数学教育概论

合集下载

数学教育概论

数学教育概论

1、简述“新数运动”失败的原因。

20世纪60年代新数运动起因:1957年苏联人造卫星早于美国上天,美国朝野震惊.1958年,美国国会通过国防教育法.以布尔巴基学派为代表的数学家发起“新数学”教育改革,又称为“新数运动”.当时的思潮是,数学教材内容太陈旧,基本上没有反映20世纪的数学成就,一大批新的数学教材在西方各国涌现,用“新数学”代替“旧数学”的改革运动席卷全球.新数运动的指导思想是:1.增加现代数学内容,如集合、逻辑、群、环、域、向量和矩阵、微积分、概率论、二进制数系等等;2.强调公理化方法,提倡“布尔巴基”的结构主义;3.废弃欧几里德几何;4.消减基本运算,用计算器代替基本的运算技能;5.提倡发现教学法,要求学生像数学家发现定理那样去学习数学.经历了20世纪60年代和70年代,新数运动最终以失败告终.原因:向学生提出了不切实际的要求,教学内容过深过难,学生无法真正理解和接受;同时,基本知识和基本技能未能得到足够的重视,学生的数学基本功不扎实,而高深的数学知识又难以学懂.(接着,国际数学教育界提出了“回到基础”)2、如何理解“基础”与“创新”的关系。

万丈高楼平地起。

做任何事情,基础总是重要的。

我国的数学教育,一向注重“双基”的教学,即关注学生的“数学基础知识”和“数学基本技能”的培养。

那么,打好基础又是为了什么呢?当然是为了发展和创造。

缺乏基础的创新是空中阁楼,没有创新指导的打基础是傻练。

因此,优质的数学教育,必须是给学生打下扎实的基础,并且能够培养学生的创新精神,才能获得完美的个性发展。

(基础=四基:基本知识,基本技能,基本思想,基本活动经验。

创新=技巧)3、教学设计的三要素。

教案三要素——完成数学教学设计需要考虑三方面的问题 明确教学目标【教学目标】形成设计意图制定教学过程4、教学过程的基本环节有哪些?教学模式(一堂公开课)(1)创设情境,引入课题;(2)合作探究,发现定理;(3)解决问题,应用定理;(4)动手练习,自主探究;(5)梳理知识,形成系统;(6)分层作业,因材施教。

数学教育概论 第二章(共28张PPT)

数学教育概论 第二章(共28张PPT)
那么究竟应该怎样看待中国的数学教育呢?
〔二〕东西数学教育的比较
西方
平衡点考试严厉
学生建构
教师中心
强调理解
熟能生巧
根底松散〔 美国 -- 西欧 -- 俄国 -- 日本 -- 港台 -- 大陆〕扎实根底
非形式化
形式演绎
适当演练
反复演练
个性开展
进度一致
轻松学习
负担过重
〔三〕对国际数学教育大会〔ICME〕的介绍
数学教师的教育观念又包括三个方面 :教师的数学观 ,教 师的教学观和教师的学习观。
一、20世纪数学观的变化
数学观的开展与变化
①数学是一门经验科学
②所有的数学都是可以由公理定理推陈出新导得出,是严 密的逻辑方法演绎出的知识体系
③数学是研究空间形式和数量关系的科学 ④数学是一组相容的、独立的、完备的公理系,按一定方式推
数学是美的; 优势:重视学生创新精神和实践能力培养的教学行为正在逐步形成。
一、20世纪数学观的变化 它通过逻辑将知识组织成一个彼此联系的结构。
数学离不开应用; 〔四〕 改革中的中国数学教育
3 小明去食堂吃午饭,他觉察今天食堂提供四种菜,主食可选择米饭、面条或饼。 某些实验班的教师缺乏教学参考资料,只有本学期的一本教科书,对实验教材前后相关的教学内容缺乏整体的了解;
探究和数学应用.
三、国际视野下的中国数学教育
〔一〕中国数学学习者悖论
〔二〕东西数学教育的比较 〔三〕对国际数学教育大会
〔ICME〕的介绍
〔四〕 改革中的中国数学教育
〔一〕中国数学学习者悖论
一方面,中国〔包括大陆、台湾、香港等地区〕学生 的数学学习成绩十分优良。
另一方面, 西方的学者又认为中国的数学学习是“学生被 动地接受〞,“常规问题的反复演练〞, 教学观念陈旧。

数学教育概论

数学教育概论
– 20世纪至今:各国培养教师计划中重视和加强 教学法培训的倾向更加明显了,数学教育逐渐 成长为一个需要具备一定特殊技能的专业。 “数学教育学”由此先后被称为“数学教材教 法”“数学教学法”,现在普遍被称为“数学 教育学”。
• 除了数学还要懂得教学法才能胜任数学 教师工作(会数学不一定会教数学)--《一份数学教育研究的历史》
第九章 数学课堂教学观摩 与评析
• 本章首先通过对往届实习生的困惑的分 析,表明“弄懂数学并不等于会教数学” 然后通过听课,案例学习,案例再评析, 进一步感受数学教学设计的思考过程, 以及数学教学设计的多样性。
第一节 师范生走向课堂执 教时的困惑
• 平日里觉得十分简单的中学数学知识,怎么到 了课堂却让学生听得一头雾水?
• 特点:边缘性学科,处于数学、教育学、逻辑 学和心理学等学科的“交界”处;实践性很强 的理论学科,是人们把教学过程、学习过程作 为认识过程来深刻分析的成果。这种认识过程 旨在寻求中学生学习数学知识,发展数学思维 的规律以及数学教学过程的特点和规律;发展 中的理论学科,随着社会的发展而不断改进完 善。
数学教育研究的热点问题
• 2000年,在ICME9上,Mogens Niss在《数 学教育研究的主要问题与趋势》中指出: 1960、1970年代以研究教育体制、课程、教 学经验或大规模的课程实验为主,使用统计分 析方法的定量的比较研究较多。到了1970年 代后期,对个别人或少数学生的小型的定性的 研究明显增加,这种研究在1980和1990年代 更加盛行。1980年代之后,受Piaget等心理学 家的影响,解释学生理解的理论及相应的思想 学派变得兴旺起来。
• 随着知识总量的急剧增加,使得一个人终身享 用在学校学习的知识和技能几乎是不可能的。

数学教育概论范文

数学教育概论范文

数学教育概论范文
一、数学教育的历史概况
数学教育的历史可以追溯到古老的文明社会,早在公元前2400年古埃及人便发明了一种进行十进制计算的符号系统,古希腊和古罗马社会曾有多种数学教育活动,如公元前234年,希腊数学家和学者欧几里德就出自希腊学校约克索斯(Jocose),中国古代数学教育活动最早起源于春秋战国时期,以《九章算术》、《周髀算经》为代表,把中国古代数学圈定在算术即定量计算领域。

直至政治的变化才让家庭教育的形式逐渐消失,统一的教育模式和政府监管的教育机构起到作用,到了中国明清时期,数学是提供中学教育课程的基础科目之一,由此可见,数学教育在历史上的地位是十分重要的。

二、数学教育的现状
数学教育的现状主要是高等教育阶段的数学本科和数学类专业研究生阶段,被称作数学教育的重要时期。

随着开放的推进,各种新的数学教育模式也随之出现,如:网络教学、小班教学、小组教学、双师教学、案例教学等。

数学教育概论+课件

数学教育概论+课件
一次函数、二次函数、指数函数、对数函数等基本函数及其性质。
03
02
01
点、线、面等基本概念及其性质。
平面几何
长方体、正方体、球体等基本几何体及其性质。
立体几何
坐标系、向量、向量的运算等基本概念及其性质。
解析几何
随机事件、概率的定义及其计算方法。
数据的收集、整理、描述和分析方法。
统计
概率
03
CHAPTER
探究式教学的定义
探究式教学是一种以探究问题为核心,通过学生自主或合作探究获取知识的教学方法。
合作学习是一种以小组为单位,通过合作互助、共同学习、共同进步的教学方法。
合作学习的定义
强调学生的合作性,通过小组讨论、合作实践等方式,培养学生的合作意识和团队精神。
合作学习的特点
在数学教育中,可以通过合作学习引导学生共同探究数学问题、分享学习经验,提高学习效果。
数学教育概论 课件
汇报人:
202X-12-21
目录
数学教育概述数学基础知识数学教学方法与策略数学教育评价与评估数学教育资源与技术应用数学教育实践与案例分析
01
CHAPTER
数学教育概述
数学教育是使学生掌握数学基础知识、基本技能和数学思维方法的过程,旨在培养学生的数学素养和解决问题的能力。
定义
通过数学教育,使学生掌握数学基础知识,培养数学思维和解决问题的能力,为未来的学习和生活打下基础。
数学教学方法与策略
启发式教学的特点
强调学生的主体性,通过创设问题情境、激发兴趣、引导思考等方式,引导学生主动探索知识。
启发式教学的定义
启发式教学是一种以引导学生主动思考、发现和解决问题为核心的教学方法。
启发式教学的应用

数学教育概论总结[共五篇]

数学教育概论总结[共五篇]

数学教育概论总结[共五篇]第一篇:数学教育概论总结数学教育概论总结数学教育概论(1)一、数学教学中合理地运用数学活动应当具备以下几个特点:1、数学活动应该是现实的、有趣的、富有挑战性的、与学生的生活经验相联系的;2、数学活动应该有助于培养学生实验、观察、猜想、思维的能力3、数学活动应该关注真实的活动;二、数学现实:学生的生活经验和已有的数学知识构成学生的数学现实,它是新知识的生长点。

三、数学教学设计:是为数学教学活动制定蓝图的过程。

完成设计教师需要考虑的方面:1、明确教学目标;2、形成设计意图;3、制定教学过程。

四、教师进行教学设计的目的:是为了达到教学活动的预期目的,减少教学过程中的盲目性和随意性,其最终目的是为了能够使学生更高效地学习,开发学生的学习潜能,塑造学生的健全人格,以促进学生的全面发展。

五、数学教学目标:是设计者希望通过数学教学活动达到的理想状态,是数学教学活动的结果,也是数学教学设计的起点。

1、远期目标:是某一课程内容学习结束里所要达到的目标,也可以是某一学习阶段结束后所要达到的目标。

2、近期目标:是某一课程内容学习过程中,或者某一学习环节结束时所要达到的目标。

3、过程性目标:知识与技能;过程与方法;情感与态度。

六、教学的重点:在学习中那些贯穿全民、带动全面、应用广泛、对学生认知结构起核心作用、在进一步学习中起基础作用和纽带作用的内容。

教学的难点:学生接受起来比较困难的知识点,往往是由于学生的认知能力、接受水平与新老知识之间的矛盾造成的,也可能是学习新知识时,所用到的旧知识不牢固造成的。

教学的关键:对掌握某一部分知识或解决葳个问题能起决定作用的知识内容,掌握了这部分内容。

七、几种教学过程:(一)、数学问题的教学设计:数学问题在数学教学设计中的作用不仅仅是创设出一个数学问题情境,使学生进入“愤”和“悱”的状况,更重要的是为学生的思维活动提供一个好的切入口,为学生的学习活动找到一个好的载体,从而给学生更多的思考、动手和交流的机会。

第1讲数学教育概论

第1讲数学教育概论

第1讲数学教育概论
数学教育概论是一门重要的理论课程,是数学教育学科的基础课程,
它包括数学教育发展的历史、内容概念与教学方法、教育心理学等内容,
为数学教育学科建设和数学教育实践提供基础理论依据。

数学教育发展的历史主要从狄拉克对数学运用抽象思维的概念到现代
数学教育理论的发展,反映了数学教育及其发展的实际情况。

狄拉克认为,数学是抽象思维的研究,其历史也追溯到古希腊,他提出了“建立系统的
数学”,代表着数学教育理论的最初阶段,也是现代数学教育理论发展的
基础。

到20世纪的晚期,数学教育理论及其发展又有了新的变化,数学
教育从一般意义上的“讲授”转变为“活动式”的学习数学。

在这种思想
指导下,数学教育走向更广阔的空间,也更加重视学生自主学习的能力。

数学教育内容概念和教学方法涉及到数学内容的认知,这就引出了数
学教育中的意义概念和内容理论、抽象原理的把握和系统建构、解决问题
的策略和方法以及具体数学技能等内容。

数学教育概论总结

数学教育概论总结

THANKS
感谢看
现代数学教育
当前,数学教育不断改革和创新, 注重培养学生的创新能力和实践能 力,同时强调跨学科整合和个性化 教学。
数学教育的重要性
基础学科
思维能力
数学是自然科学、社会科学和技术领域的 基础学科,掌握数学知识和技能对于个人 的职业发展和国家科技发展至关重要。
数学教育能够培养学生的逻辑思维、抽象 思维和创新思维等能力,有助于提高学生 的智力水平和综合素质。
问题解决能力
个人成长
数学问题解决能力是一种重要的实践能力 ,能够帮助学生解决日常生活和工作中的 实际问题。
通过数学学习,学生可以培养自主学习、 团队协作和克服困难的品质,促进个人成 长和发展。
02 数学教学方法和 技巧
数学教学方法和技巧
• 数学教育是培养学生逻辑思维、问题解决和抽象思维能力的关 键学科。本文将概述数学教育的重要性、教学方法和技巧,以 及面临的挑战和未来发展趋势。
数学教育概论总结
汇报人: 202X-01-07
目 录
• 数学教育概述 • 数学教学方法和技巧 • 数学教育的挑战和解决方案 • 数学教育的发展趋势和未来展望 • 数学教育实践案例分析
01 数学教育概述
数学教育的定义和目标
定义
数学教育是培养学生数学素养和思维 能力的重要途径,通过教授数学知识 、技能和思想,帮助学生建立数学基 础,提高解决问题的能力。
目标
培养学生的数学思维能力、问题解决 能力、推理能力和创新精神,同时促 进学生的智力发展和个人成长。
数学教育的历史和发展
古代数学教育
古代文明时期,数学教育主要作 为学术和实用技能进行传授,如 古埃及、古希腊和古印度的数学
教育。

数学教育概论重点

数学教育概论重点

1.数学观的变化(1)公理化方法、形式演绎仍然是数学的特征之一,但是数学不等于形式。

数学正在走出形式主义的光环。

(2)在计算机技术的支持下,数学注重应用。

(3)数学不等于逻辑,要做“好”的数学。

2. 20世纪我国数学教育观的变化(1)由关心教师的“教”转向也关注学生的“学”;(2)从“双基”与“三力”观点的形成,发展到更宽广的能力观和素质观;(3)从听课、阅读、演题到提倡实验、讨论、探索的学习方式;(4)从看重数学的抽象和严谨到关注数学文化、数学探究和数学应用。

3. 我国影响较大的几次数学教改实验(P38)第三章4.弗赖登塔尔的数学教育理论倡导数学教育研究要像研究数学一样,以科学论文的形式交流研究心得,并有详细文献支持,因而使数学教育研究不再只停留在经验交流的水平上。

5. 数学教育有五个主要特征:(1)情境问题是教学的平台;(2)数学化是数学教育的目标;(3)学生通过自己努力得到的结论和创造是教育内容的一部分(4)“互动”是主要的学习方式;(5)学科交织是数学教育内容的呈现方式。

这些特征可以用三个词加以概括:现实、数学化、再创造(指通过教师精心设计、创造问题情境,学生自己动手实验研究、合作商讨、探索问题的结果并进行组织的学习方式,其核心是数学过程的再现。

)6.现实数学教育所说的数学化有两种形式:(1)实际问题转化为数学问题的数学化(2)从符号到概念的数学化7.波利亚的数学教育观中学数学教育的根本目的是“教会学生思考”。

主动学习。

数学老师必须具备数学内容知识和数学教学法的知识。

9.建构主义的数学教育理论10. 数学知识是什么建构主义学说认为,数学知识并非绝对真理,即不是现实世界的纯粹客观的反映。

数学只不过是人们对客观世界的一种解释、假设或假说,并将随着人们认识程度的深入而不断地变革、升华和改写,直至出现新的解释和假设。

11.儿童如何学习数学数学教学应该符合学生的年龄特征、知识基础以及个性特点,不能不顾教学对象盲目施教。

数学教育概论教学大纲(最新完整版)

数学教育概论教学大纲(最新完整版)

数学教育概论教学大纲(最新完整版)数学教育概论教学大纲教学大纲是规定教学内容及教学方法的指导性文件,以下是数学教育概论的大纲:一、课程基本信息数学教育概论是高等师范院校教师教育类必修课程,具有学科专业性和教育专业性,旨在使学生掌握数学教育的基本理论和实践技能,提高从事小学数学教学和小学数学教育研究工作能力。

二、课程目标1.知识目标:掌握数学教育的基本理论,包括数学课程、教学、评价和管理等方面的知识;了解小学数学教育的特点和方法。

2.能力目标:培养学生从事小学数学教学和小学数学教育研究的能力,包括教学设计、教学实施和教学评价的能力。

3.情感和价值观目标:培养学生热爱教育事业,关注小学数学教育改革和发展,树立正确的教育观念。

三、课程内容和要求1.数学课程与教学的基本理论:包括数学课程的性质和目标、教学内容和要求、教学方法和手段等方面的知识。

2.小学数学教学的基本理论:包括小学数学教学的特点和规律、小学数学教学设计和实施、小学数学教学评价等方面的知识。

3.小学数学教育的实践技能:包括教学设计、教学实施和教学评价等方面的技能。

4.综合实践:结合具体案例,培养学生综合运用所学知识分析和解决小学数学教学问题的能力。

四、教学方法和手段采用讲授、案例分析、课堂讨论等多种教学方法,注重理论联系实际,通过具体案例分析,帮助学生理解和掌握小学数学教育的基本理论和实践技能。

五、课程评估课程评估采用平时作业、课堂讨论、综合实践等形式进行评估。

平时作业包括课后作业和课堂讨论题;课堂讨论题目根据课程内容和学生实际情况进行选择;综合实践包括学生根据所学知识,结合具体案例,撰写小学数学教学设计或教学研究论文。

数学教学大纲表格以下的图表展示了数学教学大纲:章节内容:--::--:第一章数学的概念、数学的意义、数学的应用第二章数学的计算、数学的测量、数学的问题解决第三章数学的推理、数学的概念、数学的计算第四章数学的统计、数学的数据分析、数学的测量第五章数学的几何、数学的空间想象、数学的解析几何数学建模课教学大纲和教案课程名称:数学建模课授课人:张老师课程时长:32学时课程目标:本课程的目标是让学生掌握数学建模的基本概念、方法和应用,能够应用数学建模解决实际问题。

数学教育概论的名词解释

数学教育概论的名词解释

数学教育概论的名词解释数学教育是指为了培养学生数学素养和数学思维能力而开展的教育活动。

它是一门综合性的学科,涉及到数学的知识、方法和思想,同时还包括对学生数学兴趣和学习动机的培养。

因此,数学教育的目标是培养学生在数学方面的基本能力和兴趣,同时也为他们提供未来进一步学习和研究数学的基础。

在数学教育中,有一些关键的概念和术语,它们对于理解和实践数学教育具有重要意义。

以下将对其中一些主要的名词进行解释。

一、数学素养数学素养是指个体使用数学知识和技术解决问题、理解数学概念和思想、进行数学沟通、运用数学方法进行实际活动的能力。

数学素养是数学教育的核心目标,它强调数学的应用性和实践性,培养学生具备灵活运用数学知识解决实际问题的能力。

二、数学思维数学思维是指通过观察、比较、抽象、推理和论证等思维方式,运用数学知识和方法来解决问题、发现规律和创造数学的思维过程。

数学思维是数学教育的核心内容之一,它要求学生具备合理的逻辑推理能力、抽象思维能力、归纳和演绎能力等。

数学思维的培养有助于学生培养独立思考和解决问题的能力。

三、数学教学法数学教学法是指在数学教育中用来传授数学知识和培养数学能力的方法和策略。

数学教学法旨在提高学生的学习效果和学习兴趣,促进他们在数学领域的发展。

常见的数学教学法包括启发式教学法、探究式教学法、问题解决教学法等。

不同的数学教学法适用于不同的教学目标和学生特点,教师应根据实际情况选择合适的教学方法。

四、数学课程设计数学课程设计是指制定和实施数学教学计划的过程。

数学课程设计需要根据学生的学习目标和学习特点,结合教材和教学资源,制定有针对性的教学内容和教学方法。

数学课程设计应注重培养学生的数学思维和解决问题的能力,同时也要考虑到知识的系统性和渗透性,使学生在学习过程中逐步建立起完整的数学知识体系。

五、评价与反馈评价与反馈是指对学生数学学习成果和学习效果进行评估和总结,并提供及时的反馈和指导。

评价与反馈在数学教育中起着重要的引导作用,它可以帮助学生提高学习动机和学习策略,发现自己的学习差距并采取适当的措施进行弥补。

数学教育学概论

数学教育学概论
以三论为核心的课程体系
第一章 数学教育学概论
三论观——背景与观点
数学教师需要更多的知识背景,比如关于学生 的知识、关于课程的知识等。同时在更多的研 究发展下,数学教育领域和范围都扩大了,形 成了以“数学学习论、数学教学论和数学课程 论”为主体框架的数学教育研究体系,因此数 学教育研究对象也就变为:数学学习、数学教 学和数学课程。本教材就是主要以此框架进行 设计编写的。
第一章 数学教育学概论
数学教育研究方法——质的研究方法
指深入观察分析教育现象,对这些现象进行 剖析,并在一定意义上进行解释,从而获得 一定结论,给其他人以启示的研究方法。表 现方式常有:个案分析法,案例分析法等。 优点:能够丰富人们对同一教育现象的认识 与理解; 局限:对教育现象的认识不具有确定性,理 论结果的运用有待于使用者个体的理解。
第一章 数学教育学概论
数学教育研究方法——调查法
根据特定的教育研究目的,制定调查方案,收集有关数 学教育活动的材料,然后进行分析处理,得到一定的结 论的方法。 这种方法从范畴上来说是“实证”的方法。 从方式上来看,可有访谈、问卷和测试等; 优点是:材料真实可信; 局限是:对材料的获取和分析可能因人而异,结论也就 可能实际产生偏差; 因此,运用这种方法,制定合理的调查方案显得很重要, 它必然包含一定的理论假设。横向方向:比较研究 纵向方向:群体研究、个体研究
第一章 数学教育学概论
我国基础教育数学课程改革——机遇与 挑战
我国数学课程改革的有关历史
50年代学习苏联,大容量,小步走; 60年代确立自己的特色:双基(基本知识与基本技能)与三大能力(运
算能力,空间想象能力,逻辑思维能力); 80年代高考制度恢复,我国教育特点恢复、调整、提高,并提出素质教 育口号; 90年代,启动的是新教材的教育实验;90年代末,课程标准的编制 (现在已经完成义务教育,高中课程标准(实验稿)的编写),并实验; 2001年秋季,全国分试验区实验。目前,初中以下基本上全国全面实 施新课程,高中在2005年推广,并计划在2007年全面实施。数学教 育历史悠久,数学是传统教育中重要内容

数学教育概论

数学教育概论

1、简述“新数运动”失败的原因.20世纪60年代新数运动起因:1957年苏联人造卫星早于美国上天,美国朝野震惊.1958年,美国国会通过国防教育法.以布尔巴基学派为代表的数学家发起“新数学"教育改革,又称为“新数运动".当时的思潮是,数学教材内容太陈旧,基本上没有反映20世纪的数学成就,一大批新的数学教材在西方各国涌现,用“新数学”代替“旧数学”的改革运动席卷全球.新数运动的指导思想是:1.增加现代数学内容,如集合、逻辑、群、环、域、向量和矩阵、微积分、概率论、二进制数系等等;2。

强调公理化方法,提倡“布尔巴基"的结构主义;3。

废弃欧几里德几何;4.消减基本运算,用计算器代替基本的运算技能;5。

提倡发现教学法,要求学生像数学家发现定理那样去学习数学.经历了20世纪60年代和70年代,新数运动最终以失败告终.原因:向学生提出了不切实际的要求,教学内容过深过难,学生无法真正理解和接受;同时,基本知识和基本技能未能得到足够的重视,学生的数学基本功不扎实,而高深的数学知识又难以学懂.(接着,国际数学教育界提出了“回到基础”)2、如何理解“基础”与“创新"的关系。

万丈高楼平地起。

做任何事情,基础总是重要的。

我国的数学教育,一向注重“双基"的教学,即关注学生的“数学基础知识”和“数学基本技能”的培养。

那么,打好基础又是为了什么呢?当然是为了发展和创造.缺乏基础的创新是空中阁楼,没有创新指导的打基础是傻练。

因此,优质的数学教育,必须是给学生打下扎实的基础,并且能够培养学生的创新精神,才能获得完美的个性发展。

(基础=四基:基本知识,基本技能,基本思想,基本活动经验。

创新=技巧)3、教学设计的三要素.教案三要素——完成数学教学设计需要考虑三方面的问题➢明确教学目标【教学目标】➢形成设计意图➢制定教学过程4、教学过程的基本环节有哪些?教学模式(一堂公开课)(1)创设情境,引入课题;(2)合作探究,发现定理;(3)解决问题,应用定理;(4)动手练习,自主探究;(5)梳理知识,形成系统;(6)分层作业,因材施教。

《数学教育概论绪论》课件

《数学教育概论绪论》课件

反思性教学
教师对自己的教学实践进 行反思,总结经验教训, 提高教学质量。
数学教育的改革与发展
数学课程改革
针对不同年龄段的学生制定相应 的数学课程大纲和教材,注重培
养学生的数学素养和能力。
教育信息化
利用信息技术手段改进教学方式, 提高教学效果和学生学习体验。
教师专业发展
加强教师培训和学术交流,提高教 师的专业素养和教育水平。
目的
通过研究数学教育概论,旨在培养学生对数学教育的全面认识和理解,提高其 从事数学教育工作的能力和素质。同时,为进一步研究数学教育提供理论支持 和实践指导。
数学教育概论的发展历程
发展历程
数学教育概论作为一门学科经历了漫长的发展过程。从古代的数学教育实践到现代的数学教育研究, 人们对数学教育的认识不断深化。随着教育理论和实践的不断进步,数学教育概论的内容和方法也在 不断更新和完善。
数学教育的特点
数学教育具有基础性、系统性、实践性、严谨性等特点,强调对基本概念、原理 和方法的掌握,注重培养学生的逻辑思维、抽象思维和创造性思维。
数学教育的目标与任务
数学教育的目标
数学教育的目标是培养学生的数学素养,使其具备运用数学 知识解决实际问题的能力,同时提高学生的思维品质、创新 能力和终身学习的意识。
REPORTING
VS
教育目标与数学教育
教育学中的教育目标,如知识、技能、态 度等,为数学教育提供了指导。数学教育 需要关注学生的全面发展,不仅教授数学 知识,还要培养学生的思维能力、问题解 决能力等。
心理学基础
认知心理学与数学教育
认知心理学关注个体如何获取、存储 、处理和运用知识,为数学教育提供 了理论支持。教师需要了解学生的认 知过程,以便更好地设计教学策略和 评估学生的学习效果。

数学教育概论 ppt课件

数学教育概论 ppt课件

《九章算术》
经过张苍(约公元前200年)和耿寿昌(约公元前50年))整理成书, 是我国现存最早的数学著作
应用问题集的形式,全书共九章,共246个问题,每个问题有问、答 案,每类问题还有算法(“术”),全书共202个“术”。但既无任何 数学概念的定义,也无任何推导和证明;(方田、粟米、衰分、少广、 商功、均输、盈不足、方程、沟股)
1、中国数学教育的发展; 外国数学教育的发展;(两个方面) 2、古代、近代、现代(时间顺序)
中国历史发展顺序:
古代:夏、商、周(西周、东周——春秋、 战国);秦、汉、三国、晋;南北朝、 隋、唐、五代、宋、辽、金、元、明、 清(初、中)
近代:(清末,1840年第一次鸦片战 争——1919“五四运动”)
现代:(1919——) 中华民国、中华人民共和国
1、中国数学教育的发展
(一)、古代数学教育: 1、我国古代数学教育萌芽于夏商时期,形成于西周 商朝:河南出土的甲骨文中有13个数字,最大的数为
三万)这是早期传授十进制计数法的数学教育痕迹; 西周:当时的教学科目“六艺”(礼、乐、射、御、书、
对数学教育的认识:
一、数学教育的含义; 二、数学教育的研究对象; 三、数学教育的发展综述; 四、数学教育发展趋势; 五、现代数学教育观; 六、国际视野下的中国数学教育;
一、数学教育的含义
讨论:什么是“数学教育”?
什么是“教育数学”?
● 数学教育的含义: 广义:传播数学知识、数学技能的教育活动 狭义:在中小学进行数学教学的教育活动。
数)——把数学作为一种技艺来传授;官府兴办学校
(官学),数学是其中的一门学科;周朝创造了筹算 (世界上最早最优秀的计算工具),形成了我国独具 特色的算法数学教育体系,该体系在15世纪以前,长 期处于世界领先地位。(奴隶社会)

《数学教育概论》张奠宙宋乃庆

《数学教育概论》张奠宙宋乃庆

《数学教育概论》张奠宙宋乃庆
《数学教育概论》是由张奠宙、宋乃庆合著的一本数学教育方面的著作。

本书主要介绍了数学教育的基本概念、理论框架、发展历程以及教学方法和评价体系等内容。

接下来将从书籍内容、特点以及我的感受等方面进行详细的阐述。

首先,本书的内容涵盖了数学教育的各个方面。

在教育理论方面,书中介绍了数学教育的定义、目标以及与其他学科教育的关系。

在教学内容方面,书中对数学教育的核心概念、基本原理以及学科发展动态进行了详细的阐述。

在教学方法方面,书中介绍了数学教学的基本方法、实践探索以及教学评价等内容。

最后,书中还讨论了数学教育的未来发展趋势以及国际化的交流与合作等问题。

最后,阅读《数学教育概论》使我对数学教育有了更深入的认识。

通过学习这本书,我了解到数学教育不仅是一门学科的教育,更是一种思维方式的培养和发展。

数学教育通过培养学生的逻辑思维能力、问题解决能力以及创新意识等方面,对学生的全面发展起到了重要的推动作用。

总之,《数学教育概论》是一本对数学教育进行系统介绍和分析的重要著作。

它深入剖析了数学教育的基本概念和理论框架,介绍了数学教育的发展历程和未来趋势,并提供了一些实用的教学经验和方法。

这本书的阅读对于从事或有兴趣从事数学教育的教师和学生来说,都具有一定的参考价值。

数学教育概论考点

数学教育概论考点

数学教育概论考点数学教育概论是培养学生数学素养的过程中的一门重要课程。

通过学习数学教育概论,可以帮助学生了解数学知识与数学学科的重要性、发展历史、特点和意义,并提供一种方法论,帮助学生构建数学知识的框架,培养他们的数学思维和解决问题的能力。

以下是数学教育概论的重要考点。

一、数学的定义、性质和发展历史。

数学是一门研究数量、结构、变化和空间等概念与现象的学科。

它具有抽象性、严谨性和普遍性等特点,是人类思维的一种重要方式。

了解数学的定义和性质,以及数学发展的历史,有助于学生理解数学的内涵和发展趋势。

二、数学教育的意义和目标。

数学教育是培养学生科学素养和创新能力的重要途径之一、了解数学教育的意义和目标,帮助学生理解数学教育的重要性和必要性。

三、数学教育的原则和方法。

数学教育的原则包括启发性原则、巩固性原则、系统性原则和亲和性原则等。

数学教育的方法包括讲授法、研究法、实验法和讨论法等。

理解数学教育的原则和方法,有助于学生改进学习方法,提高学习效果。

四、数学教育的评价和评价工具。

数学教育的评价应该是多元化、全面性和客观性的。

评价工具包括作业、考试、实验报告、小组讨论和口头报告等。

了解数学教育的评价和评价工具,有助于学生对自己的学习情况进行反思和改进。

五、数学教育的发展现状和问题。

了解国内外数学教育的发展现状和问题,有助于学生对数学教育的现实情况有更深入的了解,也有助于学生思考如何改进和创新数学教育的方法。

六、数学教育的结构和内容。

数学教育的结构包括初等数学教育、中等数学教育和高等数学教育等。

数学教育的内容包括数学的基本概念、运算规则、问题解决方法和数学应用等。

了解数学教育的结构和内容,有助于学生对数学知识有系统的了解和掌握。

七、数学教育的创新和发展趋势。

数学教育需要不断创新和发展,以适应社会进步和个体需求的变化。

了解数学教育的创新和发展趋势,有助于学生构建学习的长远发展规划。

总之,数学教育概论是数学教育的基础性课程,通过深入学习数学教育概论的相关知识,可以帮助学生全面了解数学教育的内涵和要求,提高数学学科的学习兴趣和学习效果,为未来深入学习和应用数学打下坚实的基础。

868数学教育概论

868数学教育概论

数学教育概论是一门研究数学教育基本理论、原则和方法的学科,旨在为数学教育实践提供科学依据,促进数学教育的健康发展。

在本文中,我们将探讨数学教育概论的重要性、历史发展、基本原理、教育目标以及实践应用等方面。

首先,数学教育概论的重要性不言而喻。

它不仅是数学教育工作者的重要参考,也是广大数学教师和教育研究者必备的基本素养。

通过学习数学教育概论,我们可以深入了解数学教育的本质和规律,掌握数学教育的原则和方法,为提高数学教育质量提供有力支持。

回顾数学教育的发展历程,我们可以发现其经历了漫长而复杂的过程。

在古代,数学教育主要是通过师徒传承和书本传授等方式进行。

随着时代的发展,数学教育的形式和方法也不断变革,如计算机技术的应用、课程内容的更新等。

这些变革为数学教育带来了新的机遇和挑战,同时也推动了数学教育理论的发展和完善。

在数学教育概论中,基本原理是不可或缺的一部分。

它包括但不限于学生的认知发展、学习动机、学习策略、教师角色等。

这些原理是数学教育实践的基础,只有深入理解和运用这些原理,才能有效地提高数学教育的效果和质量。

同时,我们也需要关注数学教育的多元化和个性化,尊重学生的个体差异,为每个学生提供适合他们的教育方式。

数学教育的目标应该是培养具有创新精神和实际应用能力的人才。

为此,我们需要关注学生的数学素养、问题解决能力和创新意识的培养。

在教学过程中,我们需要注重学生的主体地位,激发他们的学习兴趣和主动性,同时注重教学方法的多样性和灵活性,以满足不同学生的需求。

在实践中,数学教育概论的应用也非常广泛。

首先,我们可以运用数学教育概论的理论和方法来评估教学质量和效果,发现问题并及时调整教学策略。

其次,我们可以借鉴数学教育概论中的研究成果和实践经验,为解决实际问题提供参考和借鉴。

最后,我们可以通过开展数学教育研究和实践,不断推动数学教育的创新和发展。

总之,数学教育概论是一门重要的学科,它为我们提供了深入了解数学教育的基本理论、原则和方法的机会。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数学教育概论》复习资料第二章与时俱进的数学教育1,数学发展史上的四个高峰:①以《几何原本》为代表的古希腊的公理化数学(公元前700-300)(严密性);②以牛顿发明微积分为代表的无穷小算法数学(17-18世纪中叶)(有用性);③以希尔伯特为代表的现代公理化数学(19-20世纪中叶)(形式化);④以现代计算机技术为代表的信息时代数学(20世纪中叶-今天)2,四个数学发展阶段,显示出“数学应用”和严密的“公理化”这两种思潮是交互出现的:①古希腊“公理化”时期;②牛顿的不严密的无穷小算法时期;③希尔伯特的严密的现代公理化时期;④信息时代的计算机算法时期。

3,核心数学的发展趋势至少有以下特点:①从线性到非线性,混沌、分形、动力系统等研究迅速发展;②从交换到非交换,矩阵、算子的乘法都是不可交换的;③从一维数学到高维数学,特别是四维和无穷维;④随机数学和确定性数学、离散和连续、局部性质和整体性质间的对立与整合。

4,数学观的变化:①公理化方法、形式演绎仍然是数学的特征之一,但是数学不等于形式;②在计算机技术的支持下,数学注重应用;③数学不等于逻辑,要做“好”的数学。

5,20世纪我国数学教育观发生了哪些变化?①由关注教师“教”转向关注学生的“学”;②从“双基”与“三大能力”观点的形成,发展到更宽广的能力观和素质观;③从听课、阅读、演题,到提倡试验、讨论、探索的学习方式;④从看重数学的抽象和严谨,到关注数学文化、数学探究和数学应用。

第三章数学教育的基本理论1,弗赖登塔尔的数学教育理论1)弗赖登塔尔所认识的数学教育主要特征是什么?①情境问题是教学的平台;②数学化是数学教育的目标;③学生通过自己的努力得到的结论和创造是教育内容的一部分;④“互动”是主要学习方式;⑤学科交织是数学教育内容的呈现方式。

(概括:现实、数学化、再创造)2)现实:弗赖登塔尔认为,数学是来源于现实,存在于现实,并且应用于现实,而且每个学生有各自不同的“数学现实”。

数学教育即是现实的数学教育。

3)在运用“现实的数学”进行教学时必须明确什么?第一、数学的概念,数学的运算、法则,以及数学的命题,都是来自于现实世界的实际需要而形成的,是现实世界的抽象反映和人类经验的总结。

第二、数学研究的对象是现实世界同一类食物或抽象而成的量化模式。

第三、社会需要的人才是多方面的,不同层次、不同专业所需的数学知识不尽相同。

4)数学化:人们在观察、认识和改造客观世界的过程中,运用数学的思想和方法来分析和研究客观世界的种种现象并加以整理和组织的过程,就叫做数学化。

说简单点,数学地组织现实世界的过程就是数学化。

5)数学化的形式:1)实际问题转化为数学问题的数学化;2)从符号到概念的数学化6)再创造:学生“再创造”学习数学的过程实际上就是一个“做数学”的过程,这是目前数学教育的一个重要观点。

它强调学生学习数学是一个经验、理解和反思的过程,强调以学生为主体的学习活动对学生理解数学的重要性,强调激发学生主动学习的重要性,并认为做数学是学生理解数学的重要条件。

弗赖登塔尔说的“再创造”,其核心是数学过程再现。

2,波利亚的数学教育观中学数学教育的根本目的是“教会学生思考”,“教会学生思考”意味着数学教师不只是传授知识,还应努力发展学生运用所学知识的能力,他应该强调技能、技巧、有益的思考方式和理想的思维习惯。

而为了教会学生思考,教师在教学时,要遵循学习过程的三个原则,即主动学习,最佳动机,循序渐进。

(主动学习,“学习的东西最好方式是发现它。

”;最佳动机,为了使学习富有成效,学生应该对学习倍感兴趣并且在学习活动中寻求欢乐;循序渐进,学习过程是从行动和感知开始的,进而发展到词语和概念,以养成合理的思维习惯而结束。

)3,建构主义的数学教育理论1)建构主义主要观点:1)知识不是通过感官或交流被动获得的,而是通过认识主体的反省抽象来主动建构的;2)有目的的活动和认知结构的发展存在着必然的联系;3)儿童是在与周围环境相互作用的过程中,逐步建构起关于外部世界的知识,从而使自身认知结构得到发展。

2)数学知识是什么:数学知识并非绝对真理,即不是现实的纯粹客观的反映。

数学只不过是人们对客观世界的一种解释、假设或假说,并将随着人们认识程度的深入而不断地改革、升华和改写,直至出现新的解释和假设。

3)学生如何学习数学?1)学习不是由教师把知识简单地传递结学生,而是由学生自己建构知识的过程。

2)学习不是被动接收信息刺激,而是主动地建构意义,是根据自己的经验背景,对外部信息进行主动地选择、加工和处理,从而获得自己的意义。

3)学习意义的获得,是每个学习者以自己原有的知识经验为基础,对新信息重新认识和编码,建构自己的理解。

4)建构主义指导下的课堂教学的基本假设1)教师必须建立学生理解的数学模式。

教师应该建立反映每个同学建构状况的“卷宗”,以便判定每个学生建构能力的强弱;2)教学是师生、生生之间的互动;3)学生自己决定建构是否合理。

5)数学教室在建构主义的课堂上要做的六件事:1)加强学生的自我管理和激励他们为自己的学习负责;2)发展学生的反省思维;3)建立学生建构数学的“卷宗”;4)观察与参与学生尝试、辨认与选择解题途径的活动;5)反思与回顾解题途径;6)明确活动、学习材料的目的。

●为了适应建构主义指导下的数学教学,教师必须理解学生的数学现实、理解人类思考数学的现实、理解教学现实。

4,数学的“双基”:数学的基础知识和基础技能。

第四章数学教育的核心内容1,数学教学原则概括:1)学习数学化原则:数学化是弗赖登塔尔提出来的,“与其说学习数学,不如说学习数学化”,正确设定教学目标,突出所教内容的数学本质,显示课程所具有的数学价值,数学化和数学建模有密切关系,数学化是从数学整体出发学习数学,数学化能力是由数学的抽象、形式化的语言特征决定的一种特殊能力。

2)适度形式化原则:形式化是数学的特征。

希尔伯特提出形式主义数学哲学观。

数学的形式化包括“符号化、逻辑化和公理化”,数学是符号化的形式化语言,数学符号化是数学形式化的基础,数学教学的重要目标是会使用符号。

3)问题驱动原则:“问题是数学的心脏。

”问题是贯穿数学教学活动的一条主线,是学生学习数学的驱动之一。

4)渗透数学思想方法原则:数学思想是一种隐性的数学知识,要在反复的体验和实践中才能使个体逐步认识、理解、内化为个体认知结构。

总之,在数学教学中注意内容的彼此关联,努力渗透并提炼数学思想方法,是我们应当努力运用的原则。

2,数学能力观的变化形式主义数学观影响下的数学能力观:从苏联克鲁捷茨基的《中小学生数学能力心理学》中的九大能力,总起来就是“形式化”的抽象能力、记忆能力和推理能力。

它没有包括数学建模、数学应用的能力,显然这是在数学形式主义观下进行数学能力的考察;到我国“三大能力”:数学运算能力、空间想象能力、逻辑思维能力。

20世纪90年代以来我国数学能力观的变化:国家整体上提倡“素质教育”和“创新教育”,中国数学界强调数学应用的重要性,社会进步把数学教育带入了计算机时代。

1992年继续提出三大能力,但是加上了“用所学知识解决简单的实际问题”;1996年,将“逻辑思维能力”改成“思维能力”;1997年以后创新教育口号极大促进数学能力研究;同时20世纪80年代徐利治提出“建立数学建模”的方法,戴再平“开放题数学教学”等等。

21世纪以后,国内外关于数学能力的提法变化:2000年美国数学教师协会发布《数学课程标准》,提出六项能力,2002年颁布的《全日制普通高级中学数学教学大纲》在数学能力发面有了更细致的描述。

3,论述数学思想方法的四个层次。

第一类基本的和重大的数学思想方法●形式和内容是一对哲学范畴。

世间万物都有自己的物质运动形式,或者物理运动,或者化学运动,或者社会运动等等。

●运动与静止也是一对哲学范畴,它的数量化就是常量数学和变量数学。

●偶然与必然。

这对哲学范畴的数量化,形成了确定性数学和随机性数学。

●现象与本质。

人和物体内都有现象和本质两个方面。

●原因与结果。

世界上万物都有一定的因果关系。

●其他如精确与近似(计算数学),整体与局部(函数的整体性质与局部性质),同一与差异(模糊数学)等等,都是考察重大数学思想方法的视角。

第二类与一般科学方法相应的数学方法●分析与综合。

对一个事物进行分析,首先要进行分类。

数学的分类强调“不重不漏”。

●归纳与演绎。

数学是一门演绎的科学,主要是运用演绎的论证,达到数学的真理性。

●其他如观察、类比、联想等一般科学方法,都可以用于数学。

数学也有实验,多半是思想实验,即假定某条件.那么会有某结果,因而可以达到目的或者否定命题。

第三类数学中的特有的方法●最重要公理化方法:欧式几何公理体系是公理化方法的典范。

自然数公理、实数系公理、复数系公理也都是大家熟知的。

●最常用化归方法:即把需要证明的结果经过逻辑和等价的变化,化结为已知的事实。

●数形结合和转换●方程思想●概率统计方法:第四类中学数学中的解题方法第一步判断问题的类型,找出问题的数学核心所在。

第二步掌握一些基本的原则。

包括:(1)模型化原则。

(2)简单化原则。

(3)等价变换的原则(即化归方法)。

(4)映射反演原则(RMI)(即数形结合)。

(5)逐次逼近原则。

第三步选择适当的技巧。

包括围于分解方法,配方法,待定系数法,换元法,降维法和消元法,不等式的放大缩小法,参数方法,枚举法.计数方法等等。

4,什么是基本数学活动经验?在数学目标的指引下,通过对具体事物进行实际操作、考察和思考,从感性向理性飞跃时所形成的认识。

数学活动经验的积累过程是学生主动探索的过程。

5,数学活动经验的特征:1)数学活动经验是具有数学目标的主动学习的结果;2)数学经验专指对具体、形象的事物进行具体操作和探索所获得的经验,以区别于广义的抽象数学思维所获得的经验;3)数学经验是人们的“数学现实”最贴近现实的部分;4)学生积累的丰富的数学活动经验,需要和探索性学习联系在一起,使其善于发现日常生活中的数学问题,提出问题,解决问题。

6,基本数学活动经验的类型1)直接数学活动经验:直接联系日常生活经验的数学活动所获得的经验;2)间接数学活动经验:创设实际情境构建数学模型所获得的数学经验;3)专门设计的数学活动经验:有纯粹的数学活动所获得的数学经验;4)意境联结性数学活动经验:通过实际情境与意境的沟通,借助想象体验数学概念和数学思想的本质。

7,积累数学活动经验的教学策略1)教学活动应该成为数学学习的有机组成部分,不能可有可无;2)数学活动来源于日常生活,但是高于日常生活;3)拓展生活现实领域,扩大数学经验的范围。

8,几种基本的数学教学模式1)讲授式教学模式五个教学环节:组织教学、引入新课、讲授新课、巩固练习、布置作业。

相关文档
最新文档