生存分析SPSS单因素和多因素对生存率的可能分析共32页文档
SPSS数据分析—生存分析
生存分析是对生存时间进行统计分析的一种技术,所谓生存时间,就是指从某一时间点起到所关心的事件发生的这段时间。
这里的时间不一定就是钟表日历上的时间,也有可能是其他的度量单位,比如长度单位等。
生存时间有两个特点:1.存在删失,是指由于某种原因导致生存时间没用被准确或完整的记录下来,这种情况很常见,如果不存在删失,那么生存分析和一般统计方法没用太大区别,但是一旦出现删失,就必须考虑其影响,一般统计方法将不再适用。
2.生存时间非负,且分布常常右偏,导致基于正态分布理论的常规统计方法不适用。
用生存分析就可以解决以上问题。
生存分析的几个就基本概念1.事件也称为失效事件,是指由研究者所规定的事件的结局,这在生存分析中是一个非常重要的概念,其定义应该非常明确,并且应该在研究开始阶段就要确定。
失效事件并不一定是消极的,也可以是正面、积极的,这取决于研究目的。
2.生存时间指从某一时间点起到所关心的事件也就是实效事件发生前的这段时间,生存时间的起点需要人为规定3.删失是指观察对象的终止观察并不是由于实效事件的发生,而是由于其他原因导致终止,这种情况往往不知道终止的时间点,因此会造成其时间数据不完整,并且删失需要在各组之间随机,如果删失的出现并不随机,则不能用生存分析4.生存函数用于描述生存时间分布的工具,当t=0时,生存函数取值为1,随着时间推移t 增大,生存函数的取值逐渐减小。
5.风险函数也是用于描述生存时间分布,表示随机变量T已至时点t的条件下,在接下来的一瞬间失效事件发生的概率生存分析的基本内有1.刻画生存时间分布2.生存时间分布的组间比较3.评价生存时间分布影响因子的效果生存分析可以分为参数法、半参数法、非参数法三种,参数法相当于非线性回归,半参数法有Cox回归,非参数法有寿命表法和Kaplan-Meier法,SPSS中的生存分析都集中在生存函数过程中,下面我们分别介绍这几种方法一、Kaplan-Meier法分析—生存函数—Kaplan-Meier例:现在有一组临床实验数据,抽取44名患者,被随机分到新药组和对照组,每组22名,对此进行生存分析研究,数据如下可见记录生存时间数据至少需要两个变量,一个是时间变量,另一个是时间状态变量,用于表示该时间点是失效事件发生的时间还是删失的时间,如果有多个组别,还需要加上组别变量,因此本例中一共有三个变量,分别是时间变量,指示变量,组别变量,指示变量中,0表示没有删失,1表示失访,2表示研究结束时仍未发生失效事件以上数据的组成样本量较小,并且每个观察个体的时间能够被准确记录,因此可以使用Kaplan-Meier法二、寿命表法Kaplan-Meier法仅适用于每个观察个体的时间能够被准确记录,但是有时候我们收集的数据组成为分段记录的,这时应该使用寿命表法分析—生存函数—寿命表例,对114名患者进行随访,数据如下这种类型的数据组成形式非常类似于对计数资料分组之后的频数表,在本例中,time为时间变量,died为指示变量,0为删失,1为失效事件,num为人数。
生存分析SPSS
√
√
2021/10/10
22
三、主要输出结果
1.分析例数描述
案 例 处 理摘 要
分析
事件 a
中可 用的
删失
案例
合计
删除
带有缺失值的案例
的案 例
带有负时间的案例
层中的最早事件之
前删失的案例
合计
N 26 37 63 0 0
0
0
合计
63
a. 因变量: t
2021/10/10
23
百分比 41.3% 58.7% 100.0% .0% .0% .0%
(4)预测:建立cox回归预测模型。
生存分析(Survival Analysis)菜单
寿命表(Life Tables)过程
Life tables 过程用于(小样本和大样本资料): 1. 估计某生存时间的生存率,以及中位生存时间。 2. 绘制各种曲线:如生存函数、风险函数曲线等。 3. 对某一研究因素不同水平的生存时间分布的比较。 4. 控制另一个因素后对研究因素不同水平的生存时间分
1
35 50 1 0 0 1 0 26
1
36 33 1 1 0 0 0 120
0
37 57 1 1 1 0 0 120
0
38 48 1 0 0 1 0 120
0
39 28 0 0 0 1 0
3
1
40 54 1 0 1 1 0 120
1
41 35 0 1 0 1 1
7
1
42 41)为了比较不同手术方法治疗肾上腺 肿瘤的疗效,某研究者随机将43例病人分成两组,甲组 23例、乙组20例的生存时间(月)如下所示:
其中有“+”者是删失数据,表示病人仍生存或失访,括号内为死亡人数。
实战利用SPSS进行生存分析
实战利用SPSS进行生存分析生存分析(Survival Analysis)是一种用于分析个体在一定时间内发生其中一事件的概率的统计方法。
生存分析可以用于疾病的生存时间分析、产品寿命分析、客户流失分析等。
SPSS是一种常用的统计分析软件,可以进行生存分析的实证研究。
生存分析的基本概念包括:生存时间(Survival Time)、生存率(Survival Rate)、累积风险(Cumulative Hazard)以及生存函数(Survival Function)等。
生存时间是指个体从其中一起始点到发生其中一事件所经过的时间。
生存率是指个体在其中一时间点存活下来的概率,也称为存活函数。
累积风险是指个体在其中一时刻前发生其中一事件的风险累积值。
进行生存分析的步骤包括:导入数据、设置生存时间和事件变量、选择合适的生存分析方法、进行分析和结果解释。
首先,在SPSS中导入数据。
可以将数据以Excel格式保存,然后在SPSS中选择File->Open->Data,选择相应的文件导入。
选择合适的生存分析方法。
SPSS提供了多种生存分析方法,如Kaplan-Meier生存曲线、Cox回归模型等。
选择合适的方法可以根据研究目的和数据特点来确定。
例如,如果想了解不同因素对生存时间的影响,可以选择Cox回归模型。
在SPSS中,可以使用Analyze->Survival->Survival,然后选择合适的方法进行分析。
进行生存分析。
根据选择的方法,SPSS会输出相应的结果。
例如,对于Kaplan-Meier生存曲线分析,SPSS会生成生存曲线和相应的生存率表格;对于Cox回归模型,SPSS会输出回归系数、风险比率等统计结果。
可以通过点击Results窗口中的相应选项来查看结果。
结果解释。
根据生存分析结果,可以解读生存曲线、计算生存率、比较不同组别间的生存差异等。
对于Kaplan-Meier生存曲线,可以通过图形来比较不同组别的生存率;对于Cox回归模型,可以根据回归系数和风险比率来解释不同因素对生存时间的影响。
生存分析_精品文档
生存分析
有结局和生存时间两个因变量; 生存时间分布不正态—非负且右偏; 可能含有删失数据(censor)。
寿命表法
寿命表法
①
②
③
④
寿命表法曲线为折线。 该法只估计时段右端点的生存率,省略了时段内的生存率估计。
恶性肿瘤患者确诊后5 年内生存率下降较快,5 年后下降较平缓,说明确诊5年内该恶性肿瘤患者的死亡威胁较大。
中位生存期
【电脑实现】 —SPSS
1.数据录入:频数形式
生存分析—寿命表法
【Time 】 生存时间(年) 【 Status 】0:删失数据 1:完全数据(死亡) 【 Freq 】频数
处理删失/截尾数据时两种错误的做法: 错误1:只考虑确切数据,丢弃截尾数据(损失信息); 错误2:将截尾数据当作确切数据处理(低估了生存时间的平均水平)。
在处理正偏态分布数据时两种错误的做法: 错误1:采用平均生存时间而不是采用中位生存时间来表示生存时间的平均水平。 错误2:采用常规 t 检验或方差分析进行组间比较。(应采用log-rank检验比较几组生存时间 )
针对单位时间的
⑴ 死亡概率(probability of death):表示某单位时段开始存活的个体,在该时段内死亡的可能性;如年死亡概率。
注意:如果年内有删失,则分母用校正人口数: 校正人口数 = 年初人口数—删失例数/2
末人口数:n-k
初人口数:n
期间死亡人数:k
⑵ 生存概率(probability of survival) :单位时段开始 时存活的个体,到该时段结束时仍然存活的可能性。
生存分析 SPSS
─从数据到结论
第十七章 生存分析
什么是生存分析的内容?
• “我的期望年龄是多少岁?” • “到底这个新疗法能使得这类绝症 患者多存活多久?”“还有什么别 的因素和存活长短有关?” • 保险公司也要考虑各种人群的寿命, 以确保其人寿保险或医疗保险既具 有竞争力又有利可图。 • 在工程上,人们也会考虑一个材料, 一个原件,甚至一个设备的寿命是 多少。
G roup
. 00 1. 00 0. 8
1. 0
0. 6
0. 4
根据Cox模型所估计的 治疗组(group=1)和对照 组(group=0)的生存函数 图
Cum Survival
0. 2
0. 0 0. 00 20. 00 40. 00 60. 00 80. 00
Survival Time
可以得到各种点图(2)
本章的内容和公式(基本)
本章的内容和公式(Kaplan-Meier)
本章的内容和公式(Cox模型)
组别
1.00
存活时间
治疗组与对照组的生存函数是否不同:三种检验 • 在存在任意右删失(例18.1数据的删失就是右 删失)的情况下,利用SPSS软件可以得到三种 对治疗组和对照组进行比较的检验;检验的 零假设均为:这两组的生存函数相同。这三 种检验是对数秩(logrank)检验(Mantel-Cox 检验)、Breslow检验(对前面Wilcoxon检验的 改进),以及Tarone-Ware检验。通过软件计 算可以得到这三种检验的结果:
• 在上面得到的生存函数的估计下,可 以对治疗组和对照组进行比较。所用 的检验为Wilcoxon (Gehan)检验。 • 这里的零假设是:这两组的生存函数 相同。 • 可以很容易从计算机输出得到检验的 p-值等于0.0564。因此,如取显著性 水平为0.05,就不能拒绝零假设。
SPSS-生存分析
.
Cox回归模型
• 1972年英国统计学家D.R.Cox提出了比例 风险模型(the Proportional Hazard Model), 又称为Cox回归模型。
• 其模型表达式为
.
寿命表和KM方法
• 寿命表和KM方法都是通过比较分布函数来 得出几组观测数据之间是否存在差异。
• 寿命表把观测区间划分为相等的小区间, 然后计算生存函数,适用于大样本数据。
SPSS 生存分析的理论与应用
Cox回归应用演示
.
生存分析和生存数据
• 生存分析广泛应用于生物医学,工业,社 会科学,商业等领域,例如肿瘤患者经过 治疗后生存的时间,电子设备的寿命,罪 犯假释的时间,婚姻的持续时间,保险人 的索赔等。这类问题数据的特点是在研究 期间结束时,所要研究的事件还没有发生, 或过早终止,使要收集的数据发生缺失, 这样的数据称为生存数据,生存分析就是 要处理、分析生存数据。
类
2 小细胞癌症 3 腺癌
4 大细胞 肺癌
kps
判断标准 ≤30 住院治疗 30 住院和家庭 ≥ 家庭治
~ 治疗
60 疗
60
.
Cox回归分析
• 首先打开工具栏 中Analysis选项 下Survival选项中 的Cox回归的选 项,如左图所示。
.
Cox回归分析
• 从左面的变量中 选择time变量, 送入右面的时间 框中。
• 选择status变量 送入状态框中。
• 单击定义事件按 钮。
.
Cox回归示例
• 在单值选项中填入0, 表示事件发生。
• 点击继续按钮。
.
Cox回归示例
• 选择therapy, cell, kps, diagtime, age, prior 作为协 变量。
19、生存分析SPSS.
(SPSS of Survival
Analysis)
生存分析的理论复习 1. 何为生存分析?
生存分析(survival analysis)是将事件的结果(终点事 件)和出现结果经历的时间结合起来分析的一种统计分析方法。
2. 生存分析的目的:
(1)描述生存过程:估计不同时间的总体生存率,计算中位生存期, 绘制生存函数曲线。统计方法包括Kaplan-Meier(K-M)法、寿 命表法。 (2)比较:比较不同处理组的生存率,如比较不同疗法治疗脑瘤的 生存率,以了解哪种治疗方案较优。统计方法log-rank检验等。 (3)影响因素分析:研究某个或某些因素对生存率或生存时间的影 响作用。如为改善脑瘤病人的预后,应了解影响病人预后的主要 因素,包括病人的年龄、性别、病程、肿瘤分期、治疗方案等。 统计方法cox比例风险回归模型等。 (4)预测:建立cox回归预测模型。
0.2406 0.7594 0.7594 0.0221 0.2676 0.7324 0.5562 0.0257 0.2452 0.7548 0.4198 0.0255 0.1656 0.8344 0.3503 0.0248 0.1702 0.8298 0.2937 0.0239 0.0773 0.9227 0.2682 0.0235 0.0537 0.9463 0.2538 0.0233 0.0155 0.9845 0.2499 0.0233 0.0504 0.9496 0.2373 0.0232 0.0388 0.9612 0.2281 0.0232
一、建立数据文件(data-01.sav)
定义3个变量:
生存时间变量:t,值标签“生存时间(年)”
生存状态变量 :status,取值“1=死亡,0=删失或存活” 频数变量:freq,值标签“人数”
如何用SPSS做生存分析(TCGA数据举例)
如何用SPSS做生存分析(TCGA数据举例)生存分析是评价疾病预后的一个重要分析方法,尤其是在肿瘤研究中。
之前我们介绍过好几个肿瘤生存分析的在线工具,比如KM plotter,Onclnc,GEPIA等等(生存分析,这个网站还不错!,懒人怎么做肿瘤病人的生存分析?)。
有童鞋反映说这几个工具分析出来的结果咋不一样呢?原因主要有:1、在线工具的数据样本来源不同,大致上是KM plotter(TCGA 数据+GEO数据)>GEPIA(TCGA数据)>Onlnc(部分TCGA数据)2、分析时样本剔除的标准有所不同。
此外,在线工具分析的结果你无法得到入选分析样本的临床数据,也无法得到下图这样分类更加详细的生存分析结果。
(硕士论文:浙江省常见恶性肿瘤生存分析)所以有的时候还是得自己亲自动手做不做生存分析,今天就给大家介绍一下如何用SPSS分析对TCGA数据库中的肿瘤(肺腺癌)数据进行生存分析。
(SPSS版本是16.0的,还是英文的,从一个留学的同学那拷来的,一直没换,大家将就着看吧)首先是下载TCGA的临床数据和测序数据(FPKM数据),这一步可以用简易TCGA下载工具这个小工具来处理(这么好用的TCGA 数据下载工具?!)。
得到临床数据后,我们需要得到Over survival(OS)的数据,如果病人死亡了,OS就等于days to death,如果还活着,那就等于days to last followup。
而没有数据的病例就是我们需要剔除的条目了。
得到OS的数据之后,我们可以选择不同的临床信息进行生存分析,比如TNM分级,吸烟与否,治疗方式等等。
我们以抽烟为例,Not Availale为不抽烟病例,其他为抽烟的病例。
根据存活与否排序,得到OS的数据,再根据OS排序,删除没有生存信息的数据再看下吸烟情况,不吸烟的人似乎有点少,看来得肺腺癌的还是吸烟的多啊。
考虑到“节目效果”,这里把吸烟史=1的也归到不吸烟组。
实战利用SPSS进行生存分析
实战利⽤SPSS进⾏⽣存分析⽤SPSS软件进⾏⽣存分析给⼤家介绍3种常⽤⽅法寿命表法、Kaplan-Meier分析法、Cox回归分析⼀、寿命表分析适⽤于⼤数据⽰例:若要研究性别对于肺病⽣存率有⽆区别,收集数据下列信息time:⽣存时间(单位天)status:0=存活,1=死亡sex:1=男,2=⼥操作步骤按步骤将数据导⼊(lung数据集来⾃于R 内置数据)选定寿命表分析⽅法对各选项进⾏设置(其中注意状态设置:选取表⽰事件已发⽣的值)设置完所有选项后确认得到结果(可进⾏导出)1.得到存活表:该表给出了男⼥对应时间内存活和死亡⼈数,并计算了存活率、风险⽐等统计量2.中位数⽣存时间:即⽣存率为50%时,⽣存时间的平均⽔平;可知:⽣存时间的平均⽔平⼥⼠⾼于男⼠3.⽣存函数:男⼠较⼥⼠累计⽣存率下降快⼆、Kaplan-Meier分析适⽤于⼩样本⽰例:若要研究药物治疗对卵巢癌⽣存率有⽆区别,收集数据下列信息futime:⽣存时间(单位天)fustat:0=存活,1=死亡rx:1=未治疗,2=治疗操作步骤:按步骤将数据导⼊(ovarian数据集来⾃于R内置数据)选定Kaplan-Meier分析法,并对选项进⾏设置设置结束后确认,得到结果(可进⾏导出)1.⽣存表的均值和中位数、百分位数:可以看出治疗与未治疗有均值、四分位数略有差异2.整体⽐较:检验结果p值>0.05,证明治疗组与⾮治疗组差异不显著3.存活函数:治疗组较⾮治疗组⽣存结果好,但从假设检验结果来看差异不明显三、Cox回归分析⽰例:若要研究结肠癌治疗⽅式对患者⽣存时间的影响,收集了下⾯所⽰的数据:time:⽣存时间(单位天)status:0=存活,1=死亡rx:治疗⽅式,Obs=观察,Lev=⽅式1,Lev+5FU=⽅式2obstruct:0=⽆阻塞的结肠肿瘤,1=有阻塞的结肠肿瘤perfor:0=⽆结肠穿孔,1=有结肠穿孔extent:传播程度:1 =黏膜下层,2 =肌⾁,3 =浆膜,4 =相邻结构操作步骤:导⼊结肠癌colon数据(R中内置数据)选定cox回归分析参数设置:协变量依次导⼊,⽅法按分析所需进⾏选择点击'分类',协变量依次选⼊分类协变量点击'绘图',勾选⽣存函数,主要变量为rx,将rx变量选⼊单线框中,绘制⽣存曲线点击'选项',设置输出RR的95%置信区间。
生存分析
SPSS Survival(生存分析)SPSS Survival菜单包括Life Tables过程、Kaplan-Meier(卡普兰---梅尔)过程、Cox Regression过程、Cox w/Time-Dep Cov(含时间依存变量的Cox模型)过程。
这里只介绍Life Tables过程和Kaplan-Meier过程。
一、Kaplan-Meier过程采用乘积极限法(Product-limit estimates)来估计生存率,同时还可以对一个因素进行检验。
适用于以个体为单位来收的小样本或大样本且有精确生存时间的生存资料,是最基本的一种生存分析方法。
Kaplan-Meier法用于:1、估计某研究因素不同水平的中位生存时间。
2、比较该研究因素不同水平的生存时间有无差异。
3、控制一个分层因素后对研究因素不同水平的生存时间比较(此时将按分层因素的不同水平对研究因素对生存时间的影响分别进行分析)。
操作过程:1. Analyze==>Survival ==>Kaplan-Meier2. Time框:选入“time”3. Status框:选入“status”;击define events钮,在single value框右边的空格中输入“1”(0=“截尾或生存”,1=“死亡”等阳性结果)4. Factor框:选入“group”5. Compare factors列表框(分组因素水平间比较):Test Statistics:选择Log- rank、Breslow、Tarone-WareLinear trend for factor levels:选Pooled over strata或Pairwiseover strata6. Save(忽略)7. Option列表框Statistics: 选Survival table(s)、Mean and median Survival Plots: 选Survival单击OK钮三、界面说明图1 Kaplan-Meier法主对话框【Time】框选入生存时间变量。
SPSS数据分析—单因素及多因素方差分析
t检验可以解决单样本、两个样本时的均值比较问题,但是对于两个以上样本,就不能用t检验了,而要使用方差分析。
t检验是借助t分布,方差分析是借助F分布,基于变异分解的思想进行。
在算法上,由于线性模型的引入,在SPSS中,方差分析在比较均值、一般线性模型菜单中都可以做。
在适用条件上,方差分析和两独立样本t检验一样,也分别是独立性、正态性、方差齐性。
方差检验的原假设是:
n个样本均值相同或n个样本来自同一个总体或自变量对因变量没有影响
由于是两组以上样本进行分析,那么方差分析除了要说明多个样本均值是否有差异之外,还需要进一步说明到底是哪些样本存在差异,因此需要多重比较。
一、分析—比较均值—单因素ANOVA
二、分析—一般线性模型—单变量
在一般线性模型菜单中,也可以做方差分析,并且根据线性模型的思想所做出的方差分析更加具体细致。
以上是单因素方差分析,但是实际工作中经常会碰到两个以上因素对于因变量产生影响,和单因素方差最大不同是,两个以上因素要考虑它们之间的交互作用,因此更加复杂。
SPSS生存分析过程
SPSS生存分析过程SPSS生存分析是一种统计方法,用于分析生存数据,以估计特定事件发生的概率。
生存数据通常指描述个体或物体生存时间的时间数据,以及相关因素对个体生存时间的影响。
生存时间可以是一些事件的发生时间,例如死亡,失业,或者产品的失效时间。
1.数据准备:首先,需要将生存数据导入到SPSS软件中。
生存数据通常包含两列:一列是“时间”变量,表示每个个体从起始时间开始到特定事件发生的时间段;另一列是“事件”变量,表示该事件是否发生(例如,1表示事件已发生,0表示事件未发生)。
如果数据还包含其他相关因素,例如个体特征或处理组别,也需要导入到SPSS中。
2.生存函数估计:在SPSS软件中,选择“生存分析”功能,在对话框中选择合适的数据集和变量。
然后,在“非参数生存估计”选项中,选择适当的方法来估计生存函数。
常见的生存函数估计方法有卡普兰-梅尔法(Kaplan-Meier)估计和纳尔逊-艾伦估计。
此过程将计算每个时间点的生存率和累积生存率。
3.生存曲线绘制:在生存函数估计后,可以选择将生存曲线绘制出来以直观地展示结果。
在SPSS软件中,选择“曲线图”选项,在对话框中选择适当的数据集和变量。
然后,选择“生存曲线”类型,并进行必要的设置,例如选择颜色和样式。
生成的生存曲线可以展示不同组别或条件下的生存状况。
4.半参数模型拟合:半参数模型(如Cox比例风险模型)可以用来研究不同因素对生存时间的影响。
在SPSS软件中,选择“生存分析”功能,在对话框中选择合适的数据集和变量。
然后,在“半参数模型”选项中选择适当的模型,例如Cox比例风险模型。
进行模型拟合后,可以查看各个因素的风险比(Hazard Ratio)和置信区间,了解不同因素对生存时间的影响。
5.结果解释:对于生存分析的结果解释,需要考虑生存率、生存曲线及相关因素的影响。
可以根据生存函数估计结果和生存曲线来比较不同组别、条件或处理下的生存状况。
通过半参数模型拟合的结果,可以解释不同因素对生存时间的影响程度和方向。
SPSS生存分析
SPSS生存分析生存分析(Survival Analysis),也称为事件分析(Event Analysis)或持续时间分析(Duration Analysis),是一种统计方法,用于研究事件的发生和结束时间,如生命、疾病治愈、工作停留时间等。
生存分析的目的是研究一组对象的生命周期,并了解特定因素对事件发生和结束的影响。
在这种分析中,对象可以是个体、组织、产品等。
常见的应用包括生物医学研究、流失分析、医疗保险研究和个体退休研究等。
生存分析的关键概念是生存函数和风险函数。
生存函数是描述一个对象存活到给定时间的概率,通常用生存曲线表示。
风险函数描述了一个对象在给定时间点发生事件的风险,它可以用来比较不同组之间事件发生的差异。
在进行生存分析时,常用的统计模型包括Kaplan-Meier法、Cox比例风险模型和加速失效时间模型。
Kaplan-Meier法用于无偏估计生存函数,能够考虑有丢失数据和不完全随访的情况。
Cox比例风险模型可以用来估计各种相关因素对事件发生的相对风险,而加速失效时间模型可以考虑随时间变化的风险因素。
在使用SPSS进行生存分析时,首先需要导入数据并定义目标事件和截尾事件。
然后,可以使用Kaplan-Meier法绘制生存曲线,并进行生存函数的比较。
同时,也可以使用Cox比例风险模型来估计不同因素对事件发生的影响,并计算相对风险。
除了基本的生存分析方法外,SPSS还提供了许多扩展功能,如处理丢失数据、处理时间依赖变量和处理集群数据等。
这些功能可以帮助研究人员更好地分析和解释生存数据。
总之,生存分析是一种有力的统计方法,可以用于研究事件发生和结束的时间,并评估相关因素对事件的影响。
使用SPSS进行生存分析可以方便地进行数据处理、模型拟合和结果解释,使研究人员能够深入了解事件发生的模式和原因。
生存分析SPSS单因素和多因素对生存率的可能分析学习教案
66
1
52 72 0 1 0 1 0 24
1
21 38 0 0 0 1 0
93
0
53 42 0 0 0 1 0
2
1
22 19 0 0 0 1 0
24
1
54 63 1 0 1 1 0 120
0
23 67 1 0 1 1 0
93
0
55 55 0 1 1 0 0 12
1
24 37 0 0 1 1 0
90
0
√
第13页/共31页 第十四页,共32页。
三、主要输出结果 生存(shēngcún)表: 略 两组的中位生存(shēngcún)期估计:
第14页/共31页
第十五页,共32页。
3. 绘制(huìzhì)生存曲 线:
第15页/共31页
第十六页,共32页。
4. 两组生存时间(shíjiān)分布的比较:
0
48 40 0 0 0 1 0 16
1
17 48 1 1 1 0 0
63
0
49 32 0 1 0 0 1 24
1
18 54 1 0 1 1 1 101
0
50 44 0 0 0 1 1 19
1
19 38 0 1 0 0 0 100
0
51 48 1 0 0 1 0 120
0
20 40 1 1 1 0 1
第3页/共31页
第四页,共32页。
实例(shílì)分析
例1:为了比较不同手术方法治疗肾上腺肿瘤的疗效,某研究者 随机将43例病人分成两组,甲组23例、乙组20例的生存时间 (shíjiān)(月)如下所示:
其中(qízhōng)有“+”者是删失数据,表示病人仍 生存或 失访, 括号内 为死亡 人数。 (1)计算甲、乙两法术后10月的生存 率和标 准误。 (2)估计两组的中位生存期。 (3)绘制各组生存函数曲线。 (4)比较两组的总体生存时间分布有 无差别 。
医学统计学SPSS生存分析实例
医学统计学SPSS生存分析实例生存分析(Survival Analysis)是一种统计方法,用于研究时间事件、生存时间和失败时间。
它可以用于预测生存时间,比如病人生存时间的分析,或者预测其中一种设备故障的时间分析等。
下面是一个医学统计学SPSS生存分析的实例,我们使用一份研究糖尿病患者的数据集进行分析。
该数据集包含了500名糖尿病患者的相关信息,包括患病时年龄、性别、BMI指数、高血压、吸烟等等。
我们的目标是分析不同因素对患者生存时间的影响。
首先,我们导入数据集并检查数据的完整性和准确性。
然后,我们进行数据预处理,包括对缺失数据的处理和离群值的处理。
接下来,我们使用Kaplan-Meier方法生成生存曲线。
生存曲线显示了患者在不同时间点的生存概率。
通过比较生存曲线,我们可以确定哪些因素对患者的生存时间有显著影响。
我们使用SPSS的Survival Analysis模块进行生存分析。
首先,我们选择一个目标变量,比如患者的生存时间。
然后,我们选择要分析的预测变量,比如年龄、性别、BMI指数、高血压和吸烟。
我们还可以选择分组变量,比如患者的病情程度,以便进一步比较。
接下来,我们进行分析。
SPSS将为每个预测变量生成相应的生存曲线和生存函数。
我们可以通过观察曲线的交叉点、陡峭程度和95%置信区间等指标来确定哪些因素对生存时间有显著影响。
在我们的实例中,我们发现年龄、BMI指数和高血压对患者的生存时间有显著影响。
年龄越大,BMI指数越高,高血压越严重的患者生存时间越短。
性别和吸烟并没有显著影响。
最后,我们可以使用Cox回归模型进行更进一步的生存分析。
Cox回归模型可以用于计算患者的风险比(Risk Ratio),以评估各个变量对生存时间的贡献度。
我们可以根据回归系数和风险比来评估不同因素的相对重要性。
总结起来,医学统计学SPSS生存分析可以帮助我们理解不同因素对患者生存时间的影响。
通过研究生存曲线,我们可以评估治疗方法的有效性,优化诊断和治疗流程,并提供更好的病人护理。
SPSS数据分析—单因素及多因素方差分析
SPSS数据分析—单因素及多因素方差分
析
T检验可以用于解决单个样本或两个样本的均值比较问题。
但是,当涉及到两个以上的样本时,就不能使用T检验,而
需要使用方差分析。
方差分析是基于变异分解的思想,利用F
分布进行比较。
在算法方面,由于线性模型的引入,在SPSS中,方差分
析可以在比较均值和一般线性模型菜单中完成。
在适用条件方面,方差分析和两个独立样本的T检验一样,也需要满足独立性、正态性和方差齐性。
方差分析的原假设是n个样本的均值相同或n个样本来自同一个总体,或自变量对因变量没有影响。
由于涉及到两组以上的样本进行分析,因此除了需要说明多个样本均值是否有差异之外,还需要进一步说明哪些样本存在差异,因此需要进行多重比较。
在SPSS中,可以通过分析-比较均值-单因素ANOVA或
分析-一般线性模型-单变量来进行方差分析。
在一般线性模型
菜单中,方差分析更加具体细致,可以根据线性模型的思想进行分析。
实战利用SPSS进行生存分析
实战利用SPSS进行生存分析用SPSS软件进行生存分析给大家介绍3种常用方法寿命表法、Kaplan-Meier分析法、Cox回归分析一、寿命表分析适用于大数据示例:若要研究性别对于肺病生存率有无区别,收集数据下列信息time:生存时间(单位天)status:0=存活,1=死亡sex:1=男,2=女操作步骤按步骤将数据导入(lung数据集来自于R内置数据)选定寿命表分析方法对各选项进行设置(其中注意状态设置:选取表示事件已发生的值)设置完所有选项后确认得到结果(可进行导出)1.得到存活表:该表给出了男女对应时间内存活和死亡人数,并计算了存活率、风险比等统计量2.中位数生存时间:即生存率为50%时,生存时间的平均水平;可知:生存时间的平均水平女士高于男士3.生存函数:男士较女士累计生存率下降快二、Kaplan-Meier分析适用于小样本示例:若要研究药物治疗对卵巢癌生存率有无区别,收集数据下列信息futime:生存时间(单位天)fustat:0=存活,1=死亡rx:1=未治疗,2=治疗操作步骤:按步骤将数据导入(ovarian数据集来自于R内置数据)选定Kaplan-Meier分析法,并对选项进行设置设置结束后确认,得到结果(可进行导出)1.生存表的均值和中位数、百分位数:可以看出治疗与未治疗有均值、四分位数略有差异2.整体比较:检验结果p值>0.05,证明治疗组与非治疗组差异不显著3.存活函数:治疗组较非治疗组生存结果好,但从假设检验结果来看差异不明显三、Cox回归分析示例:若要研究结肠癌治疗方式对患者生存时间的影响,收集了下面所示的数据:time:生存时间(单位天)status:0=存活,1=死亡rx:治疗方式,Obs=观察,Lev=方式1,Lev+5FU=方式2obstruct:0=无阻塞的结肠肿瘤,1=有阻塞的结肠肿瘤perfor:0=无结肠穿孔,1=有结肠穿孔extent:传播程度:1 =黏膜下层,2 =肌肉,3 =浆膜,4 =相邻结构操作步骤:导入结肠癌colon数据(R中内置数据)选定cox回归分析参数设置:协变量依次导入,方法按分析所需进行选择点击'分类',协变量依次选入分类协变量点击'绘图',勾选生存函数,主要变量为rx,将rx变量选入单线框中,绘制生存曲线点击'选项',设置输出RR的95%置信区间。
spss-生存分析
如果是三组或多组且多组之间有差异,再做两两比较,如下:
试 例 估 : 计下 生表 存是 率对 ? 949 5 名 卵 巢 癌 病 人 的 随 访 结 果 , 时 间 均 为 年 ,
加权后
中位生存期为:3.2148
例:
某医师收集20例脑瘤患者甲、乙两种疗法的生存时间,试估计两疗法组 的生存率,并比较两疗法组生存率有无差异?
甲组 总共11人 存活8人 死亡3人 生存率27.3%
生存时间 状态 累积生存率 标准误 累计死亡例数 剩余存活例数
生存时间 标准误 95%CI(上限 下限)
中位生存时间 标准误 95%CI(上限 下限) 甲乙两种疗法log-Rank比较的卡方值 自由度 p值
三组不同治疗方法生存分析spss
三组不同治疗方法生存分析spss三组不同治疗方法生存分析,统计结果表明:不管是手术切除还是放射治疗,患者能活多久都与其年龄密切相关。
通过对术前各种因素的比较和患者在发病中不同时间点的数值比较,能够更准确地评估预测患者的生存情况,这就为制定合理的治疗方案提供了有力依据。
在多学科交叉领域广泛应用一、根据死亡率和危险因素进行分层的治疗分析二、根据疾病严重程度进行分层的治疗分析。
本研究由于未设定观察时间长短以及因经济问题无法进行三组之间直接的对比分析。
但从临床实际出发来看,患者的治疗效果与疾病严重程度呈正相关性。
患者所处的年龄,尤其是合并症的多少是决定其预后的重要影响因子;如果患者既往没有任何不良习惯导致体质下降而造成感染和炎症加重等疾病;合并高血压、糖尿病、冠心病、高脂血症等基础性疾病也可增大其预后风险。
由此可见,在治疗初始阶段选择具备优势的技术才能使患者获得最佳治疗效果。
第一阶段(发现疾病到治疗):急性期或亚急性期。
随着病情的加重,会诱发许多并发症,如充血性心力衰竭、肝功能异常、呼吸困难甚至昏迷。
另外,还可能合并肿瘤、脑卒中等严重疾病,如出现上述任意一项即属于严重事件,需要立即转入 ICU 进行抢救。
此阶段目标主要是控制病情,尽量减轻痛苦,改善患者预后,减少医疗费用支出。
第二阶段(治疗后6个月至12个月内):慢性期。
此阶段的治疗重点是控制疾病,改善患者预后。
除继续药物干预之外,还可针对合并疾病采取中西医结合综合治疗,必要时给予介入治疗,以减轻疼痛,延缓疾病进展速度,延长患者生命周期。
第三阶段(康复期)。
该阶段指的是康复期至恢复期。
该阶段的任务仍然是对症治疗,促进身体机能的恢复。
这些工作虽然很繁琐,但却极为重要。
如果患者年纪较小且身体虚弱,则还应鼓励其参与户外锻炼,增强自身免疫力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实例分析
例1:为了比较不同手术方法治疗肾上腺肿瘤的疗效, 某研究者随机将43例病人分成两组,甲组23例、乙组20 例的生存时间(月)如下所示:
其中有“+”者是删失数据,表示病人仍生存或失访,括号内为死亡人数。
一、建立数据文件(同前)
二、操作过程
主菜单:分析Analyze生存SurvivalKaplan-Meier
对话框参数设置:
1. 时间time框:选入 “t”。 2. 状态status框:选入“status”,击define events 钮,在single value
框填入“1”。 3. 因子factor框:选入“group”。 4. 单击选项option按钮,弹出对话框:
(4)预测:建立cox回归预测模型。
生存分析(Survival Analysis)菜单
寿命表(Life Tables)过程
Life tables 过程用于(小样本和大样本资料): 1. 估计某生存时间的生存率,以及中位生存时间。 2. 绘制各种曲线:如生存函数、风险函数曲线等。 3. 对某一研究因素不同水平的生存时间分布的比较。 4. 控制另一个因素后对研究因素不同水平的生存时间分
Kaplan-Meier过程用于(尤其小样本资料): 1. 估计各生存时间的生存率以及中位生存时间。 2. 绘制各种曲线:如生存函数、风险函数曲线等。 3. 比较某研究因素不同水平的生存时间有无差异。 4. 控制某个分层因素后对研究因素不同水平的生存时间
分布进行比较。 5. 对多组生存时间分布进行两两比较。 (各总体分布比较采用Log-rank等非参数方法)
(2)比较:比较不同处理组的生存率,如比较不同疗法治疗脑瘤的 生存率,以了解哪种治疗方案较优。统计方法log-rank检验等。
(3)影响因素分析:研究某个或某些因素对生存率或生存时间的影 响作用。如为改善脑瘤病人的预后,应了解影响病人预后的主 要因素,包括病人的年龄、性别、病程、肿瘤分期、治疗方案 等。统计方法cox比例风险回归模型等。
二、操作过程
2)
√
水平间的两两比较。
6. 单击Save按钮,弹出保存新变量Save new variables 对话框:
√ √
三、主要输出结果
1. 生存表: 略 2. 两组的中位生存期估计:
3. 绘制生存曲线:
4. 两组生存时间分布的比较:
Cox回归过程
Cox回归过程用于: 1. 多个因素对生存时间的影响作用分析和比较 2. 生存(或死亡)风险预测
二、操作过程
主菜单:分析Analyze生存Survival寿命表Life tables
对话框参数设置:
1. 时间time框:选入 “t”。 2. 显示时间间隔Display time intervals框:步长by前面填入最大生存时
间的上限(必须包括生存时间最大值),步长by后面填入生存时 间的组距。本例上限填“60”,组距填“1”。 3. 状态status框:选入“status”,击define events 钮,在single value 框填入“1” 4. 因子factor框:选入“group”,定义最小值“1”,最大值“2”。 5. 单击选项option按钮,弹出对话框:
实例分析
例3:为探讨某恶性肿瘤的预后,某研究者收集了63 例患者的生存时间、生存结局及影响因素。影响因素 包括病人年龄、性别、组织学类型、治疗方式、淋巴 结转移、肿瘤浸润程度,生存时间以月计算。变量的 赋值和所收集的资料分别见表17-8和表17-9。试用 Cox回归模型进行分析。
表17-9 63名某恶性肿瘤患者的生存时间(月)及影响因素
(1)计算甲、乙两法术后10月的生存率和标准误。 (2)估计两组的中位生存期。 (3)绘制各组生存函数曲线。 (4)比较两组的总体生存时间分布有无差别。
一、建立数据文件(data-01.sav)
定义5个变量: 生存时间变量:t,值标签“生存时间(月)” 生存状态变量 :status,取值“1=死亡,0=删失或存活” 频数变量:freq,值标签“人数” 分组变量:group,取值“1=甲组,2=乙组” 生存时间序号变量(可无):i
No X1 X2 X3 X4 X5 X6
t
Y
1 54
0 01 10
52
02 570Fra bibliotek10 0051
0
3 58
生存分析的理论复习
1. 何为生存分析?
生存分析(survival analysis)是将事件的结果(终点事件)和 出现结果经历的时间结合起来分析的一种统计分析方法。
2. 生存分析的目的:
(1)描述生存过程:估计不同时间的总体生存率,计算中位生存期, 绘制生存函数曲线。统计方法包括Kaplan-Meier(K-M)法、 寿命表法。
实例分析
例2:(数据同例1)为了比较不同手术方法治疗肾上腺 肿瘤的疗效,某研究者随机将43例病人分成两组,甲组 23例、乙组20例的生存时间(月)如下所示:
其中有“+”者是删失数据,表示病人仍生存或失访,括号内为死亡人数。
(1)计算甲、乙两法各生存时间的生存率和标准误。 (2)估计两组的中位生存期。 (3)绘制各组生存函数曲线。 (4)比较两组的总体生存时间分布有无差别。
1)统计量: √生存分析表,系统默认。 √ 均值和中位生存时间,系统默认。
2)图: √生存函数 5. 单击比较因子Compare Factor按钮,弹出对话框:
1)检验统计量Test Statistics: 都用于检验时间分布是否相同。 √对数秩Log-rank:各时间点的权重一样。 Breslow:按各时间点的观察例数赋权。 Tarone-Ware:按各时间点观察例数的平方根赋权。
1)√寿命表,系统默认。 2)图: √生存函数 3)比较第一个因子的水平: √整体比较
三、主要输出结果
1. 10月生存率的估计: 甲法 48%,标准误 0.1 乙法 30%,标准误 0.1
2. 两组的中位生存期估计:
3. 绘制生存曲线:
4. 两组生存时间分布的比较:
Kaplan-Meier 过程