动叶可调式轴流风机动叶调节基本知识图

合集下载

双级动叶可调式轴流风机原理

双级动叶可调式轴流风机原理

双级动叶可调式轴流风机原理嘿,今天咱们聊聊双级动叶可调式轴流风机。

听起来像个科技怪物对吧?其实这东西可简单了,咱们平常生活中其实也常见到。

想象一下,夏天的炎热,恨不得把自己浸泡在冰水里。

对,就是这种时候,风机派上用场了!它能把外面热得像蒸锅一样的空气吸进来,给你送来一阵清凉,真是太舒服了。

咱们先来解锁它的名字。

双级动叶?这可不是在搞抽奖,而是说这个风机有两组叶片。

这就像做蛋糕一样,层层叠加,越多越好,风也越强。

动叶可调式?说白了就是风机的叶片可以调节角度,就像是你在玩遥控飞机一样,想飞多高,怎么都可以。

它的秘密武器就在于可以根据需要,调节风量,听起来酷吧!你是不是好奇,这东西是怎么工作的?想象一下,风机的叶片就像是舞者,在舞台上翩翩起舞。

空气在它们的“引导”下,飞速穿梭。

风机一开,空气像被点燃的火箭一样,呼啸而来。

双级设计就像是在接力赛中,有两位选手一起发力,风速那叫一个快,瞬间把你包围。

你觉得热的时候,它们就疯狂转动,把热空气推出去;而你想要更多风的时候,风机的叶片立马调整角度,给你来个“逆风飞翔”,简直爽翻了。

说到这,咱们得提一提它的调节功能。

你看,很多风机在设计上就是一个“死板”的家伙,开就开,不开就关,风量一成不变。

可是这双级动叶可调式轴流风机就不一样了。

它可以根据你所在的环境,自动调整风量,随心所欲。

就像你喝饮料时,有时想喝点甜的,有时想来点酸的,风机也是随你心情而变。

比如说,夏天的时候它可以给你送来大风,让你爽到飞起;而冬天,它又能把风量调小,给你个温暖的感觉,简直是个多面手。

再说说它的应用吧。

工业上,这风机可是个宝贝。

想想看,工厂里生产线上的机器,都是大马力的,难免会发热。

风机一开,把热气排出去,机器才能持续运转,简直是工厂的“降温王”。

咱们家里也能用得上,厨房油烟一开,风机瞬间把味道给吸走,让你再也不用担心“熏人”了。

有人可能会问,这玩意儿用起来麻烦吗?别担心,使用起来简单得很。

动叶可调轴流引风机的工作原理

动叶可调轴流引风机的工作原理

第四节引风机一引风机的结构特点动叶可调轴流式送风机一般包括:进口消音器、进口膨胀节、进口风箱、机壳、转子、扩压器、联轴器及其保护罩、调节装置及执行机构、液压及润滑供油装置和测量仪表、风机出口膨胀节、进、出口配对法兰。

电动机通过中间轴传动风机主轴。

1 进气箱、扩压器进气箱和进气管道,扩压器和排气管道分别通过挠性进气膨胀节和排气膨胀节连接;进气箱和机壳、机壳与扩压器间用挠性围带连接。

这种连接方式可防止振动的传递和补偿安装误差和热胀冷缩引起的偏差。

进气箱中心线以下为成弧形结构,减小进气箱进气损失,并相对减小了气流的脉动,有利于提高风机转子的做功效率。

进气箱、扩压器、机壳保证相对轴向尺寸,形成较长的轴向直管流道,使风机气流流动平稳,减少了流动损失,提高了抗不稳定性能,保证了风机装置效率。

进气箱和扩压器均设有人孔门,便于检修。

进气箱有疏水管。

2 机壳机壳具有的水平中分面以及机壳前后的挠性围带连接,很容易拆卸机壳上半,便于安装和检修转子部。

3 转子转子由叶轮、轴承箱、中间轴、液压调节装置等组成。

轴承箱为整体结构,借助两个与主轴同心的由圆柱面内置于机壳内筒中的下半法兰上,轴承箱两个法兰的下半部分与机壳内圆筒的相应法兰用螺栓固定。

机壳上半内筒的法兰紧压轴承箱相应法兰。

在主轴的两端各装一个滚柱轴承用以承受径向力,为了承受轴向力,在近联轴器端装有一个向心推力球轴承,承担逆气流方向的轴向力。

轴承外侧装有氟橡胶制的径向轴密封,防止漏油。

轴承的润滑和冷却借助于轴承箱体内的油池和外置的液压润滑联合油站。

为防止烟气温度的影响,对主轴承箱外表面及油管进行附加冷却,在风机一侧装有冷却(密封风机)。

置于整体式轴承箱中的主轴承为油池强制循环润滑。

当轴承箱油位超过最高油位时,润滑油将通过回油管流回油站。

润滑油和液压油均由25 l/min的公用油站供油。

叶轮叶轮轮壳采用低碳合金钢(后盘及承载环为锻件)通过多次焊接后成型,强度、刚度高,叶轮悬臂装在轴承箱的轴端。

动叶调节轴流风机动调机构详解

动叶调节轴流风机动调机构详解

目前在市场上比较常见的动叶调节轴流风机厂商有:豪顿华工程公司、沈阳鼓风机厂、上海鼓风机厂、成都电力设备总厂;豪顿华工程公司和沈阳鼓风机厂是使用同一种调节技术,其技术主要是来自丹麦,且目前的专利是属于英国豪顿公司,上海鼓风机厂的技术主要是来自德国TLT公司,成都电力设备总厂的技术主要是来自德国KKK公司,三种形式的调节机构都有各自的特点和优缺点,下面详细介绍三种调节形式的油路走向以及调节原理。

豪顿华、沈鼓液压调节机构(一次风机、送风机液压缸):1-拉叉2-旋转油封3-拉叉接头4-限位螺栓5-调节阀阀芯6-调节臂部7-错油孔8-错油孔9-弹簧10-活塞11-液压缸缸体12-诅油孔13-液压缸连接盘14-调节盘15-滑动衬套16-旋转油封连接螺栓17-端盖18-连接螺栓19-调节阀阀体20-风机机壳21-连接螺栓(增压风机、引风机液压缸):此液压缸分为三部分:旋转油封、调节阀芯、主缸体,其功能主要如下:旋转油封:其作用是将高压油(P)、回油(O)、润滑油(T)引出或引入高速旋转的缸体,由一高速旋转的轴心和固定不动的壳体在滚动轴承的支撑下组成的,其精度很高,内泄不能太大,长期运行温度不能超过滚动轴承的承受温度。

国产的旋转油封使用寿命大概在2~3年左右,豪顿进口的旋转油封,其内部有W形弹簧垫片,可以保证旋转油封的轴向串动,此弹簧垫为豪顿专利,目前国内无法生产,只有豪顿公司可以生产,而且弹簧垫可以提高旋转油封的寿命,故进口的旋转油封价格高于国产旋转油封的10倍以上。

调节阀芯:它是一负遮盖换向阀。

在正常状态下(动叶不动),进油路(P)常开而回油路(O)常闭,润滑油路(T)常开;负遮盖方式使回油路有一很小的开口量,因而有一定的回油量来循环冷却缸体,此开口量的大小决定了在平衡状态下,液压油的油压;目前国产液压缸,由于加工精度的原因,无法在加工上实现,所以基本是在加工好液压缸后,通过使用来决定开口的大小,以保证工作油压;而豪顿生产的液压缸,其加工精度可以实现在机械加工上直接开口,此即为国产缸与进口缸直接的区别,在国产缸的调阀第二道槽的上边缘有一个小开口,为后期磨出来的,如果大家看到了,不要以为是加工缺陷或者磨损掉的,那个开口是故意留出来的,进口缸就不存在。

动叶可调式轴流风机讲课2

动叶可调式轴流风机讲课2

图 4-1管路性能曲线及工作点的确定 图4-2动叶可调式轴流风机讲课22.轴流风机工作点的确定风机的运行工况在其性能曲线上的位置即为运行工况点,通常称为工作点。

将风机的工作管路特性曲线按同一比例绘于风机工作转速的性能曲线上,如图4-1所示N 点就是风机的工作点,因为风机在输送该流量时产生的能头恰好等于管路系统中通过这一流量时所需要的能头,即N点为能量的供求平衡点。

N 点对应的这组参数即为该风机的运行工况。

3.风机的非稳定运行工况风机正常工作时呈现的是稳定工况;当风机选型不当或风机使用欠妥时,某些风机就会产生非稳定工况,风机的非稳定运行将影响甚至破坏其正常工作。

轴流风机具有驼峰形性能曲线,其最大特点就是存在着运行的不稳定工作区,风机一旦进入该区工作,就会产生不同形式的非稳定工况,并表现出明显的非正常工作的征兆。

(1)叶栅的旋转脱流(失速)轴流风机叶轮均采用了翼型叶片,气体与翼型之间的相对运动就是翼型绕流。

在翼型绕流特性分析中,定义相对运动方向与翼弦线(即翼型前后缘曲率中心之连线)的夹角为冲角(或攻角),如图4-2所示,冲角大小是影响机翼型绕流特性的最重要的因素。

当冲角为零时,叶片产生较大的升力和较小的摩擦阻力。

当冲角增大时,叶片背水面尾部流动产生分离,外力有所增加而阻力(主要是形体阻力)的增加更大,叶片升阻比减小。

当冲角增大到某一临界值后,这样使主流大面积地与叶型背面分离,从而破坏了叶型表面原来的压力分布,流动分离点前移,分离区扩大,致使升力明显下降而阻力急剧增大。

这种绕流现象称为脱流(或失速)。

对于依靠外力工作的轴流风机,脱流是产生非稳定工况的一个重要原因。

图4-3图4-4风机驼峰形性能曲线轴流风机叶轮是由绕轮毂的若干个翼型组成的叶栅,图4-3所示为展开后的平面叶栅,叶片之间为气流通道,如图中标示的1、2、3……。

气流在通过旋转叶栅时也会产生脱流现象,但这种脱流总是在某一个叶片首先发生,并在该叶片背水面流道,如图中的流道2的后部因涡流发生流动阻塞。

火电轴流风机动叶调节原理(目前看过最通俗易懂的)

火电轴流风机动叶调节原理(目前看过最通俗易懂的)

TLT 轴流式风机动叶片液压调节机构的工作原理1.叶片角度的调整若将风机的设计角度作为0º,把叶片角度转在-5º的位置(即叶片最大角度和最小角度的中间值,叶片的可调角为+20º~-30º)。

这时将曲柄轴心和叶柄轴心调到同一水平位置,然后用螺丝将曲柄紧固在叶柄上,按回转方向使曲柄滑块滞后于叶柄的位置(曲柄只能滞后而不能超前叶柄),全部叶片一样装配。

这时当装上液压缸时,叶片角处于中间位置,以保证叶片角度开得最大时,液压缸活塞在缸体的一端;叶片角关得最小时,液压缸活塞移动到缸体的另一端。

否则当液压缸全行程时可能出现叶片能开到最大,而不能关到最小位置;或者相反只能关到最小而不能开到最大。

液压缸与轮毂组装时应使液压缸轴心与风机的轴心同心,安装时偏心度应调到小于0.05mm,用轮毅中心盖的三角顶丝顶住液压缸轴上的法兰盘进行调整。

当轮毂全部组装完毕后进行叶片角度转动范围的调整,当叶片角度达到+20º时,调整液压缸正向的限位螺丝,当叶片达到-30º,调整液压缸负向的限位螺丝,这样叶片只能在-30º~ +20º的范围内变化,而液压缸的行程约为78~80mm。

当整个轮毂组装完毕再在低速(320r/min)动平衡台上找动平衡,找好动平衡后进行整机试转时,其振动值一般为0.01mm左右。

2.平衡块的工作原理TLT 风机在每个叶柄上都装有约6kg 的平衡块,它的作用是保证风机在运行时产生一个与叶片自动旋转力相反、大小相等的力。

平衡块的计算相当复杂,设计计算中总是按叶片全关时(-30º)来计算叶片的应力,因为叶片全关时离心力最大,即应力最大。

所以叶片在运行时总是力求向离心力增大的方向变化。

有些未装平衡块的送风机关时容易,启动时打不开就是这个原因。

平衡块在运行中也是力求向离心力增大的方向移动,但平衡块离心力增加的方向正好与叶片离心力增加的方向相反而大小相等,这样就能使叶片在运行时无外力的作用,可在任何一个位置保持平衡,开大或关小叶片角度时的力是一样的。

动叶可调式轴流风机液压调节系统 ppt课件

动叶可调式轴流风机液压调节系统  ppt课件
3、转子圆周方向任意一点跳动值 均应小于0.03mm
ppt课件
25
四液压传动装置调试
目的:1、检查液压缸各结合面,轴封,是否有外漏油 2、检查液压缸行程是否能达到(100mm) 3、检查液压缸稳定性,处于中心位置是否能停止
要求:油压25-30ba 方法:1、手摇操作法兰,看液压缸行程
2、目测液压缸有无外漏油 3、随机停车,查液压系统稳定性.
ppt课件
3
叶柄结构
ppt课件
4
叶柄结构图片
ppt课件
5
一﹑液压缸结构
液压缸内的活塞由轴套及活塞轴的凸肩
沿轴向定位。液压缸可以在活塞上左右移 动,但活塞不能作轴向移动。为了防止液压 缸左、右移动时,液压油从活塞与液压缸 间隙处泄漏,活塞上装有两列带槽密封圈。 当叶轮旋转时,液压缸同步旋转,活塞由于护 罩和活塞轴的旋转带动与叶轮一起作旋转 运动。风机在某工况下稳定工作时,活塞与 液压缸无相对运动。
指示齿轮
ppt课件
15
滑块
ppt课件
16
大 小 齿 轮
ppt课件
17
液压伺服系统的特点
1﹑液压伺服系统是一个跟踪系 统.液压缸的位置(输出)完全跟踪伺 服阀口的位置(输入)而运动.
2﹑液压伺服系统是一个力放大
系统.推动伺服阀所需要的力很小,只
需要几个N,但液压缸克服阻力,完成
推动叶片转动的力则很大,可以达到
27
5、手动操作法兰,当叶片角度 达到-30度时,调整液压缸负 向的限位螺丝,叶片之间有2- 3mm间隙,防止关过头碰伤叶 片
6、连接操作法兰,电动头送电
7、就地与主控配合,远方操作 ,观察开度是否一致.
ppt课件
28

动叶可调式轴流风机液压调节系统培训讲学PPT31页

动叶可调式轴流风机液压调节系统培训讲学PPT31页
条件。——黑格 尔 7、纪律是集体的面貌,集体的声音, 集体的 动作, 集体的 表情, 集体的 信念。 ——马 卡连柯
8、我们现在必须完全保持党的纪律, 否则一 切都会 陷入污 泥中。 ——马 克思 9、学校没有纪律便如磨坊没有水。— —夸美 纽斯
10、一个人应该:活泼而守纪律,天 真而不 幼稚, 勇敢而 鲁莽, 倔强而 有原则 ,热情 而不冲 动,乐 观而不 盲目。 ——马 克思
16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而生。——布尔沃
END

风机动叶调节机构及工作原理

风机动叶调节机构及工作原理

风机动叶调节机构及工作原理我公司#5、6炉引、送风机均采用动叶可调轴流式风机。

#7、8炉送风机也采用动叶可调轴流式风机。

为了充分掌握动叶可调轴流式风机的动叶调节机构和工作原理,首先我们要了解动叶可调轴流式风机的有关特性。

一.引、送风机的结构:引、送风机由吸入烟风道、进气室、扩压器、叶轮、主轴、动叶调节机构、传动组、自动控制机构等部分组成。

二.引送风机的工作原理:引送风机的工作原理是基于机翼型理论:当气体以一个攻角α进入叶轮,在翼背上产生一个升力,同时必定在翼腹上产生一个大小相等方向相反的作用力使气体排出叶轮呈螺旋形沿轴向向前运动。

与此同时,风机进口处由于差压的作用,使气体不断地被吸入。

动叶可调轴流式风机,攻角越大,翼背的周界越大,则升力越大,风机的压差越大,风量则小。

当攻角达到临界值时,气体将离开翼背的型线而发生涡流,此时风机压力大,幅度下降,产生失速现象。

三.引送风机相关参数:四.引、送风机液压油系统图:五.引、送风机动叶调节机构工作原理:从液压调节机构来看,液压调节结构可分为两部分:一部分为控制头,它不随轴转动。

另一部分为油缸及活塞,它们与叶轮一起旋转,但活塞没有轴向位移,叶片装在叶柄的外端。

每个叶片用6个螺栓固定在叶柄上,叶柄由叶柄轴承支撑,平衡块与叶片成一定角装设,两者位移量不同,平衡块用于平衡离心力,使叶片在运转中成为可调。

液压调节机构的调节原理大致如下:1.当讯号从控制轴输入要求“+”向位移时分配器左移、压力油从进油管A经过通路2送到活塞左边的油缸,由于活塞无轴向位移,油缸左侧的油压就上升,使油缸向左移动,带动调节连杆偏移,使动叶片向“+”向位移。

与此同时,调节杆(反馈杆)也随着油缸左移,而齿条将带动控制轴的扇齿轮反时针转动,但分配器带动的齿条却要求控制轴的扇齿做顺时针转动因而调节杆就起到“弹簧”的限位作用。

当调节力大时,“弹簧”限不住位置,所以叶片仍向“+”向位移,即为叶片调节正终端位置,但由于“弹簧”的牵制作用,在一定时间后油缸的位移自动停止,由此可以避免叶片调节过大,防止小流量时风机进入失速区。

轴流式动叶调节风机调速节能技术

轴流式动叶调节风机调速节能技术

轴流式动叶调节风机调速节能技术轴流式动叶调节风机调速节能技术轴流风机,就是气体流向与风叶的轴向相同的风机。

动叶调节是指通过调整风机叶片的开度调节气体流量,叶片和叶轮的相对位置不是固定不变的,而是可以根据气流流量的变化调整的,所以称之为动叶。

由于轴流式动叶可调的风机流量可以通过调整风机叶片的角度调节,所以与离心式风机通过设置挡板来调节流量相比,轴流式动叶可调的风机出力随负荷发生变化,是相对节能的风机类型。

虽然轴流式动叶调节风机与离心式风机相比相对节能,但是目前运行的轴流风机普遍存在能量浪费较大的现象。

由于轴流式动叶调节风机本身节能,所以在设计此类风机时大部分风机都留出的裕量比较大。

风机由于不可能在任何工况下都处于高效区间运行,所以在设计时一般将风机运行大多数负荷下的区间调整为高效率区,而不常运行的区间调整为相对效率较低的区域。

对于设计裕量较大的风机来说,风机就可能偏离高效率区间,长时间处于低效率区间运行,直接导致风机的效率较低。

另一方面,由于冬季外界气温较低,空气密度相对于夏季较大、摩尔体积较小,这一现象使得风机的裕量更大、风机效率更低,尤其是在北方冬季比较严寒的地区。

对于裕量较大的风机来说,可以通过优化叶片、调节电机转速等方式来提高效率。

优化叶片主要是将风机的叶片削割,降低裕量,从而可以使得在相同流量的情况下风机叶片开度增大,使得风机处于高效率区间运行,这种改造方式投入少见效快。

但是对于冬季和夏季气温变化大和机组负荷变化大的机组来说,由于要保证机组在夏季和高负荷下的运行安全,所以这种改造方式在冬季和低负荷时仍然存在较大的能量浪费;调节电机转速是将叶片的动角开度固定在风机效率最大处,利用变频或永磁等方式调节风机电机的转速,依据流量与转速成正比例关系、功率与转速成三次方关系的原理,达到节能的目的。

图1 轴流式动叶可调风机变频调速改造示意图采用变频调速,变频器控制柜控制风机电机的转速。

未改造前,电机接线通过DCS 控制系统后直接与厂用电6kV 电缆连接,电机处于工频运行。

火力发电厂锅炉风机之一---动叶可调式轴流风机

火力发电厂锅炉风机之一---动叶可调式轴流风机

火力发电厂锅炉风机之一---动叶可调式轴流风机火力发电厂锅炉辅机设备一般分为:球磨机、引风机、送风机、排粉风机、一次风机等,引风机、送风机、排粉风机、一次风机均属风机类;风机担负着连续输送气体的任务,风机的安全运行将直接影响到锅炉的安全、可靠、经济运行因而风机是锅炉机组的重要辅机之一。

随着单机发电容量的增大,为保证机组安全可靠和经济合理的运行,对风机的结构、性能和运行调节也提出了更高更新的要求。

风机按其工作原理的不同,主要有离心式风机和轴流式风机两种,离心式风机有较悠久的发展历史,具有结构简单,运行可靠、效率较高(空心机翼型后弯叶片的可达85%一92%),制造成本较低、噪声小等优点。

但随着锅炉单机容量的增长,离心风机的容量已经受到叶轮材料强度的限制,不能随锅炉容量的增加而相应增大,而轴流式风机则可以做得很大,且具有结构紧凑、体积小、质量轻、耗电低、低负荷时效率高等优点。

轴流风机与离心风机比较有以下主要特点:1、离心式风机的气流由轴向进入叶轮,然后在叶轮的驱动下,一方面随叶轮旋转,另一方面在惯性力的作用下提高能量,沿径向离开叶轮。

轴流风机的气流由轴向进入叶轮,在风机叶片的升力作用下,提高能量,沿轴向呈螺旋形地离开叶轮。

2、轴流风机如制造成动叶片可调节式,则调节效率高并可使风机在高效率区域内工作。

因此,运行费用较离心风机明显降低。

3、轴流风机对风道系统风量变化的适应性优于离心风机。

如风道系统的阻力计算不很准确,实际阻力大于计算阻力,或遇到煤种变化所需风机风量、风压不同,就会使机组达不到额定出力。

而轴流风机可以采用动叶片调节关小或开大动叶的角度来适应风量、风压的变化,对风机的效率影响却很小。

4、轴流风机有较低的飞轮效应值(N・m2)。

这是由于轴流风机允许采用较高的转速和较高的流量系数,所以在相同的风量、风压参数下轴流风机的转子较轻即飞轮效应值较小,使得轴流风机的启动力矩大大地小于离心风机的启动力矩。

一般轴流式送、引风机的启动力矩只有离心式送、引风机启动力矩的14.2%一27.8%。

动叶可调式轴流风机讲课3

动叶可调式轴流风机讲课3

动叶可调式轴流风机讲课2(3)风机并联工作的“抢风”现象当风机并联工作也存在不稳定区时,将会影响风机并联的正常工况,产生流量分配的偏离,即“抢风”现象。

轴流风机并联工作抢风现象分析图4-5风机性能曲线及并联性能曲线两台具有相同驼峰形性能曲线的轴流风机并联运行时,有时会出现一台风机流量很大,而另一台风机的流量很小的现象。

并且稍有干扰则两台风机的风量大小将相互交换,使原来流量大的变小,流量小的变大。

如此反复地交换,以至于两台风机不能正常并联运行,这种现象称为抢风现象。

在图4-5中,两台具有相同驼峰形状性能曲线Ⅰ和Ⅱ的风机,并联工作时总性能曲线Ⅲ是一条具有横“8”字形区域的曲线。

如果运行时管道特性曲线OE与总性能曲线Ⅲ的横“8”字形区域同时相交于点2和点3,则风机在点2的工作是暂时的,很快会移动到点3,使一台风机在大风量的3’点工作,另一台风机在小风量的3”点工作。

这时若稍有干扰则立即出现风量忽大忽小,大小反复互换的抢风现象,尤其是管道系统的容量足够大时,抢风就更为严重,使风机处于不稳定的并联运行工况。

同于轴流风机性能曲线的横“8”字形区域是在小流量范围内,所以避免风机抢风现象的措施是防止工作点落在横“8”字形区域内。

当负荷低时用单风机运行,待到单台风机运行不能满足负荷需要时,再启动第二台进行并联运行。

风机并联运行时防止抢风的方法是:①并联工作风机(泵)的台数不宜太多;②并联工作风机性能曲线应该陡些,所在管道特性曲线就该平坦些;③尽量选用相同或性能相近的风机,避免选用具有驼峰形状性能曲线的风机;④不要在低负荷区工作,避免工作点落入总图4-6入口节流调节性能曲线的横“8”字形区域运行。

4.风机运行工况调节风机工况调节也可分为非变速调节与变速调节两种方式。

在非变速调节中,又分为节流调节(分进口和出口)、分流调节、离心风机的前导叶轮调节,轴流风机的动叶调节等不同方法。

(1) 风机静叶调节入口静叶调节是轴流式、混流式风机中采用的一种调节方式。

动叶可调式轴流风机液压调节系统ppt课件

动叶可调式轴流风机液压调节系统ppt课件
6、连接操作法兰,电动头送电
7、就地与主控配合,远方操作 ,观察开度是否一致.
.
.
叶柄结构图片
.
一﹑液压缸结构
液压缸内的活塞由轴套及活塞轴的凸肩 沿轴向定位。液压缸可以在活塞上左右移 动,但活塞不能作轴向移动。为了防止液压 缸左、右移动时,液压油从活塞与液压缸 间隙处泄漏,活塞上装有两列带槽密封圈。 当叶轮旋转时,液压缸同步旋转,活塞由于护 罩和活塞轴的旋转带动与叶轮一起作旋转 运动。风机在某工况下稳定工作时,活塞与 液压缸无相对运动。
.
四液压传动装置调试
目的:1、检查液压缸各结合面,轴封,是否有外漏油 2、检查液压缸行程是否能达到(100mm) 3、检查液压缸稳定性,处于中心位置是否能停止
要求:油压25-30ba 方法:1、手摇操作法兰,看液压缸行程
2、目测液压缸有无外漏油 3、随机停车,查液压系统稳定性.
.
五动叶角度的调整
二﹑液压缸反馈原理
当液压缸向右移动时,定位轴被 带动同时向右移动。但由于滑块不 动,所以齿轮以B为支点,单面齿条向 左移动。这样又使伺服阀将油道兰 色与红色油道的油孔关闭,液压油缸 随之处在新的平衡位置不再移动。 而动叶片亦在关小的状态下工作,这 就是反馈过程。在反馈时齿轮带动 指示轴旋转,将动叶片关小的角度显 示出来。
呵呵: 大家好
动叶可调式轴流风机液压调节系统
大家辛苦了!!!
.
1 2 3 4 5 6 7Hale Waihona Puke 8 9 10 11 1213
1﹑定位轴 2﹑液压缸缸体 3﹑活塞 4﹑主轴 5﹑主轴法兰盘 6﹑伺服器 7﹑控制盘 8﹑双面齿条 9﹑指示齿轮. 10﹑大齿轮 11﹑小齿轮 12﹑滑块 13﹑单面小齿条

动叶调节轴流风机动调机构详解

动叶调节轴流风机动调机构详解

动叶调节轴流风机动调机构详解This manuscript was revised by the office on December 22, 2012目前在市场上比较常见的动叶调节轴流风机厂商有:豪顿华工程公司、沈阳鼓风机厂、上海鼓风机厂、成都电力设备总厂;豪顿华工程公司和沈阳鼓风机厂是使用同一种调节技术,其技术主要是来自丹麦,且目前的专利是属于英国豪顿公司,上海鼓风机厂的技术主要是来自德国TLT公司,成都电力设备总厂的技术主要是来自德国KKK公司,三种形式的调节机构都有各自的特点和优缺点,下面详细介绍三种调节形式的油路走向以及调节原理。

豪顿华、沈鼓液压调节机构(一次风机、送风机液压缸):1-拉叉 2-旋转油封 3-拉叉接头 4-限位螺栓 5-调节阀阀芯 6-调节臂部 7-错油孔 8-错油孔 9-弹簧 10-活塞 11-液压缸缸体 12-诅油孔 13-液压缸连接盘 14-调节盘 15-滑动衬套 16-旋转油封连接螺栓 17-端盖 18-连接螺栓 19-调节阀阀体 20-风机机壳 21-连接螺栓(增压风机、引风机液压缸):此液压缸分为三部分:旋转油封、调节阀芯、主缸体,其功能主要如下:旋转油封:其作用是将高压油(P)、回油(O)、润滑油(T)引出或引入高速旋转的缸体,由一高速旋转的轴心和固定不动的壳体在滚动轴承的支撑下组成的,其精度很高,内泄不能太大,长期运行温度不能超过滚动轴承的承受温度。

国产的旋转油封使用寿命大概在2~3年左右,豪顿进口的旋转油封,其内部有W形弹簧垫片,可以保证旋转油封的轴向串动,此弹簧垫为豪顿专利,目前国内无法生产,只有豪顿公司可以生产,而且弹簧垫可以提高旋转油封的寿命,故进口的旋转油封价格高于国产旋转油封的10倍以上。

调节阀芯:它是一负遮盖换向阀。

在正常状态下(动叶不动),进油路(P)常开而回油路(O)常闭,润滑油路(T)常开;负遮盖方式使回油路有一很小的开口量,因而有一定的回油量来循环冷却缸体,此开口量的大小决定了在平衡状态下,液压油的油压;目前国产液压缸,由于加工精度的原因,无法在加工上实现,所以基本是在加工好液压缸后,通过使用来决定开口的大小,以保证工作油压;而豪顿生产的液压缸,其加工精度可以实现在机械加工上直接开口,此即为国产缸与进口缸直接的区别,在国产缸的调阀第二道槽的上边缘有一个小开口,为后期磨出来的,如果大家看到了,不要以为是加工缺陷或者磨损掉的,那个开口是故意留出来的,进口缸就不存在。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动叶可调式轴流风机动叶调节原理图
改变动叶安装角是通过动叶调节机构来执行的,它包括液压调节装置和传动机构。

液压缸内的活塞由轴套及活塞轴的凸肩被轴向定位的,液压缸可以在活塞上左右移动,但活塞不能产生轴向移动。

为了防止液压缸在左、右移动时通过活塞与液压缸间隙的泄漏,活塞上还装置有两列带槽密封圈。

当叶轮旋转时,液压缸与叶轮同步旋转,而活塞由于护罩与活塞轴的旋转亦作旋转运动。

所以风机稳定在某工况下工作时,活塞与液压缸无相对运动。

活塞轴的另一端装有控制轴,叶轮旋转时控制轴静止不动,但当液压缸左右移动时会带动控制轴一起移动。

控制头等零件是静止并不作旋转运动的。

叶片装在叶柄的外端,每个叶片用6个螺栓固定在叶柄上,叶柄由叶柄轴承支撑,平衡块与叶片成一规定的角度装设,二者位移量不同,平衡块用于平衡离心力,使叶片在运转中成为可调。

动叶调节机构被叶轮及护罩所包围,这样工作安全,避免脏物落入调节
机构,使之动作灵活或不卡涩。

当轴流送风机在某工况下稳定工作时,动叶片也在相应某一安装角下运转,那么伺服阀将油道①与②的油孔堵住,活塞左右两侧的工作油压不变,动叶安装角自然固定不变。

当锅炉工况变化需要减小调节风量时,电信号传至伺服马达使控制轴发生旋转,控制轴的旋转带动拉杆向右移动。

此时由于液压缸只随叶轮作旋转运动,而调节杆(定位轴)及与之相连的齿条是静止不动的。

于是齿套是以B点为支点,带动与伺服阀相连的齿条往右移动,使压力油口与油道②接通,回油口与油道①接通。

压力油从油道②不断进入活塞右侧的液压缸容积内,使液压缸不断向右移动。

与此同时活塞左侧的液压缸容积内的工作油从油道①通过回油孔返回油箱。

由于液压缸与叶轮上每个动叶片的调节杆相连,当液压缸向右移动时,动叶的安装角减小,轴流送风机输送风量和压头也随之降低。

当液压缸向右移动时,调节杆(定位轴)亦一起往右移动,但由于控制轴拉杆不动,所以齿套以A为支点,使伺服阀上齿条往左移动,从而使伺服阀将油道①与②的油孔堵住,则液压缸处在新工作位置下(即调节后动叶角度)不再移动,动叶片处在关小的新状态下工作。

这就是反馈过程。

在反馈过程中,定位轴带动指示轴旋转,使它将动叶关小的角度显示出来。

若锅炉的负荷增大,需要增大动叶角度,伺服马达使控制轴发生旋转,于是控制轴上拉杆以定位轴上齿条为支点,将齿套向左移动,与之啮合齿条(伺服阀上齿条)也向左移动,使压力油口与油道①接通,回油口与油道②接通。

压力油从油道①进入活塞的左侧的液压缸容积内,使液压缸不断向左移动,而与此同时活塞右侧的液压缸容积内的工作油从油道②通过回油孔返回油箱。

此时动叶片安装角增大、锅炉通风量和压头也随之增大。

当液压缸向左移动时,定位轴也一起往左移动。

以齿套中A为支点,使伺服阀的齿条往右移动,直至伺服阀将油道①与②的油孔堵住为止,动叶在新的安装角下稳定工作。

.。

相关文档
最新文档