线性代数练习题答案三

合集下载

上海交通大学 线性代数教材 课后答案 习题3

上海交通大学 线性代数教材 课后答案 习题3

习 题 三 (一)1.求下列矩阵的特征值与特征向量.(1)133353331A ⎛⎫ ⎪=--- ⎪ ⎪⎝⎭答案特征值为2,1321-===λλλ(二重)对应的特征向量. 1111c ⎛⎫ ⎪- ⎪ ⎪⎝⎭,23231110,,01c c c c --⎛⎫⎛⎫⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭为不同时为零的任意常数.(2)212533102A -⎛⎫⎪=- ⎪ ⎪--⎝⎭答案特征值为1231λλλ===-(三重)对应的特征向量. 11,1k k -⎛⎫⎪- ⎪ ⎪⎝⎭为任意非零常数. (3) 563101121A -⎛⎫ ⎪=- ⎪ ⎪⎝⎭答案特征值为1232λλλ===(三重)对应的特征向量. 12122110,,01c c c c -⎛⎫⎛⎫⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭为不同时为零的任意常数. (4) 222214241A -⎛⎫⎪=-- ⎪ ⎪-⎝⎭答案特征值为1236,3λλλ=-==(二重).对应的特征向量分别为:112,2k ⎛⎫ ⎪ ⎪ ⎪-⎝⎭232210,01k k -⎛⎫⎛⎫⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭1k 为任意非零常数,23,k k 为不同时为零的任意常数。

(5) 322010423A -⎛⎫⎪=- ⎪⎪-⎝⎭答案特征值为1231,1λλλ===-(二重) 。

对应的特征向量分别为. 110,1k ⎛⎫ ⎪ ⎪ ⎪⎝⎭231120,02k k -⎛⎫⎛⎫⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭1k 为任意非零常数,23,k k 为不同时为零的任意常数。

(6) 0100100000010010A ⎛⎫ ⎪⎪= ⎪- ⎪-⎝⎭答案特征值为121λλ==-(二重) 341λλ==(二重) 。

对应的特征向量分别为. 120101,1010k k -⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭340101,1010k k ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪+ ⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭12,k k 为不同时为零的任意常数,34,k k 为不同时为零的任意常数。

线性代数第三章习题及答案

线性代数第三章习题及答案

习 题 3-11.设)1,0,2(-=α,)4,2,1(-=β,求32-αβ.解:)11,4,8()8,4,2()3,0,6()4,2,1(2)1,0,2(323--=---=---=-βα 2.设)4,3,2,1(=α,)3,4,1,2(=β,且324+=αγβ,求γ. 解:由324+=αγβ得αβγ232-= 所以)0,27,1,25()6,29,3,23()6,8,2,4()4,3,2,1(23)3,4,1,2(2-=-=-=γ。

3.试问下列向量β能否由其余向量线性表示,若能,写出线性表示式:(1))1,2(-=β,)1,1(1=α,)4,2(2-=α;(2))1,1(-=β,)1,1(1=α,)1,0(2=α,)0,1(3=α; (3))1,1,1(=β,)1,1,0(1-=α,)2,0,1(2=α,)0,1,1(3=α;(4))1,2,1(-=β,)2,0,1(1=α,)0,8,2(2-=α,0α(5)),,,(4321k k k k =β,)0,0,0,1(1=e ,)0,0,1,0(2=e ,)0,1,0,0(3=e ,)1,0,0,0(4=e . 解:(1)设2211ααβx x +=,即)4,2()4,2()1,1()1,2(212121x x x x x x -+=-+=-从而⎩⎨⎧-=-=+14222121x x x x ,解得⎪⎩⎪⎨⎧==21121x x所以β能由21,αα线性表示,表示式为2121ααβ+=。

(2)设332211αααβx x x ++=,即),()0,1()1,0()1,1()1,1(2131321x x x x x x x ++=++=-从而⎩⎨⎧-=+=+112131x x x x ,有无穷解⎪⎩⎪⎨⎧-=--==cx c x cx 11321所以β能由321,,ααα线性表示,表示式不唯一,为321)1()1(αααβc c c -+--+= (c 为任意常数)(3)设332211αααβx x x ++=即)2,,()0,1,1()2,0,1()1,1,0()1,1,1(213132321x x x x x x x x x +-++=++-=从而⎪⎩⎪⎨⎧=+-=+=+1211213132x x x x x x ,因为010********≠=-,所以有唯一解,解为⎪⎩⎪⎨⎧===011321x x x所以β能由321,,ααα线性表示,且表示式为3210αααβ⋅++=(4)设2211ααβx x +=,即)2,8,2()0,8,2()2,0,1()1,2,1(222121x x x x x x -+=-+=-从而⎪⎩⎪⎨⎧-==-=+1228121221x x x x ,由②,③式得211-=x ,412-=x 代入①式11)41(221≠-=-⋅+-所以该方程组无解, 即β不能由21,αα线性表示。

线性代数考试题及答案3

线性代数考试题及答案3

2009-2010学年第一学期期末考试 《线性代数》试卷 答卷说明:1、本试卷共6页,五个大题,满分100分,120分钟完卷。

2、闭卷考试。

评阅人:_____________ 总分人:______________ 一、单项选择题。

(每小题3分,共24分) 【 】1.行列式=----3111131111311113 (A)0 (B) 1 (C) 2 (D)3 【 】2.设A 为3阶方阵,数2-=λ,3=A ,则=A λ (A) 24 (B) 24- (C) 6 (D) 6- 【 】3.已知,,B A 为n 阶方阵,则下列式子一定正确的是 (A)BA AB = (B)2222B)(A B AB A ++=+ (C)BA AB = (D) 22))((B A B A B A-=-+ 【 】4.设A 为3阶方阵, 0≠=a A ,则=*A (A) a (B) 2a (C) 3a (D) 4a【 】5.设矩阵A 与B 等价,则有__________________系__________专业___________班级姓名_______________学号_______________………………………………(密)………………………………(封)………………………………(线)………………………………(C) )()(B R A R = (D) 不能确定)(A R 和)(B R 的大小【 】6.设n 元齐次线性方程组0=Ax 的系数矩阵A 的秩为r ,则0=Ax 有非零解的充分必要条件是(A) n r = (B) n r ≥ (C) n r < (D) n r >【 】7. 向量组)2(,,,21≥m a a a m 线性相关的充分必要条件是(A) m a a a ,,,21 中至少有一个零向量(B) m a a a ,,,21 中至少有两个向量成比例(C) m a a a ,,,21 中每个向量都能由其余1-m 个向量线性表示(D) m a a a ,,,21 中至少有一个向量可由其余1-m 个向量线性表示【 】8. n 阶方阵A 与对角阵相似的充分必要条件是(A)n A R =)( (B)A 有n 个互不相同的特征值(C)A 有n 个线性无关的特征向量 (D)A 一定是对称阵二、填空题。

修订版-线性代数习题三答案

修订版-线性代数习题三答案

第三章 线性方程组一、温习巩固1. 求解齐次线性方程组⎪⎩⎪⎨⎧=-++=--+=-++05105036302432143214321x x x x x x x x x x x x解: 化系数矩阵为行最简式⎪⎪⎪⎭⎫⎝⎛−−→−⎪⎪⎪⎭⎫ ⎝⎛----=000001001-0215110531631121行变换A因此原方程同解于⎩⎨⎧=+-=023421x x x x 令2412,k x k x ==,可求得原方程的解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=1001001221k k x ,其中21,k k 为任意常数。

2. 求解非齐次线性方程组⎪⎩⎪⎨⎧=+=+-=-+8311102322421321321x x x x x x x x解:把增广矩阵),(b A 化为阶梯形⎪⎪⎪⎭⎫⎝⎛−−→−⎪⎪⎪⎭⎫ ⎝⎛---−−→−⎪⎪⎪⎭⎫ ⎝⎛--=-6-000341110-08-3-318031110213833180311102132124),(21行变换r r b A因此3),(2)(=<=b A R A R ,所以原方程组无解。

3. 设)1,2,1,3(),1,1,2,3(--=--=βα。

求向量γ,使βγα=+32。

解:⎪⎭⎫ ⎝⎛--=-=31,0,35,3)2(31αβγ 4. 求向量组123(1,1,2,4),(0,3,1,2),(3,0,7,14),T T T ααα=-==4(1,1,2,0),T α=-T )6,5,1,2(5=α的秩和一个极大线性无关组。

解:将51,ααΛ作为列向量构成矩阵,做初等行变换⎪⎪⎪⎪⎪⎭⎫⎝⎛--→⎪⎪⎪⎪⎪⎭⎫⎝⎛--→⎪⎪⎪⎪⎪⎭⎫⎝⎛--=4400000000101102130124220101103033021301601424527121103121301A 所以向量组的秩为3,421,,ααα是一个极大线性无关组。

二、练习提高 ⒈ 判断题⑴ 初等变换总是把方程组变成同解方程组,这也是消元法的理论基础。

线性代数试卷及答案3套

线性代数试卷及答案3套

《线性代数》(A 卷 共四页)一.填空或选择填空(共30分,每小题3分)1.设],,,[A 432γγγα=,],,,[B 432γγγβ=,其中432,,,,γγγβα均为四维列向量. 已知4|A |=,1|B |=,则_____|B A |=+.2.设A 为)(m n m n >⨯矩阵,S 为n 阶可逆矩阵,且r r =)A (,)SA (r 1r =,则( ). A r r m >>1B m r r >>1C m r =1D r r =13.四维列向量组 T1]4,2,1,1[-=α,T2]2,1,3,0[=α,T3]14,7,0,3[=α,T 4]0,2,1,1[-=α的秩为_______,一个极大无关组为_____________.4.齐次线性方程组0=AX 有非零解的充分必要条件是( ). A A 的列向量组线性无关 B A 的行向量组线性无关 C A 的列向量组线性相关 D A 的行向量组线性相关5.设T1]0,2,1[=α,T2]1,0,1[=α都是三阶方阵A 的属于特征值12=λ的特征向量,而T]2,2,1[--=β,则______________=βA .6.设2=λ为可逆矩阵A 的一个特征值,则12A 31-⎪⎭⎫⎝⎛有一个特征值为_____=μ.78.下列矩阵中不与对角矩阵相似的是( ).A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡600540321B ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡653542321C ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡200020012D ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡200010012 9.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=001010100A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=100010001B ,则A 与B ( ). A 合同但不相似 B 合同且相似 C 不合同但相似D 不合同且不相似10.设实二次型312322213212),,(x cx ax bx ax x x x f +++=,当( )时,该二次型为正定二次型.A 0,0>+>c b aB 0,0>>b aC 0|,|>>b c aD 0,||>>b c a 二.计算下列行列式(共12分,每小题6分)1.67412120603115124-----=D ;2.111122111n nn a a a a a a D ---=+(空白处元素全为0).三.计算(共20分,每小题10分) 1.设A 为可逆矩阵,且B AB A +=-1*.1) 求证B 为可逆矩阵;2) 当⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=200620062A 时,求矩阵B . 2.求解如下线性方程组;若有无穷多解,请用其特解与导出组的基础解系联合表出通解.四.(18分)求一个正交替换SY X =,将如下实二次型化为标准形.32312123222132184422),,(x x x x x x x x x x x x f ++---=.五.(5分)求证秩为r 的实对称矩阵可以写成r 个秩为1的实对称矩阵之和.《线性代数》(B 卷)一.填空与选择(30分,每小题3分)1.设d a a a a a a a a a =333231232221131211,则=------333232213123222221211312121111432432432a a a a a a a a a a a a a a a ________.2.=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-10057002311003200______________________.3.设B A ,均为n 阶方阵,则有( ).A )B ()A ()B A (r r r +=+ B )B ()A ()AB (r r r =C )B ()A (B O O A r r r +=⎥⎦⎤⎢⎣⎡D )B ()A (B O O A r r r =⎥⎦⎤⎢⎣⎡ 4.设向量组4321,,,αααα线性无关,则14433221,,,αααααααα++++的秩为______.5.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----13222123a 与⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡λ00020002相似,则=λ______,=a ______. 6.设33⨯A 的全体特征值为3,2,1-,则( )为可逆矩阵.A A E -B E A 2+C E A 2-DE A 3-7.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100110111A 为线性变换σ在基321,,:(I)ξξξ下的矩阵,则σ在基321211,,:(II)ξξξξξξ+++下的矩阵为=B _______________.8.设T ]2,1[是实对称矩阵A 的特征向量,且0|A |<,则( )也是A 的特征向量.A R ∈k k ,]2,1[T B R ∈-k k ,]1,2[T 非零 C R ∈-+21T2T 1,,]1,2[]2,1[k k k k 不全为零D R ∈-+21T2T 1,,]1,2[]2,1[k k k k 全不为零9.实二此型32312123222132182292),,(x x x x x x x x x x x x f +++++=有标准形( ).A 23222192y y y ++ B 23222192y y y -+ C 23222192y y y -- D 2221y y +10.设B A ,均为n 阶正定矩阵,则( )不一定是正定矩阵.A B A + B BA AB + C ABA D ⎥⎦⎤⎢⎣⎡B O O A 二.(28分,前3小题各6分,第4小题10分)1.计算n 阶行列式(3≥n )0221202122011110 =n D .2.设n 阶方阵A 满足O E A A A =+--43223,求证E A 2-可逆,并求1)2(--E A .3.求向量组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=6211α,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=2102α,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=3013α,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=4234α的一个极大无关组,并用该极大无关组线性表示向量组中其他向量.。

线性代数第三章习题与答案(东大绝版)

线性代数第三章习题与答案(东大绝版)

第三章 习题与答案 习题 A1.求向量123(4,1,3,2),(1,2,3,2),(16,9,1,3)T T T=--=-=-ααα的线性组合12335.+-ααα 解 12341161293535331223⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+-=+- ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ααα1251613109491512561037⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪=+-= ⎪ ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭. 2.从以下方程中求向量α1233()2()5()-++=+αααααα,其中123(2,5,1,3),(10,1,5,10),(4,1,1,1).TT T ===-ααα 解 由方程得1233322550-++--=αααααα,1232104651112632532515118310124⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=+-=+-= ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭αααα故1234⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭α,即(1,2,3,4)T =α.3.求证:向量组12i s α,α,,α,α 中的任一向量i α可以由这个向量组线性表出. 证 120010(1,2,,)i i s i s =+++++= ααααα4.证明: 包含零向量的向量组线性相关.证 设向量组为1211α,α,,α,0,α,,αi i s -+ ,则有12110α0αα00α0α0,0i i s k k -++++++++=≠而0,0,,0,,0,,0k 不全为0,故向量组线性相关.5.设有m 个向量12α,α,,αm ,证明: 若αα()i j i j =≠,则向量组12α,α,,αm 线性相关. 证 显然有1210α0αα0α()α0α0,0i i j m k k k +++++++-++=≠ , 而0,,0,,0,,0,,0,,0k k - 不全为0.故向量组线性相关.6.判断下列向量组的线性相关性(1) (1,1,0),(0,1,1,),(3,0,0,); (2) (2,0),(0,-1);(3) (-4,-5,2,6),(2,-2,1,3),(6,-3,3,9),(4,-1,5,6);(4) (1,0,0,2,5),(0,1,0,3,4),(0,0,1,4,7),(2,-3,4,11,12).解 (1)设有三个数123,,k k k ,使123(1,1,0)(0,1,1,) (3,0,0,)=(0,0,0)k k k ++则有方程组131223000k k k k k +=⎧⎪+=⎨⎪=⎩,因为系数行列式10311030010D =≠.方程组仅有零解,所以三个向量线性无关. (2)设有两个数12,k k 使12(2,0)(0,-1)=(0,0)k k + 则有方程组12200k k =⎧⎨-=⎩,由此解得120k k ==,所以两个向量线性无关.另外,也可由其分量不成比例看出两个向量线性无关. (3)设有四个数1234,,,k k k k ,使1234(-4,-5,2,6)(2,-2,1,3)(6,-3,3,9)(4,-1,5,6)=(0,0,0,0)k k k k +++,则有方程组1234123412341234426405230235063960k k k k k k k k k k k k k k k k +++=⎧⎪----=⎪⎨+++=⎪⎪+++=⎩,其系数行列式42645231021356396D ----==,所以方程组有非零解,向量组线性相关.(4) 设有四个数1234,,,k k k k ,使1234(1,0,0,2,5)(0,1,0,3,4)(0,0,1,4,7)(2,-3,4,11,12)=(0,0,0,0)k k k k +++则有方程组14243412341234203040234110547120k k k k k k k k k k k k k k +=⎧⎪-=⎪⎪+=⎨⎪+++=⎪⎪+++=⎩由前三个方程得1424342,3,4k k k k k k =-==-,代入第五个方程得4140k -=, 即40k =,从而1230k k k ===,所以向量组线性无关.7.设123α,α,α线性无关,证明:122331αα,αα,αα+++也线性无关. 证 设有三个数123,,k k k ,使()()()112223331αααααα0k k k +++++=, 则()()()131122233ααα0k k k k k k +++++=,因123α,α,α线性无关,故13122300k k k k k k +=⎧⎪+=⎨⎪+=⎩,因系数行列式10111020011D ==≠,所以只有1230k k k ===, 由此知122331αα,αα,αα+++线性无关.8.设12α,α,,αn 线性无关,问向量组122311αα,αα,,αα,ααn n n -++++ 是线性相关,还是线性无关?并给出证明. 解 设有n 个数12,,,,n k k k 使()()()()112223111αααααααα0n n n n n k k k k --++++++++= ,则得方程组1122310000n n n k k k k k k k k -+=⎧⎪+=⎪⎪+=⎨⎪⎪+=⎪⎩ 其系数行列式11000011100000110001(1),000110000011n n D +==+-可见,当n 为奇数时,20n D =≠,方程组仅有零解,向量组线性无关, 当n 为偶数时,0n D =,方程组有非零解,向量组线性相关.9.设12α(,,,)(1,2,,)i i i in a a a i n == ,证明:向量组12α,α,,αn 线性相关的充分必要条件是det()0ij a =.证 必要性:设12α,α,,αn 线性相关,则存在不全为0的n 个数12,,,,n k k k 使1122ααα0n n k k k +++= ,即有方程组()11121211212222112200*0n n n nn n nn n a k a k a k a k a k a k a k a k a k +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 该方程组有非零解,故系数行列式0n D =,即det()0ij a =,充分性: 对于方程组(*)当det()0ij a =时,系数行列式0n D =,所以有非零解,即存在不全为0的12,,,,n k k k 使1122ααα0n n k k k +++= 成立,故12α,α,,αn 线性相关.10.设12α,α,,αn 是一组n 维向量.已知n 维标准单位向量组12e ,e ,,e n 能由它们线性表出,证明: 12α,α,,αn 线性无关.证 设12α(,,,)(1,2,,)i i i in a a a i n == ,则有1122αe e e ,i i i in n a a a =+++可见12α,α,,αn 也能由12e ,e ,,e n 线性表出,从而两个向量组等价. 因为12e ,e ,,e n 线性无关,所以12α,α,,αn 也线性无关.11.设12α,α,,αn 是一组n 维向量.证明:它们线性无关的充分必要条件是:任一n 维向量都可由它们线性表出.证 必要性:设12α,α,,αn 线性无关,β为任一n 维向量,则12α,α,,αn ,β必线性相关.(个数大于维数),因此β可由12α,α,,αn 线性表出.充分性:设任一n 维向量β都可由12α,α,,αn 线性表出.因此12α,α,,αn 与12e ,e ,,e n 等价,从而12α,α,,αn 线性无关.12.判断下列向量是否线性相关,并求出一个极大线性无关组.(1)123α(1,2,1,4),α(9,100,10,4),α(2,4,2,8);T T T =-==--- (2) 123α(1,1,0),α(0,2,0),α(0,0,3);T T T ===(3) 1234α(1,2,1,3),α(4,1,5,6),α(1,3,4,7),α(2,1,1,0);T T T T ==---=---=- 解 (1)19221004A 1102448-⎛⎫ ⎪-⎪= ⎪- ⎪-⎝⎭ 192082001900320-⎛⎫ ⎪ ⎪→ ⎪ ⎪-⎝⎭192010000000-⎛⎫ ⎪ ⎪→ ⎪ ⎪⎝⎭102010000000-⎛⎫⎪ ⎪→⎪ ⎪⎝⎭, 向量组的秩为2, 12α,α为一个极大线性无关组.(2) 100A 120003⎛⎫ ⎪= ⎪ ⎪⎝⎭100020003⎛⎫ ⎪→ ⎪ ⎪⎝⎭向量组的秩为3, 123α,α,α为一个极大线性无关组.(3) 14122131A 15413670⎛⎫ ⎪--⎪= ⎪--- ⎪--⎝⎭141209530953018106⎛⎫ ⎪--- ⎪→ ⎪--- ⎪---⎝⎭1412095300000000⎛⎫ ⎪--- ⎪→ ⎪ ⎪⎝⎭向量组的秩为2, 12α,α为一个极大线性无关组.13.求一个秩是4的方阵,它的两个行向量是(1,0,3,0,0),(1,1,0,0,0)--. 解 所求方阵可写成1030011000A 001000001000000⎛⎫ ⎪-- ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭,则1030001300A 00100000100000⎛⎫⎪- ⎪⎪→⎪⎪ ⎪⎝⎭显然(A)4R =.14.已知12α,α,,αs 的秩为r ,证明: 12α,α,,αs 中任意r 个线性无关的向量都构成它的一个极大线性无关组.证 设12α,α,,α,r i i i 为12α,α,,αs 中任意r 个线性无关的向量,因为向量组的秩为r ,故1212α,α,,α,α,(,,)r i i i i r i i i i ≠ 线性相关.可见12α,α,,αs 中的每个向量都可由12α,α,,α,r i i i 线性表出.因此, 12α,α,,α,r i i i 是12α,α,,αs 的一个极大线性无关组.15.用初等变换化下列矩阵为阶梯形,并判断其秩.(1)001010100⎛⎫ ⎪ ⎪ ⎪⎝⎭; (2)1234110215610-⎛⎫ ⎪- ⎪ ⎪⎝⎭;(3)023*********-⎛⎫ ⎪- ⎪ ⎪--⎝⎭;(4)1725314353759413254759413420253248⎛⎫⎪⎪⎪⎪⎝⎭.解 (1) 001010100⎛⎫ ⎪ ⎪ ⎪⎝⎭131********r r ↔⎛⎫ ⎪→ ⎪ ⎪⎝⎭,秩为3.(2) 1234110215610-⎛⎫ ⎪- ⎪ ⎪⎝⎭2131123403360336r r r r+-⎛⎫ ⎪→ ⎪ ⎪⎝⎭32123403360000r r -⎛⎫ ⎪→ ⎪ ⎪⎝⎭,秩为2.(3)023*********-⎛⎫ ⎪- ⎪⎪--⎝⎭12011203430471r r ---⎛⎫⎪→- ⎪ ⎪--⎝⎭213134011200130039r r r r ++--⎛⎫ ⎪→-- ⎪ ⎪--⎝⎭323011*********r r ---⎛⎫⎪→-- ⎪ ⎪⎝⎭, 秩为2.(4)1725314353759413254759413420253248⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭213143317253143201330153015r r r r r r ---⎛⎫ ⎪ ⎪→ ⎪ ⎪⎝⎭433217253143201310020000r r r r --⎛⎫⎪⎪→⎪ ⎪⎝⎭1310022013172531430000r r ↔⎛⎫ ⎪⎪→ ⎪ ⎪⎝⎭2131217100200110253190000r r r r --⎛⎫ ⎪- ⎪→ ⎪ ⎪⎝⎭23100202531900110000r r ↔⎛⎫⎪ ⎪→ ⎪- ⎪⎝⎭,秩为3. 16.证明: 两个矩阵和的秩不超过这两个矩阵秩的和,即 (A B)(A)(B)R R R +≤+.证 设1A (α,,α),(A),n R r == 1α,,αr 为一个极大线性无关组,1B (β,,β),(B),n R s == 1β,,βs 为一个极大线性无关组, 1A B (r ,,r )n += .因为1r ,,r n 可由1α,,αn ,1β,,βn 线性表出,从而也可由1α,,αr ,1β,,βs 线性表出.故()1A B (r ,,r )n R R +=≤ ()11α,,α,β,,βr s R r s =+=(A)(B)R R +.17.设A 与B 可乘,且AB 0=,证明: (A)(B)A R R +≤的列数. 证法一 设A 为m n ⨯矩阵,B 为n l ⨯矩阵 由AB 0=,有11111111n l m mn n nl m n n l a a b b a a b b ⨯⨯⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ 0000m l⨯⎛⎫ ⎪= ⎪ ⎪⎝⎭ 比较等式两边对应元素,有111111111100n n m mn n a b a b a b a b ++=⎧⎪⎨⎪++=⎩,11121211220,0n n m mn n a b a b a b a b ++=⎧⎪⎨⎪++=⎩ ,11111100l n nl m lmn nl a b a b a b a b ++=⎧⎪⎨⎪++=⎩ . 可见B 的列向量组为上述l 个齐次线性方程组的解向量,因此有 (B)(A)R n R ≤-, 移项得(A)(B)R R n +≤(A 的列数).证法二 设A 为m n ⨯矩阵,B 为n l ⨯矩阵, 12(A),(B)R r R r ==,因为1(A)R r =,则A 的标准形可写成1E 000r ⎛⎫⎪⎝⎭,即存在可逆阵P,Q 使得 PAQ 1E 000r ⎛⎫=⎪⎝⎭.又设()111B Q B B r m n r m ⨯--⨯⎛⎫= ⎪ ⎪⎝⎭, 则10(AB)(PAB)(PAQQ B)R R R -===,但()111111B E 0B PAQQ B Q B B 000r m r r m n r m ⨯⨯---⨯⎛⎫⎛⎫⎛⎫=== ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 可见11(B )(PAQQ B)0r m R R -⨯==,又因为12(Q B)(B)R R r -==,所以()12(B )n r m R r -⨯=,而()1B n r m -⨯共1n r -行,因此12n r r -≥,即12r r n +≤或(A)(B)R R n +≤.习题 B1.证明: 12α,α,,αs (其中1α0≠)线性相关的充要条件是至少有一个α(1)i i s <≤可被121α,α,,αi - 线性表出.证 必要性:设12α,α,,αs 线性相关(1α0≠),则存在不全为0的s 个数12,,,s k k k 使1122ααα0s s k k k +++= ,设i k 是12,,,s k k k 中最后一个不为零的数,即0i k ≠,而10i s k k +=== ,则1122ααα0i i k k k +++= ,因为1α0≠,所以1i >,即1i s <≤,(否则120,0s k k k ≠=== 则1α0k =不能成立),于是1111αααi i i i ik k k k --=--- ,即αi 可由121α,α,,αi - 线性表出.充分性:如果1111αααi i i k k --=++ ,则11111ααα0αα0i i i i s k k --+++-+++= ,而11,,,1,0,,0i k k -- 不全为0,所以12α,α,,αs 线性相关.2.证明:一个向量组的任一线性无关组都可扩充为一个极大线性无关组. 证 设有向量组12α,α,,αn 秩为s ,12α,α,,αr i i i 是它的任意一个线性无关组,如果r s =,则它就是12α,α,,αn 的一个极大线性无关组.如果r s <,则12α,α,,αn 的其余向量中一定可以选出向量1αr i +,使12α,α,,αr i i i ,1αr i +线性无关(否则与12α,α,,αn 秩s r >矛盾),只要1r s +<,重复上述过程,直到r i s +=时为止.这样121α,α,,α,α,,αr r s i i i i i + 就是由12α,α,,αr i i i 扩充成的一个极大线性无关组.3.已知两向量组有相同的秩,且其中之一可被另一个线性表出,证明:这两个向量组等价. 证 设12A :α,α,,α;s 12B:β,β,,βt 为两个秩为r 的向量组, 1212α,α,,α;β,β,,βr r 分别为A,B 极大线性无关组,设B 可由A 线性表出,则有()()1212β,β,,βα,α,,αTr r K = ,其中K 为组合系数构成的r 阶方阵,因为1212α,α,,α;β,β,,βr r 线性无关,所以K 可逆,()()11212α,α,,αβ,β,,βr r K -= ,从而12α,α,,αr 可由12β,β,,βr 线性表出,从而可由12β,β,,βt 线性表出,又12α,α,,αs 可由12α,α,,αr 线性表出,所以12α,α,,αs 可由12β,β,,βt 线性表出,即A 可由B 线性表出,因此向量组A ,B 等价.4.设向量组12α,α,,αs 的秩为r ,在其中任取m 个向量12α,α,,αm i i i ,证明:{}12α,α,,αm i i i R r m s ≥+- .证 设12α,α,,αm i i i 的秩为t ,从它的一个极大线性无关组(含t 个向量)可扩充为12α,α,,αs 的一个极大线性无关组(含r 个向量),所扩充向量的个数为r t -个.但12α,α,,αs 中除了12α,α,,αm i i i 外,还有s m -个向量,故r t s m -≤-,即t r m s ≥+-.5.设n m ⨯阶矩阵A 的秩为r ,证明:存在秩为r 的n r ⨯阶矩阵P 及秩为r 的r m ⨯阶矩阵Q ,使A PQ =.证 因(A)R r =,故可经有限次初等行变换和初等列变换化为标准形,即存在m 阶可逆阵F 和n 阶可逆阵G ,使得 E 0GAF 00r ⎛⎫=⎪⎝⎭,即11E 0A GF ,00r--⎛⎫= ⎪⎝⎭记111212122G G G ,G G -⎛⎫= ⎪⎝⎭111212122F F F F F -⎛⎫= ⎪⎝⎭,其中1111G ,F 均为r 阶方阵,则111211121121222122G G F F E0E 0A G F GG F F 0000rr--⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭111112212122G 0F F G 0F F ⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭=1111111221212122G F G F G F G F ⎛⎫ ⎪⎝⎭()11112121G F F G ⎛⎫= ⎪⎝⎭, 记1121G P G ⎛⎫=⎪⎝⎭,则P 为n r ⨯矩阵且(P )R r =(因1G -可逆,故其前r 列线性无关), ()1121Q F F =,则Q 为r m ⨯矩阵且(Q)R r =(因1F -可逆,故其前r 列线性无关),而A PQ =.。

线性代数练习题及答案10套

线性代数练习题及答案10套

1 0 1 14.设矩阵 A= 0 2 0 ,矩阵 B A E ,则矩阵 B 的秩 r(B)= __2__. 0 0 1 0 0 1 B A E = 0 1 0 ,r(B)=2. 0 0 0
15.向量空间 V={x=(x1,x2,0)|x1,x2 为实数}的维数为__2__. 16.设向量 (1,2,3) , (3,2,1) ,则向量 , 的内积 ( , ) =__10__. 17.设 A 是 4×3 矩阵,若齐次线性方程组 Ax=0 只有零解,则矩阵 A 的秩 r(A)= __3__. 18 . 已 知 某 个 3 元 非 齐 次 线 性 方 程 组 Ax=b 的 增 广 矩 阵 A 经 初 等 行 变 换 化 为 :
三、计算题(本大题共 6 小题,每小题 9 分,共 54 分)
Ibugua
交大打造不挂女神的领跑者
123 23 3 21.计算 3 阶行列式 249 49 9 . 367 67 7 123 23 3 100 20 3 解: 249 49 9 200 40 9 0 . 367 67 7 300 60 7
线代练习题及答案(一)
一、单项选择题(本大题共 10 小题,每小题 2 分,共 20 分)
1.设 A 为 3 阶方阵,且 | A | 2 ,则 | 2 A 1 | ( D A.-4 B.-1 C. 1 ) D.4
| 2 A 1 | 2 3 | A | 1 8
1 4. 2

1 2 3 1 2 2. 设矩阵 A= (1, 2) , B= C= 则下列矩阵运算中有意义的是 ( B 4 5 6 , 3 4 ,
行成比例值为零.
a1b2 a 2 b2 a 3 b2

线性代数模拟试题及答案(三套)

线性代数模拟试题及答案(三套)

第一套线性代数模拟试题解答一、填空题(每小题4分,共24分)1、 若12335544i j a a a a a 是五阶行列式中带正号的一项,则,12i j ==。

令1,2i j ==,(12354)(13524)134τπ+=+=,取正号。

2、 若将n 阶行列式D 的每一个元素添上负号得到新行列式D ,则D =(1)n D- 。

即行列式D 的每一行都有一个(-1)的公因子,所以D =(1)n D-。

3、设1101A ⎛⎫=⎪⎝⎭, 则100A =110001⎛⎫ ⎪⎝⎭。

23111112121113,,010*********A A ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭可得4、设A 为5 阶方阵,5A =,则5A =15n +。

由矩阵的行列式运算法则可知:1555n n A A +==。

5、A 为n 阶方阵,TAA E =且=+<E A A 则,0 0 。

由已知条件:211,1T T TAA E AA A A A E A A =⇒====⇒=±⇒=-, 而 :0TTA E A AA A E A A A E A E A E +=+=+=+=-+⇒+=。

6、设三阶方阵2000023A x y ⎛⎫⎪= ⎪ ⎪⎝⎭可逆,则,x y 应满足条件32x y ≠。

可逆,则行列式不等于零:2002(32)032023A x y x y x y ==⨯-≠⇒≠。

二、单项选择题(每小题4分,共24分) 7、设0333231232221131211≠=M a a a a a aa a a ,则行列式=---------232221333231131211222222222a a a a a a a a a A 。

A .M 8 B .M 2 C .M 2- D .M 8-由于 ()()111213111213111213331323331323321222321222321222331323322222228(1)8222a a a a a a a a a a a a a a a a a a M a a a a a a a a a ------=-=--=---8、设n 阶行列式n D ,则0n D =的必要条件是 D 。

线性代数习题三及答案

线性代数习题三及答案

郑州航空工业管理学院2006—2007学年第一学期课程考试试卷(A )卷一、填空题(本题总计16分,每小题2分) 1、排列的逆序数是 2、若122211211=a a a a ,则=160030322211211a a a a 3、设A 为三阶可逆阵,⎪⎪⎪⎭⎫⎝⎛=-1230120011A ,则=*A 4、若A 为n m ⨯矩阵,则齐次线性方程组0Ax =有非零解的充分必要条件是 5、已知五阶行列式1234532*********140354321=D ,则=++++4544434241A A A A A6、若n 元齐次线性方程组0Ax =的系数矩阵A 的秩为n-1 ,则其解空间的维数为7、若()Tk 11=α与()T121-=β正交,则=k8、若矩阵A 的特征值分别为1、-1、2 ,则2+-=A A E 二、选择题(本题总计20分,每小题2分)1、 若齐次线性方程组⎪⎩⎪⎨⎧=+++=+++=+++0)1(0)1(0)1(321321321x x x x x x x x x λλλ 有非零解,则λ的范围为( )A.0≠λ B.3-≠λC.0≠λ且3-≠λ D.0=λ且3-=λ 2、 设n 阶矩阵A 和B 满足AB=0,则( )A.00==B A 或 B.00==B A 或 C.0B A =+D.0=+B A3、 设A 为三阶矩阵,*A 为A 的伴随矩阵,且21=A ,则=--*A A 2)3(1( )A.2716-B.31- C.31 D.27164、 向量组r ααα,,,21 线性相关且秩为s ,则( ) A.s r = B.s r ≤ C.r s ≤ D.r s <5、 设向量组A 能由向量组B 线性表示,则( )A.)()(A R B R ≤B.)()(A R B R <C.)()(A R B R = D.)()(A R B R ≥6、 若A 为三阶方阵,且043,02,02=-=+=+E A E A E A ,则=A ( )A.8 B.8-C.34 D.34-7、 若n 元非齐次线性方程组b Ax =的增广矩阵的秩()n R <b A,,则方程组( )A.有唯一解 B.有无穷多解 C.无解 D.无法判断解的情况 8、 n 阶方阵A 的秩n r <的充要条件为( )A.A 有r 阶子式不等于零 B.A 的1+r 阶子式都为零C.A 的任一个r 阶子式都不等于零D.A 的任1+r 个列向量线性相关,而有r 个列向量线性无关 9、 设非齐次线性方程组b Ax =有两个不同的解为21,αα,则下列向量是方程组的解是( ) A.21αα+B.21αα-C.213132αα+ D.R k k k k ∈+212211,,其中αα10、 已知n 阶方阵A 、B 和C 满足ABC=E ,其中E 为n 阶单位矩阵,则=-1B ( ) A.11--C A B.ACC.CAD.11--A C三、计算题(本题总计56分,5、6每小题10分,其他每小题9分)1. 已知矩阵111111111⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A ,121111001⎛⎫ ⎪=- ⎪ ⎪-⎝⎭B ,求2-AB A 及T B A .2. 求n 阶行列式的值a b b b ba b b b b a b b b b a D =3. 求矩阵的逆⎪⎪⎪⎭⎫ ⎝⎛=343122321A4. 求下列非齐次线性方程组所对应的齐次线性方程组的基础解系及此方程组的通解⎪⎪⎩⎪⎪⎨⎧=-+++=+++=-+++=++++433546622033225432154315432154321x x x x x x x x x x x x x x x x x x x5. 已知向量组()T 32011=α、()T53112=α、()T13113-=α、()T 94214=α、()T52115=α,求此向量组的一个最大无关组,并把其余向量用该最大无关组线性表示.6. 求矩阵⎪⎪⎪⎭⎫⎝⎛--=201034011A 的特征值和特征向量.四、证明题(本题总计8分)已知向量组(Ⅰ)321,,ααα,(Ⅱ)4321,,,αααα,(Ⅲ)5321,,,αααα,如果各向量组的秩分别为3、3、4.证明:向量组45321,,,ααααα-的秩为4.郑州航空工业管理学院2006—2007学年第二学期考试试卷答案及评分标准(B )卷一、填空题(本题总计20分,每小题 2 分)1、()12n n -;2、0;3、11031102744002A ⎛⎫⎪ ⎪ ⎪⎝⎭或;4、E A -;5、()R A m =;6、3m -;7、2;8、1-;9、 0; 10、1l ≠ 二、选择题(本题总计 10 分,每小题 2分) 1、D ;2、A ;3、C ;4、B ;5、C三、计算题(本题总计60分,每小题10分) 1、解:特征方程11(2)(3)24A E λλλλλ---==---从而A 的特征值为122,3λλ==………………………………………………(4分)当12λ=时,由方程(2)0A E x -=得基础解系1(1,1)T ζ=-,即对应于12λ=的全部特征向量为11k ζ1(0)k ≠;……………………………(7分)当23λ=时,由方程(3)0A E x -=得基础解系2(1,2)T ζ=-,即对应于23λ=的全部特征向量为22k ζ2(0)k ≠.……………………………(10分)2、解:011111112111111000111000nn n n n nn na a a a D c c c c a a a a a ++----- ----…(5分)()(1)212121111n n n n a a a a a a a +⎛⎫=-----⎪⎝⎭…………………(10分)3、解:由010100001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,100001010B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,求得1A B ==-,*010100001A -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,*100001010B -⎛⎫⎪=- ⎪ ⎪-⎝⎭,从而1010100001A -⎛⎫ ⎪= ⎪ ⎪⎝⎭,1100001010B -⎛⎫⎪= ⎪ ⎪⎝⎭ ……………………………………(5分)故11210134102X A CB ---⎛⎫⎪==- ⎪ ⎪-⎝⎭…………………………………………………(10分)4、解:对增广矩阵B 施行初等行变换2141123242235(1)111111111112321133012260012260012260543315012260101151012260000000000000r r r r r r r r r r r B --++-⨯-⎛⎫⎛⎫⎪⎪-----⎪ ⎪= ⎪ ⎪⎪⎪-----⎝⎭⎝⎭---⎛⎫⎪⎪ ⎪⎪⎝⎭即得:1345234551226x x x x x x x x =+++⎧⎨=---⎩ …………………………………………………(4分)取345(,,)T x x x 分别为(1,0,0),(0,1,0),(0,0,1)T T T 得基础解系为:123(1,2,1,0,0),(1,2,0,1,0),(5,6,0,0,1)T T T ζζζ=-=-=-…………………(7分)另外取3450x x x ===得方程组的一个解(1,0,0,0,0)T η= ……………………(9分)原方程组的通解为:112233123,,,x k k k k k k R ζζζη=+++∈其中.…………(10分)5、解:设矩阵()123451211211214,,,,6422463979A ααααα---⎛⎫ ⎪--⎪== ⎪--- ⎪--⎝⎭通过初等行变换,得到其行最简形矩阵为:10103011040001300000A --⎛⎫⎪--⎪⎪ ⎪⎝⎭……………………………………………………(6分)故矩阵A 的1、2、4列即124,,ααα为A 的列向量组的一个最大无关组;…(8分) 且()31241,,10αααα-⎛⎫ ⎪=- ⎪ ⎪⎝⎭,()51243,,43αααα-⎛⎫⎪=- ⎪ ⎪⎝⎭.……………………………(10分)6、解:由1**11A A A A A A--=⇒=,…………………………………………(3分)得()()*131113333183A A A A A A ---===-……………………………(6分)所以()1*111131218612A A A A A ----⎛⎫+=-=- ⎪⎝⎭………………………(8分)()()331166108A A-=-=-=…………………(10分)四、证明题(本题总计10 分) 证:(1)因为2,,n αα线性无关,所以21,,n αα-线性无关,而11,,n αα-线性相关,故1α可由向量组231,,,n ααα-线性表示;……………………………(4分)(2)反证法:假设n α可由向量组121,,,n ααα-线性表示,由(1)知1α可由向量组231,,,n ααα-线性表示,从而n α可由向量组21,,n αα-线性表示,则2,,n αα线性相关,这与后1n -个向量2,,n αα线性无关矛盾. 故n α不能由向量组121,,,n ααα-线性表示. ………………………………………………………………………(10分)郑州航空工业管理学院2006—2007学年第一学期课程考试试卷(B )卷一、填空题(本题总计20分,每小题2分) 9、 排列的逆序数是 10、322211211=a a a a ,则=15044022122111a a a a 11、设A 为四阶矩阵,⎪⎪⎪⎪⎪⎭⎫⎝⎛--=1000230031202121A ,则=*A 12、 已知n 阶方阵A 、B 和C 满足ABC =E ,其中E 为n 阶单位矩阵,则=-1A13、 若A 为n m ⨯矩阵,则非齐次线性方程组b Ax =有无穷个解的充要条件是 14、已知四维列向量()T31521=α、()T1051102=α、()T 11143-=α,且()()()x x x +=++-321523ααα,则=x15、 若n 元齐次线性方程组0Ax =的系数矩阵的秩为5-n ,则其解空间的维数为 16、 已知向量()T0212-=α,则=α17、 若()T 321-=α与()Tk11-=β正交,则=k18、若矩阵A 的特征值分别为1、2、3 ,则=+-E A A 722二、选择题(本题总计20分,每小题2分)11、若齐次线性方程组⎪⎩⎪⎨⎧=++=++=++0200321321321x bx x x bx x x x ax 有非零解,则A.1-=a B.01≠≠b a 且 C.1-≠a D.01==b a 或 12、设n 阶矩阵A 的行列式等于D ,则=-A 5A.D 5B. D 5- C.D n )5(-D.D n 1)5(--13、以下等式正确的是A.⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛d c b a k d kc b kaB.d c b a k kd kc kb ka =C.⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛++d c b a d c d b c a D.ab c ddc b a =14、设向量组B 能由向量组A 线性表示,则A.)()(A R B R ≤B.)()(A R B R <C.)()(A R B R = D.)()(A R B R ≥15、矩阵A 、B 、C 满足C =AB ,则A .)()(C A R R ≤B.)()(C B R R ≤C.)()(C A R R ≤且)()(C B R R ≤ D.)()(A C R R ≤且)()(B C R R ≤16、设A 为三阶矩阵,*A 为A 的伴随矩阵,且41=A ,则=--*A A 3)4(1 A.2716 B.2716- C.21 D.21-17、设非齐次线性方程组b Ax =有两个不同的解为21,αα,则下列向量是方程组的解是 A.21αα+B.2123αα-C.215252αα+D.R k k k k ∈+212211,,其中αα18、若n 元非齐次线性方程组b Ax =的增广矩阵的秩()n R <b A,,则方程组A.有唯一解 B.有无穷多解 C.无解 D.无法判断解的情况 19、 n 阶方阵A 的元素全为n ,则A 的秩为A.0 B.1 C.1-n D.n 20、若A 为三阶方阵,且043,02,02=-=+=+E A E A E A ,则=AA.8B.8-C.34D.34-三、计算题(本题总计50分,每小题10分)7. 计算n 阶行列式nD n 222232222222221=8. 求矩阵A 的逆⎪⎪⎪⎭⎫ ⎝⎛=121213421A9. 求非齐次线性方程组对应的齐次线性方程组的基础解系及原方程组的通解⎪⎩⎪⎨⎧=--+=--+-=++--5327583313432143214321x x x x x x x x x x x x 10.已知向量组()T40111-=α、()T65122=α、()T 02113--=α、()T147034=α、()T 103145-=α,求此向量组的一个最大无关组,并把其余向量用该最大无关组线性表示. 11.求矩阵⎪⎪⎪⎭⎫ ⎝⎛-=124042011A 的特征值和特征向量.四、证明题(本题总计10分)已知矩阵n m ⨯A 和m n ⨯B 满足AB=E ,其中E 为m 阶单位矩阵,且n m <, 证明:A 的行向量组和B 的列向量组都线性无关.郑州航空工业管理学院2006 — 2007学年第 一学期考试试卷答案及评分标准( B )卷一、填空题(本题总计 20 分,每小题2分)1. 18;2. 12;3. 216或36;4.BC ;5.R(A)=R(A,b)<n ;6.()T4,3,2,17.5;8.3;9.5;10.420二、选择题(本题总计 20 分,每小题 2 分)1.D ;2.C ;3.D ;4.A ;5.D ;6.D ;7.B ;8.D ;9.B ;10.C 三、计算题(本题总计 50 分,每小题 10 分)1.计算n 阶行列式=n D nn 222221222223222222222221-=-=2,,3r r ni i 2000003000001002222222221--n n(2分)=-122r r 203000001002222022221------n n(6分) )2(2--=n ! (10分)2.求A 的逆矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=121213421A 解:()E A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100121010213001421~⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----1013000131050001421 (2分)~⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----3103110005115101005251001 (6分)=-1A ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----3103105115105251 (10分)3.求非齐次线性方程组对应齐次线性方程组的基础解系及非齐次方程组的通解⎪⎩⎪⎨⎧=--+=--+-=++--5327583313432143214321x x x x x x x x x x x x 解:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-------532117583311311~⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----421004210011311 ~⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---000004210011311~⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--0000042100137011 (2分) 取42,x x 为自由未知量得齐次线性方程组的解:4217x x x +-= 432x x =令⎪⎪⎭⎫ ⎝⎛42x x =⎪⎪⎭⎫ ⎝⎛01,⎪⎪⎭⎫ ⎝⎛10得基础解系 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-0011,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1207 (4分) 令⎪⎪⎭⎫ ⎝⎛42x x =⎪⎪⎭⎫ ⎝⎛00得非齐次线性方程组的特解⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=04013*η,则通解为 X=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-040131207001121k k 1k ,2k R ∈ (4分)4.A=()54321,,,,ααααα=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----1014064372501011143121~⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--00000222001101043121 (2分) ~⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-0000011100110101201 (4分) R(A)=3, 321,,ααα 就是向量组的一个极大无关组 (6分)则 32142αααα-+= (8分) 3215αααα++= (10分)5.求三阶矩阵A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-124042011的特征值和特征向量 解:E A λ-=λλλ----12404211=)3)(2)(1(---λλλ=0 (1分)解得 11=λ,22=λ,33=λ (4分)11=λ时,⎪⎪⎪⎭⎫ ⎝⎛-=-024032010E A ~⎪⎪⎪⎭⎫ ⎝⎛000010001得基础解系 =1p ⎪⎪⎪⎭⎫ ⎝⎛100则1p k)0(≠k 即为对应于特征值11=λ的特征向量 (5分)22=λ时,⎪⎪⎪⎭⎫ ⎝⎛---=-1240220112E A ~⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-00021102101 (6分)得基础解系 =2p⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-12121,则2p k)0(≠k 即为对应于特征值22=λ的特征向量 (7分) 33=λ时,⎪⎪⎪⎭⎫⎝⎛---=-2240120123E A ~⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0001000211 (8分) 得基础解系 =3p⎪⎪⎪⎪⎪⎭⎫⎝⎛-0121则3kp )0(≠k 即为对应于特征值33=λ的特征向量 (10分)四、证明题(本题总计 10 分)已知矩阵n m A ⨯和m n B ⨯满足E AB =,其中E 为m 阶单位阵,且n m <,证明:A 的行向量组和B 的列向量组都线性无关.证明:因为EAB=,E为m阶单位阵,则Em=,(2分)RR≤(A())ER≤=. (4分)m))((BR又mR≤((6分)AA))R≤(,m所以mR=)((8分)BA(,mR=)故A的行向量组和B的列向量组的秩与向量个数相等,所以的A行向量组和B的列向量组都线性无关. (10分。

线性代数试题3及答案

线性代数试题3及答案

线性代数模拟试题三一、填空题(每题2分,共30分,请将答案写在试卷后的答题纸上) 1. 2n 阶行列式________________=ABB A ,其中n 阶矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=a a a A 0000000⎪⎪⎪⎪⎪⎭⎫⎝⎛=000000 b b b B2. 设A=,⎪⎪⎪⎭⎫ ⎝⎛101020101而n ≥2为正整数,则______21=--n n AA 3. 设 ⎪⎪⎪⎭⎫ ⎝⎛-=042031200A , 则 A -1等 于 ___________________.4. 齐 次 线 性 方 程 组 ⎪⎩⎪⎨⎧=++=++=++000321321321x x x x x x x x x λλ 只 有 零 解, 则λ 应 满 足 的 条 件是. 5. 行 列 式=ab b a a b b a 00000000_______________.6. 设A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡300220111,则ATA= . 7. 在分块矩阵A=⎥⎦⎤⎢⎣⎡O C B O 中,已知1-B 、1-C 存在,则=-1A8. 设A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡963042321,B 为三阶非零矩阵,满足AB=O ,则r(B)= 9. 若⎥⎦⎤⎢⎣⎡3152X=⎥⎦⎤⎢⎣⎡-1264,则X= 10. 三次代数方程321842184211111x x x--=0的根是11. 设C B A ,,皆为n 阶矩阵,已知0)det(≠-A I 。

若AB I B +=,CA A C +=,则=-C B12. 设A 为三阶非零矩阵,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=a B 11213112且O AB T=)(,则=a13. 设三阶方阵A=[,,,21γγα] ,B=[β,,,21γγ]其中21,,,γγβα均为三维列向量,且已知detA=3, detB=4,则det(5A-2B)= 。

14. 已知齐次线性方程组⎪⎩⎪⎨⎧=++=+-+-=-+-++00)3(0)2()2(3213213221ax x x abx x a x x a ab x a b bx 的解空间是二维的,则=a ,=b .15. 设A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-7345327254321111,则=+++44434241A A A A . 二、选择题(每题2分,共30分)1.设A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡333231332221131211a a a a a a a a a ,B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+++133312321131131211232221a a a a a a a a a a a aP 1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001010,P 2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101010001,则必有( ) (A) AP 1P 2=B (B) AP 2P 1=B (C) P 1P 2A=B (D) P 2P 1A=B2.设A 是三阶矩阵,A*是其转置伴随矩阵,又k 为常数k ≠0,1±,则(kA)*=( )(A) kA* (B) k 2A* (C) k 3A* (D)31A* 3.若r(A)=r<n,则n 元线性代数方程Ax=b ( )(A)又无穷多个解 (B)有唯一解 (C)无解(D)不一定有解4.下列说法中正确的是( )(A )对向量组kαα,,1 ,若有全不为零的数k c c ,,1 使011=++k k c c αα ,则k αα,,1 线性无关(B) 若有全不为零的数k c c ,,1 使011≠++k k c c αα ,则kαα,,1 线性无关(C)若向量组kαα,,1 线性相关,則其中每个向量皆可由其余向量线性表示 (D)任何n+2个n 维向量必线性相关5.设A 为n 阶矩阵,x 为n 维向量,则以下命题成立的是( )。

赵树源线性代数习题三(B)题目和答案

赵树源线性代数习题三(B)题目和答案

1.如果线性方程组12323331 223(1)(3)(1)x x x x x x x λλλλλλ++=-⎧⎪-=-⎪⎨=-⎪⎪-=---⎩有惟一解,则λ=[ ]。

()A 1或2 ()B 1-或3 ()C 1或3 ()D 1-或3-【解】应选()C ,因为:线性方程组有惟一解,应有()()r A r A b n ==,由于11110212()00131(3)(1)Ab λλλλλλ-⎡⎤⎢⎥--⎢⎥=⎢⎥-⎢⎥----⎣⎦ ()()4(1)3λ--−−−−−→1111021200132(3)(1)λλλλλ-⎡⎤⎢⎥--⎢⎥⎢⎥-⎢⎥---⎣⎦可见,当1λ=或3λ=时,有()()r A r A b n ==,线性方程组有惟一解。

2.如果线性方程组123232321 32 (3)(1)(2)x x x x x x x λλλλλλ+-=-⎧⎪-=-⎨⎪-=--+-⎩有无穷多解,则λ=[ ]。

()A 3 ()B 2 ()C 1 ()D 0【解】应选()A ,因为:线性方程组有无穷多解,应有()()r A r A b n =<,由于1211()031201(3)(4)(2)A b λλλλλλ--⎡⎤⎢⎥=--⎢⎥⎢⎥-----⎣⎦()()323λ-−−−−→12113122001(3)(5)33λλλλλ⎡⎤⎢⎥--⎢⎥--⎢⎥⎢⎥---⎢⎥⎣⎦可见,当3λ=时,()()23r A r Ab n ==<=,线性方程组有无穷多解。

3.如果线性方程组1232332 4 22(1)(2)(3)(4)x x x x x x λλλλ+-=⎧⎪+=⎨⎪--=--⎩无解,则λ=[ ]。

()A 3或4 ()B 1或2 ()C 1或3 ()D 2或4【解】应选()B ,因为:线性方程组无解,应有()()r A r A b ≠,由于1214=01220(1)(2)(3)(4)A b λλλλ-⎡⎤⎢⎥⎢⎥⎢⎥----⎣⎦()显见当1λ=或2λ=时,()2()3r A r Ab =≠=,线性方程组无解。

线性代数习题答案第三章

线性代数习题答案第三章
阶子式 例如 R(A)3 是等于0的2阶子式 是等于0的3阶子式 7 从矩阵A中划去一行得到矩阵B 问A B的秩的关系怎样?
解 R(A)R(B) 这是因为B的非零子式必是A的非零子式 故A的秩不会小于B的秩
8 求作一个秩是4的方阵 它的两个行向量是 (1 0 1 0 0) (1 1 0 0 0)
解 用已知向量容易构成一个有4个非零行的5阶下三角矩阵 此矩阵的秩为4 其第2行和第3行是已知向量
B~ 于是R(A)2 而R(B)3 故方程组无解
(2) 解 对增广矩阵B进行初等行变换 有
B~ 于是 即 (k为任意常数)
(3) 解 对增广矩阵B进行初等行变换 有
B~ 于是 即 (k1 k2为任意常数)
(4) 解 对增广矩阵B进行初等行变换 有
B~ 于是 即 (k1 k2为任意常数)
14 写出一个以 为通解的齐次线性方程组
A~D D~B 由等价关系的传递性 有A~B
11 设 问k为何值 可使
(1)R(A)1 (2)R(A)2 (3)R(A)3 解 (1)当k1时 R(A)1 (2)当k2且k1时 R(A)2 (3)当k1且k2时 R(A)3
12 求解下列齐次线性方程组: (1) 解 对系数矩阵A进行初等行变换 有
A~ 于是 故方程组的解为
3 试利用矩阵的初等变换 求下列方阵的逆矩阵
(1) 解~ ~~ ~ 故逆矩阵为 (2)
解 ~ ~ ~ ~ ~
故逆矩阵为 4 (1)设 求X使AXB 解 因为
所以 (2)设 求X使XAB 解 考虑ATXTBT 因为
所以 从而
5 设 AX 2XA 求X 解 原方程化为(A2E)X A 因为
所以 6 在秩是r 的矩阵中,有没有等于0的r1阶子式? 有没有等于0的r阶子式? 解 在秩是r的矩阵中 可能存在等于0的r1阶子式 也可能存在等于0的r

线性代数考试题及答案

线性代数考试题及答案

线性代数考试题及答案一、选择题(每题2分,共20分)1. 向量空间中,向量组的线性相关性指的是:A. 向量组中的向量可以相互表示B. 向量组中存在非零向量可以表示为其他向量的线性组合C. 向量组中的向量线性无关D. 向量组中的向量可以线性独立答案:B2. 矩阵A的秩是指:A. A的行向量组的极大线性无关组所含向量个数B. A的列向量组的极大线性无关组所含向量个数C. A的行数D. A的列数答案:B3. 对于矩阵A,若存在矩阵B,使得AB=BA=I,则B是A的:A. 逆矩阵B. 伴随矩阵C. 转置矩阵D. 正交矩阵答案:A4. 线性变换的特征值是指:A. 变换后向量的长度B. 变换后向量的方向C. 变换后向量与原向量的比值D. 变换后向量与原向量的夹角答案:C5. 一个矩阵的特征多项式是:A. 矩阵的行列式B. 矩阵的逆矩阵C. 矩阵的伴随矩阵D. 矩阵的迹答案:A6. 线性方程组有唯一解的条件是:A. 系数矩阵的秩等于增广矩阵的秩B. 系数矩阵的秩小于增广矩阵的秩C. 系数矩阵的秩大于增广矩阵的秩D. 系数矩阵的行列式不为零答案:D7. 矩阵的迹是:A. 矩阵的对角线元素之和B. 矩阵的行列式C. 矩阵的逆矩阵D. 矩阵的伴随矩阵答案:A8. 矩阵的伴随矩阵是:A. 矩阵的转置矩阵B. 矩阵的逆矩阵C. 矩阵的对角线元素的乘积D. 矩阵的行列式答案:B9. 向量空间的基是指:A. 向量空间中的一组向量B. 向量空间中线性无关的一组向量C. 向量空间中线性相关的一组向量D. 向量空间中任意一组向量答案:B10. 矩阵的转置是:A. 矩阵的行列互换B. 矩阵的行列互换C. 矩阵的行向量变成列向量D. 矩阵的列向量变成行向量答案:A二、填空题(每空2分,共20分)1. 一个向量空间的维数是指该空间的_________。

答案:基的向量个数2. 矩阵A的行列式表示为_________。

答案:det(A)3. 线性变换的矩阵表示是_________。

线性代数(含全部课后题详细答案)3第三章矩阵习题解答.docx

线性代数(含全部课后题详细答案)3第三章矩阵习题解答.docx

习题三A 组1 •填空题.(1)设口 = (1,1,1), 6 = (-1,-1,-1),则ah x= _____________ , a vh= _________ro o>1 ](3)若么=(1, 2, 3), B — 1, —, — , A — a}d ,则 A n =I 2 3丿‘1 0⑷设A= 0 2J o解0.(5)设 a = (l, 0, -if ,矩阵 A=aa l \ 斤为正整数,贝 i\kE - A n解 k 2(k-2n ).(6)设昇为斤阶矩阵,且A =2,贝ij AA T= _________ , AA : = _______2(2)设八1-3 2),B =-3丿1 -13 1 3>则AB = (0 0丿(—3 -3丿2 13232 3 1 1)0 ,正整数 /7 > 2 ,则 A n -2A ,l ~' =2“+i2".(cos& -sin&\(7)、sin& cos& 丿cos& sin&\、一sin& cos& 丿0 0、2 0 ,则(A*y =4 5,解討丫2(10)设矩阵/二,矩阵B满足BA = B + 2E,则B二,B<-1 2(2 0(11)设/,〃均为三阶矩阵,AB = 2A + B f B= 0 4,2 0‘0 0 P解0 1 0b o oj(12)设三阶矩阵/满足|力|二*, (3A)~l-2A* =1627(13)设/为加阶方阵,B为兀阶方阵,同=Q,\B\ = b, C =°, 则\c\ =(8)设…®?工0 ,则、\Z曾丿1)a n1%■■1 1■色丿丿a lP(9)设A= 22、0 ,贝=2丿/0、0 ,矩阵〃满足关系式ABA =2BA ^E,其屮才'为力的伴随矩阵,则|B | =解*•解0.解一3・是nxp 矩阵,C 是pxm 矩阵,加、n 、p 互不相等,则下列运算没有(B) ABC ;解D.(2)设/是mxn 矩阵(m n), B 是nxm 矩阵,则下列解(一l)〃5b ・(15)设4阶矩阵/的秩为1,则其伴随矩阵/的秩为 (14)设三阶矩阵/ =R(4)解1.(17)设矩阵力'a 、b\ a }b 2■ ■a 2b 2 ■ • ■a n b2,其中匕・工0, (Z=l,2,•••,/?),则力的秩,且7?(J) = 3,则丘=0、 -2i,则将/可以表示成以下三个初等矩阵的乘积(D) AC T .的运算结果是n 阶力•阵.(A) AB ;解B.(B) A YBT;(C) B r A T ;(D) (4B)T.(16 )设?1 = •咕、 ・仇 ・ a n b n)解2.选择题.(1)设/是mxn 矩阵,(3) 设力」是斤阶方阵,AB = O,贝I 」有 ________ • (A) A = B = Ox(B) A + B = O ; (C)同=0或|同=0;(D)同 + 圖=0・解C ・(4) 设力,〃都是斤阶矩阵,则必有 _______ . (A) \A + B\ = \^ + \B\; (B) AB = BA ; (C) \AB\ = \BA\ ;(D) (/1 + B)T M /T + BT ・解C ・(5) 设/,B 是斤阶方阵,下列结论正确的是 __________ ・ (A)若均可逆,则A^B 可逆; (B)若力,〃均可逆,则力〃可逆; (C)若A + B 可逆,则A-B 可逆;(D)若A + B 可逆,则4〃均可逆.解B.(6) 设斤阶方阵A,B,C 满足关系式 ABC = E ,则必有 ___________ ・ (A) ACB = E ; (B) CBA = E ;(C) BAC = E ;(D) BCA = E .解D.(7) 设昇,B,力 + B, /T+BT 均为斤阶可逆矩阵,贝等于 ________________________ (A)(B) A + B ;(C) (D) g + 3)".解C.(8) 设£B,C 均为兀阶矩阵,若B = E + MB , C = A^CA.则B-C 为 ________________ . (A) E\ (B) —E ; (C) ; (D) —A.. 解A.(9) 设矩阵A = (a i .} 满足才其中才是/的伴随矩阵,川为昇的转置矩阵.若\ "3x3。

线性代数试题及答案3详解

线性代数试题及答案3详解

线性代数习题和答案第一部分选择题(共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。

错选或未选均无分。

1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于( D )A. m+nB. -(m+n)C. n-mD. m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于( B )A.130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C⎪⎪⎪⎪⎪⎭⎫⎝⎛21131D120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是A的伴随矩阵,则A *中位于(1,2)的元素是( B )A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有( D )A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于( C )A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则( D )A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中( C )A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是( A )A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解D.2η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有( A )A.秩(A)<nB.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确的是( B )A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值C.A的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A 的特征方程的3重根,A 的属于λ0的线性无关的特征向量的个数为k ,则必有( A ) A. k ≤3 B. k<3 C. k=3 D. k>312.设A 是正交矩阵,则下列结论错误的是( B )A.|A|2必为1B.|A |必为1C.A -1=A TD.A 的行(列)向量组是正交单位向量组 13.设A 是实对称矩阵,C 是实可逆矩阵,B =C T AC .则( D )A.A 与B 相似B. A 与B 不等价C. A 与B 有相同的特征值D. A 与B 合同 14.下列矩阵中是正定矩阵的为( C )A.2334⎛⎝ ⎫⎭⎪B.3426⎛⎝ ⎫⎭⎪C.100023035--⎛⎝ ⎫⎭⎪⎪⎪ D.111120102⎛⎝ ⎫⎭⎪⎪⎪第二部分 非选择题(共72分)二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确的答案写在每小题的空格内。

线性代数习题三答案

线性代数习题三答案

第三章 线性方程组一、温习巩固1. 求解齐次线性方程组⎪⎩⎪⎨⎧=-++=--+=-++05105036302432143214321x x x x x x x x x x x x解: 化系数矩阵为行最简式⎪⎪⎪⎭⎫⎝⎛−−→−⎪⎪⎪⎭⎫ ⎝⎛----=000001001-0215110531631121行变换A因此原方程同解于⎩⎨⎧=+-=023421x x x x 令2412,k x k x ==,可求得原方程的解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=1001001221k k x ,其中21,k k 为任意常数。

2. 求解非齐次线性方程组⎪⎩⎪⎨⎧=+=+-=-+8311102322421321321x x x x x x x x解:把增广矩阵),(b A 化为阶梯形⎪⎪⎪⎭⎫⎝⎛−−→−⎪⎪⎪⎭⎫ ⎝⎛---−−→−⎪⎪⎪⎭⎫ ⎝⎛--=-6-000341110-08-3-318031110213833180311102132124),(21行变换r r b A因此3),(2)(=<=b A R A R ,所以原方程组无解。

3. 设)1,2,1,3(),1,1,2,3(--=--=βα。

求向量γ,使βγα=+32。

解:⎪⎭⎫ ⎝⎛--=-=31,0,35,3)2(31αβγ 4. 求向量组,)0,2,1,1(,)14,7,0,3(,)2,1,3,0(,)4,2,1,1(4321T T T T -===-=ααααT )6,5,1,2(5=α的秩和一个极大线性无关组。

解:将51,αα 作为列向量构成矩阵,做初等行变换⎪⎪⎪⎪⎪⎭⎫⎝⎛--→⎪⎪⎪⎪⎪⎭⎫⎝⎛--→⎪⎪⎪⎪⎪⎭⎫⎝⎛--=44000000010110213012422101103033021301601424527121103121301A 所以向量组的秩为3,421,,ααα是一个极大线性无关组。

二、练习提高 ⒈ 判断题⑴ 初等变换总是把方程组变成同解方程组,这也是消元法的理论基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性代数练习题答案三一、温习巩固?x1?2x2?x3?x4?0?1. 求解齐次线性方程组?3x1?6x2?x3?3x4?0 ?5x?10x?x?5x?0234?1解:化系数矩阵为行最简式?121?1??120-1???行变换??A??36?1?30010??5101?5??0000因此原方程同解于??x1??2x2?x4令x2?k1,x4?k2,可求得原方程的解为x3?0???2??11???0?x?k1k2??,其中k1,k2为任意常数。

000??1?4x1?2x2?x3?2?2. 求解非齐次线性方程组?3x1?x2?2x3?10 ?11x?3x?812?解:把增广矩阵化为阶梯形?42?12??13?3?8??13-3-8???r1?r2??行变换????3?12103?12100-101134??113?113?0008?08?0-6因此R?2?R?3,所以原方程组无解。

3. 设??,??。

求向量?,使2??3。

解:??151??3,,0,??33??4. 求向量组?1?T,?2?T,?3?T,?4?T,?5?T的秩和一个极大线性无关组。

解:将?1,??5作为列向量构成矩阵,做初等行变换 ?11A??2??4?二、练习提高⒈ 判断题03130?117221402??1??1??050???60312312??1303??01010???2?4?20100312??101??000?0?4?4??所以向量组的秩为3,?1,?2,?4是一个极大线性无关组。

⑴ 初等变换总是把方程组变成同解方程组,这也是消元法的理论基础。

⑵ 设A为m?n矩阵,Ax?0是非齐次线性方程组Ax?b的导出组,则若Ax?0仅有零解,则Ax?b有唯一解。

若Ax?0有非零解,则Ax?b有无穷多解。

若Ax?b有无穷多解,则Ax?0有非零解。

?A⑶ 设A为n阶矩阵,?是n维列向量,若RT??AT???R,则线性方程组 ?0?零解。

x?y00?必有非⑷ 对矩阵?A?E?施行若干次初等变换,当A变为E时,相应的E变为A?1。

⑸ 设向量组?1,?2,?3线性无关,?1可由?1,?2,?3线性表示,而向量?2不能由?1,?2,?3线性表示,则对于任意常数k,必有?1,?2,?3,k?1??2线性相关。

⑹ 设n维列向量组?1,?2,?,?s线性相关,A是m?n矩阵,则A?1,A?2,?,A?s线性相B和A的秩分别为RB和RA,⑺ 若向量组B能由向量组A线性表示,则RB?RA。

关。

R?r?m?n,⑻ 设A为m?n矩阵,则A的r?1阶子式不能为0。

⑼ 设n元齐次线性方程组的一个基础解系为?1,?2,?3,?4,则?1,?1??2,?1??2??3,?1??2??3??4仍为该齐次线性方程组的基础解系。

⑽ 集合V?{x?x1?x2?xn?0,xi?R}是一个向量空间。

⒉ 填空题⑴ 齐次线性方程组A4?3X3?1?0有非零解的充要条件是__R?3?x1?x2??a1?x?x?a?232⑵ 若线性方程组?有解,则常数a1,a2,a3,a4应满足的条件是?x3?x4??a3??x4?x1?a4a1?a2?a3?a4?0?12?2⑶ 设三阶矩阵A??212?,三维列向量??T,已知A?与?线性相?304关,则a??1⑷ 若??能由?1?,?2?,?3?唯一线性表示,则k满足条件k?0且k??3⑸ 设n阶矩阵A的各行元素之和均为0,且A的秩为n?1,则线性方程组Ax?0的通解为。

⑹ 由向量组?1?T,?2?T,?3?T,?4?T生成的向量空间的维数为。

⒊ 计算题??x1?x2?x3?1?⑴ ?取何值时,方程组?x1??x2?x3??有唯一解,无解或有无穷多解?在有无?x?x??x??23?1穷多解时求解。

解:对此线性方程组的增广矩阵进行初等行变换可得 ??11?1??11r1?r3?1??1???B??Ab???1??1???11?11?1??11?1??1r2?r1r3??r1r3?r20??1?1???00??1?1???0????2210??21??2?01??1?0?所以当??0,?1时,R?R?3线性方程组有唯一解。

当??0时,R?2?3?R线性方程组无解。

当1时,R?R?2?3线性方程组有无穷多解。

若??1,?111?1??110?1?001?0?rrB??Ab00?2?000?2?0000?0??,解为?x11??1??x??c?10?; ?2?1?x30?0???11?1??1??10?1??1?010?0?,解为rr??0?20?0?若??1,B??Ab000?0???000?0???x1??1???1??x??c?00?。

?2?2x3???1????0??⑵ 已知?1,?2,?3线性无关,若?1?2?2,2?2?a?3,3?3?2?1线性相关,求a的值。

解:由题意知存在不全为0的k1,k2,k3,使得k1?k2?k3?0,整理得 ?1??2??3?0?k1?2k3?0?因为?1,?2,?3线性无关,从而有齐次线性方程组?2k1?2k2?0?ak?3k?03?2由k1,k2,k3不全为0知方程组有非零解,则系数行列式必为0?a??32⑶ 设向量?1,?2,?,?t是齐次方程组Ax?0的一个基础解系,向量?不是方程组Ax?0的解,即A??0。

试证明:向量组?,1,2,?,t线性无关。

解:设有一组数k,k1,?,kt,使得k??k1kt?0整理该式得??k1?1kt?t?0① 用A左乘上式两边,注意A?i?0,故有A??0 因为A??0?k?k1kt?0 ②将②代回①式,得到k1?1kt?t?0,因为?1,?,?t线性无关,故必有k1kt?0,再由②式,可得k?k1kt?0⑷ 已知向量组?1?T,?2?T,?3?T与向量组?1?T,?3?T具有相同的秩,且?3可由?1,?2,?3线性表示,求a,b的值。

解:对矩阵??1,?2,?3?做初等行变换?139??139?206012?,所以R??1,?2,?3??2,且?1,?2是一个极大无关组 ??31?7??000又因为R??1,?2,?3??R??1,?2,?3?,所以1ab21?0?a?3b?110另一方面,?3可由?1,?2,?3线性表示,所以?3可由?1,?2线性表示,即13b201?0?b??310?x1?x2?0⑸ 设4元齐次线性方程组为?,又已知某齐次线性方程组x?x?04?2的通解为k1T?k2T。

求:①方程组的基础解系;②方程组和是否有非零公共解?若有则求出所有的非零公共解。

①Ⅰ的系数矩阵为A010?1??,R?2??故Ⅰ的基础解系含有4?2?2个解向量,可取为和②Ⅱ的通解为x1??k2,x2?k1?2k2,x3?k1?2k2,x4?k2,代入Ⅰ可得线性代数测试题一、选择题1.设A.A,B为n阶方阵,满足等式AB?0,则必有A?0 或B?0; B.A?B?0; C.A?0 或B?0; D.A?B?0.2.四阶行列式a100b40a2b300b2a30b100a4的值等于A.a1a2a3a4?b1b2b3b4;B.;C.a1a2a3a4?b1b2b3b4;D..等于A.3nA是 n阶矩阵,A*是A的伴随矩阵,若 A?2,则3A* n?12n?1;B.3?23n;C.2;D.3?2n?2.4.设B.A是n阶方阵,且A=0,则A.A中必有两行的元素对应成比例;A中任意一行向量是其余各行向量的线性组合; C.A 中必有一行向量是其余各行向量A中至少有一行向量的元素为0.的线性组合; D.5.设A为m?n矩阵,齐次线性方程组Ax?0仅有零解的充分必要条件是 A.A的列向量组线A的列向量组线性相关; C.A的行向量组线性无关;D.A的行向量组线性相关.分)1.设A为m阶方阵,B为n阶方阵,且A?a,B?b,C性无关; B.二、填空题 1. 计算行列式33244212333431243444.?301ABAB?A?2BA?1102. 设矩阵和满足关系式,其中??.求矩阵B.?0143. 已知a1?T,a2?T求:与a1,a2都正交的向量;与a1,a2等价A的特征值是1,2,3,矩阵的规范正交向量组.. 设三阶实对称矩阵A的属于特征值1,2的特征向量分别是a1?T,a2?T 求A的属于特征值3的特征向量;求矩阵A.5. 设线性代数测试题答案一、选择题1.C;.D; .A; .C; .A. 二、填空题 A是对称矩阵,B是反对称矩阵,试证明:A2?B2是对称矩阵.?0ab;.?1.?A?1?mnB?1?111?;.abc?0;.-1;5.1.2340??三、计算证明题1.解:第2行提取公因子2,第3行提取公因子3,第4行提取公因子4,再利用范德蒙行列式的结果得:11222332442123. =4!*3!*2!334310112?12.解:由题设AB?A?2B,得B?A,因为A?2E?1?10??1?0所以A?2E可逆,且?101??3011B?A??1?10??110??012??014?2?1?1??301??5?2?2???2?2?1??1104?3?2?. ??111?3?01422? 3.解:设向量?=解:用施密特正交化公式,取?1所以与a1,a2都正交的向量是?a1?T?2?a2?7?1?a2?a1?a2?a1?T7于是?1,?2是与a1,a2等价的正交向量组..解:由于 A是实对称矩阵,所以它的不同特征值对应的特征向量正交.设A属于特征值3的特征向量为a?T,则a1a?0,a2a?0.故TT即?-x1?x2?x3?0解之,得基础解系为T??x1?2x2?x3?0向量为A的属于特征值3的全部特征kT,其中k是不为零的任意常数.??111??1001取P1?20?,由PAP??020?有?1?11??003?1001A?P?020?P?0035.证:T?ATAT?BTBT?2?2?A2?2?A2?B2即A2?B2为对称矩阵.线性代数习题及参考答案3单项选择题1.答案:B2. 设m×n矩阵A的秩为m,则___。

C、对于任一m 维列向量b,矩阵[A b]的秩都为m3. 设α1,α2,α3是方程组Ax=0的基础解系,则下列向量组中也可作为方程组Ax=0的基础解系的是___。

D、α1+α2,α1-α2,α3?100210001??,则用P左乘A,相当于将A___。

A、第1行的4. 设A为3阶矩阵,P =?2倍加到第2行?x1?2x2?3x3?0??x+x?x4= 05. 齐次线性方程组?23的基础解系所含解向量的个数为___。

B、26. 设4阶矩阵A的秩为3,?1,?2为非齐次线性方程组Ax =b的两个不同的解,c为任意常数,则该方程组的通解为___。

相关文档
最新文档