△BCE 中,AC BCACD BCE CD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE ,∴AD =BE ,∠CEB =∠ADC =180°−∠CDE =120°,∴∠AEB =∠CEB −∠CED =60°;②AD =BE .证明:∵△ACD ≌△BCE ,∴AD =BE .(2)∠AEB =90°;AE =2CM +BE ;理由如下:∵△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE =90°,∴AC =BC ,CD =CE ,∠ACB =∠DCB =∠DCE -∠DCB ,即∠ACD =∠BCE ,∴△ACD ≌△BCE ,∴AD =BE ,∠BEC =∠ADC =135°.∴∠AEB =∠BEC -∠CED =135°-45°=90°.在等腰直角△DCE 中,CM 为斜边DE 上的高,∴CM =DM =ME ,∴DE =2CM .∴AE =DE +AD =2CM +BE .。
浙教版八年级上数学第一章训练试卷(3)
浙教版八年级数学训练试卷(三)一、选择题1.如图,AO,BO分别平分∠CAB,∠CBA,且点O到AB的距离OD=2,△ABC的周长为28,则△ABC的面积为()A.7 B.14 C.21 D.282.如图所示,在矩形ABCD中,E为CD的中点,连接AE并延长交BC的延长线于点F,则图中全等的直角三角形共有()A.1对B.2对C.3对D.4对3.如图,已知AB=AC,BE⊥AC于E,CF⊥AB于F,BE,CF相交于点D,则①△ABE≌△ACF,②△BDF≌△CDE,③点D在∠BAC的平分线上,以上结论正确的是()A.①②③B.②③C.①③D.①4.如图,在△ABC中,已知点P、Q分别在边AC、BC上,BP与AQ相交于点O,若△BOQ、△ABO、△APO的面积分别为1、2、3,则△PQC的面积为()A.22 B.22.5 C.23 D.23.55.如图,在△ABC中,AD,AE分别是边BC上的中线和高,点D在点E的左侧,已知AE=2,DE=1,S△ABC=8,CE=()A.1 B.2 C.3 D.6.如图,D,E,F分别是△ABC三边延长线上的点,则∠D+∠E+∠F+∠1+∠2+∠3=()A.300°B.240°C.180°D.120°7.如图,△ABC≌△ADE,AE与BC交于点G,AC与DE交于点F,DE与BC交于点H.若△ABG的面积为2S,△AFH的面积为S,△EGH的面积等于S,则△ABC的面积等于()A.6S B.5S C.4S D.无法计算8.如图,在△ABC中,按以下步骤作图:①分别以点B和C为圆心,以大于BC的长为半径作弧,两弧相交于点M和N②作直线MN交AC于点D,连接BD.若AC=6,AD=2,则BD的长为()A.2 B.3 C.4 D.69.在△ABC和△ADC中,有下列三个论断:①AB=AD;②∠BAC=∠DAC;③BC=DC.将其中两个论断作为条件,另一个论断作为结论构成三个命题:(1)若AB=AD,∠BAC=∠DAC,则BC=DC;(2)若AB=AD,BC=DC,则∠BAC=∠DAC;(3)若∠BAC=∠DAC,BC =DC,则AB=AD.其中,真命题的个数为()A.1 B.2 C.3 D.010.在△ABC中,∠B,∠C的平分线交于点O,D是外角与内角平分线交点,E是外角平分线交点,若∠BOC=120°,则∠D=()A.15°B.20°C.25°D.30°二、填空题1、如图所示,在△ABC中,AH垂直BC于H,则以AH为高线的三角形有.若E、F是BC的三等分点,则S△ABE S△AEF S△AFC(填“<”“>”或“=”)2、已知等边△ABC中,点D、E分别在边AB、BC上,把△BDE沿直线DE翻折,使点B落在点B′处,DB′、EB′分别交边AC于点F、G,若∠ADF=76°,则∠GEC的度数为.3、两组邻边分别相等的四边形叫做“筝形”.如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,在探究筝形的性质时得到如下结论:①△ABD≌△CBD;②AC垂直平分BD;③BD垂直平分AC;④四边形ABCD的面积=AC•BD,其中正确结论的序号是.4、如图,点D、E在△ABC边上,沿DE将△ADE翻折,点A的对应点为点A′,∠A′EC=α,∠A′DB=β,且α<β,则∠A等于(用含α、β的式子表示).5、在△ABC中,已知∠A=60°,∠ABC的平分线BD与∠ACB的平分线CE相交于点O,∠BOC的平分线交BC于F,则下列说法中正确的是.①∠BOE=60°,②∠ABD=∠ACE,③OE=OD④BC=BE+CD6、如图,CA⊥BC,垂足为C,AC=3cm,BC=9cm,射线BM⊥BQ,垂足为B,动点P从C点出发以1cm/s的速度沿射线CQ运动,点N为射线BM上一动点,满足PN=AB,随着P点运动而运动,当点P运动秒时,△BCA与点P、N、B为顶点的三角形全等.三、解答题1、如图,在四边形ABCD中,∠BAD=∠BCD=90°,BC=CD,延长AD到E点,使DE=AB.(1)求证:∠ABC=∠EDC;(2)连接AC,求证:AC=CE.2、如图,AD=DE=EC,F是BC中点,G是FC中点,如果三角形ABC的面积是72平方厘米,则阴影部分是多少平方厘米?3‘’如图,在梯形ABCD中,AB=DC=12cm,BC=15cm,∠B=∠C,点E为边AB上一点,且AE=5cm.点P在线段BC上以每秒3cm的速度由点B向点C运动,点Q是线段CD上一点.设点P运动时间为t秒,请回答下列问题:(1)线段BP的长为cm,CP的长为cm;(用含t的代数式表示)(2)要使以点C,Q,P为顶点的三角形与△BPE全等,求满足条件的t的值和线段BP 的长.4、综合与实践.主题:探究平行线的性质与判定.素材:一副三角尺(一块含30°,一块含45°)、两根相同的长木棒.步骤1:如图,摆放两根木棒使MN∥PQ(可上下平移调节距离).步骤2:将一副三角尺按如图方式进行摆放,恰好满足∠NAC=20°,∠MAE=∠CBQ.(1)∠ABQ的度数为,∠CBQ的度数为;(2)试判断AB与DE的位置关系,并说明理由.5、如图,已知AC=BC,点D是BC上一点,∠ADE=∠C.(1)如图1,若∠C=90°,∠DBE=135°,求证:①∠EDB=∠A;②DA=DE.(2)如图2,请直接写出∠DBE与∠C之间满足什么数量关系时,总有DA=DE成立.6、如图所示的图形,像我们常见的符号——箭号.我们不妨把这样图形叫做“箭头四角形”.探究:(1)观察“箭头四角形”,试探究图1中∠BDC与∠A,∠B,∠C之间的关系,并说明理由;应用:(2)请你直接利用以上结论,解决以下两个问题:①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B,C,若∠A=60°,则∠ABX+∠ACX=°;②如图3,∠ABE,∠ACE的二等分线(即角平分线)BF,CF相交于点F,若∠BAC=60°,∠BEC=130°,求∠BFC的度数.7、如图①,在Rt△ABC中,∠C=90°,BC=9cm,AC=12cm,AB=15cm,现有一动点P,从点A出发,沿着三角形的边AC→CB→BA运动,回到点A停止,速度为3cm/s,设运动时间为t s.(1)如图①,当t=时,△APC的面积等于△ABC面积的一半;(2)如图②,在△DEF中,∠E=90°,DE=4cm,DF=5cm,∠D=∠A.在△ABC的边上,若另外有一个动点Q,与点P同时从点A出发,沿着边AB→BC→CA运动,回到点A停止.在两点运动过程中的某一时刻,恰好△APQ≌△DEF,求点Q的运动速度。
浙教版八年级数学上册《第2章特殊三角形》单元测试题含答案
浙教版八年级数学上册第2章特殊三角形单元测试题第Ⅰ卷(选择题共30分)一、选择题(本题共10小题,每小题3分,共30分)1.下列图案是轴对称图形的是( )2.若等腰三角形的顶角为70°,则它的底角度数为( )A.45°B.55°C.65°D.70°3.如图所示,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,则图中与CD相等的线段有( )A.AD与BD B.BD与BCC.AD与BC D.AD,BD与BC4.把一个边长为1的正方形如图所示放在数轴上,以正方形的对角线为半径画弧交数轴于点A,则点A对应的数是( )A.1 B. 2 C. 3 D.25.若等腰三角形中两条边的长度分别为3和1,则此等腰三角形的周长为( ) A.5 B.7 C.5或7 D.66.如图所示,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是( )A.CB=CDB.∠BAC=∠DACC.∠BCA=∠DCAD.∠B=∠D=90°7.如图所示,OD⊥AB于点D,OP⊥AC于点P,且OD=OP,则△AOD与△AOP全等的理由是( )A.SSS B.ASA C.SSA D.HL8.如图所示,在△ABC中,∠ACB=90°,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于( )A.44°B.60°C.67°D.77°9.如图所示,在△ABC中,∠C=90°,AC=3,∠B=45°,P是BC边上的动点,则AP 的长不可能是( )A.3.5 B.3.7 C.4 D.4.510.如图所示,已知O是△ABC中∠ABC,∠ACB的平分线的交点,OD∥AB交BC于点D,OE∥AC交BC于点E.若BC=10 cm,则△ODE的周长为( )A.10 cm B.8 cmC.12 cm D.20 cm请将选择题答案填入下表:题号 1 2 3 4 5 6 7 8 9 10 总分答案第Ⅱ卷(非选择题共90分)二、填空题(本题共6小题,每小题4分,共24分)11.命题“内错角相等,两直线平行”的逆命题是____________________.12.如图所示,在△ABC中,AB=AC,∠A=40°,BD⊥AC于点D,则∠DBC=________°.13.如图,在△ABC中,AB=AC,AD⊥BC于点D,判定△ABD≌△ACD最简单的方法是________.14.直角三角形的两条边长分别为3,4,则它另一边的长为________.15.如图所示,有两个长度相等的滑梯(即BC=EF),左边滑梯的高度AC与右边滑梯的水平方向的长度DF相等,已知左边滑梯与地面的夹角∠ABC=27°,则右边滑梯与地面的夹角∠DFE=________°.16.如图所示,△ABC是等边三角形,D是BC边上任意一点,DE⊥AB于点E,DF⊥AC 于点F.若BC=2,则DE+DF=________.三、解答题(本题共8小题,共66分)17.(6分)如图所示,已知AB=AC,D是AB上的一点,DE⊥BC于点E,ED的延长线交CA的延长线于点F.试说明:△ADF是等腰三角形.18.(6分)如图,在△ABC中,AB=AC,D是BC的中点,E,F分别是AB,AC上的点,且AE=AF.求证:DE=DF.19.(6分)如图所示,在四边形ABCD中,∠A为直角,AB=16,BC=25,CD=15,AD =12,求四边形ABCD的面积.20.(8分)如图所示,延长△ABC的各边,使得BF=AC,AE=CD=AB,连结DE,EF,FD,得到△DEF为等边三角形.求证:(1)△AEF≌△CDE;(2)△ABC为等边三角形.21.(8分)如图所示,请将下列两个三角形分别分成两个等腰三角形.(要求标出每个等腰三角形的内角度数)22.(10分)在直角三角形中,两条直角边的长度分别为a和b,斜边长度为c,则a2+b2=c2,即两条直角边的平方和等于斜边的平方,此结论称为勾股定理.在一张纸上画两个同样大小的直角三角形ABC和A′B′C′,并把它们拼成如图所示的形状 (点C和A′重合,且两直角三角形的斜边互相垂直).请利用拼得的图形证明勾股定理.23.(10分)如图所示,在△ABC中,∠C=2∠B,D是BC边上的一点,且AD⊥AB,E是BD的中点,连结AE.求证:(1)∠AEC=∠C;(2)BD=2AC.24.(12分)如图所示,O是直线l上一点,在点O的正上方有一点A,满足OA=3,点A,B位于直线l的同侧,且点B到直线l的距离为5,线段AB=40,一动点C在直线l 上移动.(1)当点C位于点O左侧时,且OC=4,直线l上是否存在一点P,使得△ACP为等腰三角形?若存在,请求出OP的长;若不存在,请说明理由.(2)连结BC,在点C移动的过程中,是否存在一点C,使得AC+BC的值最小?若存在,请求出这个最小值;若不存在,请说明理由.答案1.A 2.B 3.A 4.B 5.B 6.C 7.D 8.C 9.D 10.A11.两直线平行,内错角相等 12.20 13.HL 14.5或7 15.6316. 317.解:∵AB =AC ,∴∠B =∠C (等边对等角). ∵DE ⊥BC 于点E ,∴∠DEB =∠FEC =90°, ∴∠B +∠EDB =∠C +∠F =90°, ∴∠EDB =∠F (等角的余角相等). 又∵∠EDB =∠ADF (对顶角相等), ∴∠F =∠ADF ,∴AD =AF , ∴△ADF 是等腰三角形. 18.证明:如图,连结AD .∵AB =AC ,D 是BC 的中点, ∴∠EAD =∠FAD .在△AED 和△AFD 中,∵⎩⎪⎨⎪⎧AE =AF ,∠EAD =∠FAD ,AD =AD ,∴△AED ≌△AFD (SAS ),∴DE =DF .19.解:∵∠A 为直角,∴在Rt △ABD 中,由勾股定理,得BD 2=AD 2+AB 2. ∵AD =12,AB =16,∴BD =20.∵BD 2+CD 2=202+152=252,且BC 2=252,∴BD 2+CD 2=BC 2, ∴∠CDB 为直角,∴△ABD 的面积为12×16×12=96,△BDC 的面积为12×20×15=150,∴四边形ABCD 的面积为96+150=246. 20.证明:(1)∵BF =AC ,AB =AE , ∴BF +AB =AC +AE ,即FA =EC . ∵△DEF 是等边三角形,∴EF =DE . 又∵AE =CD ,∴△AEF ≌△CDE .(2)由△AEF ≌△CDE ,得∠FEA =∠EDC . ∵△DEF 是等边三角形,∴∠DEF =60°.∵∠BCA =∠EDC +∠DEC =∠FEA +∠DEC =∠DEF , ∴∠BCA =60°.同理可得∠BAC =60°, ∴∠ABC =60°,∴△ABC 为等边三角形. 21.解:如图所示.22.证明:如图所示,在Rt △ABC 中,∵∠1+∠2=90°,∠1=∠3,∴∠2+∠3=90°. 又∵∠ACC ′=90°,∴∠2+∠3+∠ACC ′=180°, ∴B ,C (A ′),B ′在同一条直线上. 又∵∠B =90°,∠B ′=90°,∴∠B +∠B ′=180°,∴AB ∥C ′B ′.由面积相等得12(a +b )(a +b )=12ab +12ab +12c 2,即a 2+b 2=c 2.23.证明:(1)∵AD ⊥AB , ∴△ABD 为直角三角形. ∵E 是BD 的中点,∴AE =BE =DE ,∴∠B =∠BAE .∵∠AEC =∠B +∠BAE ,∴∠AEC =2∠B . 又∵∠C =2∠B ,∴∠AEC =∠C . (2)由(1)的结论可得AE =AC . ∵AE =12BD ,∴AC =12BD ,即BD =2AC .24.解:(1)存在.由勾股定理可求得AC =5.当点P 使得△ACP 为等腰三角形时,如图①所示,OP 1=4,OP 2=5-4=1,OP 3=CP 3+OC =AC +OC =5+4=9.在Rt △AP 4O 中,AP 42=OP 42+OA 2,设OP 4=x ,则(4-x )2=x 2+32,解得x =78,∴OP 4=78.综上所述,OP 的长为4或1或9或78.(2)存在.如图②所示,作点A 关于直线l 的对称点A ′,连结A ′B 与直线l 相交于点C ,则A ′B 为AC +BC 的最小值.过点A ′作A ′E ∥l ,过点B 作BE ⊥A ′E 于点E ,过点A 作AD ⊥BE 于点D .在Rt △ABD 中,AB =40,BD =5-3=2,∴AD =AB 2-BD 2=6.在Rt △A ′BE 中,A ′E =AD =6,BE =5+3=8, ∴A ′B =BE 2+A ′E 2=82+62=10, ∴AC +BC 的最小值为10.。
浙教版八年级上册数学第1章《三角形的初步认识》单元测试卷(含答案)
浙教版八年级上册数学第1章《三角形的初步认识》单元测试卷满分120分姓名:___________班级:___________学号:___________一.选择题(共12小题,满分36分,每小题3分)1.下列长度线段能组成三角形的是()A.1cm,2cm,3cm B.4cm,5cm,10cmC.6cm,8cm,13cm D.5cm,5cm,10cm2.三角形的三条中线、三条角平分线、三条高都是()A.直线B.射线C.线段D.射线或线段3.如图,用三角板作△ABC的边AB上的高线,下列三角板的摆放位置正确的是()A.B.C.D.4.如图,在△ABC中,BO平分∠ABC,CO平分∠ACB,∠A=50°,则∠BOC=()A.50°B.65°C.105°D.115°5.如图,△ABC的中线AD、BE相交于点F,若△ABF的面积是4,则四边形FDCE的面积是()A.4 B.4.5 C.3.5 D.56.如图,已知△ABC,点D在BC的延长线上,∠ACD=140°,∠ABC=50°,则∠A的大小为()A.50°B.140°C.120°D.90°7.小明同学有一块玻璃的三角板,不小心掉到地上碎成了三块,现要去文具店买一块同样的三角板,最省事的是()A.带②去B.带①去C.带③去D.三块都带去8.如图,△ABC≌△DEF,BC=7,EC=4,则CF的长为()A.2 B.3 C.5 D.79.下列条件中,不能判定△ABC与△DEF一定全等的是()A.AB=DE,BC=EF,∠A=∠D=90°B.AB=DE,BC=EF,∠A=∠D=80°C.AB=DE,∠A=∠D=90°,∠B=∠E=40°D.BC=EF,∠A=∠D=80°,∠B=∠E=40°10.下列命题是真命题的是()A.如果a2=b2,那么a=b B.0的平方根是0C.如果∠A与∠B是内错角,那么∠A=∠B D.负数没有立方根11.有甲、乙、丙三人,甲说乙在说谎,乙说丙在说谎,丙说甲和乙都在说谎,则()A.甲说实话,乙和丙说谎B.乙说实话,甲和丙说谎C.丙说实话,甲和乙说谎D.甲、乙、丙都说谎12.如图,AD交BC于点O,∠BAD的角平分线与△OCD的外角∠OCE的角平分线交于点P,则∠P与∠B、∠D的数量关系为()A.∠P=B.∠P=C.∠P=90°+∠B+∠D D.∠P=90°﹣∠B+∠D二.填空题(共8小题,满分24分,每小题3分)13.命题“直角三角形的两个锐角互余”的逆命题是命题.(填“真”或“假”)14.如图,为了加固小板凳,用两枚钉子A,B将一根木条钉在它上面,这和做法的几何原理是利用了三角形的.15.已知三角形的两条边长分别为3cm和2cm,如果这个三角形的第三条边长为奇数,则这个三角形的周长为cm.16.如图,把两根钢条的中点连在一起,可以做到一个测量工件内槽宽的工具(长钳),在图中,要测量工件内槽宽AB,只要测就可以了.17.如图,四边形ABCD≌四边形A'B'C'D',则∠A的大小是.18.如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于P,连接AP并延长交BC于点D,则∠ADB=度.19.如图,已知:∠A=∠D,∠1=∠2,下列条件中:①∠E=∠B;②EF=BC;③AB=EF;④AF=CD.能使△ABC≌△DEF的有.(填序号)20.如图,直线a、b、c、d互不平行,以下结论正确的是.(只填序号)①∠1+∠2=∠5;②∠1+∠3=∠4;③∠1+∠2+∠3=∠6;④∠3+∠4=∠2+∠5.三.解答题(共8小题,满分60分)21.(6分)如图,已知线段AC,BD相交于点E,∠A=∠D,BE=CE,求证:△ABE≌△DCE.22.(6分)生活中的说理小明、小红、小丽三人中一个是班长,一个是学习委员,一个是生活委员.现在知道小红比生活委员年龄大,小明与学习委员不同岁,学习委员比小丽年龄小.请你猜一猜他们当中谁是班长,并说明理由.23.(6分)如图,已知:AD平分∠BAC,点F是AD反向延长线上的一点,EF⊥BC,∠1=40°,∠F=15°.求:∠B和∠C的度数.24.(7分)如图,AE,DE分别平分∠BAC和∠BDC,∠B=∠BDC=45°,∠C=51°,求∠E的度数.25.(8分)已知,已知△ABC的周长为33cm,AD是BC边上的中线,.(1)如图,当AC=10cm时,求BD的长.(2)若AC=12cm,能否求出DC的长?为什么?26.(8分)如图,在△ABC中,∠ABC=110°,∠A=40°.(1)作△ABC的角平分线BE(点E在AC上;用尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,求∠BEC的度数.27.(9分)如图①,在Rt△ABC中,∠C=90°,BC=9cm,AC=12cm,AB=15cm,现有一动点P,从点A出发,沿着三角形的边AC→CB→BA运动,回到点A停止,速度为3cm/s,设运动时间为ts.(1)如图(1),当t=时,△APC的面积等于△ABC面积的一半;(2)如图(2),在△DEF中,∠E=90°,DE=4cm,DF=5cm,∠D=∠A.在△ABC 的边上,若另外有一个动点Q,与点P同时从点A出发,沿着边AB→BC→CA运动,回到点A停止.在两点运动过程中的某一时刻,恰好△APQ≌△DEF,求点Q的运动速度.28.(10分)如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠F AE的度数;(3)求证:CD=2BF+DE.参考答案一.选择题(共12小题,满分36分,每小题3分)1.解:A、1+2=3,不能构成三角形,故此选项错误;B、4+5=9<10,不能构成三角形,故此选项错误;C、6+8>13,能构成三角形,故此选项正确;D、5+5=10,不能构成三角形,故此选项错误.故选:C.2.解:三角形的三条中线、三条角平分线、三条高都是线段,故选:C.3.解:A,C,D都不是△ABC的边AB上的高,故选:B.4.解:∵∠A=50°,∴∠ABC+∠ACB=180°﹣∠A=180°﹣50=130°,∵BO平分∠ABC,CO平分∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=65°,在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣65°=115°.故选:D.5.解:∵△ABC的中线AD、BE相交于点F,∴BD=CD,点F为△ABC的重心,∴BF=2EF,AF=2FD,∴S△BFD=S△ABF=×4=2,S△AEF=S△ABF=×4=2,∵S△ABD=S△ACD=4+2=6,∴四边形FDCE的面积=6﹣2=4.故选:A.6.解:∵∠ACD=∠A+∠ABC,∴∠A=∠ACD﹣∠ABC,∵∠ACD=140°,∠ABC=50°,∴∠A=140°﹣50°=90°故选:D.7.解:带③去符合“角边角”可以配一块同样大小的三角板.故选:C.8.解:∵△ABC≌△DEF,∴EF=BC=7,∵EC=4,∴CF=3,故选:B.9.解:A、∵AB=DE,BC=EF,∠A=∠D=90°,∴根据HL证明Rt△ABC≌Rt△DEF,不符合题意;B、∵AB=DE,BC=EF,∠A=∠D=80°,根据ASS不能推出△ABC≌△DEF,故本选项符合题意;C、∵AB=DE,∠A=∠D=90°,∠B=∠E=40°,∴利用ASA能推出△ABC≌△DEF,故本选项不符合题意;D、∵BC=EF,∠A=∠D=80°,∠B=∠E=40°,∴利用AAS能推出△ABC≌△DEF,故本选项不符合题意;故选:B.10.解:A、如果a2=b2,那么a=±b,故原命题错误,是假命题;B、0的平方根是0,正确,是真命题,符合题意;C、内错角不一定相等,故原命题错误,是假命题;D、负数的立方根是负数,故原命题错误,是假命题,故选:B.11.解:A、若甲说的是实话,即乙说的是谎话,则丙没有说谎,即甲、乙都说谎是对的,与甲说的是实话相矛盾,故A不合题意;B、若乙说的是实话,即丙说的谎话,即甲、乙都说谎是错了,即甲,乙至少有一个说了实话,与乙说的是实话不矛盾,故B符合题意;C、若丙说的是实话,甲、乙都说谎是对的,那甲说的乙在说谎是对的,与丙说的是实话相矛盾,故C不合题意;D、若甲、乙、丙都说谎,与丙说的甲和乙都在说谎,相矛盾,故D不合题意;故选:B.12.解:设∠P AB=∠OAP=x,∠ECP=∠PCB=y,则有,①﹣2×②可得:∠B﹣2∠P=∠D﹣2∠D﹣180°,∴∠P=,故选:A.二.填空题(共8小题,满分24分,每小题3分)13.解:命题“直角三角形的两个锐角互余”的逆命题是两个锐角互余的三角形是直角三角形,逆命题是真命题;故答案为:真.14.解:为了加固小板凳,用两枚钉子A,B将一根木条钉在它上面,这和做法的几何原理是利用了三角形的稳定性.故答案为稳定性.15.解:设第三边长为x.根据三角形的三边关系,则有3﹣2<x<2+3,即1<x<5,因为第三边的长为奇数,所以x=3,所以周长=3+3+2=8.故答案为:8;16.解:答:只要测量A'B'.理由:连接AB,A'B',如图,∵点O分别是AC、BB'的中点,∴OA=OA',OB=OB'.在△AOB和△A'OB'中,OA=OA',∠AOB=∠A'OB'(对顶角相等),OB=OB',∴△AOB≌△A'OB'(SAS).∴A'B'=AB.答:需要测量A'B'的长度,即为工件内槽宽AB,故答案为:A'B'17.解:∵四边形ABCD≌四边形A'B'C'D',∴∠D=∠D′=130°,∴∠A=360°﹣75°﹣60°﹣130°=95°,故答案为:95°.18.解:∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°,又∵AD是∠BAC的平分线,∴∠CAD=∠BAD=∠CAB=30°,∴∠ADB=90°+30°=120°,故答案为:120;19.解:①∠E=∠B,不符合全等三角形的判定定理,不能推出△ABC≌△DEF,∴①错误;②EF=BC,符合全等三角形的判定定理,可以用AAS证明△ABC≌△DEF,∴②正确;③AB=EF,不符合全等三角形的判定定理,不能推出△ABC≌△DEF,∴③错误;④∵AF=CD,∴AF+FC=CD+FC,∴AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴④正确;故答案为:②④.20.解:由三角形外角的性质可知:∠5=∠1+∠2,∠4=∠1+∠3,∠6=∠4+∠2=∠3+∠5,∴∠6=∠1+∠2+∠3,故①②③正确,故答案为①②③.三.解答题(共8小题,满分60分)21.证明:∵在△ABE和△DCE中,,∴△ABE≌△DCE(AAS).22.解:小丽是班长,理由:由小明与学习委员不同岁,可得小明非学习委员,则是班长或者生活委员;由学习委员比小丽年龄小,可得小丽非学习委员,则是班长或者生活委员;由小红比生活委员年龄大,可得小红是学习委员,由年龄可以判断小丽是班长.23.解:∵EF⊥BC,∴∠DEF=90°,∵∠F=15°,∠ADE+∠F+∠DEF=180°,∴∠ADE=75°,∵AD平分∠BAC,∠1=40°,∴∠BAC=2∠DAC=2∠1=80°,∴∠DAC=40°,∵∠ADE+∠C+∠DAC=180°,∴∠C=180°﹣40°﹣75°=65°,∵∠B+∠C+∠BAC=180°,∴∠B=180°﹣65°﹣80°=35°.24.解:∵∠B=∠BDC=45°,∴AB∥CD,∵∠C=51°,∵AE,DE分别平分∠BAC和∠BDC,∴∠BAE=BAC=,∠EDB=BDC=,∵∠AFB=∠DFE,∴∠E=∠B+∠BAE﹣∠BDE=45°+﹣=48°.25.解:(1)∵,AC=10cm,∴AB=15cm.又∵△ABC的周长是33cm,∴BC=8cm.∵AD是BC边上的中线,∴.(2)不能,理由如下:∵,AC=12cm,∴AB=18cm.又∵△ABC的周长是33cm,∴BC=3cm.∵AC+BC=15<AB=18,∴不能构成三角形ABC,则不能求出DC的长.26.解:(1)如图,BE即为所求;(2)由(1)得,BE平分∠ABC,∵∠ABC=110°,∴,∵∠A=40°,∴∠AEB=180°﹣55°﹣40°=85°,∴∠BEC=180°﹣85°=95°.27.解:(1)①当点P在BC上时,如图①﹣1,若△APC的面积等于△ABC面积的一半;则CP=BC=cm,此时,点P移动的距离为AC+CP=12+=,移动的时间为:÷3=秒,②当点P在BA上时,如图①﹣2若△APC的面积等于△ABC面积的一半;则PD=BC,即点P为BA中点,此时,点P移动的距离为AC+CB+BP=12+9+=cm,移动的时间为:÷3=秒,故答案为:或;(2)△APQ≌△DEF,即,对应顶点为A与D,P与E,Q与F;①当点P在AC上,如图②﹣1所示:此时,AP=4,AQ=5,∴点Q移动的速度为5÷(4÷3)=cm/s,②当点P在AB上,如图②﹣2所示:此时,AP=4,AQ=5,即,点P移动的距离为9+12+15﹣4=32cm,点Q移动的距离为9+12+15﹣5=31cm,∴点Q移动的速度为31÷(32÷3)=cm/s,综上所述,两点运动过程中的某一时刻,恰好△APQ≌△DEF,点Q的运动速为cm/s 或cm/s.28.证明:(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS);(2)∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC≌△DAE,∴∠BCA=∠E=45°,∵AF⊥BC,∴∠CF A=90°,∴∠CAF=45°,∴∠F AE=∠F AC+∠CAE=45°+90°=135°;(3)延长BF到G,使得FG=FB,∵AF⊥BG,∴∠AFG=∠AFB=90°,在△AFB和△AFG中,,∴△AFB≌△AFG(SAS),∴AB=AG,∠ABF=∠G,∵△BAC≌△DAE,∴AB=AD,∠CBA=∠EDA,CB=ED,∴AG=AD,∠ABF=∠CDA,∴∠G=∠CDA,∵∠GCA=∠DCA=45°,在△CGA和△CDA中,,∴△CGA≌△CDA(AAS),∴CG=CD,∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.。
浙教版八年级数学上册第1章测试题及答案
浙教版八年级数学上册第1章测试题及答案1.1《认识三角形》同步练习题一、选择题1.一定可以把一个三角形分成两个面积相等的三角形的是( ) A .三角形的中线 B .三角形的角平分线 C .三角形的高线 D .以上说法均不正确2.如图,在△ABC 中,D ,E 分别是BC 上的两点,且BD =DE =EC ,则图中面积相等的三角形有( ) A .4对 B .5对 C .6对 D .7对(第2题图) (第3题图)3.如图,在△ABC 中,AB>AC ,AD 是△ABC 的边BC 上的中线,BE 是△ABD 的角平分线,有下列结论: ①∠ABE =∠DBE ;②BC =2BD =2CD ;③△ABD 的周长等于△ACD 的周长.其中正确的个数有( ) A .0个 B .1个 C .2个 D .3个4.如图,已知∠ACB =90°,CD ⊥AB ,垂足为D ,则图中与∠A 相等的角是 ( ) A.∠1B .∠2C .∠BD .∠1,∠2和∠B(第4题图)二、填空题5.在直角三角形中两个锐角的差为20º,则这两个锐角的度数分别为 .6.在△ABC 中,AB =6,AC =10,那么BC 边的取值范围是____ ,周长的取值范围是______.7.在△ABC 中,三边长分别为正整数a ,b ,c ,且c ≥b ≥a >0,如果b =4,则这样的三角形共有_________个.8.如图,在△ABC 中,AD 是BC 边上的中线. (1)若 BC =6 cm ,则CD = cm ; (2)若CD =a ,则BC = ;(3)若ABD S ∆=8 cm ²,则ACD S ∆= cm ².(第8题图) (第9题图)9.如图,在锐角△ABC 中,CD ,BE 分别是AB ,AC 边上的高线,且CD ,BE 交于点P.若∠A =70°,则∠BPC =110°;若∠BPC =100°,则∠A = . 三、解答题10.如图,在△ABC 中,∠BAD =∠B ,∠CAD =40°,∠ACE =120°,请判断AD 是否是△ABC 的角平分线,并说明理由.(第10题图) 11.如图,在△ABC 中,D ,E 分别是BC ,AD 的中点,连结BE.若ABC S ∆=16 cm ²,求ABE S ∆.(第11题图)12.如图,在△ABC 中,AB>AC ,AD 是BC 边上的中线,已知△ABD 与△ACD 的周长之差为8,求AB -AC 的值.(第12题图) 13.已知在△ABC 中,∠A =45°,高线BD 和高线CE 所在的直线交于点H ,求∠BHC 的度数.(第13题图)14.在△ABC 中,AB =AC ,P 是BC 上任意一点.(1)如图①,若P 是BC 边上任意一点,PF ⊥AB 于点F ,PE ⊥AC 于点E ,BD 为△ABC 的高线,请探求PE ,PF 与BD 之间的数量关系; (2)如图②,若P 是BC 的延长线上一点,PF ⊥AB 于点F ,PE ⊥AC 于点E ,CD 是△ABC 的高线,请探求PE ,PF 与CD 之间的数量关系.(第14题图)15.(1)如图①所示,在△ABC 中,∠ABC 的平分线BO 与∠ACB 的平分线CO 交于点O ,试探求∠A 与∠BOC 的数量关系;(2)如图②,在△ABC 中,D 是边AB 延长线上一点,E 是边AC 延长线上一点, ∠CBD 的平分线BO 与∠BCE 的平分线CO 交于点O.试探求: ①∠A 与∠BOC 的数量关系;②按角的大小来判断△BOC 的形状.(第15题图)参考答案一、1.A 2.A 3.C 4.B二、5.,; 6. ; 7.10; 8.3 2a 8;︒65︒2532周长20,164<<<<BC9. 15. 80°;三、10.【解】AD 是△ABC 的角平分线.理由如下:∵∠ACE +∠ACB =180°, ∠B +∠BAC +∠ACB =180°, ∴∠B +∠BAC =∠ACE =120°,即∠B +∠BAD +∠CAD =120°. ∵∠CAD =40°,∴∠B +∠BAD =120°-40°=80°. 又∵∠B =∠BAD ,∴2∠BAD =80°, ∴∠BAD =40°,∴∠BAD =∠CAD , ∴AD 是△ABC 的角平分线. 11.【解】∵D 是BC 的中点 , ∴ABD S ∆=ACD S ∆=1/2ABC S ∆=8 cm ². ∵E 是AD 的中点,∴ABE S ∆=BDE S ∆=1/2ABD S ∆=4 cm ². 12.【解】∵AD 是BC 边上的中线,∴BD =CD. ∵ABD C ∆=AB +BD +AD ,ACD C ∆=AC +CD +AD , ∴AB =ABD C ∆-BD -AD ,AC =ACD C ∆-CD -AD.∴AB -AC =(ABD C ∆-BD -AD)-(ACD C ∆-CD -AD)=ABD C ∆-ACD C ∆=8. 13.【解】(1)当△ABC 为锐角三角形时,如题图①. ∵BD ,CE 是△ABC 的高线, ∴∠ADB =∠BEH =90°.又∵∠A =45°,∴∠ABD =45 °,∴∠BHE =45°, ∴∠BHC =180°-∠BHE =135°. (2)当△ABC 为钝角三角形时,如题图②. ∵BD ,CE 是△ABC 的高线, ∴∠ADB =∠BEH =90° . 又∵∠A =45°,∴∠ABD =45°, ∴∠BHC =180°-∠ABD -∠BEH =45°. 综上所述,∠BHC =135°或45°. 14.【解】(1)连结PA. ∵ABC S ∆=APB S ∆+APC S ∆, ∴12AC •BD =12AB •PF +12AC •PE. ∵AB =AC ,∴BD =PE +PF.(2)连结PA.∵PAB S ∆=ABC S ∆+ACP S ∆, ∴12AB •PF =12AB •CD +12AC •P E.∵AB =AC ,∴PF =CD +PE ,即PF -PE =CD.15【解】(1)∵BO平分∠ABC,CO平分∠ACB,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠OBC+∠OCB=12(∠ABC+∠ACB).∵∠ABC+∠ACB=180°-∠A,∴∠OBC+∠OCB=90°-12∠A.又∵∠OBC+∠OCB=180°-∠BOC,∴180°-∠BOC=90°-12∠A,∴∠BOC=90°+12∠A.(2)①∵BO平分∠CBD,CO平分∠BCE,∴∠CBO=12∠CBD,∠BCO=12∠BCE,∴∠CBO+∠BCO=12(∠CBD+∠BCE).∵∠ABC+∠CBD=180°,∠ACB+∠BCE=180°,∴∠CBD+∠BCE=360°-(∠ABC+∠ACB).∵∠ABC+∠ACB=180°-∠A,∴∠CBD+∠BCE=180°+∠A,∴∠CBO+∠BCO=12(180°+∠A)=90°+12∠A.∵∠BOC=180°-(∠CBO+∠BCO),∴∠BOC=180°-90°-12∠A=90°-12∠A.②∵∠CBO=12∠CBD,∠BCO=12∠BCE,且∠CBD<180°,∠BCE <180°,∴∠CBO<90°,∠BCO<90°.又∵∠BOC=90°- 12∠A,∴∠BOC<90°.∴∠BOC,∠CBO,∠BCO都是锐角,∴△BOC为锐角三角形.1.2 定义与命题一、选择题1、下列说法正确的是()A.命题一定是正确的 B.不正确的判断就不是命题C.真命题都是定理 D. 定理都是真命题2、命题“对顶角相等”是( )A.角的定义B.假命题C.公理D.定理3、下列两个命题:①如果两个角是对顶角,那么这两个角相等;②如果一个等腰三角形有一个内角是60°,那么这个等腰三角形一定是等边三角形. 则以下结论正确的是()A.只有命题①正确 B.只有命题②正确C.命题①,②都正确 D.命题①,②都不正确4、下列各数中,可以用来说明命题“任何偶数都是8的倍数”是假命题的反例是()A .9B .16C .8D .4二、填空题5、命题“相等的角是对顶角”是 命题(填“真”或“假”).6、命题“对顶角相等”的逆命题是 ,逆命题是 命题(填:真或假)。
【八年级】八年级数学上第二章三角形单元测试题(浙教版附答案)
【八年级】八年级数学上第二章三角形单元测试题(浙教版附答案)第2章三角形检测题(本次考试满分:100分,时间:90分钟)一、(每小题3分,共24分)1.(2022长沙)如果三角形的两条边的长度分别为2和4,则第三条边的长度可能为()a.2b.4c.6d.82.(2022年向阳)如图所示△, 点是延长线上的一个点,=40°,=120°,那么它等于()a.60°b.70°c.80°d.90°3.如图所示,已知以下条件可使△≌△ 是的()a.b.c.d.三个答案都是如果△ 那么图中的温度是36度△ 在(=2024)方面a.18°b.24°c、30°d.36°5.(2021新疆)等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为()a、 12b。
十五c.12或15d.186.(2022年湘潭)如图所示△, 该点位于上方并连接。
如果只添加了一个条件,则添加的条件不能是()a.b.c.d.图6、图7、图87.(2021遂宁)如图,在△中,=90°,=30°,以点为圆心,任意长为半径画弧分别交于点和,再分别以点为圆心,大于的长为半径画弧,两弧交于点,连接并延长交于点,则下列说法中正确的个数是()① 是的,平分线;②=60°;③ 该点位于该点的垂直线上;④=1∶3.a、 1b。
2c。
3d。
四8.(2021威海)如图,在△中,=36°的垂直平分线交于点交于点连接.下列结论错误的是()a、 =2b。
平分c.d.点为线段的黄金分割点二、问题(每个子问题3分,共24分)9.如图所示,△的高相交于点.请你添加一对相等的线段或一对相等的角作您添加的条件是10.(2021威海)将一副直角三角板如图摆放,点在上,ac经过点d.已知∠a=∠ EDF=90°,ab=AC,∠ e=30°,以及∠ BCE=40°,则∠ CDF=11.(2021上海)当三角形中一个内角是另一个内角的两倍时,我们称此三角形为“特征三角形”,其中称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为.12.(2022雅安)如果+=0,等腰三角形的周长为13.(2021乌鲁木齐)如图,在△abc中,ad是中线,ae是角平分线,cf⊥ae于点f,ab=5,ac=2,则df的长对于14.如图所示,ad是△abc的角平分线,de⊥ab于点e,df⊥ AC在点F处,连接EF和相交ad在点G处,则ad和EF之间的位置关系为15.如图所示,∠e=∠f=90°,∠b=∠c,ae=af.给出下列结论:①∠1=∠2;②be=cf;③△acn≌△ab④ CD=DN。
浙教版八年级数学上册《第1章三角形的初步认识》单元测试含答案解析
《第1章三角形的初步认识》一、选择题1.下列各组线段中,能组成三角形的是()A.4,6,10 B.3,6,7 C.5,6,12 D.2,3,62.在△ABC中,∠A﹣∠C=∠B,那么△ABC是()A.等边三角形B.锐角三角形C.钝角三角形D.直角三角形3.如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是()A.SAS B.SSS C.AAS D.ASA4.如图AB⊥AD,AB⊥BC,则以AB为一条高线的三角形共有()个.A.1 B.2 C.3 D.45.如图所示,△BDC′是将长方形纸片ABCD沿BD折叠得到的,图中(包括实线、虚线在内)共有全等三角形()对.A.2 B.3 C.4 D.56.下列是命题的是()A.作两条相交直线B.∠α和∠β相等吗?C.全等三角形对应边相等 D.若a2=4,求a的值7.下列命题中,真命题是()A.垂直于同一直线的两条直线平行B.有两边和其中一边上的高对应相等的两个三角形全等C.三角形三个内角中,至少有2个锐角D.有两条边和一个角对应相等的两个三角形全等8.如图,对任意的五角星,结论正确的是()A.∠A+∠B+∠C+∠D+∠E=90° B.∠A+∠B+∠C+∠D+∠E=180°C.∠A+∠B+∠C+∠D+∠E=270°D.∠A+∠B+∠C+∠D+∠E=360°9.如图,在△ABC中,∠C=90°,AC=BC,AD是△ABC的角平分线,DE⊥AB于E.若AB=6cm,则△DEB的周长为()A.5cm B.6cm C.7cm D.8cm10.如图,BF是∠ABD的平分线,CE是∠ACD的平分线,BF与CE交于G,若∠BDC=130°,∠BGC=100°,则∠A的度数为()A.60° B.70° C.80° D.90°二、填空题11.工人师傅在做完门框后,为防止变形常常像图中所示的那样上两条斜拉的木条(即图中的AB,CD两根木条),这样做的依据是______.12.把命题“对顶角相等”改写成“如果…那么…”的形式:______.13.如图,在△ABC中,AD⊥BC于D,AE为∠BAC的平分线,且∠DAE=15°,∠B=35°,则∠C=______°.14.如图,AB=AC,要使△ABE≌△ACD,应添加的条件是______(添加一个条件即可).15.命题“若x(1﹣x)=0,则x=0”是______命题(填“真”、假),证明时可举出的反例是______.16.已知三角形的三边长分别是3、x、9,则化简|x﹣5|+|x﹣13|=______.17.如图,在△ABC中,AB=AC,AB的中垂线DE交AC于点D,交AB于点E,如果BC=10,△DBC的周长为22,那么AB=______.18.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论是______.(将你认为正确的结论的序号都填上)19.已知,∠α=50°,且∠α的两边与∠β的两边互相垂直,则∠β=______.20.若三角形的周长为13,且三边均为整数,则满足条件的三角形有______种.三、解答题21.如图,已知△ABC,请按下列要求作图:(1)用直尺和圆规作△ABC的角平分线CG.(2)作BC边上的高线(本小题作图工具不限).(3)用直尺和圆规作△DEF,使△DEF≌△ABC.22.阅读填空:如图,已知∠AOB.要画出∠AOB的平分线,可分别在OA,OB上截取OC=OD,OE=OF,连结CF,DE,交于P点,那么射线OP就是∠AOB的平分线.要证明这个作法是正确的,可先证明△EOD≌△______,判定依据是______,由此得到∠OED=∠______;再证明△PEC≌△______,判定依据是______,由此又得到PE=______;最后证明△EOP≌△______,判定依据是______,从而便可证明出∠AOP=∠BOP,即OP平分∠AOB.23.证明命题“全等三角形对应边上的高相等”.24.已知:如图,在△ABC中,∠BAC=90°,AB=AC,MN是经过点A的直线,BD⊥MN,CE⊥MN,垂足分别为D、E.(1)求证:①∠BAD=∠ACE;②BD=AE;(2)请写出BD,DE,CE三者间的数量关系式,并证明.《第1章三角形的初步认识》参考答案与试题解析一、选择题1.下列各组线段中,能组成三角形的是()A.4,6,10 B.3,6,7 C.5,6,12 D.2,3,6【考点】三角形三边关系.【分析】三角形的任意两边之和都大于第三边,根据以上定理逐个判断即可.【解答】解:A、∵4+6=10,不符合三角形三边关系定理,∴以4、6、10为三角形的三边,不能组成三角形,故本选项错误;B、∵3+6>7,6+7<3,3+7>6,符合三角形三边关系定理,∴以3、6、7为三角形的三边,能组成三角形,故本选项正确;C、∵5+6<12,不符合三角形三边关系定理,∴以5、6、12为三角形的三边,不能组成三角形,故本选项错误;D、∵2+3<6,不符合三角形三边关系定理,∴以2、3、6为三角形的三边,不能组成三角形,故本选项错误;故选B.【点评】本题考查了对三角形三边关系定理的应用,能熟记三角形三边关系定理的内容是解此题的关键.2.在△ABC中,∠A﹣∠C=∠B,那么△ABC是()A.等边三角形B.锐角三角形C.钝角三角形D.直角三角形【考点】三角形内角和定理.【分析】根据三角形内角和定理得到∠A+∠B+∠C=180°,则∠A+∠B=180°﹣∠C,由∠A=∠B﹣∠C 变形得∠A+∠B=∠C,则180°﹣∠C=∠C,解得∠C=90°,即可判断△ABC的形状.【解答】解:∵∠A+∠B+∠C=180°,∴∠C+∠B=180°﹣∠A,而∠A﹣∠C=∠B,∴∠C+∠B=∠A,∴180°﹣∠A=∠A,解得∠A=90°,∴△ABC为直角三角形.故选D.【点评】本题考查了三角形内角和定理:三角形的内角和为180°,直角三角形的判定,熟记掌握三角形的内角和是解题的关键.3.如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是()A.SAS B.SSS C.AAS D.ASA【考点】作图—基本作图;全等三角形的判定.【分析】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,根据SSS可得到三角形全等.【解答】解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD≌△C'O'D',故选:B.【点评】本题主要考查了全等三角形的判定,关键是掌握全等三角形的判定定理.4.如图AB⊥AD,AB⊥BC,则以AB为一条高线的三角形共有()个.A.1 B.2 C.3 D.4【考点】三角形的角平分线、中线和高.【分析】由于AB⊥AD,AB⊥BC,根据三角形的高的定义,可确定以AB为一条高线的三角形的个数.【解答】解:∵AB⊥AD,AB⊥BC,∴以AB为一条高线的三角形有△ABD,△ABE,△ABC,△ACE,一共4个.故选D.【点评】此题主要考查了三角形的高,三角形的高可以在三角形外,也可以在三角形内,所以确定三角形的高比较灵活.5.如图所示,△BDC′是将长方形纸片ABCD沿BD折叠得到的,图中(包括实线、虚线在内)共有全等三角形()对.A.2 B.3 C.4 D.5【考点】全等三角形的判定.【分析】从最简单的开始找,因为图形对折,所以首先△CDB≌△C′DB,由于四边形是长方形所以,△ABD≌△CDB.进而可得另有2对,分别为:△ABE≌△C′DE,△ABD≌△C′DB,如此答案可得.【解答】解:∵△BDC′是将长方形纸片ABCD沿BD折叠得到的,∴C′D=CD,BC′=BC,∵BD=BD,∴△CDB≌△C′DB(SSS),同理可证明:△ABE≌△C′DE,△ABD≌△C′DB,△ABD≌△CDB三对全等.所以,共有4对全等三角形.故选C.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.做题时要由易到难,循序渐进.6.下列是命题的是()A.作两条相交直线B.∠α和∠β相等吗?C.全等三角形对应边相等 D.若a2=4,求a的值【考点】命题与定理.【分析】根据命题的定义对各选项进行判断.【解答】解:A、“作两条相交直线”为描叙性语言,它不是命题,所以A选项错误;B、“∠α和∠β相等吗?”为疑问句,它不是命题,所以A选项错误;C、全等三角形对应边相等,它是命题,所以C选项正确;D、“若a2=4,求a的值”为描叙性语言,它不是命题,所以D选项错误.故选C.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.7.下列命题中,真命题是()A.垂直于同一直线的两条直线平行B.有两边和其中一边上的高对应相等的两个三角形全等C.三角形三个内角中,至少有2个锐角D.有两条边和一个角对应相等的两个三角形全等【考点】命题与定理.【分析】利用垂线的性质、全等三角形的判定、锐角的性质分别判断后即可确定正确的选项.【解答】解:A、同一平面内垂直于同一直线的两条直线平行,故错误,为假命题;B、有两边和其中一边上的高对应相等的两个三角形全等,故错误,为假命题;C、三角形的三个角中,至少有两个锐角,故正确,为真命题;D、有两边和其中一个角对应相等的两个三角形全等,错误,为假命题,故选C.【点评】本题考查了命题与定理的知识,解题的关键是了解垂线的性质、全等三角形的判定、锐角的性质,难度不大.8.如图,对任意的五角星,结论正确的是()A.∠A+∠B+∠C+∠D+∠E=90° B.∠A+∠B+∠C+∠D+∠E=180°C.∠A+∠B+∠C+∠D+∠E=270°D.∠A+∠B+∠C+∠D+∠E=360°【考点】三角形的外角性质;三角形内角和定理.【分析】根据三角形的一个外角等于和它不相邻的两个内角的和得到∠1=∠2+∠D,∠2=∠A+∠C,根据三角形内角和定理得到答案.【解答】解:∵∠1=∠2+∠D,∠2=∠A+∠C,∴∠1=∠A+∠C+∠D,∵∠1+∠B+∠E=180°,∴∠A+∠B+∠C+∠D+∠E=180°,故选:B.【点评】本题考查的是三角形内角和定理和三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.9.如图,在△ABC中,∠C=90°,AC=BC,AD是△ABC的角平分线,DE⊥AB于E.若AB=6cm,则△DEB的周长为()A.5cm B.6cm C.7cm D.8cm【考点】角平分线的性质;等腰直角三角形.【分析】根据角平分线上的点到角的两边的距离相等可得CD=DE,然后求出△DEB的周长=AB即可得解.【解答】解:∵AD是△ABC的角平分线,DE⊥AB,∴CD=DE,∴△DEB的周长=BD+DE+BE,=BD+CD+BE,=BC+BE,=AC+BE,=AE+BE,=AB,∵AB=6cm,∴△DEB的周长=6cm.故选B.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,等腰直角三角形的性质,熟记性质是解题的关键.10.如图,BF是∠ABD的平分线,CE是∠ACD的平分线,BF与CE交于G,若∠BDC=130°,∠BGC=100°,则∠A的度数为()A.60° B.70° C.80° D.90°【考点】三角形内角和定理;三角形的角平分线、中线和高.【专题】探究型.【分析】根据三角形内角和定理可求得∠DBC+∠DCB的度数,再根据三角形内角和定理及三角形角平分线的定义可求得∠ABC+∠ACB的度数,从而不难求得∠A的度数.【解答】解:连接BC.∵∠BDC=130°,∴∠DBC+∠DCB=180°﹣130°=50°,∵∠BGC=100°,∴∠GBC+∠GCB=180°﹣100°=80°,∵BF是∠ABD的平分线,CE是∠ACD的平分线,∴∠GBD+∠GCD=∠ABD+∠ACD=30°,∴∠ABC+∠ACB=110°,∴∠A=180°﹣110°=70°.故选B.【点评】本题考查的是三角形内角和定理,根据题意作出辅助线,构造出三角形是解答此题的关键.二、填空题11.工人师傅在做完门框后,为防止变形常常像图中所示的那样上两条斜拉的木条(即图中的AB,CD两根木条),这样做的依据是三角形的稳定性.【考点】三角形的稳定性.【分析】根据三角形具有稳定性进行解答即可.【解答】解:这样做的依据是三角形的稳定性,故答案为:三角形的稳定性.【点评】此题主要考查了三角形的稳定性,关键是掌握当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性.12.把命题“对顶角相等”改写成“如果…那么…”的形式:如果两个角是对顶角,那么它们相等.【考点】命题与定理.【分析】命题中的条件是两个角相等,放在“如果”的后面,结论是这两个角的补角相等,应放在“那么”的后面.【解答】解:题设为:对顶角,结论为:相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么它们相等,故答案为:如果两个角是对顶角,那么它们相等.【点评】本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.13.如图,在△ABC中,AD⊥BC于D,AE为∠BAC的平分线,且∠DAE=15°,∠B=35°,则∠C= 65 °.【考点】三角形的角平分线、中线和高;三角形内角和定理.【分析】利用三角形内角和定理求得∠AED=75°;然后根据已知条件和三角形外角定理可以求得∠BAE的度数;最后结合三角形角平分线的定义和三角形内角和定理进行解答.【解答】解:如图,∵AD⊥BC,∴∠ADE=90°.又∵∠DAE=15°,∴∠AED=75°.∵∠B=35°,∴∠BAE=∠AED﹣∠B=40°.又∵AE为∠BAC的平分线,∴∠BAC=2∠BAE=80°,∴∠C=180°﹣∠B﹣∠BAC=65°.故答案是:65.【点评】本题主要考查三角形内角和定理,垂直的性质,角平分线的性质,关键在于熟练运用个性质定理推出相关角之间的关系.14.如图,AB=AC,要使△ABE≌△ACD,应添加的条件是∠B=∠C或AE=AD (添加一个条件即可).【考点】全等三角形的判定.【专题】开放型.【分析】要使△ABE≌△ACD,已知AB=AC,∠A=∠A,则可以添加一个边从而利用SAS来判定其全等,或添加一个角从而利用AAS来判定其全等.【解答】解:添加∠B=∠C或AE=AD后可分别根据ASA、SAS判定△ABE≌△ACD.故答案为:∠B=∠C或AE=AD.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.15.命题“若x(1﹣x)=0,则x=0”是假命题(填“真”、假),证明时可举出的反例是x=1 .【考点】命题与定理.【分析】要证明一个命题是假命题只要举一个反例即可.【解答】解:当x=1时,x(1﹣x)=0也成立,所以证明命题“若x(1﹣x)=0,则x=0”是假命题的反例是:x=1,故答案为:假,x=1.【点评】考查了命题与定理的知识,解题的关键是了解学生对反例证法的掌握情况,属于基础题,比较简单.16.已知三角形的三边长分别是3、x、9,则化简|x﹣5|+|x﹣13|= 8 .【考点】三角形三边关系.【分析】首先确定第三边的取值范围,从而确定x﹣5和x﹣13的值,然后去绝对值符号求解即可.【解答】解:∵三角形的三边长分别是3、x、9,∴6<x<12,∴x﹣5>0,x﹣13<0,∴|x﹣5|+|x﹣13|=x﹣5+13﹣x=8,故答案为:8.【点评】本题考查了三角形的三边关系,解题的关键是能够根据三边关系确定x的取值范围,从而确定绝对值内的代数式的符号,难度不大.17.如图,在△ABC中,AB=AC,AB的中垂线DE交AC于点D,交AB于点E,如果BC=10,△DBC的周长为22,那么AB= 12 .【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】由AB的中垂线DE交AC于点D,交AB于点E,可得AD=BD,又由BC=10,△DBC的周长为22,可求得AC的长,继而求得答案.【解答】解:∵AB的中垂线DE交AC于点D,交AB于点E,∴AD=BD,∵△DBC的周长为22,∴BC+CD+BD=BC+CD+AD=BC+AC=22,∵BC=10,∴AC=12.∵AB=AC,∴AB=12.故答案为:12.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.18.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN ≌△ABM;④CD=DN.其中正确的结论是①②③.(将你认为正确的结论的序号都填上)【考点】全等三角形的判定与性质.【分析】此题考查的是全等三角形的判定和性质的应用,只要先找出图中的全等三角形就可判断题中结论是否正确.【解答】解:∵∠E=∠F=90°,∠B=∠C,AE=AF,∴△ABE≌△ACF,∴AC=AB,BE=CF,即结论②正确;∵AC=AB,∠B=∠C,∠CAN=∠BAM,∴ACN≌△ABM,即结论③正确;∵∠BAE=∠CAF,∵∠1=∠BAE﹣∠BAC,∠2=∠CAF﹣∠BAC,∴∠1=∠2,即结论①正确;∴△AEM≌△AFN,∴AM=AN,∴CM=BN,∴△CDM≌△BDN,∴CD=BD,∴题中正确的结论应该是①②③.故答案为:①②③.【点评】此题考查了三角形全等的判定和性质;对图中的全等三角形作出正确判断是正确解答本题的关键.19.已知,∠α=50°,且∠α的两边与∠β的两边互相垂直,则∠β=130°或50°.【考点】垂线.【专题】分类讨论.【分析】根据题意画出图形,然后分情况进行讨论分析即可.【解答】解:①如图1,∵∠a+∠β=180°﹣90°﹣90°=180°,∠α=50°,∴∠β=130°,②如图2,若∠a的两边分别与∠β的两边在同一条直线上,∴∠a=∠β=50°,综上所述,∠β=130°或50°.故答案是:130°或50°.【点评】本题主要考查角的计算,垂线的性质,关键在于根据题意画出图形,分情况进行讨论分析.20.若三角形的周长为13,且三边均为整数,则满足条件的三角形有 4 种.【考点】三角形三边关系.【分析】三角形的三边中,等边三角形三边相等;除此外,必有一边是最长边;然后首先确定第三边的取值范围,从而确定答案.【解答】解:设三边长分别为a≤b≤c,则a+b=13﹣c>c≥,∴≤c<,故c=5,或6;分类讨论如下:①当c=5时,b=4,a=4或b=3,a=5;②当c=6时,b=5,a=2或b=4,a=3;∴满足条件的三角形的个数为4,故答案为:4.【点评】本题考查了三角形的三边关系,属竞赛题型,且涉及分类讨论的思想.解答的关键是找到三边的取值范围及对三角形三边的理解把握.三、解答题21.如图,已知△ABC,请按下列要求作图:(1)用直尺和圆规作△ABC的角平分线CG.(2)作BC边上的高线(本小题作图工具不限).(3)用直尺和圆规作△DEF,使△DEF≌△ABC.【考点】作图—复杂作图.【专题】作图题.【分析】(1)利用基本作图(作已知角的平分线)画∠ACB的平分线OG;(2)过点A作AH⊥BC于H,则AH为BC边上的高;(3)先作线段EF=BC,然后分别以E、F为圆心,BA和CA为半径画弧,两弧交于点D,则△DEF与△ABC全等.【解答】解:(1)如图1,CG为所作;(2)如图1,AH为所作;(3)如图2,△DEF为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.22.阅读填空:如图,已知∠AOB.要画出∠AOB的平分线,可分别在OA,OB上截取OC=OD,OE=OF,连结CF,DE,交于P点,那么射线OP就是∠AOB的平分线.要证明这个作法是正确的,可先证明△EOD≌△FOC ,判定依据是SAS ,由此得到∠OED=∠OFC ;再证明△PEC≌△PFD ,判定依据是AAS ,由此又得到PE= PF ;最后证明△EOP≌△FOP ,判定依据是SSS ,从而便可证明出∠AOP=∠BOP,即OP平分∠AOB.【考点】作图—基本作图;全等三角形的判定与性质.【分析】求∠AOB的平分线可利用三角形全等的性质作图.【解答】解:作法:(1)分别在OA,OB上截取OC=OD,OE=OF,连接CF,DE,交于P点,(2)连接OP即可,在△EOD与△FOC中,,∴△EOD≌△FOC(SAS),∴∠OED=∠OFC,在△PEC与△PFD中,,∴△PEC≌△PFD(AAS),∴PE=PF.在△EOP与△FOP中,,∴△EOP≌△FOP(SSS),∴∠AOP=∠BOP,即OP平分∠AOB.故答案为:FOC,SAS,OFC;PFD,AAS,PF;△FOP,SSS,【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法及全等三角形的判定定理是解答此题的关键.23.证明命题“全等三角形对应边上的高相等”.【考点】全等三角形的性质.【专题】证明题.【分析】根据图形写出已知,求证,根据全等三角形的性质求出AB=EF,∠B=∠F,根据全等三角形的判定求出△ABD≌△EFH即可.【解答】解:已知:如图,△ABC≌△EFC,AD、EH分别是△ABC和△EFC的对应边BC、FG上的高.求证:AD=EH.证明:∵△ABC≌△EFC,∴AB=EF,∠B=∠F,∵AD、EH分别是△ABC和△EFC的对应边BC、FG上的高,∴∠ADB=∠EHF=90°,在△ABD和△EFH中,∴△ABD≌△EFH(AAS),∴AD=EH.【点评】此题主要考查学生对全等三角形的性质及判定的理解及运用能力.注意命题的证明的格式、步骤.24.(12分)已知:如图,在△ABC中,∠BAC=90°,AB=AC,MN是经过点A的直线,BD⊥MN,CE ⊥MN,垂足分别为D、E.(1)求证:①∠BAD=∠ACE;②BD=AE;(2)请写出BD,DE,CE三者间的数量关系式,并证明.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)①根据∠BAD+∠CAE=90°,∠ACE+∠CAE=90°,即可得出∠BAD=∠ACE;②根据全等三角形的判定方法(AAS)得出△ABD≌△CAE,从而得出BD=AE;(2)根据△ABD≌△CAE,得出BD=AE,AD=CE,再根据AE=AD+DE,即可得出BD,DE,CE三者间的数量关系.【解答】解:(1)①∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵CE⊥MN,∴∠ACE+∠CAE=90°,∴∠BAD=∠ACE;②∵BD⊥MN,∴∠BDA=∠AEC=90°,在△ABD和△CAE中,,∴△ABD≌△CAE,∴BD=AE;(2)∵△ABD≌△CAE,∴BD=AE,AD=CE,∵AE=AD+DE,∴BD=CE+DE.【点评】此题考查了全等三角形的判定与性质,用到的知识点是AAS、直角三角形的性质,关键是通过证明两个三角形全等得出相等的线段.。
浙教版八年级上册数学第3章 一元一次不等式单元测试卷(含答案)
浙教版八年级上册数学第3章一元一次不等式单元测试卷(含答案)一、单选题(共11题;共22分)1.若a<b,则下列结论不一定成立的是()。
A.a-1<b-1B.2a<2bC.D.2.九年级某班的部分同学去植树,若每人平均植树7棵,则还剩9棵;若每人平均植树9棵,则有1名同学植树的棵数不到8棵.若设同学人数为x人,则下列能准确求出同学人数与植树总棵数的是()A.7x+9-9(x-1)>0B.7x+9-9(x-1)<8C.D.3.x与的差的一半是正数,用不等式表示为()A.(x﹣)>0B.x﹣<0C.x﹣>0D.(x﹣)<04.若某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元,则符合该公司要求的购买方式有()A.3种B.4种C.5种D.6种5.关于x的不等式组只有4个整数解,则a的取值范围是()A.5≤a≤6B.5≤a<6C.5<a≤6D.5<a<66.若不等式组无解,则a的取值范围是()A.a≥﹣3B.a>﹣3C.a≤﹣3D.a<﹣37.已知关于x的不等式组仅有三个整数解,则a的取值范围是()。
A.≤a<1B.≤a≤1C.<a≤1D.a<18.不等式组的解集为()A.x>B.x>1C.<x<1D.空集9.下列说法中错误的是()A.如果a<b,那么a﹣c<b﹣cB.如果a>b,c>0,那么ac>bcC.如果m<n,p<0,那么>D.如果x>y,z<0,那么xz>yz10.不等式1-x≥2的解在数轴上表示正确的是()A. B.C. D.11.不等式组的解集在数轴上表示正确的是()A. B.C. D.二、填空题(共8题;共8分)12.2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为________cm.13.不等式x+1≥0的解集是________.14.不等式组的最小整数解是________.15.不等式组的整数解是x=________.16.已知,,若,则实数的值为________.17.不等式组的解集为________.18.(2017•黑龙江)不等式组的解集是x>﹣1,则a的取值范围是________.19.关于x的不等式组只有4个整数解,则a的取值范围是________.三、解答题(共7题;共49分)20.一次普法知识竞赛共有30道题,规定答对一道题得4分,答错或不答一道题扣1分.在这次竞赛中,小明获得优秀(90或90分以上),则小明至少答对了多少道题?21.今年中考期间,我县部分乡镇学校的九年级考生选择在一中、二中的学生宿舍住宿,某学校将若干间宿舍分配给该校九年级一班的女生住宿,已知该班女生少于25人,若每个房间住4人,则剩下3人没处住;若每个房间住6人,则空一间房,并且还有一间房有人住但住不满。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新浙教版八年级数学上册单元测试题及答案第1章单元检测题(时间:100分钟满分:120分)一、选择题(每小题3分,共30分)1.已知AB=1.5,AC=4.5,若BC的长为整数,则BC的长为( D )A.3 B.6 C.3或6 D.3或4或5或62.一个三角形三个内角的度数之比为2∶3∶5,这个三角形一定是( B )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形3.如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为( A ) A.80°B.90°C.100°D.102°,第4题图),第5题图),第6题图)4.如图,△ABC的平分线AD与中线BE交于点O,有下列结论:①AO是△ABE的角平分线;②BO 是△ABD的中线,下列说法正确的是( D )A.①②都正确B.①不正确,②正确C.①②都不正确D.①正确,②不正确5.如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为( B )A.20°B.30°C.35°D.40°6.要测量河两岸的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再作出BF 的垂线DE,使A,C,E在同一条直线上(如图),可以证明△ABC≌△EDC,得ED=AB,因此,测得DE 的长就是AB的长.在这里判定△ABC≌△EDC的条件是( A )A.ASA B.SAS C.SSS D.以上答案均不正确7.如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中能使△ABC≌△DEF的条件共有( C )A.1组B.2组C.3组D.4组8.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC 的长是( A )A.3 B.4 C.6 D.5,第7题图),第8题图),第9题图) ,第10题图)9.如图,在锐角三角形ABC 中,直线l 为BC 的中垂线,射线m 为∠ABC 的角平分线,直线l 与m 相交于点P.若∠BAC =60°,∠ACP =24°,则∠ABP 的度数是( C )A .24°B .30°C .32°D .36°10.两组邻边分别相等的四边形叫做“筝形”.如图,四边形ABCD 是一个筝形,其中AD =CD ,AB =CB.小明在探究筝形的性质时,得到如下结论:①AC ⊥BD ;②AO =CO =12AC ;③△ABD ≌△CBD.其中正确的结论有( D )A .0个B .1个C .2个D .3个 二、填空题(每小题4分,共24分)11.工人师傅在做完门框后,为防止变形常常像图中所示的那样钉上两条斜拉的木条(即图中的AB ,CD 两根木条),这样做的依据是__三角形的稳定性__.,第11题图) ,第12题图),第13题图)12.如图,在△ABC 中,D ,E 分别是AB ,AC 上的点,点F 在BC 的延长线上,DE ∥BC ,若∠1=50°,∠2=110°,则∠A =__60°__.13.如图,△ADB ≌△ECB ,若∠CBD =40°,BD ⊥EC ,则∠D 的度数为__50°__. 14.要说明命题“若a·b =0,则a +b =0”是假命题,可举反例__(-2)×0=0,但(-2)+0=-2≠0(答案不唯一)__.15.如图,AC 与BD 相交于点O ,∠A =∠D ,请你补充一个条件,使得△AOB ≌△DOC ,你补充的条件是__AO =DO 或AB =DC 或BO =CO __.,第15题图) ,第16题图)16.如图,在四边形ABCD 中,给出了下列三个论断:①对角线AC 平分∠BAD ;②CD =BC ;③∠D +∠B =180°.在上述三个论断中,若以其中两个论断作为条件,另外一个论断作为结论,则可以得出__3__个正确的命题.三、解答题(共66分)17.(8分)将下列命题改写成“如果……那么……”的形式,并指出命题的条件和结论:(1)三条边对应相等的两个三角形全等;(2)三角形的外角等于和它不相邻的两个内角的和.解:(1)如果两个三角形的三条边对应相等,那么这两个三角形全等;条件:两个三角形的三条边对应相等,结论:这两个三角形全等(2)如果一个角是三角形的一个外角,那么这个角等于和它不相邻的两个内角的和;条件:一个角是三角形的一个外角,结论:这个角等于和它不相邻的两个内角的和18.(6分)如图,求作一个直角三角形ABC ,使AB =a ,BC =12a ,∠ABC =90°.(要求:用尺规作图,保留作图痕迹,不必写出作法)解:略19.(8分)如图,DE ⊥AC ,∠AGF =∠ABC ,∠1+∠2=180°,试判断BF 与AC 的位置关系,并说明理由.解:BF ⊥AC.理由:∵∠AGF =∠ABC ,∴FG ∥BC ,∴∠1=∠3.又∵∠1+∠2=180°,∴∠2+∠3=180°,∴BF ∥DE.又∵DE ⊥AC ,∴∠DEA =90°,∴∠AFB =∠DEA =90°,∴BF ⊥AC20.(8分)如图,△ABC ≌△DEB ,点E 在AB 上,DE 与AC 相交于点F. (1)当DE =8,BC =5时,线段AE 的长为__3__; (2)若∠D =35°,∠C =60°,求∠DBC 的度数.解:(2)∠DBC=25°21.(8分)在数学课上,林老师在黑板上画出如图的图形(其中点B,F,C,E在同一直线上),并写出四个条件:①AB=DE;②BF=EC;③∠B=∠E;④∠1=∠2.请你从这四个条件中选出三个作为条件,另一个作为结论,组成一个真命题,并给予证明.条件:__①②③或①③④或②③④__;结论:__④或②或①__.(均填写序号)证明:以题设①②③,结论④为例,∵BF=CE,∴BF+FC=CE+FC,∴BC=EF.又∵AB=DE,∠B=∠E,∴△ABC≌△DEF(SAS),∴∠1=∠222.(9分)如图,在△ABC中,AD是∠BAC的补角的平分线,点P是AD上异于点A的任意一点,试比较PB+PC与AB+AC的大小,并说明理由.解:PB+PC>AB+AC.理由:在线段BA的延长线上取一点E,使AE=AC,连结PE.∵AD是∠EAC 的平分线,∴∠EAP=∠CAP,可证△EAP≌△CAP(SAS),∴PE=PC,∴PB+PC=PB+PE>BE.又∵AB +AC=AB+AE=BE,∴PB+PC>AB+AC23.(9分)如图,在△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD交BD的延长线于点E.求证:BD=2CE.证明:分别延长BA,CE交于点F.∵BE⊥CE,∴∠BEF=∠BEC=90°.又∵∠1=∠2,BE=BE,∴△BEF≌△BEC(ASA),∴CE=FE=12CF.∵∠1+∠F=90°,∠ACF+∠F=90°,∴∠1=∠ACF.又∵AB=AC,∠BAD=∠CAF=90°,∴△ABD≌△ACF(ASA),∴BD=CF,∴BD=2CE24.(10分)(1)如图①,在△ABC中,AD平分∠BAC交BC于点D,DE⊥AB于点E,DF⊥AC于点F,则有相等关系DE=DF,AE=AF,请加以证明;(2)如图②,在(1)的情况下,如果∠MDN=∠EDF,∠MDN的两边分别与AB,AC相交于M,N两点,其他条件不变,那么又有相等关系AM+__AN__=2AF,请加以证明.解:(1)∵AD平分∠BAC,∴∠BAD=∠CAD.∵DE⊥AB,DF⊥AC,∴∠AED=∠AFD=90°.可证△ADE≌△ADF(AAS),∴DE=DF,AE=AF(2)由(1)得DE=DF,∵∠MDN=∠EDF,∴∠MDE=∠NDF,可证△MDE≌△NDF(ASA),∴ME =NF,∴AM+AN=(AE+ME)+(AF-NF)=AE+AF,即AM+AN=2AF第2章单元检测题(时间:100分钟满分:120分)一、选择题(每小题3分,共30分)1.下列图案属于对称图形的是( A )A. B. C. D.2.下列命题的逆命题正确的是( C )A.全等三角形的面积相等B.全等三角形的周长相等C.等腰三角形的两个底角相等D.直角都相等3.以下列各组数为边长的三角形中,能组成直角三角形的是( B )A.3,4,6 B.15,20,25 C.5,12,15 D.10,16,254.等腰三角形的两条边长是3和6,则它的周长是( B )A.12 B.15 C.12或15 D.15或185.若等腰三角形有一个角为40°,则它的顶角为( C ) A .40° B .100° C .40°或100° D .无法确定6.如图,在Rt △ABC 中,∠C =90°,∠ABC 的平分线BD 交AC 于点D.若BC =4 cm ,BD =5 cm ,则点D 到AB 的距离为( C )A .5 cmB .4 cmC .3 cmD .2 cm,第6题图) ,第7题图),第8题图)7.如图,∠MON =30°,点A 1,A 2,A 3,…在射线ON 上,点B 1,B 2,B 3,…在射线OM 上,△A 1B 1A 2,△A 2B 2A 3,△A 3B 3A 4,…均为等边三角形,若OA 1=1,则△A 6B 6A 7的边长为( C )A .6B .12C .32D .648.如图①是一个直角三角形纸片,∠C =90°,AB =13 cm ,BC =5 cm ,将其折叠,使点C 落在斜边上的点C′处,折痕为BD(如图②),则DC 的长为( A )A.103 cmB.83 cmC.52cm D. 5 cm9.用4个全等的直角三角形与1个小正方形拼成的正方形图案如图所示,已知大正方形的面积为49,小正方形的面积为9,若用x ,y 表示直角三角形的两直角边(x>y),请观察图案,指出以下关系式中不正确的是( D )A .x 2+y 2=49B .x -y =3C .2xy +9=49D .x +y =1310.如图,△ABC 和△ADE 都是等腰直角三角形,∠BAC =∠DAE =90°,连结CE 交AD 于点F ,连结BD 交CE 于点G ,连结BE.下列结论:①CE =BD ;②△ADC 是等腰直角三角形;③∠ADB =∠AEB ;④S 四边形BCDE =12BD·CE ;⑤BC 2+DE 2=BE 2+CD 2.其中正确的结论有( C )A .1个B .2个C .3个D .4个,第10题图) ,第14题图) ,第15题图),第16题图)二、填空题(每小题4分,共24分)11.命题“等腰三角形两腰上的高相等”的逆命题是__两边上的高相等的三角形是等腰三角形__,这个逆命题是__真__命题.12.在△ABC 中,AB =AC ,AD 是中线,若∠B =60°,则∠BAD =__30°__.13.在Rt △ABC 中,AB =5,BC =3,则斜边上的中线长为__2.5或2. 14.如图,在△ABC 中,CD ⊥AB 于点D ,E 是AC 的中点.若AD =6,DE =5,则CD 的长等于__8__. 15.如图,BD ,CE 分别是△ABC 两个外角的角平分线,DE 过点A 且DE ∥BC.若DE =14,BC =7,则△ABC 的周长为__21__.16.如图,已知D 为等边三角形ABC 内的一点,DB =DA ,BF =AB ,∠1=∠2,则∠BFD =__30°__.点拨:证△BCD ≌△ACD 得∠BCD =30°,再证△BFD ≌△BCD 得∠BFD =∠BCD =30° 三、解答题(共66分)17.(7分)如图,在Rt △ABC 中,∠B =90°,分别以点A ,C 为圆心,大于12AC 为半径画弧,两弧相交于点M ,N ,连结MN ,与AC ,BC 分别交于点D ,E ,连结AE.(1)求∠ADE 的度数;(直接写出结果)(2)当AB =3,AC =5时,求△ABE 的周长.解:(1)由题意可知MN 是线段AC 的垂直平分线,∴∠ADE =90° (2)由勾股定理可求BC =4,∵MN 是线段AC 的垂直平分线,∴AE =CE ,∴△ABE 的周长=AB +(AE +BE )=AB +BC =718.(8分)如图,AD =BC ,AC =BD.求证:△EAB 是等腰三角形.证明:易证△ABD ≌△BAC (SSS ),∴∠ABD =∠BAC ,∴AE =BE ,即△EAB 是等腰三角形19.(8分)在等腰三角形ABC中,AB=AC,∠C=30°,AB⊥AD,AD=2,求BC的长.解:BC=620.(8分)如图,在△ABC中,点D是BC边上一点,且BA=BD,∠DAC=12∠B,∠C=50°,求∠BAC的度数.解:设∠DAC=x°,则∠B=2x°,∠BDA=∠C+∠DAC=50°+x°.∵BD=BA,∴∠BAD=∠BDA =50°+x°.∵∠B+∠BAD+∠BDA=180°,∴2x+50+x+50+x=180,解得x=20,∴∠BAD=∠BDA =70°,∠BAC=∠BAD+∠DAC=90°21.(8分)如图,AD⊥BC于点D,∠B=∠DAC,点E在BC上,△EAC是以EC为底的等腰三角形,AB=4,AE=3.(1)判断△ABC的形状,并说明理由;(2)求△ABC的面积.解:(1)△ABC是直角三角形.理由:∵AD⊥BC,∴∠DAC+∠C=90°,∵∠B=∠DAC,∴∠B +∠C=90°,∴△ABC是直角三角形(2)S△ABC=622.(8分)一牧童在A处牧马,牧童的家在B处,A,B处距河岸的距离分别是AC=500 m,BD=700 m,且C,D两地间的距离也为500 m,天黑前牧童从点A将马牵到河边去饮水,再赶回家,为了使所走的路程最短.(1)牧童应将马赶到河边的什么地点?请你在图中画出来;(2)问:他至少要走多少路?解:(1)如图①,作点A关于河岸的对称点A′,连结BA′交河岸于点P,则PB+PA=PB+PA′=BA′最短,故牧童应将马赶到河边的点P处(2)如图②,过点A′作A′B′⊥BD交BD的延长线于点B′,∴B′A′=CD=500 m,B′D=A′C=AC=500 m.在Rt△BB′A′中,BB′=BD+DB′=1200 m,A′B′=500 m,∴BA′=12002+5002=1300(m),即他至少要走1300 m路23.(9分)如图,△ABC和△CDE均为等边三角形,且点B,C,D在同一直线上,连结AD,BE,分别交CE和AC于点G,H,连结GH.(1)请说出AD=BE的理由;(2)试说出△BCH≌△ACG的理由;(3)试猜想△CGH是什么特殊的三角形,并加以证明.解:(1)∵△ABC和△CDE均为等边三角形,∴AC=BC,EC=DC,∠ACB=∠ECD=60°,∴∠ACD =∠BCE,∴△ACD≌△BCE(SAS),∴AD=BE(2)∵△ACD≌△BCE,∴∠CBH=∠CAG.∵∠ACB=∠ECD=60°,点B,C,D在同一条直线上,∴∠ACB=∠ECD=∠ACG=60°.又∵AC=BC,∴△BCH≌△ACG(ASA)(3)△CGH是等边三角形,理由:∵△ACG≌△BCH,∴CG=CH,又∵∠ACG=60°,∴△CGH是等边三角形24.(10分)(1)如图①,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高线AG与正方形的边长相等,求∠EAF的度数;(2)如图②,在Rt△BAD中,∠BAD=90°,AB=AD,点M,N是BD边上的任意两点,且∠MAN =45°.将△ABM绕点A逆时针旋转90°至△ADH位置,连结NH,试判断MN,ND,DH之间的数量关系,并说明理由.解:(1)易证Rt △ABE ≌Rt △AGE (HL ),Rt △AGF ≌Rt △ADF (HL ),∴∠BAE =∠GAE ,∠DAF =∠GAF ,∵∠BAD =90°,∠EAF =12∠BAD =45° (2)MN 2=ND 2+DH 2.理由:可证△AMN ≌△AHN (SAS ),∴MN =HN.∵∠BAD =90°,AB =AD ,∴∠ABD =∠ADB =45°,∴∠HDN =∠HDA +∠ADB =∠ABD +∠ADB =90°,∴HN 2=ND 2+DH 2.∴MN 2=ND 2+DH 2第3章单元检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分) 1.下列说法不一定成立的是( C )A .若a >b ,则a +c >b +cB .若a +c >b +c ,则a >bC .若a >b ,则ac 2>bc 2D .若ac 2>bc 2,则a >b2.在数轴上表示不等式x -3>0的解集,下列表示正确的是( B ) A. B. C.D.3.不等式x +32-3≥2(x -3)的非负整数解有( A )A .4个B .3个C .2个D .1个4.关于x 的不等式-x +a ≥1的解在数轴上表示如图,则a 的值为( D )A .-1B .0C .1D .25.不等式组⎩⎪⎨⎪⎧x -1>0,x ≤2的解集是( C )A .x ≤2B .x >1C .1<x ≤2D .无解6.不等式组⎩⎪⎨⎪⎧2x -1≥5,8-4x<0的解集在数轴上表示为( C )A. B.C. D.7.若关于x 的不等式组⎩⎪⎨⎪⎧3x -1>4(x -1),x<a的解集为x<3,则a 的取值范围是( B )A .a >3B .a ≥3C .a <3D .a ≤38.如果不等式组⎩⎪⎨⎪⎧x -a ≥0,2x -10<0只有一个整数解,那么a 的取值范围是( A )A .3<a ≤4B .3≤a <4C .4≤a <5D .4<a ≤59.某种商品的进价为1000元,出售时的标价为1500元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则最多可打( B )A .6折B .7折C .8折D .9折10.如图是一个运行程序,规定:从“输入一个值x ”到“结果是否>95”为一次程序操作,如果程序进行了三次才停止,那么x 的取值范围是( C )A .x ≥11B .11≤x <23C .11<x ≤23D .x ≤23 二、填空题(每小题4分,共24分)11.用不等式表示下列关系:x 的3倍与8的和比y 的2倍小:__3x +8<2y __. 12.如果a<b ,那么3-2a__>__3-2b .(用不等号填空)13.如果关于x 的不等式(a +1)x>a +1的解集为x<1,那么a 的取值范围是__a<-1__. 14.下课时老师在黑板上抄了一道题:x +22≥2x -13+□,□是被一学生擦去的一个数字,又知其解集为x ≤2,则被擦去的数字是__1__.15.已知关于x 的不等式组⎩⎪⎨⎪⎧x -a ≥6,2x -a<2b +1的解集为3≤x<5,则ba 的值是__-2__.16.幼儿园把新购进的一批玩具分给小朋友,若每人分3件,还剩余59件;若每人分5件,最后一个小朋友分到的玩具不足4件(每个小朋友都分到玩具),则这些玩具共有__152__件.三、解答题(共66分)17.(10分)解不等式(组),并把解集在数轴上表示出来.(1)1-7x -18>3x -24; (2)⎩⎪⎨⎪⎧5x +2>3(2+x ),2x -14-1+x 6≤1.解:x<1,在数轴上表示略 解:2<x ≤174,在数轴上表示略18.(7分)已知关于x 的不等式组⎩⎪⎨⎪⎧2x -a<1,x -2b>3的解是-1<x<1,求(a +1)(b -1)的值.解:解不等式组得x<a +12,x>3+2b ,∵-1<x<1,∴⎩⎪⎨⎪⎧3+2b =-1,a +12=1,解得⎩⎨⎧a =1,b =-2,∴(a +1)(b -1)=(1+1)(-2-1)=-619.(7分)已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +y =-7-k , ①x -y =1+3k ②的解x 为负数,y 为非正数,求k 的取值范围.解:解方程组得⎩⎨⎧x =k -3,y =-2k -4,根据题意得⎩⎨⎧k -3<0,-2k -4≤0,解得-2≤k<320.(7分)我们知道不等式的两边都加上(或减去)同一个数(或整式),不等号的方向不变.不等式组是否也具有类似的性质?请完成下列填空:一般地,如果⎩⎪⎨⎪⎧a >b ,c >d ,那么a +c __>__b +d (用“>”或“<”填空).你能应用不等式的性质证明上述关系式吗?要有过程和思路.证明:∵a>b ,∴a +c>b +c ,又∵c>d ,∴b +c>b +d ,∴a +c>b +d21.(7分)某校八年级500名学生去春游,欲租用45座和60座的客车共10辆.为了安全,每辆车不能超载,则45座的客车最多能租几辆?解:设45座的客车租了x 辆,则60座的客车租了(10-x )辆,得45x +60(10-x )≥500,解得x ≤623,∴满足条件的最大正整数是6,则45座的客车最多能租6辆22.(8分)先阅读理解下面的例题,再按要求解答: 例题:解一元二次不等式x 2-9>0.解:∵x 2-9=(x +3)(x -3),∴(x +3)(x -3)>0.由有理数的乘法法则“两数相乘,同号得正”,得(1)⎩⎪⎨⎪⎧x +3>0,x -3>0;(2)⎩⎪⎨⎪⎧x +3<0,x -3<0.解不等式组(1),得x>3,解不等式组(2),得x<-3,故(x +3)(x -3)>0的解集为x>3或x<-3, 即一元二次不等式x 2-9>0的解集为x>3或x<-3. 问题:求分式不等式5x +12x -3<0的解集.解:∵5x +12x -3<0,∴①⎩⎨⎧5x +1<0,2x -3>0或②⎩⎨⎧5x +1>0,2x -3<0.解不等式组①无解,解不等式组②得-15<x<32,即不等式5x +12x -3<0的解集为-15<x<3223.(10分)为了更好地治理流溪河水质,保护环境,市治污公司决定购买10台污水处理设备.现有A ,B 两种型号的设备,其中每台的价格、月处理污水量如下表:经调查:购买一台A A 型设备比购买3台B 型设备少6万元.(1)求a ,b 的值;(2)经预算:市治污公司购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案?污公司设计一种最省钱的购买方案.解:(1)根据题意得⎩⎨⎧a -b =2,3b -2a =6,解得⎩⎨⎧a =12b =10(2)设购买A 型设备x 台,B 型设备(10-x )台,则12x +10(10-x )≤105,∴x ≤2.5,∵x 取非负整数,∴x =0,1,2,∴有三种购买方案:①A 型设备0台,B 型设备10台;②A 型设备1台,B 型设备9台;③A 型设备2台,B 型设备8台(3)由题意得240x +200(10-x )≥2040,∴x ≥1,又∵x ≤2.5,x 取非负整数,∴x 为1,2.当x =1时,购买资金为12×1+10×9=102(万元),当x =2时,购买资金为12×2+10×8=104(万元),∴为了节约资金,应选购A 型设备1台,B 型设备9台24.(10分)某中学开学初到商场购买A ,B 两种品牌的足球,购买A 种品牌的足球50个,B 种品牌的足球25个,共花费4500元,已知购买一个B 种品牌的足球比购买一个A 种品牌的足球多花30元. (1)求购买一个A 种品牌、一个B 种品牌的足球各需多少元?(2)学校为了响应习总书记“足球进校园”的号召,决定再次购进A ,B 两种品牌足球共50个,正好赶上商场对商品价格进行调整,A 品牌足球售价比第一次购买时提高4元,B 品牌足球按第一次购买时售价的9折出售,如果学校此次购买A ,B 两种品牌足球的总费用不超过第一次花费的70%,且保证这次购买的B 种品牌足球不少于23个,则这次学校有哪几种购买方案?(3)请你求出学校在第二次购买活动中最多需要多少资金?解:(1)设A 种品牌足球的单价为x 元,B 种品牌足球的单价为y 元,依题意得⎩⎨⎧50x +25y =4500,y =x +30,解得⎩⎨⎧x =50,y =80,则购买一个A 种品牌的足球需要50元,购买一个B 种品牌的足球需要80元 (2)设第二次购买A 种足球m 个,则购买B 种足球(50-m )个,依题意得⎩⎨⎧(50+4)m +80×0.9(50-m )≤4500×70%,50-m ≥23,解得25≤m ≤27,故这次学校购买足球有三种方案:①购买A 种足球25个,B 种足球25个;②购买A 种足球26个,B 种足球24个;③购买A 种足球27个,B 种足球23个(3)∵第二次购买足球时,A 种足球单价为50+4=54(元),B 种足球单价为80×0.9=72(元),∴当购买方案中B 种足球最多时,费用最高,即方案①花钱最多,25×54+25×72=3150(元),则学校在第二次购买活动中最多需要3150元资金期中检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分) 1.在一些汉字的美术字中,有的是轴对称图形.下面四个美术字可以看作轴对称图形的是( D ) A .诚 B .信 C .友 D .善A.1,2,1 B.1,2,3 C.1,2,2 D.1,2,43.小明不慎将一块三角形的玻璃打碎成如图的四块(图中所标1,2,3,4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带( B )去.A.第1块B.第2块C.第3块D.第4块4.下列命题:①对顶角相等;②同位角相等,两直线平行;③若a=b,则|a|=|b|;④若a2+b2=0,则ab=0.它们的逆命题一定成立的有( D )A.①②③④B.①④C.②④D.②5.下列命题:①在Rt△ABC中,已知两边长分别为3和4,则第三边长为5;②有一个内角等于其他两个内角和的三角形是直角三角形;③三角形的三边分别为a,b,c,如果a2+c2=b2,那么∠C=90°;④若在△ABC中,∠A∶∠B∶∠C=1∶5∶6,则△ABC是直角三角形.其中正确的有( B )A.1个B.2个C.3个D.4个6.如图是中国共产主义青年团团旗上的图案,点A,B,C,D,E五等分圆,则∠A+∠B+∠C+∠D+∠E的度数是( A )A.180°B.150°C.135°D.120°,第6题图),第9题图),第10题图)7.对假命题“若a>b,则a2>b2”举反例,正确的反例是( C )A.a=-1,b=0 B.a=-1,b=-1C.a=-1,b=-2 D.a=-1,b=28.下列条件中,不能判定两个直角三角形全等的是( A )A.两个锐角对应相等B.一条边和一个锐角对应相等C.两条直角边对应相等D.一条直角边和一条斜边对应相等9.如图,在△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC,AD,AB于点E,O,F,则图中全等三角形的对数是( D )A.1对B.2对C.3对D.4对10.如图,在直线l上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4等于( A )A.4 B.5 C.6 D.14二、填空题(每小题4分,共24分)11.等腰三角形的一个角为80°,则另外两个角的度数是__50°,50°或80°,20°__.12.如图,已知AC=BD,要使△ABC≌△DCB,只需增加的一个条件是__AB=DC或∠ACB=∠DBC__.,第12题图) ,第13题图)13.如图,在△ABC 中,边AC 的垂直平分线交BC 于点D ,交AC 于点E ,已知△ABC 与△ABD 的周长分别为18 cm 和12 cm ,则线段AE 的长等于__3__cm.14.如图,一轮船以16海里/时的速度从港口A 出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,则两船相距__40__海里.,第14题图),第15题图) ,第16题图)15.如图,在△ABC 中,AB =AC ,∠BAC =120°,AD 是BC 边上的中线,BD =BE ,则∠AED 的度数为__105°__.16.如图,在Rt △ABC 中,AB =BC =2,D 为BC 的中点,在AC 边上存在一点E ,连结ED ,EB ,则△BDE 周长的最小值为.三、解答题(共66分)17.(7分)如图,AB 与CB 是两条公路,C ,D 是两个村庄,现在要建一个菜市场,使它到两个村庄的距离相等,而且还要使它到两条公路的距离也相等,用尺规作图画出菜市场的位置.(不写作法,保留作图痕迹)解:作∠ABC 的角平分线,CD 的垂直平分线,其交点即为所求,图略18.(7分)如图,在△ABC 中,∠ACB =90°,CD 是斜边上的高线,CE 平分∠ACB ,且∠B =30°,求∠DCE 的度数.解:∵CD 是斜边上的高线,∴∠BCD =90°-∠B =60°.∵CE 平分∠ACB ,∴∠BCE =12∠ACB =45°,∴∠DCE =∠BCD -∠BCE =15°19.(8分)如图,∠DAB=∠CAE,AB=AE,AD=AC.求证:BC=DE.证明:证△ABC≌△AED(SAS)可得20.(8分)如图,在等边△ABC中,BD=CE,AD与BE相交于点P.求证:∠APE=60°.证明:在等边△ABC中,AB=BC,∠ABC=∠C,又∵BD=CE,∴△ABD≌△BCE(SAS),∴∠BAD =∠EBC,∵∠APE=∠ABP+∠BAP,∴∠APE=∠ABP+∠EBC=60°21.(8分)如图,小明的爸爸在鱼池边开了一块四边形菜园种了一些蔬菜,爸爸让小明计算一下菜园的面积,以便计算一下产量.小明找了一卷米尺,测得AB=4 m,BC=3 m,CD=13 m,DA=12 m,又已知∠B=90°,那么这块菜园的面积为多少?解:连结AC,在Rt△ABC中,AC=AB2+BC2=42+32=5,又∵DC=13,AD=12.根据勾股定理的逆定理可知△ACD是以∠DAC为直角的直角三角形,∴S四边形ABCD=S△ABC+S△ACD=12×3×4+12×5×12=3622.(9分)如图,∠ABC=90°,点D,E分别在BC,AC上,AD⊥DE,且AD=DE,点F是AE的中点,FD与AB相交于点M.(1)求证:∠FMC=∠FCM;(2)AD与MC垂直吗?并说明理由.解:(1)证△AMF≌△DCF(AAS),则MF=CF,∴∠FMC=∠FCM(2)AD⊥MC.理由:∵AD⊥DE,∴∠ADE=90°.又∵AD=DE,∴∠AED=45°,∵F是AE的中点,AD=DE,∴DF⊥AC,∴∠MFC=90°.由(1)可知∠FMC=∠FCM,则∠FCM=45°,∴∠FCM=∠AED =45°,∴DE∥BC,而AD⊥DE,∴AD⊥MC23.(9分)如图,△ABC是边长为1的等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个角∠MDN=60°,角的两边分别交AB于点M,交AC于点N,连结MN.问:当点M的位置移动时,△AMN的周长会不会发生变化?如果不变,请求出周长;如果变化,请说明理由.解:△AMN的周长不会变化,且为2.理由:延长AB至点P,使BP=CN,连结PD.∵△ABC是等边三角形,∴∠ABC=∠ACB=60°.又∵△BDC是等腰三角形,且∠BDC=120°,∴∠DBC=∠DCB=30°,∴∠PBD=∠DCN=90°.又∵BP=CN,BD=CD,∴△DBP≌△DCN(SAS),∴DP=DN,∠PDB=∠NDC,∴∠PDM=∠MDB+∠PDB=∠MDB+∠NDC=∠BDC-∠MDN=120°-60°=60°=∠MDN.又∵DM=DM,∴△PDM≌△NDM(SAS),∴PM=NM,∴△AMN的周长=AM+AN+NM=AM+AN+MP=AM+AN+MB+BP=AM+AN+MB+CN=AB+AC=2,∴△AMN的周长不会变化,且为2斜边AB 的中点处,∠A =30°,∠E =45°,∠EDF =∠ACB =90°,DE 交AC 于点G.(1)如图①,当DF 经过点C 时,求证:△BCD 为等边三角形;(2)如图②,当DF 经过点C 时,作GM ⊥AB 于点M ,CN ⊥AB 于点N.求证:AM =DN ;(3)如图③,当DF ∥AC 时,DF 交BC 于点H ,作GM ⊥AB 于点M ,HN ⊥AB 于点N ,请问结论AM =DN 是否成立?若成立,请你给出证明;若不成立,请说明理由.解:(1)∵∠A =30°,∠ACB =90°,D 是AB 的中点,∴CD =BD ,∠B =60°,∴△BCD 是等边三角形(2)∵△BCD 是等边三角形,CN ⊥DB ,∴DN =12DB ,∠CDB =60°.∵∠EDF =90°,∴∠ADG =30°,而∠A =30°,∴GA =GD.∵GM ⊥AB ,∴AM =12AD ,又∵AD =DB ,∴AM =DN(3)AM =DN 成立,证明:∵DF ∥AC ,∴∠HDB =∠A =30°,∠AGD =∠GDH =90°,∴∠ADG =∠B =60°.又∵AD =DB ,∴△ADG ≌△DBH (ASA ),∴AG =DH ,GM ⊥AB ,HN ⊥AB ,∴∠AMG =∠DNH ,又∵∠HDB =∠A ,∴△AMG ≌△DNH (AAS ),∴AM =DN第4章单元检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分) 1.根据下列表述,能够确定一点位置的是( D ) A .东北方向 B .宁波大剧院音乐厅8排 C .永丰西路 D .东经20度北纬30度2.如图,小明在A 处,小红在B 处,小李在C 处,AB =10 m ,BC =8 m ,则下列说法准确的是( C ) A .小红在小明的北偏东35°方向 B .小红在小明的南偏西55°方向C .小明在小红的南偏西55°方向,距离为10 m 处D .小明在小李的北偏东35°方向,距离为18 m 处,第2题图) ,第3题图) ,第10题图) ,第11题图)3.如图,小手盖住的点的坐标可能为( D )A.(5,2) B.(-6,3) C.(-4,-6) D.(3,-4)4.若点P(x,y)的坐标满足xy=0(x≠y),则点P必在( D )A.原点上B.x轴上C.y轴上D.x轴上或y轴上(除原点)5.若点A(a,3)在y轴上,则点B(a-3,a+2)所在的象限是( B )A.第一象限B.第二象限C.第三象限D.第四象限6.已知点A(-4,2),B(1,2),则A,B两点相距( C )A.3个单位B.4个单位C.5个单位D.6个单位7.在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比( D )A.向右平移了3个单位B.向左平移了3个单位C.向上平移了3个单位D.向下平移了3个单位8.已知点A,B的坐标分别是(2m+n,2),(1,n-m),若点A,B关于y轴对称,则m+2n的值为( B )A.-1 B.1 C.0 D.-39.已知等边△ABC的边长为2,顶点A在原点,一条高线恰好落在y轴的负半轴上,则在第三象限的顶点B的坐标是( C )A.(1,-3) B.(-3,-1) C.(-1,-3) D.(-3,1)10.如图,在平面直角坐标系中,有若干个整数点(横、纵坐标都为整数的点),其顺序按图中“→”方向排列,如:(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),(4,0),(4,1),…,观察规律可得,该排列中第100个点的坐标是( D )A.(10,6) B.(12,8) C.(14,6) D.(14,8)二、填空题(每小题4分,共24分)11.如图,若“士”所在位置的坐标为(-1,-2),“相”所在位置的坐标为(2,-2),则“炮”所在位置的坐标为__(-3,1)__.12.已知点P的坐标为(2,-3),则点P到x轴的距离为__3__.13.若点P(m,n)在第三象限,则点Q(mn,m+n)在第__四__象限.14.已知点P1(a,-3)和点P2(3,b)关于y轴对称,则a+b的值为__-6__.15.已知点A(-4,-6),将点A先向右平移4个单位长度,再向上平移6个单位长度,得到点A′,则点A′的坐标为__(0,0)__.16.已知甲的运动方式为:先竖直向上运动1个单位长度,再水平向右运动2个单位长度;乙的运动方式为:先竖直向下运动2个单位长度,再水平向左运动3个单位长度.在平面直角坐标系内,现有一动点P第1次从原点O出发按甲方式运动到点P1,第2次从点P1出发按乙方式运动到点P2,第3次从点P2出发再按甲方式运动到点P3,第4次从点P3出发再按乙方式运动到点P4……以此运动规律,经过11次运动后,动点P所在位置点P11的坐标是__(-3,-4)__.三、解答题(共66分)17.(7分)如图,确定点A,B,C,D,E,F,G的坐标.请说明点B和点F有什么关系?解:A(-4,4),B(-3,0),C(-2,-2),D(1,-4),E(1,-1),F(3,0),G(2,3),点B与点F关于y轴对称18.(8分)如图,将△ABC作下列变换,指出三个顶点的坐标.(1)关于y轴对称;(2)沿x轴正方向平移5个单位;(3)沿y轴负方向平移,使BC落在x轴上.解:(1)A(-4,3),B(-1,1),C(-3,1)(2)A(9,3),B(6,1),C(8,1)(3)A(4,2),B(1,0),C(3,0)19.(8分)如图,一艘船在A处遇险后向相距25 km位于B处的救生船报警,可将救生船B相对于遇险船A的位置表示为(北偏东60°,25).(1)遇险船A相对于救生船B的位置表示为__(南偏西60°,25)__;(2)货船C与遇险船A相距15 km,且AC⊥AB,那么货船C相对于遇险船A的位置应怎样表示?(3)如果小岛D相对于遇险船A的位置为(南偏东50°,20),请在图中画出小岛D.解:(2)(北偏西30°,15) (3)画图略20.(8分)已知坐标平面内的三个点A(1,3),B(3,1),O(0,0),把△ABO 向下平移3个单位,再向右平移2个单位后得到△DEF.(1)直接写出点A ,B ,O 三个对应点D ,E ,F 的坐标;(2)求△DEF 的面积.解:(1)点D (3,0),E (5,-2),F (2,-3) (2)△DEF 的面积为3×3-12×1×3-12×1×3-12×2×2=421.(8分)如图,一个机器人从点O 出发,向正东方向走3 cm 到达点A 1,再向正北方向走6 cm 到达点A 2,再向正西方向走9 cm 到达点A 3,再向正南方向走12 cm 到达点A 4,再向正东方向走15 cm 到达点A 5,按如此规律走下去,当机器人走到点A 6时,(1)点A 6距x 轴是__12__cm ;(2)若机器人从点A 6走到点A 7,A 6A 7的长为多少?写出点A 7的坐标.解:(2)若机器人从点A 6走到点A 7,是向西走21 cm ,∴A 6A 7=21(cm ),点A 7的坐标是(9-21,18-6),即(-12,12)22.(8分)已知点A(-2,3),B(4,3),C(-1,-3). (1)A ,B 两点之间的距离是__6__;(2)点C 到x 轴的距离是__3__,到y 轴的距离是__1__; (3)求△ABC 的面积;(4)点P 在y 轴上,当△ABP 的面积为6时,求点P 的坐标. 解:(3)S △ABC =12×6×(3+3)=18(4)设点P 到AB 的距离为h ,则S △ABP =12×6×h =6,解得h =2,∴点P 的坐标为(0,5)或(0,1)23.(9分)如图,△DEF 是△ABC 经过某种变换得到的图形,点A 与点D ,点B 与点E ,点C 与点F 分别是对应点,观察对应点的坐标之间的关系,解答下列问题:(1)分别写出点A 与点D ,点B 与点E ,点C 与点F 的坐标,并说说对应点的坐标有哪些特征; (2)若点P(a +3,4-b)与点Q(2a ,2b -3)也是通过上述变换得到的对应点,求a ,b 的值.解:(1)A (2,3)与D (-2,-3);B (1,2)与E (-1,-2);C (3,1)与F (-3,-1);对应点的坐标的特征:横坐标互为相反数,纵坐标互为相反数(2)由(1)可得a +3=-2a ,4-b =-(2b -3),解得a =-1,b =-124.(10分)阅读下列一段文字,然后回答问题.已知在平面内两点P 1(x 1,y 1),P 2(x 2,y 2),其两点间的距离P 1P 2=(x 1-x 2)2+(y 1-y 2)2,同时,当两点所在的直线在坐标轴上或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x 2-x 1|或|y 2-y 1|.(1)已知A(2,4),B(-3,-8),则AB =__13__;(2)已知AB ∥y 轴,点A 的纵坐标为5,点B 的纵坐标为-1,则AB =__6__;(3)已知一个三角形各顶点坐标为A (-2,1),B (1,4),C (1,-2),请判定此三角形的形状,并说明理由.解:(3)△ABC 为等腰直角三角形,理由:由已知得AB =(1+2)2+(4-1)2=32,AC =(1+2)2+(-2-1)2=32,BC =(1-1)2+(-2-4)2=6,即AB =AC ,则△ABC 为等腰三角形,又∵AB 2+AC 2=(32)2+(32)2=36=62=BC 2,∴△ABC 为等腰直角三角形第5章单元检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.若y =14-x 有意义,则x 的取值范围是( D )A .x ≠4B .x ≤4C .x ≥4D .x <42.下列函数:①y =x -6;②y =2x ;③y =x8;④y =7-x ,其中y 是x 的一次函数的是( B )A .①②③B .①③④C .①②③④D .②③④3.直线y =-x -2不经过( A )A .第一象限B .第二象限C .第三象限D .第四象限4.若点A(-3,y 1),B(2,y 2),C(3,y 3)是函数y =-x +2图象上的点,则( A ) A .y 1>y 2>y 3 B .y 1<y 2<y 3 C .y 1<y 3<y 2 D .y 2>y 1>y 35.在一次函数y =12ax -a 中,y 随x 的增大而减小,则其图象可能是( B )A. B. C. D.6.对于函数y =-3x +1,下列结论正确的是( D ) A .它的图象必经过点(1,3)B .它的图象经过第二、三、四象限C .当x >0时,y <0D .直线与坐标轴围成的三角形的面积为167.把直线y =-x +3向上平移m 个单位后,与直线y =2x +4的交点在第一象限,则m 的取值范围是( C )A .1<m <7B .3<m <4C .m >1D .m <48.如图,已知直线y 1=k 1x +m 和直线y 2=k 2x +n 交于点P(-1,2),则关于x 的不等式(k 1-k 2)x>-。