人教A版(2019)数学必修(第二册):9.3 统计案例 公司员工的肥胖情况调查分析 教案
【2019秋人教必修2】9.3统计案例公司员工的肥胖情况调查分析
19.3 统计案例 公司员工的肥胖情况调查分析课标要求素养要求进一步学习数据收集和整理的方法、数据直观图表的表示方法、数据统计特征的刻画方法,通过具体实例,感悟在实际生活中进行科学决策的必要性和可能性,体会统计思维与确定性思维的差异,积累数据分析的经验.通过生活中具体的统计案例模型,进行提出问题、分析数据、建立模型、检验模型来发展数据分析、数学抽象及数学建模素养.教材知识探究大数据配合乔布斯癌症治疗苹果手机创始人乔布斯是世界上第一个对自身所有DNA 和肿瘤DNA 进行排序的人.为此,他支付了高达几十万美元的费用.他得到的不是样本,而是包括整个基因的数据文档.医生按照所有基因按需下药,最终这种方式帮助乔布斯延长了好几年的生命.这是一个著名的数据分析案例.问题你知道什么是统计数据分析吗?提示数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程.这一过程也是质量管理体系的支持过程.在实用中,数据分析可帮助人们作出判断,以便采取适当行动.统计分析报告的主要组成部分1.标题2.前言:简单交代调查的目的、方法、范围等背景情况,使读者了解调查的基本情况.3.主体:展示数据分析的全过程:(1)首先明确所关心的问题是什么,说明数据蕴含的信息;(2)根据数据分析的需要,说明如何选择合适的图表描述和表达数据;(3)从样本数据中提取能刻画其特征的量,用于分析比较;2(4)通过样本估计总体的统计规律,分析总体的情况.4.结尾:对主体部分的内容进行概括,给出解决问题的方法和对策.教材拓展补遗[微判断]1.用于样本数据分析的统计图表主要有条形图、扇形图、折线图、频率分布直方图等.(√)2.反映样本数据的集中趋势的特征量有平均数、中位数、众数等.(√)3.反映样本数据的离散程度的特征量有方差和标准差.(√)[微思考]进行数据分析的过程是什么?提示(1)明确主题,说明数据信息;(2)选择图表描述和表达数据;(3)计算样本数据的特征量;(4)估计统计规律.题型一数据分析过程的探究【例1】[明确问题] 为了实施“精准扶贫”战略,农科院试种了甲、乙两个34西红柿新品种,从这两个品种中各任选5株,测量其产量(单位:kg),得到如下数据:甲 60 80 70 90 70乙 80 60 70 80 75[描述数据] 使用折线图描述数据如下:从折线图上可以看出甲品种的平均产量稍高,但其产量不稳定;乙品种的产量稍低,但其产量较稳定.[计算特征量] 甲品种的平均产量为x -甲=74(kg),乙品种的平均产量为x -乙=73(kg),所以甲品种的平均产量稍高;甲品种的方差是s 2甲=15(142+62+42+162+42)=104,乙品种的方差是s2乙=15(72+132+32+72+22)=56,由于s2甲>s2乙,所以乙品种的产量较稳定.[解决问题] 从以上分析可以看出甲品种的平均产量稍高,比乙品种单株平均高1 kg,相差不大,但其产量远不如乙品种稳定.因为是推荐给需要扶助的贫困地区的农民种植,其抗风险能力较弱,所以推荐乙品种.【例2】[明确问题] 为了备战下届奥运会,甲、乙两名运动员在相同条件下各射击10次,得到如下数据:甲射击10次中靶环数分别为:9,5,7,8,7,6,8,6,7,7.乙射击10次中靶环数分别为:2,4,6,8,7,7,8,9,9,10.射击队教练希望利用此次射击成绩为依据,挑选一名运动员参加奥运会,请你帮助教练分析两个运动员的成绩,并作出判断.[描述数据] 用折线图描述数据如下图所示:5由折线图可以看出甲运动员的成绩较稳定.[计算特征量] 甲射击10次中靶环数由小到大排列为5,6,6,7,7,7,7,8,8,9.乙射击10次中靶环数由小到大排列为2,4,6,7,7,8,8,9,9,10.运动员甲的平均成绩x-甲=110×(5+6×2+7×4+8×2+9)=7(环),运动员乙的平均成绩x-乙=110×(2+4+6+7×2+8×2+9×2+10)=7(环),运动员甲的方差s2甲=110×[(5-7)2+(6-7)2×2+(7-7)2×4+(8-7)2×2+(9-7)2]=110×(4+2+0+2+4)=1.2,运动员乙的方差s2乙=110×[(2-7)2+(4-7)2+(6-7)2+(7-7)2×2+(8-7)2×2+(9-7)2×2+(10-7)2]=110×(25+9+1+0+2+8+9)=5.4.比较如下:6。
新教材人教版高中数学必修第二册 9-3 统计案例 公司员工的肥胖情况调查分析(基础练习题)解析版
第九章 统计9.3 统计案例 公司员工的肥胖情况调查分析(基础练)一、单选题(共5小题,满分25分,每小题5分)1.甲、乙两名射击运动员分别进行了5次射击训练,成绩(单位:环)如下: 甲:7,8,8,8,9 乙:6,6,7,7,10;若甲、乙两名运动员的平均成绩分别用21,x x 表示,方差分别为 2221,s s 表示,则( )A.21x x >, 2221s s > B.21x x >, 2221s s < C.21x x <, 2221s s < D.21x x <, 2221s s >【答案】 B【解析】85988871=++++=x , 2.751077661=++++=x ,故 21x x > .s 21;s22, 故s s 2221< , 故选:B.2.已知数据x 1,x 2,x 3,…,x n 是上海普通职工n(n ≥3,n ∈N *)个人的年收入,设这n 个数据的中位数为x ,平均数为y ,方差为z ,如果再加上世界首富的年收入x n +1,则在这n +1个数据中,下列说法不正确的是( ) A .年收入平均数大大增大 B .中位数可能不变 C .方差变大 D .方差可能不变【答案】D【解析】插入大的极端值,平均数增加,中位数可能不变,方差也因为加入此数据更加分散而变大.故选:D3.一组数据的方差为2s ,平均数为x ,将这组数据中的每一个数都乘以2,所得的一组新数据的方差和平均数分别为( ) A .212s ,12x B .22s ,2x C .24s ,2x D .2s ,x【答案】C【解析】设该组数据为123,,,,n x x x x ,将这组数据中的每一个数都乘以2,则有1232,22,,2,n x x x x ⋯,平均数为2x .又()()()2222121n s x x x x x x n ⎡⎤=⨯-+-++-⎢⎥⎣⎦,则新数据的方差为()()()22221212222224n x x x x x x s n ⎡⎤⨯-+-++-=⎣⎦, 故选:C.4.如图是某公司2020年1月到10月的销售额(单位:万元)的折线图,销售额在35万元以下为亏损,超过35万元为盈利,则下列说法错误的是( )A .这10个月中销售额最低的是1月份B .从1月到6月销售额逐渐增加C .这10个月中有3个月是亏损的D .这10个月销售额的中位数是43万元 【答案】B【解析】根据折线图知,这10个月中销售额最低的是1月份,为30万元,所以A 正确; 从1月到6月销售额是先增加后减少,再增加,所以B 错误;1月,3月和4月的销售额低于35万元,其它月份都高于35万元,所以C 正确; 这10个月的销售额从小到大排列为30,32,34,40,41,45,48,60,78,80万元, 其中位数是()14145432⨯+=万元,所以D 正确. 故选:B 5.某校从参加高一年级期末考试的学生中抽取60名学生的成绩(均为整数),其成绩的频率分布直方图如图所示,由此估计此次考试成绩的中位数,众数和平均数分别是( )A.73.3,75,72 B.73.3,80,73C.70,70,76 D.70,75,75【答案】A【解析】由频率分布直方图知,小于70的有24人,大于80的有18人,则在[70,80]之间18人,所以中位数为70103+≈73.3;众数就是分布图里最高的小矩形底边的中点,即[70,80]的中点横坐标,是75;平均数为45×0.05+55×0.15+65×0.20+75×0.30+85×0.25+95×0.05=72.故选: A.二、多选题(共3小题,满分15分,每小题5分,少选得3分,多选不得分)6.2021年起,我市将试行“3+1+2”的普通高考新模式,即除语文、数学、外语3门必选科目外,考生再从物理、历史中选1门,从化学、生物、地理、政治中选2门作为选考科目.为了帮助学生合理选科,某中学将高一每个学生的六门科目综合成绩按比例均缩放成5分制,绘制成雷达图.甲同学的成绩雷达图如图所示,下面叙述一定不正确的是()A.甲的化学成绩领先年级平均分最多.B.甲有2个科目的成绩低于年级平均分.C.甲的成绩最好的前两个科目是化学和地理.D .对甲而言,物理、化学、地理是比较理想的一种选科结果. 【答案】A【解析】根据雷达图,可知物理成绩领先年级平均分最多,即A 错误; 甲的政治、历史两个科目的成绩低于年级平均分,即B 正确; 甲的成绩最好的前两个科目是化学和地理,即C 正确;对甲而言,物理成绩比年级平均分高,历史成绩比年级平均分低,而化学、生物、地理、政治中优势最明显的两科为化学和地理,故物理、化学、地理的成绩是比较理想的一种选科结果,即D 正确. 故选:A.7.某地区城乡居民储蓄存款年底余额(单位:亿元)变化情况如图所示,下列判断一定正确的是( )A .该地区城乡居民储蓄存款年底余额总数逐年上升B .到2019年农村居民存款年底总余额已超过了城镇居民存款年底总余额C .城镇居民存款年底余额逐年下降D .2017年城乡居民存款年底余额增长率大约为225% 【答案】AD【解析】由条形图可知,余额总数逐年上升,故A 项正确;由城乡储蓄构成百分比可知,2019年农村居民存款年底总余额占36.1%,城镇居民存款年底总余额占63.9%,没有超过,故B 项错误;城镇居民存款年底余额所占的比重逐年下降,但城镇居民存款年底余额2014年,2017年,2019年分别为6.8198(亿元),155.085(亿元),973.197(亿元),总体不是逐年下降的,故C 项错误,2017年城乡居民存款年底余额增长率大约为21165225%65-≈,故D 项正确.故选:AD. 8.如图是某公司2018年1月至12月空调销售任务及完成情况的统计图,如10月份销售任务是400台,完成率为90%,下列叙述正确的是( )A .2018年3月的销售任务是400台B .2018年月销售任务的平均值不超过600台C .2018年总销售量为4870台D .2018年月销售量最大的是6月份 【答案】ABC【解析】由题图可知选项A 正确; 2018年月销售任务的平均值为10020033003400500700800100045060012++⨯+⨯++++=<,故选项B 正确;2018年总销售量为1000.82001300(0.5 1.50.6)400(1.20.90.9)500 1.17000.8⨯+⨯+⨯+++⨯+++⨯+⨯800110000.74870+⨯+⨯=,故选项C 正确;2018年月销售量最大的是5月份,为800台,故选项D 不正确. 故选:ABC 三、填空题(共3小题,满分15分,每小题5分,一题两空,第一空2分)9.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为_________ 【答案】0.7【解析】由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70÷100=0.7. 故答案为:0.710.为了考察某校各班参加课外书法小组的人数,在全校随机抽取5个班级,把每个班级参加该小组的认为作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互相不相同,则样本数据中的最大值为 . 【答案】10【解析】设样本数据为:12345,,,,x x x x x ()1234557x x x x x ∴++++÷=()()222157754s x x ⎡⎤=-++-÷=⎣⎦()()22151********,35x x x x x x x ∴-++-=++++=若样本数据中的最大值为11,不妨设511x =,由于样本数据互不相同,与()()22157720x x -++-=这是不可能成立的,若样本数据为4,6,7,8,10,代入验证知两式均成立,此时样本数据中的最大值为 10, 故答案为:1011.为实现国民经济新“三步走”的发展战略目标,国家加大了扶贫攻坚的力度.某地区在2015 年以前的年均脱贫率(脱离贫困的户数占当年贫困户总数的比)为.2015年开始,全面实施“精准扶贫”政策后,扶贫效果明显提高,其中2019年度实施的扶贫项目,各项目参加户数占比(参加该项目户数占 2019 年贫困户总数的比)及该项目的脱贫率见下表:实施项目 种植业 养殖业 工厂就业 服务业 参加用户比脱贫率那么2019年的年脱贫率是实施“精准扶贫”政策前的年均脱贫率的______倍 【答案】 【解析】设贫困户总数为a,脱贫率,所以 .故 2019年的年脱贫率是实施“精准扶贫”政策前的年均脱贫率的 倍. 故答案为:四、解答题:(本题共3小题,共45分。
《统计案例 公司员工的肥胖情况调查分析》教案、导学案、课后作业
《9.3 统计案例公司员工的肥胖情况调查分析》教案【教材分析】本节通过公司员工的肥胖情况调查分析,让学生了解统计案例的一些信息,让学生了解统计学与现实生活是息息相关的.【教学目标与核心素养】课程目标1.了解统计报告的组成部分.2.可对统计案例进行初步分析.数学学科素养1.数学抽象:统计报告的组成部分;2.数学运算:对统计案例进行初步分析.【教学重点和难点】重点:①了解统计报告的组成部分;②对统计案例进行初步分析.难点:对统计案例进行初步分析.【教学过程】一、情景导入近年来,我国肥胖人数的规模急速增长,肥胖人群有很大的心血管安全隐患,为了了解某公司员工的身体肥胖情况,我们该如何根据数据表写一份该公司员工肥胖情况的统计分析报告?该如何分析公司员工的整体情况并提出控制体重的建议?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本218-219页,思考并完成以下问题1.统计报告的组成部分是什么要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究1.统计报告的主要组成部分(1)标题.(2)前言.简单交代调查的目的、方法、范围等背景情况,使读者了解调查的基本情况.(3)主题展示数据分析的全过程;首先要明确所关心的问题是什么,说明数据蕴含的信息;根据数据分析的需要,说明如何选择合适的图标描述和表达数据;从样本数据中提取能刻画其特征的量,如均值、方差等,用于比较男、女员工在肥胖状况上的差异;通过样本估计总体的统计规律,分析公司员工胖瘦程度的整体.(4)结尾对主题部分的内容进行概括,结合控制体重的一般方法,提出控制公司员工体重的建议.四、典例分析、举一反三题型一由统计信息解决实际问题例1 甲、乙两种水稻试验品种连续5年的平均单位面积产量如下(单位:t/hm2),试根据统计学估计哪一种水稻品种的产量比较稳定.【答案】甲种水稻的产量比较稳定【解析】甲品种的样本平均数为10,样本方差为[(9.8-10)2+(9.9-10)2+(10.1-10)2+(10-10)2+(10.2-10)2]÷5=0.02.乙品种的样本平均数也为10,样本方差为[(9.4-10)2+(10.3-10)2+(10.8-10)2+(9.7-10)2)+(9.8-10)2]÷5=0.24.因为0.24>0.02,所以,由这组数据可以认为甲种水稻的产量比较稳定.例2为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200 ,A B A B只小鼠随机分成两组,每组100只,其中组小鼠给服甲离子溶液,组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记为事件:“乙离子残留在体内的百分比不低于”,根据直方图得到的估计值为.(1)求乙离子残留百分比直方图中的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).【答案】(1) ,;(2) ,.【解析】 (1)由题得,解得,由,解得.(2)由甲离子的直方图可得,甲离子残留百分比的平均值为,乙离子残留百分比的平均值为解题技巧(用样本的标准差、方差估计总体的方法)(1)用样本估计总体时,样本的平均数、标准差只是总体的平均数、标准差的近似.实际应用中,当所得数据的平均数不相等时,需先分析平均水平,再计算标准差(方差)分析稳定情况.(2)标准差、方差的取值范围是[0,+∞).(3)因为标准差与原始数据的单位相同,且平方后可能夸大了偏差的程度,所以虽然方差与标准差在刻画样本数据的离散程度上是一样的,但在解决实际问题时,一般多采用标准差.C 5.5()P C 0.70,a b 0.35a =0.10b = 4.0560.200.150.70a ++=0.35a =0.050.151()10.70b P C ++=-=-0.10b =0.1520.2030.3040.2050.1060.057 4.05⨯+⨯+⨯+⨯+⨯+⨯=0.0530.1040.1550.3560.2070.1586⨯+⨯+⨯+⨯+⨯+⨯=跟踪训练一1.样本数为9的四组数据,它们的平均数都是5,条形图如图所示,则标准差最大的一组是( )A.第一组B.第二组C.第三组D.第四组【答案】D.【解析】选D.法一:第一组中,样本数据都为5,标准差为0;第二组中,样本数据为4,4,4,5,5,5,6,6,6,标准差为63;第三组中,样本数据为3,3,4,4,5,6,6,7,7,标准差为253;第四组中,样本数据为2,2,2,2,5,8,8,8,8,标准差为22,故标准差最大的一组是第四组.法二:从四个图形可以直观看出第一组数据没有波动性,第二、三组数据的波动性都比较小,而第四组数据的波动性相对较大,利用标准差的意义可以直观得到答案.2.某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01.【答案】(1) 增长率超过的企业比例为,产值负增长的企业比例为;(2)平均数;标准差.【解析】 (1)由题意可知,随机调查的个企业中增长率超过40%的企业有个,产值负增长的企业有个,所以增长率超过40%的企业比例为21100,产值负增长的企业比例为2100=150. (2)由题意可知,平均值y ̅=2×(−0.1)+24×0.1+53×0.3+14×0.5+7×0.7100=0.3,标准差的平方:s 2=1100[2×(−0.1−0.3)2+24×(0.1−0.3)2+53×(0.3−0.3)2+14×(0.5−0.3)2+7×(0.7−0.3)2]=1100[0.32+0.96+0.56+1.12]=0.0296,所以标准差s =√0.0296=√0.0004×74≈0.02×8.602≈0.17. 五、课堂小结让学生总结本节课所学主要知识及解题技巧 六、板书设计七、作业课本222页,复习参考题9. 【教学反思】8.602 00402110021100500.30.17100147212统计的学习,本质上是统计活动的学习,而不是概念和公式的学习.因此在本节教学中所采用的数据和问题情境尽可能来源于实际,充分挖掘学生生活中与数据有关的素材,使他们体会所学内容与现实世界的密切联系.《9.3 统计案例公司员工的肥胖情况调查分析》导学案【学习目标】知识目标1.了解统计报告的组成部分.2.可对统计案例进行初步分析.核心素养1.数学抽象:统计报告的组成部分;2.数学运算:对统计案例进行初步分析.【学习重点】:①了解统计报告的组成部分;②对统计案例进行初步分析.【学习难点】:对统计案例进行初步分析.【学习过程】一、预习导入阅读课本218-219页,填写。
高中数学第九章统计9.3统计分析案例公司员工教案第二册
9.3 统计案例公司员工的肥胖情况调查分析本节通过公司员工的肥胖情况调查分析,让学生了解统计案例的一些信息,让学生了解统计学与现实生活是息息相关的.课程目标1。
了解统计报告的组成部分.2.可对统计案例进行初步分析。
数学学科素养1.数学抽象:统计报告的组成部分;2.数学运算:对统计案例进行初步分析.重点:①了解统计报告的组成部分;②对统计案例进行初步分析。
难点:对统计案例进行初步分析.教学方法:以学生为主体,小组为单位,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
一、情景导入近年来,我国肥胖人数的规模急速增长,肥胖人群有很大的心血管安全隐患,为了了解某公司员工的身体肥胖情况,我们该如何根据数据表写一份该公司员工肥胖情况的统计分析报告?该如何分析公司员工的整体情况并提出控制体重的建议?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本218-219页,思考并完成以下问题1.统计报告的组成部分是什么要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究1。
统计报告的主要组成部分(1)标题.(2)前言。
简单交代调查的目的、方法、范围等背景情况,使读者了解调查的基本情况。
(3)主题展示数据分析的全过程;首先要明确所关心的问题是什么,说明数据蕴含的信息;根据数据分析的需要,说明如何选择合适的图标描述和表达数据;从样本数据中提取能刻画其特征的量,如均值、方差等,用于比较男、女员工在肥胖状况上的差异;通过样本估计总体的统计规律,分析公司员工胖瘦程度的整体.(4)结尾对主题部分的内容进行概括,结合控制体重的一般方法,提出控制公司员工体重的建议。
四、典例分析、举一反三题型一由统计信息解决实际问题例1 甲、乙两种水稻试验品种连续5年的平均单位面积产量如下(单位:t/hm2),试根据统计学估计哪一种水稻品种的产量比较稳定.【答案】甲种水稻的产量比较稳定【解析】甲品种的样本平均数为10,样本方差为[(9.8-10)2+(9.9-10)2+(10.1-10)2+(10-10)2+(10.2-10)2]÷5=0.02。
数学人教A版高中必修二(2019新编)9-3 统计案例 公司员工的肥胖情况调查分析(当堂达标)
第九章 统计9.3 统计案例 公司员工的肥胖情况调查分析(基础练)一、单选题(共5小题,满分25分,每小题5分)1.甲、乙两名射击运动员分别进行了5次射击训练,成绩(单位:环)如下: 甲:7,8,8,8,9 乙:6,6,7,7,10;若甲、乙两名运动员的平均成绩分别用21,x x 表示,方差分别为 2221,s s 表示,则( )A.21x x >, 2221s s > B.21x x >, 2221s s < C.21x x <, 2221s s < D.21x x <, 2221s s >【答案】 B【解析】85988871=++++=x , 2.751077661=++++=x ,故 21x x > .s 21;s22, 故s s 2221< , 故选:B.2.已知数据x 1,x 2,x 3,…,x n 是上海普通职工n(n ≥3,n ∈N *)个人的年收入,设这n 个数据的中位数为x ,平均数为y ,方差为z ,如果再加上世界首富的年收入x n +1,则在这n +1个数据中,下列说法不正确的是( ) A .年收入平均数大大增大 B .中位数可能不变 C .方差变大 D .方差可能不变【答案】D【解析】插入大的极端值,平均数增加,中位数可能不变,方差也因为加入此数据更加分散而变大.故选:D3.一组数据的方差为2s ,平均数为x ,将这组数据中的每一个数都乘以2,所得的一组新数据的方差和平均数分别为( ) A .212s ,12x B .22s ,2x C .24s ,2x D .2s ,x【答案】C【解析】设该组数据为123,,,,n x x x x ,将这组数据中的每一个数都乘以2,则有1232,22,,2,n x x x x ⋯,平均数为2x .又()()()2222121n s x x x x x x n ⎡⎤=⨯-+-++-⎢⎥⎣⎦,则新数据的方差为()()()22221212222224n x x x x x x s n ⎡⎤⨯-+-++-=⎣⎦, 故选:C.4.如图是某公司2020年1月到10月的销售额(单位:万元)的折线图,销售额在35万元以下为亏损,超过35万元为盈利,则下列说法错误的是( )A .这10个月中销售额最低的是1月份B .从1月到6月销售额逐渐增加C .这10个月中有3个月是亏损的D .这10个月销售额的中位数是43万元 【答案】B【解析】根据折线图知,这10个月中销售额最低的是1月份,为30万元,所以A 正确; 从1月到6月销售额是先增加后减少,再增加,所以B 错误;1月,3月和4月的销售额低于35万元,其它月份都高于35万元,所以C 正确; 这10个月的销售额从小到大排列为30,32,34,40,41,45,48,60,78,80万元, 其中位数是()14145432⨯+=万元,所以D 正确. 故选:B 5.某校从参加高一年级期末考试的学生中抽取60名学生的成绩(均为整数),其成绩的频率分布直方图如图所示,由此估计此次考试成绩的中位数,众数和平均数分别是( )A.73.3,75,72 B.73.3,80,73C.70,70,76 D.70,75,75【答案】A【解析】由频率分布直方图知,小于70的有24人,大于80的有18人,则在[70,80]之间18人,所以中位数为70103+≈73.3;众数就是分布图里最高的小矩形底边的中点,即[70,80]的中点横坐标,是75;平均数为45×0.05+55×0.15+65×0.20+75×0.30+85×0.25+95×0.05=72.故选: A.二、多选题(共3小题,满分15分,每小题5分,少选得3分,多选不得分)6.2021年起,我市将试行“3+1+2”的普通高考新模式,即除语文、数学、外语3门必选科目外,考生再从物理、历史中选1门,从化学、生物、地理、政治中选2门作为选考科目.为了帮助学生合理选科,某中学将高一每个学生的六门科目综合成绩按比例均缩放成5分制,绘制成雷达图.甲同学的成绩雷达图如图所示,下面叙述一定不正确的是()A.甲的化学成绩领先年级平均分最多.B.甲有2个科目的成绩低于年级平均分.C.甲的成绩最好的前两个科目是化学和地理.D .对甲而言,物理、化学、地理是比较理想的一种选科结果. 【答案】A【解析】根据雷达图,可知物理成绩领先年级平均分最多,即A 错误; 甲的政治、历史两个科目的成绩低于年级平均分,即B 正确; 甲的成绩最好的前两个科目是化学和地理,即C 正确;对甲而言,物理成绩比年级平均分高,历史成绩比年级平均分低,而化学、生物、地理、政治中优势最明显的两科为化学和地理,故物理、化学、地理的成绩是比较理想的一种选科结果,即D 正确. 故选:A.7.某地区城乡居民储蓄存款年底余额(单位:亿元)变化情况如图所示,下列判断一定正确的是( )A .该地区城乡居民储蓄存款年底余额总数逐年上升B .到2019年农村居民存款年底总余额已超过了城镇居民存款年底总余额C .城镇居民存款年底余额逐年下降D .2017年城乡居民存款年底余额增长率大约为225% 【答案】AD【解析】由条形图可知,余额总数逐年上升,故A 项正确;由城乡储蓄构成百分比可知,2019年农村居民存款年底总余额占36.1%,城镇居民存款年底总余额占63.9%,没有超过,故B 项错误;城镇居民存款年底余额所占的比重逐年下降,但城镇居民存款年底余额2014年,2017年,2019年分别为6.8198(亿元),155.085(亿元),973.197(亿元),总体不是逐年下降的,故C 项错误,2017年城乡居民存款年底余额增长率大约为21165225%65-≈,故D 项正确.故选:AD. 8.如图是某公司2018年1月至12月空调销售任务及完成情况的统计图,如10月份销售任务是400台,完成率为90%,下列叙述正确的是( )A .2018年3月的销售任务是400台B .2018年月销售任务的平均值不超过600台C .2018年总销售量为4870台D .2018年月销售量最大的是6月份 【答案】ABC【解析】由题图可知选项A 正确; 2018年月销售任务的平均值为10020033003400500700800100045060012++⨯+⨯++++=<,故选项B 正确;2018年总销售量为1000.82001300(0.5 1.50.6)400(1.20.90.9)500 1.17000.8⨯+⨯+⨯+++⨯+++⨯+⨯800110000.74870+⨯+⨯=,故选项C 正确;2018年月销售量最大的是5月份,为800台,故选项D 不正确. 故选:ABC 三、填空题(共3小题,满分15分,每小题5分,一题两空,第一空2分)9.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为_________ 【答案】0.7【解析】由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70÷100=0.7. 故答案为:0.710.为了考察某校各班参加课外书法小组的人数,在全校随机抽取5个班级,把每个班级参加该小组的认为作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互相不相同,则样本数据中的最大值为 . 【答案】10【解析】设样本数据为:12345,,,,x x x x x ()1234557x x x x x ∴++++÷=()()222157754s x x ⎡⎤=-++-÷=⎣⎦()()22151********,35x x x x x x x ∴-++-=++++=若样本数据中的最大值为11,不妨设511x =,由于样本数据互不相同,与()()22157720x x -++-=这是不可能成立的,若样本数据为4,6,7,8,10,代入验证知两式均成立,此时样本数据中的最大值为 10, 故答案为:1011.为实现国民经济新“三步走”的发展战略目标,国家加大了扶贫攻坚的力度.某地区在2015 年以前的年均脱贫率(脱离贫困的户数占当年贫困户总数的比)为.2015年开始,全面实施“精准扶贫”政策后,扶贫效果明显提高,其中2019年度实施的扶贫项目,各项目参加户数占比(参加该项目户数占 2019 年贫困户总数的比)及该项目的脱贫率见下表:实施项目 种植业 养殖业 工厂就业 服务业参加用户比脱贫率那么2019年的年脱贫率是实施“精准扶贫”政策前的年均脱贫率的______倍 【答案】【解析】设贫困户总数为 a ,脱贫率 ,所以 .故 2019年的年脱贫率是实施“精准扶贫”政策前的年均脱贫率的 倍. 故答案为:四、解答题:(本题共3小题,共45分。
9.3统计案例-公司员工的肥胖情况调查分析-课件人教A版(2019)高中数学必修第二册课件
[解析] (1)由图可知,甲打靶的成绩为9,5,7,8,7,6,8,6,7,7,乙打靶的 成绩为2,4,6,8,7,7,8,9,9,10.
则可求得,甲的成绩的平均数为7,方差为1.2,中位数是7,命中9 环及9环以上的次数为1;乙的成绩的平均数为7,方差为5.4,中位数是 7.5,命中9环及9环以上的次数为3.如下表:
题型三 其他统计图表中反映的集中趋势与离散程度
典例 3 (2020·浙江省宁波市期末)甲、乙两人在相同条件下各射 靶10次,每次射靶的成绩情况如图所示.
(1)请填写下表: 平均数 方差 中位数 命中 9 环及 9 环以上的次数
甲 乙 (2)请从下列四个不同的角度对这次测试结果进行分析: ①从平均数和方差相结合看,谁的成绩更稳定; ②从平均数和中位数相结合看,谁的成绩好些; ③从平均数和命中 9 环及 9 环以上的次数相结合看,谁的成绩好些; ④从折线图上两人射击命中环数的走势看,谁更有潜力.
s2=n wi[s2i +(-x i--x )2],-x 为总样本数据的平均数.
i=1
此处,某层的权重=该层被样抽本中容的量个体数.
【对点练习】❷ 甲、乙两支田径队的体检结果为:甲队体重的平 均数为60 kg,方差为200,乙队体重的平均数为70 kg,方差为300,又已 知甲、乙两队的队员人数之比为1︰4,那么甲、乙两队全部队员的平均 体重和方差分别是多少?
如下:
运动员 第 1 次 第 2 次 第 3 次 第 4 次 第 5 次
甲
87
91
90
89
93
乙
89
90
91
88
92
则成绩较为稳定(方差较小)的那位运动员成绩的方差为__2__.
[解析] (1)∵某 7 个数的平均数为 4, ∴这 7 个数的和为 4×7=28, ∵加入一个新数据 4,∴-x =288+4=4. 又∵这 7 个数的方差为 2,且加入一个新数据 4, ∴这 8 个数的方差 s2=7×2+84-42=47<2,故选 A.
统计案例 公司员工的肥胖情况调查分析(人教A版2019 必修第二册)
利用电子表格软件,对上面的样本数据进行排序,可以得到下面的结果:
(三)统计案例分析活动的探究和统计分析报告的撰写
8 18 22 31
42 48 49 50 51 56 57 57 60 61 61 61 62 62 63 63 65
一、背景与数据
阶梯电价的设计
为了实现绿色发展,践行“绿水青山就是金山银山”的发展理念,避免浪费能源,某市政府计划对居民用电采用
阶梯收费的方法.为此,相关部门在该市随机调查了200户居民六月份的用电量(单位:kW·h),以了解这个城市家
庭用电量的情况.数据如下:107 101 78 99 208 127 74 223 31 131
由于s甲2>s乙2,所以乙品种的产量较稳定.
[解决问题] 从以上分析可以看出甲品种的平均产量稍高,比乙品种单株平均高1 kg,相差不大,但
其产量远不如乙品种稳定.因为是推荐给需要扶助的贫困地区的农民种植,其抗风险能力较弱,所以推
荐乙品种.
(五)课堂小结
知识总结
(1)通过这节课,你学到了什么知识?
学生反思
用电量为8 kW·h,最大用电量为626 kW·h,极差为618.
(2)因为数据量是200,那么这组数据的样本中位数就是有序样本第100个数130和第101个数130的平
均数,即130,说明这个城市六月份居民用电量的中间水平大约在130 kW·h左右.
(3)因为200×75%=150,所以第一个临界值为有序样本中第150个数178和第151个数178的平均数,
115 189 135 146 127 203 97 96 62 65 111 56 151 106 8
9.3 统计案例 公司员工的肥胖情况调查分析优秀公开课获奖课件高一数学人教A版(2026)必修第二册
简单随机 从总体中逐 总体中个体 抽样过
抽样
个抽取
数较少时 程中每
分层抽样
分层
按各层比例 抽取
总体中个体 差异明显时
个个体 被抽取 的可能 性相同
各层中抽 样时采用 前两种方 式
例 1、判断题
(1)简单随机抽样是一种不放回抽样.
(√ )
(2)简单随机抽样每个个体被抽到的机会不一样,与先后有关.( × )
A.9
B.18
C.27
D.36
答案:B
突破点(二) 用样本估计总体
1.两个图形的比较
图形
优点
频率分布 (1)易表示大量数据
直方图 (2)直观地表明分布地 情况
茎叶图
(1)无信息损失
(2)随时记录方便记录和表示
缺点 丢失一些数据
容量较小时用
2.众数、中位数和平均数
众数:频率分布直方图最高矩形下端中点的横坐标. 中位数:频率分布直方图面积平分线的横坐标. 平均数:频率分布直方图中每个小矩形的面积与小矩形
(3)系统抽样在起始部分抽样时采用简单随机抽样.
( √)
(4)要从 1002 个学生中用系统抽样的方法选取一个容量为 20 的样本,
需要剔除 2 个学生,这样对被剔除者不公平.
( ×)
(5)分层抽样中,每个个体被抽到的可能性与层数及分层有关.( × )
应用1、(陕西高考)某单位共有老、中、青职工430人,其 中有青年职工160人,中年职工人数是老年职工人数的2 倍.为了解职工身体状况,现采用分层抽样方法进行调 查,在抽取的样本中有青年职工32人,则该样本中的老 年职工人数为 ( )
(1)甲、乙两名运动员的跳高平均成绩分别是多少?
9.3统计分析案例公司员工的肥胖情况调查分析-【新教材】
(2)已知该贫困村的蜜柚树上大约还有10000个蜜柚待出售,对于这10000个蜜柚某电商提出两种收购方案:A.所有蜜柚均以40元/千克收购;B.低于2000克的蜜柚以60元/个收购,高于或等于2000克但不超过2500克的以90元/个收购,其余的以100元/个收购,请你通过计算为该村选择收益最好的方案.
4.某重点中学100位学生在市统考中的理科综合分数,以 , , , , , , 分组的频率分布直方图如图.
(1)求直方图中 的值;
(2)求理科综合分数的平均数;
5.如图,从参加环保知识竞赛的学生中抽出 名,将其成绩(均为整数)整理后画出的频率分布直方图如下:观察图形,回答下列问题:
(1)求 这一组的频数、频率分别是多少?
【分析】
(1)由频率分布直方图中的数据进行计算平均值;
(2)分别计算两种方案的收益,然后进行比较即可
【详解】
解:(1)由频率分布直方图估计这批蜜柚每只的平均重量为:
(克)
(2)若选用A方案收益为: (元)
若选用B方案收益为:
(元)
因为 ,
所以该村选择收益最好的方案为方案A
【点睛】
此题考查平均数、最优方案的判断,考查频率分布直方图的性质等基础知识,考查运算求解能力,属于基础题
3.某学校为了了解学校食堂的服务情况,随机调查了50名就餐的教师和学生,根据这50名师生对食堂服务质量的评分,绘制出了如图所示的频率分布直方图,其中样本数据分组为[40,50),[50,60),…,[90,100].
(1)求频率分布直方图中a的值,以及该组数据的中位数(结果保留一位数).
(2)学校规定:师生对食堂服务质量评分不得低于75分.否则将进行内部调整,用每组数据的中点值,试估计该校师生对食堂服务质量评分的平均分,并据此回答食堂是否需要进行内部整顿.
人教A版必修二9.3统计案例:公司员工的肥胖情况调查分析课件
实战演练-----数据分析 平均数
x 1 (16.0 16.6 35.3) 22.1822 90
男员工BMI指标数据的 平均数为:22.1822
实战演练-----数据分析 方差
S 2 1 [(13.9 20.692)2 (31.6 20.692)2 ] 16.1 50
5 0
0
女员工
男员工
40
35
30
25
20
15
10
5
0
0
10
20
30
40
50
60
70
80
90
100
10
20
30
40
50
60
实战演练-----数据呈现 折线图
男女员工BMI折线图
40 35 30 25 20 15 10
5 0
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89
标题:某公司员工的肥胖情况调查分析报告
• 前言:简单交代调查的目的、方法、范围等背景情况,使读者了 解调查的基本情况。
• 主体:展示数据分析的全过程:第一要明确所关心的问题是什么, 说明数据蕴含的信息;根据数据分析的需要,说明如何选择合适的 图表描述和表达数据;从样本数据中提取能刻画其特征的量,如均 值、方差等,用于比较男、女员工在肥胖状况上的差异;通过样本 估计总体的统计规律,分析公司员工胖瘦程度的整体情况。
建议:1、多数女员工继续保持就可以,个别指标较高的女员工适当的控制一下体重;
新教材人教版高中数学必修第二册 9-3 统计案例 公司员工的肥胖情况调查分析(提升练习题)原卷版
第九章统计9.3 统计案例公司员工的肥胖情况调查分析(提升练)一、单选题(共5小题,满分25分,每小题5分)1.甲、乙两名射击运动爱好者在相同条件下各射击10次,中靶环数情况如图所示.则甲、乙两人中靶环数的方差分别为()A. 7,7B. 7,1.2C. 1.1,2.3D. 1.2,5.42.某商场在国庆黄金周的促销活动中,对10月1日9时至14时的销售额进行统计,其频率分布直方图如图所示.已知9时至10时的销售额为3万元,则9时至14时的销售总额为()A.10万元B.12万元C.15万元D.30万元3.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是()A.中位数B.平均数C.方差D.极差4.AQI是表示空气质量的指数,AQI指数值越小,表明空气质量越好,当AQI指数值不大于100时称空气质量为“优良”.如图是某地4月1日到12日AQI指数值的统计数据,图中点A表示4月1日的AQI指数值为201,则下列叙述不正确的是()A.这12天中有6天空气质量为“优良”B.这12天中空气质量最好的是4月9日C.这12天的AQI指数值的中位数是90D.从4日到9日,空气质量越来越好5.根据气象学上的标准,连续5天的日平均气温低于10C即为入冬.现有甲、乙、丙、丁四地连续5天的日平均温度的记录数据(记录数据都是正整数):①甲地:5个数据的中位数为7,众数为6;②乙地:5个数据的平均数为8,极差为3;③丙地:5个数据的平均数为5,中位数为4;④丁地:5个数据的平均数为6,方差小于3.则肯定进入冬季的地区是()A.甲地B.乙地C.丙地D.丁地二、多选题(共3小题,满分15分,每小题5分,少选得3分,多选不得分)6.2020年两会“部长通道”工信部部长表示,中国每周大概增加1万多个5G基站,4月份增加5G用户700多万人,5G通信将成为社会发展的关键动力,下图是某机构对我国未来十年5G用户规模的发展预测图.则()A.2022年我国5G用户规模年增长率最高B.2022年我国5G用户规模年增长户数最多C.从2020年到2026年,我国的5G用户规模增长两年后,其年增长率逐年下降D.这十年我国的5G用户数规模,后5年的平均数与方差都分别大于前5年的平均数与方差7.某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃.下面叙述正确的有()A.各月的平均最低气温都在0℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20℃的月份有5个8.某装修公司为了解客户对照明系统的需求,对照明系统的两种设计方明系统评分面达图案在稳固性、创新性、外观造型、做工用料以及成本五个方面的满意度评分进行统计,根据统计结果绘制出如图所示的雷达图,则下列说法错误的是()A.客户对两种设计方案在外观造型上没有分歧B.客户对设计一的满意度的总得分高于设计二的满意度的总得分C.客户对设计二在创新性方面的满意度高于设计一在创新性方面的满意度D.客户对两种设计方案在稳固性和做工用料方面的满意度相同三、填空题(共3小题,满分15分,每小题5分,一题两空,第一空2分)9.在一次歌手大奖赛上,七位评委为歌手打出的分数如下:9.4,8.4,9.4,9.9,9.6,9.4,9.7,去掉一个最高分和一个最低分后,所剩数据的平均值为________;方差为___________.10.已知某省二、三、四线城市数量之比为1︰3︰6,2019年8月份调查得知该省二、三、四线所有城市房产均价为1.2万元/平方米,方差为20,二、三、四线城市的房产均价分别为2.4万元/平方米,1.8万元/平方米,0.7万元/平方米,三、四线城市房价的方差分别为10,8,则二线城市的房价的方差为_______________.11.假设有一个专养草鱼的池塘,现要估计池塘内草鱼的数量.第一步,从池塘内打捞一批草鱼,做上标记,然后将其放回池塘,第二步,再次打捞一批草鱼,根据其中做标记的草鱼数量估计整个池塘中草鱼的数量.假设第一次打捞的草鱼有50尾,第二次打捞的草鱼总数为50尾,其中有标记的为7尾,试估计整个池塘中草鱼的数量大约为_______________ 四、解答题:(本题共3小题,共45分。
【高中数学】9.2用样本估计总体-9.3统计案例 公司员工的肥胖情况调查-人教A版必修第二册同步讲义
第九章统计§9.2 用样本估计总体--9.3统计案例公司员工的肥胖情况调查分析知识索引索引1:频率分布表1.作频率分布直方图的步骤:(1)求极差(一组数据中最大值与最小值的差)决定组距与组数(2)决定定组距与组数组距是指每个小组的两个端点之间的距离。
数据分组的组数与数据的个数有关,一股数据的个数越多,所分组数也越多、当样本容量现不超过10时.常分成5~12组为方便起见,一般取等长组距,并并且组距应力求“取整”。
(3)将数据分组通常对组内数值所在区间取左闭右开区间,最后一组取闭区间. (4)列频率分布表统计各组数据的频数,计算频率.填人表格中,完成频率分布表. (5)画频率分布直方图画图时,以横轴表示分组,纵轴(小长方形的高表示频率与组距的比值.对频率分布直方图的理解频率分布直方图以面积的形式反映了数据落在各小组内的频率大小,每个小长方形的面积=组距x=频率,所以各小长方形的面积的总和等于1.索引2:平均数、中位数、众数众数在一组数据中,出现次数最多的数据叫做这组数据的众数中位数将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数叫做这组数据的中位数在频率分布直方图中,中位数左边和右边的直方图的面积相等平均数样本数据的算术平均数方法归纳利用频率分布直方图求众数、中位数与平均数利用频率分布直方图求众数、中位数与平均数时,易出错,应注意区分这三者.在频率分布直方图中:(1)最高的小长方形底边中点的横坐标即是众数;(2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.索引3:统计图表常见的统计图表有条形统计图、扇形统计图、折线统计图.1,条形图(1)定义:用一个单位长度表示一定的数量关系,根据数量的多少画成长短不同的条形,条形的宽度必须保持一致,然后把这些条形排列起来,这样的统计图称为条形图.(2)特点①条形图可以形象地比较各种数据之间的数量关系.②条形图中,一条轴上显示的是所关注的数据类型,另-条轴上对应的是数量、个数或者比例,条形图中每一矩形都是等宽的. 2.扇形图(1)定义:用整个圆代替总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图称为扇形图.(2)特点:扇形图可以形象地表示出各部分数据在全部数据中所占的比例情况,扇形图中,每一个扇形的圆心角以及弧长都与这一部分表示的数据大小成正比,3.折线图(1)定义:用一个单位长度表示一定的数据,根据数量的多少描出各点,然后用线段顺次把各点连接起来,这样的统计图称为折线图.(2)特点:折线图既可以表示出项目的具体数量,又能清楚地反时决数据的变化情况.精例探究精例1随机抽取骑行共享单车的市民进行问卷调查,得到样本的频率分布直方图如图所示.再从这些市民中用分层抽样的方法抽取一个样本进行调查,若第二次抽取的样本中年龄段的人数为14,则第二次抽取的样本中年龄段的人数为()A. 2B. 3C. 5D. 6【答案】A【考点】分层抽样方法,频率分布直方图【解析】设年龄段应抽取人数为.由图可知年龄段对应的频率为.由,得.故答案为:A.【分析】根据频率分布直方图,求出样本中不小于30岁人的频率与频数,再求用分层抽样方法抽取的人数精例2新莽铜嘉量是由王莽国师刘歆等人设计制造的标准量器,它包括了龠(yuè)、合、升、斗、斛这五个容量单位.每一个量又有详细的分铭,记录了各器的径、深、底面积和容积.根据铭文不但可以直接测得各个容量单位的量值,而且可以通过对径、深各个部位的测量,得到精确的计算容积,从而推算出当时的标准尺度.现根据铭文计算,当时制造容器时所用的圆周率分别为3.1547,3.1992,3.1498,3.2031,比径一周三的古率已有所进步,则上面四个数与祖冲之给出的约率()、密率()这6个数据的中位数与极差分别为()A. 3.1429,0.0615B. 3.1523,0.0615C. 3.1498,0.0484D. 3.1547,0.0484【答案】B【考点】众数、中位数、平均数,极差、方差与标准差【解析】所给数据按顺序排列为:,,3.1498,3.1547,3.1992,3.2031,所以这6个数据的中位数为,极差为,故答案为:B。
人教A版9.3统计案例公司员工的肥胖情况调查分析课件(15张)
5. 研究结论
5.2 控制体重的建议
(1)限制高热量、高脂肪、高糖、高胆固醇类食物的摄入. (2)限制精细主食摄入,多食糙米、全麦、玉米等. (3)限制食盐摄入. (4)保证含蛋白质(鱼、瘦肉、豆类及豆制品)的摄入. (5)保证含维生素、矿物质食物的摄入. (6)少吃多餐,避免血糖骤升而是脂肪积蓄. (7)早餐多食,晚餐少食.可使热量在新陈代谢旺盛的上午耗掉,以免在活 动少、代谢慢的晚间使脂肪积聚体内. (8)忌不食早餐.不食早餐,容易出现中餐猛吃的现象. (9)不吃零食.食物只在进正餐时吃,饭后立即刷牙,限制进食机会. (10)加强锻炼.运动训练可以增加能量的消耗.
数据分析的基本过程包括:收集数据、整理数据、提取信息、构 建模型、进行推断、获得结论.
3.统计分析报告的主要组成部分(以调查公司员工的肥胖情况为例)
(1)标题 (2)前言 简单交代调查的目的、方法、范围等背景情况,使读者了解调查的基本情况. (3)主体 展示数据分析的全过程:首先要明确调查问题,分析数据信息;根据数据分析 的需要, 选择合适的图或表描述和表达数据;从样本数据中提取数字特征的量, 如均值、方差等,用于比较男、女员工在肥胖状况上的差异;通过样本估计总体
由图9-2可以看出,男、女员工的BMI值大部分都在正常 范围内,男员工的BMI值绝大部分落在区间()中,女员工的 BMI值绝大部分落在区间()中.
4. 数据整理与分析
4.2.2 分析二:频率分布直方图(以相同组距的分组)
由图9-3可以看出,男员工的BMI值在区间(15.85,25.85]内比较多,数据较集中,大于的较少;女 员工的BMI值主要集中在区间(15.85,20.85]内,后面呈阶梯式下降.
的统计规律,分析公司员工胖瘦程度的整体情况.
人教A版高中数学必修二第九章 统计 复习与小结 练习(1)(原卷版)
9.3 统计案例 公司员工的肥胖情况调查详细分析一、选择题1.从某地区中小学生中抽取部分学生,进行肺活量调查.经了解,该地区小学、初中、高中三个学段学生的肺活量有较大差异,而同一学段男女生的肺活量差异不大.在下面的抽样方法中,最合理的抽样方法是( ) A .抽签法B .按性别分层随机抽样C .按学段分层随机抽样D .随机数法2.某所学校在一个学期的开支分布的饼图如图1所示,在该学期的水、电、交通开支(单位:万元)如图2所示,则该学期的水电费开支占总开支的百分比为( )A .12.25%B .16.25%C .11.25%D .9.25%3.某歌手大赛进行电视直播,比赛现场有6名特约嘉宾给每位参赛选手评分,场内外的观众可以通过网络平台给每位参赛选手评分.某选手参加比赛后,现场嘉宾的评分情况如下表,场内外共有数万名观众参与了评分,组织方将观众评分按照[)70,80,[)80,90,[]90,100分组,绘成频率分布直方图如下:嘉宾评分的平均数为1x ,场内外的观众评分的平均数为2x ,所有嘉宾与场内外的观众评分的平均数为x ,则下列选项正确的是( ) A .122x x x +=B .122x x x +>C .122x x x +<D .12122x x x x x +>>>4.在第二次高考模拟市统测结束后,某校高三年级一个班级为预估本班学生的高考成绩水平,登记了全班同学的卷面成绩.经查询得知班上所有同学的学业水平考试成绩22分加分均已取得,则学业水平考试加分22分前后相比,不变的数字特征是( ) A .平均数B .方差C .中位数D .众数5.(多选题)甲、乙两班举行电脑汉字录入比赛,参赛学生每分钟录入汉字的个数经统计计算后填入下表,某同学根据表中数据详细分析得出的结论正确的是( )A .甲、乙两班学生成绩的平均数相同B .甲班的成绩波动比乙班的成绩波动大C .乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字数≥150个为优秀)D .甲班成绩的众数小于乙班成绩的众数6.(多选题)在某地区某高传染性病毒流行期间,为了建立指标来显示疫情已受控制,以便向该地区居民显示可以过正常生活,有公共卫生专家建议的指标是“连续7天每天新增感染人数不超过5人”,根据连续7天的新增病例数计算,下列各选项中,一定符合上述指标的是( ) A .平均数3x ≤B .平均数3x ≤且标准差2s ≤C .平均数3x ≤且极差小于或等于2D .众数等于1且极差小于或等于4 二、填空题7.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________.8.1895年,在英国伦敦有106块男性头盖骨被挖掘出土.经考证,这些头盖骨的主人死于1665~1666年的大瘟疫人类学家分别测量了这些头盖骨的宽度(单位:mm),数据如下:146 141 139 140 145 141 142 131 142140 144 140 138 139 147 139 141 137141 132 140 140 141 143 134 146 134142 133 149 140 140 143 143 149 136141 143 143 141 138 136 138 144 136145 143 137 142 146 140 148 140 140139 139 144 138 146 153 158 135 132148 142 145 145 121 129 143 148 138148 152 143 140 141 145 148 139 136141 140 139 149 146 141 142 144 137153 148 144 138 150 148 138 145 145142 143 143 148 141 145 141则95%分位数是________mm.9.交通拥堵指数是综合反映道路网畅通或拥堵的概念,记交通拥堵指数为T,其范围为[0,10],分别有五个级别;T∈[0,2)畅通;T∈[2,4)基本畅通;T∈[4,6)轻度拥堵;T∈[6,8)中度拥堵;T∈[8,10]严重拥堵.晚高峰时段( T≥2),从某市交通指挥中心选取了市区20个交通路段,依据其交通拥堵指数数据绘制的直方图如图所示,用分层抽样的方法从交通指数在[4,6),[6,8),[8,10]的路段中共抽取6个路段,则中度拥堵的路段应抽取_____个.10.一个项目由15个专家评委投票表决,剔除一个最高分96,一个最低分58后所得到的平均分为92,方差为16,那么原始得分的方差为______________.三、参考解答题11.从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:(I)在答题卡上作出这些数据的频率分布直方图:(II)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(III)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?12.某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.(Ⅰ)若n=19,求y与x的函数详细解析式;(Ⅰ)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;(Ⅰ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?。
高中数学必修二 9 3 统计案例 公司员工的肥胖情况调查分析 导学案
【新教材】9.3 统计案例公司员工的肥胖情况调查分析(人教A版)1.了解统计报告的组成部分.2.可对统计案例进行初步分析.1.数学抽象:统计报告的组成部分;2.数学运算:对统计案例进行初步分析.重点:①了解统计报告的组成部分;②对统计案例进行初步分析.难点:对统计案例进行初步分析.一、预习导入阅读课本218-219页,填写。
1.统计报告的主要组成部分(1)标题.(2)前言.简单交代调查的目的、方法、范围等背景情况,使读者了解调查的基本情况.(3)主题展示数据分析的全过程;首先要明确所关心的问题是什么,说明数据蕴含的信息;根据数据分析的需要,说明如何选择合适的图标描述和表达数据;从样本数据中提取能刻画其特征的量,如均值、方差等,用于比较男、女员工在肥胖状况上的差异;通过样本估计总体的统计规律,分析公司员工胖瘦程度的整体.(4)结尾对主题部分的内容进行概括,结合控制体重的一般方法,提出控制公司员工体重的建议.1.一组数据的方差一定是( )A .正数B .复数C .任意实数D .非负数2.对于数据3,3,2,3,6,3,10,3,6,3,2,有下列结论:这组数据的众数是3;这组数据的众数与中位数的数值不相等;这组数据的中位数与平均数的数值相等;这组数据的平均数与众数的数值相等.其中正确的结论的个数为( )A .1B .2C .3D .43.已知样本数据x 1,x 2,…,x 10,其中x 1,x 2,x 3的平均数为a,x 4,x 5,x 6,…,x 10的平均数为b,则样本数据的平均数为 ( ) A .2a b+ B .3710a b+ C .7310a b+ D .10a b+ 4.某天有10名工人生产同一零部件,生产的件数分别是:15、17、14、10、15、17、17、16、14、12,设其平均数为a ,中位数为b ,众数为c ,则a 、b 、c 从小到大的关系依次是________.题型一 由统计信息解决实际问题例1 甲、乙两种水稻试验品种连续5年的平均单位面积产量如下(单位:t/hm2),试根据统计学估计哪一种水稻品种的产量比较稳定.例2为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成,A B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:P C的估计值为0.70.记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到()(1)求乙离子残留百分比直方图中,a b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).跟踪训练一1.样本数为9的四组数据,它们的平均数都是5,条形图如图所示,则标准差最大的一组是()A .第一组B .第二组C .第三组D .第四组2.某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.018.602≈.1.已知一组数据125,,,x x x 的平均数是2,方差是13,那么数据12532,32,,32x x x ---的平均数和方差分别是( )A .2,13B .2, 3C .4,13D .4, 32.某学校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是17.5,30],样本数据分组为17.5,20),20,22.5),22.5,25),25,27.5),27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56B.60C.140D.1203.如图所示是一样本的频率分布直方图,则由图形中的数据,可以估计众数与中位数分别是()A.12.5;12.5B.13;13C.13;12.5D.12.5;134.样本中共有五个个体,其值分别为a,0,1,2,3,若该样本平均数为1,则样本方差为________.5.对某校高三年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数,根据此数据作出了频数与频率的统计表和频率分布直方图.(1)求出表中M,p及图中a的值;(2)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间[10,15)内的人数;(3)估计这次学生参加社区服务人数的众数、中位数以及平均数.答案小试牛刀 1. D. 2.A. 3.B. 4. a b c << 自主探究例1【答案】甲种水稻的产量比较稳定【解析】 甲品种的样本平均数为10,样本方差为[(9.8-10)2+(9.9-10)2+(10.1-10)2+(10-10)2+(10.2-10)2]÷5=0.02. 乙品种的样本平均数也为10,样本方差为[(9.4-10)2+(10.3-10)2+(10.8-10)2+(9.7-10)2)+(9.8-10)2]÷5=0.24. 因为0.24>0.02,所以,由这组数据可以认为甲种水稻的产量比较稳定. 例2【答案】(1) 0.35a =,0.10b =;(2) 4.05,6.【解析】 (1)由题得0.200.150.70a ++=,解得0.35a =,由0.050.151()10.70b P C ++=-=-,解得0.10b =.(2)由甲离子的直方图可得,甲离子残留百分比的平均值为0.1520.2030.3040.2050.1060.057 4.05⨯+⨯+⨯+⨯+⨯+⨯=,乙离子残留百分比的平均值为0.0530.1040.1550.3560.2070.1586⨯+⨯+⨯+⨯+⨯+⨯= 跟踪训练一 1.【答案】D.【解析】选D.法一:第一组中,样本数据都为5,标准差为0;第二组中,样本数据为4,4,4,5,5,5,6,6,6,标准差为63;第三组中,样本数据为3,3,4,4,5,6,6,7,7,标准差为253;第四组中,样本数据为2,2,2,2,5,8,8,8,8,标准差为22,故标准差最大的一组是第四组.法二:从四个图形可以直观看出第一组数据没有波动性,第二、三组数据的波动性都比较小,而第四组数据的波动性相对较大,利用标准差的意义可以直观得到答案.2.【答案】(1) 增长率超过0040的企业比例为21100,产值负增长的企业比例为2110050;(2)平均数0.3;标准差0.17.【解析】 (1)由题意可知,随机调查的100个企业中增长率超过40%的企业有14721个,产值负增长的企业有2个,所以增长率超过40%的企业比例为21100,产值负增长的企业比例为2100=150. (2)由题意可知,平均值y ̅=2×(−0.1)+24×0.1+53×0.3+14×0.5+7×0.7100=0.3,标准差的平方: s 2=1100[2×(−0.1−0.3)2+24×(0.1−0.3)2+53×(0.3−0.3)2+14×(0.5−0.3)2+7×(0.7−0.3)2]=1100[0.32+0.96+0.56+1.12]=0.0296,所以标准差s =√0.0296=√0.0004×74≈0.02×8.602≈0.17. 当堂检测1-3. DCD4. 2.5.【答案】见解析【解析】(1)由分组[10,15)内的频数是10,频率是0.25,知10M=0.25,所以M=40.因为频数之和为40,所以10+24+m+2=40,解得m=4,p=440mM==0.10.因为a是对应分组[15,20)的频率与组距的商,所以a=24405⨯=0.12.(2)因为该校高三学生有240人,在[10,15)内的频率是0.25,所以估计该校高三学生参加社区服务的次数在此区间内的人数为60.(3)估计这次学生参加社区服务人数的众数是15202+=17.5.因为n=2440=0.6,所以样本中位数是15+0.50.25a-≈17.1,估计这次学生参加社区服务人数的中位数是17.1.样本平均人数是12.5×0.25+17.5×0.6+22.5×0.1+27.5×0.05=17.25,估计这次学生参加社区服务人数的平均数是17.25.。
新教材高中数学第9章统计案例公司员工的肥胖情况调查分析课堂检测固双基含解析新人教A版必修第二册
新教材高中数学新人教A 版必修第二册:第九章 9.31.已知一组数据1,3,2,5,4,那么这组数据的标准差为( A )A .2B .3C .2D .3[解析] ∵样本容量n =5,∴x -=15(1+2+3+4+5)=3, ∴s =15[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2] = 2.2.若样本x 1+1,x 2+1,…,x n +1的平均数为10,其方差为2,则对于样本2x 1+2,2x 2+2,…,2x n +2,下列结论正确的是( A )A .平均数为20,方差为8B .平均数为20,方差为10C .平均数为21,方差为8D .平均数为21,方差为10[解析] 由题意得,样本2x 1+2,2x 2+2,…,2x n +2的平均数为2×10=20,方差为22×2=8.故选A .3.(2020·山东高一期末)将10名小学生的身高(单位:cm)分成了甲、乙两组数据,甲组:115,122,105,111,109;乙组:125,132,115,121,119.两组数据中相等的数字特征是( C )A .中位数、极差B .平均数、方差C .方差、极差D .极差、平均数 [解析] 甲组数据由小到大依次排列为105,109,111,115,122,故极差为17,平均数为112.4,中位数为111,方差为33.44;乙组数据由小到大依次排列为115,119,121,125,132,故极差为17,平均数为122.4,中位数为121,方差为33.44.因此,两组数据相等的是极差和方差.故选C .4.(2020·安徽高二期中)已知甲、乙两名同学在五次数学测验中的得分如下: 甲:85,91,90,89,95;乙:95,80,98,82,95.则甲、乙两名同学数学成绩( A )A .甲比乙稳定B .甲、乙稳定程度相同C .乙比甲稳定D .无法确定[解析] x -甲=15×(85+91+90+89+95)=90, s 2甲=15×[(85-90)2+(91-90)2+(90-90)2+(89-90)2+(95-90)2]=10.4, x -乙=15×(95+80+98+82+95)=90, s 2乙=15×[(95-90)2+(80-90)2+(98-90)2+(82-90)2+(95-90)2]=55.6. ∵x -甲=x -乙,s 2甲<s 2乙,∴甲更稳定.故选A .5.(2020·安徽定远二中高二期末)已知样本数据为40,42,40,a,43,44,且这个样本的平均数为43,则该样本的标准差为3[解析] 由平均数的公式,可得16×(40+42+40+a +43+44)=43,解得a =49.所以方差s 2=16×[(40-43)2+(42-43)2+(40-43)2+(49-43)2+(43-43)2+(44-43)2]=283,所以样本的标准差s =2213.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
统计案例公司员工的肥胖情况调查分析
【教学过程】
一、背景导入
近年来,我国肥胖人群的规模急速增长,肥胖人群有很大的心血管安全隐患.目前,国际上常用身体质量指数(Body Mass Index,缩写BMT)来衡量人体胖瘦程度以及是否健康,其计算公式是
中国成人的BMI数值标准为:BMI<18.5为偏瘦;18.5≤BMI<23.9为正常;24≤BMI<27.9为偏胖;BMI≥28为肥胖。
二、数据调查
为了解某公司员工的身体肥胖情况,研究人员从公司员工体检数据中,采用比例分配的分层随机抽样方法抽取了90名男员工、50名女员工的身高和体重数据,计算得到他们的BMI值如下:
三、合作探究
根据上面的数据,写一份该公司员工肥胖情况的统计分析报告.要求:
1.选择合适的图表展示数据;
2.比较男、女员工在肥胖状况上的差异;
3.分析公司员工胖瘦程度的整体情况;
4.提出控制体重的建议.
四、教师指导
统计分析报告的主要组成部分
1.标题
2.前言
简单交代调查的目的、方法、范围等背景情况,使读者了解调查的基本情况。
3.主体
展示数据分析的全过程:首先要明确所关心的问题是什么,说明数据蕴含的信息;根据数据分析的需要,说明如何选择合适的图表描述和表达数据;从样本数据中提取能刻画其特征的量,如均值、方差等,用于比较男、女员工在肥胖状况上的差异;通过样本估计总体的统计规律,分析公司员工胖瘦程度的整体情况.
4.结尾
对主体部分的内容进行概括,结合控制体重的一般方法(可以查阅有关文献),提出控制公司员工体重的建议.。