学而思高中数学恒成立与有解问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【例1】 关于x 的不等式2121x x a a -+-++≤的解集为空集,则实数a 的取值范围是
_ .
【例2】 若不等式1
21x a x
+
-+≥对一切非零实数x 均成立,则实数a 的最大值是_________.
【例3】 设函数2()1f x x =-,对任意23x ⎡⎫∈+∞⎪⎢⎣⎭,,24()(1)4()x f m f x f x f m m ⎛⎫
--+ ⎪⎝⎭
≤恒
成立,则实数m 的取值范围是 .
典例分析
恒成立与有解问题
【例4】 若不等式220ax x ++>的解集为R ,则a 的范围是( )
A .0a >
B .1
8
a >- C .18a > D .0a <
【例5】 已知不等式
()11112
log 112
2123
a a n n n +++
>-+++对于一切大于1的自然数n 都成立,试求实数a 的取值范围.
【例6】 若不等式2(2)2(2)40a x a x -+--<对x ∈R 恒成立,则a 的取值范围是______.
【例7】 2()1f x ax ax =+-在R 上恒满足()0f x <,则a 的取值范围是( )
A .0a ≤
B .4a <-
C .40a -<<
D .40a -<≤
【例8】 若对于x ∈R ,不等式2230mx mx ++>恒成立,求实数m 的取值范围.
【例9】 不等式210x ax ++≥对一切102x ⎛⎤
∈ ⎥⎝⎦
,成立,则a 的最小值为( )
A .0
B .2-
C .5
2
- D .3-
【例10】 不等式2|3||1|3x x a a +---≤对任意实数x 恒成立,则实数a 的取值范围为
( )
A .(]
[)14-∞-+∞,,
B .(]
[)25-∞-+∞,, C .[12],
D .(][)12-∞∞,
,
【例11】 对任意[11]a ∈-,,
函数2()(4)42f x x a x a =+-+-的值恒大于零,则x 的取值范围为 .
【例12】 若不等式lg 21lg()
ax
a x <+在[1,2]x ∈时恒成立,试求a 的取值范围.
【例13】 若(]1x ∈-∞-,,()21390x x a a ++->恒成立,求实数a 的取值范围.
【例14】 设()222f x x ax =-+,当[)1x ∈-+∞,时,都有()f x a ≥恒成立,求a 的取值
范围.
【例15】 设对所有实数x ,不等式()()2
2
2
222
4112log 2log log 014a a a
x x a a a ++++>+恒成立,
求a 的取值范围.
【例16】 已知不等式22412ax x x a +---≥对任意实数恒成立,求实数a 的取值范围.
【例17】 已知关于x 的不等式20x x t ++>对x ∈R 恒成立,则t 的取值范围是 .
【例18】 如果|1||9|x x a +++>对任意实数x 恒成立,则a 的取值范围是( )
A .{|8}a a <
B .{|8}a a >
C .{|8}a a ≥
D .{|8}a a ≤
【例19】 在R 上定义运算⊗:)1(y x y x -=⊗.若不等式1)()(<+⊗-a x a x 对任意
实数x 成立,则( )
A .11<<-a