第1章 岩石的物理性质及工程分类
第1章 岩石组构及其物理性质
v2 p ( 2G)/
2 vs G/
vp为纵波速度,vs为横波速 度,可反求Ed和μd,二者 之比大于1.7
vp /vs [2(1- )/(1- 2 )]1/2
2018/12/3
26
§2 声波在岩石中的传播速度
影响声波传播速度的主要因素是矿物成分、裂隙或孔隙、充
水程度及其所处的压力、温度条件。
裂隙介质
松散介质
10
第二节 岩石基本物理性质 §1 岩石的质量指标(密度/比重)
岩石含:固相、液相、气相 三相比例不同,物理性质指标也有所不同(详见土力学)
§2 岩石的空隙性
空隙有:孔隙、裂隙、溶隙
① 空隙比
e VV / Vs
VV—孔隙体积(m3) Vs —岩石固体的体积(m3)
2018/12/3 11
34
Q和α之间存在一定关系 ③衰减系数α与声波频率f有关(弥散)
2018/12/3 29
§4 声波在界面上的反射与折射
声波在各种界面上会发生反射和折射,这是无损探测(TSP)的基础。
2018/12/3
30
§5 岩石声发射和电磁辐射
岩石声发射主要是指岩石在微破裂时由于弹性能的释放引起
的剧烈振动而产生的声振动(脉冲)和声传播现象。
Rc —— 干燥单轴抗压强度; η (η≤1)越小,表示岩石受水的影响越大。
2018/12/3 14
岩石的遇水膨胀性
泥岩含有大量细颗粒(d<0.005mm)黏土矿物成分(蒙脱石/伊利
石/高岭石),比表面积大,遇水膨胀性最典型。 可对支护造成较大的膨胀压力
2018/12/3
15
§ 2 渗流基本知识
层理 (Lamina)
岩土工程分类与分级
PPT文档演模板
岩土工程分类与分级
水理性质
•吸水率:常压条件下,岩石吸入水分的质量与干 燥岩石质量之比。
•饱水率:高压或真空条件下,岩石吸入水分的质 量与干燥岩石质量之比。
•饱水系数:岩石的吸水率与饱水率的比值。其值 越大,岩石的抗冻性越差。
PPT文档演模板
岩土工程分类与分级
变质岩 • 工程性质与其原岩密切相关。
• 动力变质岩的力学强度和抗水性均较差。 • 片理构造使岩石具有各向异性特征。
PPT文档演模板
岩土工程分类与分级
•二、 岩体及岩体结构
岩石(Rock): 具一定结构构造的矿物集合体。
岩体(Rock mass):
包含各种结构面的地质体。岩体的工程性质 首先取决于结构面的性质,其次才是组成岩体的 岩石性质。
PPT文档演模板
岩土工程分类与分级
力学性质
• 强度指标: 抗压强度(compressive strength): 岩石单向受压时抵抗破坏的能力。 抗拉强度(tensile strength):
• 岩石单向受拉时抵抗破坏的能力。 抗剪强度(shear strength):
• 岩石抵抗剪切破坏的能力。
•强度特性
•最主要是抗剪强度
•c
m
PPT文档演模板
•
图 7—12 岩体抗剪强度包络线
•1-结构面强度线;2-岩块强度线;3-岩体强度包络线变化范围 岩土工程分类与分级
•四、岩石和岩体的工程分类
1、分类的目的
(1)为岩石工程建设的勘察、设计、施工和编 制定额提供必要的基本依据。 (2)便于施工方法的总结,交流,推广。 (3)为便于行业内技术改革和管理。
第一章岩石的性质及其工程分级
3、解释岩石碎胀性的意义和表示方式。
4、三向压力作用下岩石的变形和强度特征有哪些?
5、解释岩石可钻性和可爆性。
6、岩石工程分级的目的和意义是什么?常用哪些表 示方法?
7、画出岩石在静荷载情况下单向受压应力—应变 关系示意图,并叙述其特性?
(5)岩石的膨胀性
是软岩石表现出来的特征,是指软岩石浸水后
体积增大和相应的引起压力增大的性质。
(6)岩石的崩解性
是指软岩浸水后发生的解体现象。
四、.岩石的碎胀性
岩石破碎以后的体积将比整体状态下 增大,这种性质成为岩石的碎胀性
用碎胀系数表示 K V1
V
V1—岩石破碎后处于松散状态下的体
一、岩石的变形特征
(一)静载荷作用下两个发展阶段
变形:岩石在外荷载作用下,首先是组成岩石的基本微粒之 间的相对位置的变形,可称为变形。
破坏:随着作用的荷载不断增大,或者荷载达到某一数值而 恒定保持下去,便会导致岩石的破坏。
外荷载的分类
静荷载:岩石本身周围的压力
按外荷载的作用性质{
表
二、岩石的孔隙性
岩石的孔隙性:是指岩石的裂隙和孔隙发育程度,通常用孔隙 度n和孔隙比e来表示。
岩石的孔隙度n:是指岩石试件内各种裂隙,孔隙的体积总和 与试件总体积之比。
岩石的孔隙比e:是指岩石试件内各种裂隙、孔隙的体积总和 与试件内固体矿物颗粒体积之比。
意义: 岩石的孔隙度增大 岩体本身整体性下降 强度降低 透水性增大 由于存在着孔隙 加快岩石的风化速度,从而又增大 了岩石的透水性
(四)、动荷载下岩石的变形特征
无论是冲击式凿岩机凿碎还是爆破破碎岩石,岩石承 受的外力都不是静荷载而是一种冲击荷载。
岩石物理、化学性质及其分类
主要内容
岩石性质及其分类
1.1 岩石的物理性质 1.2 岩
1 岩石的孔隙度η
岩石的物理性质
η为岩石中孔隙总体积V0与岩石的总体积V之比,
用百分率表示。
V0 V 100%
2 密度ρ和容重γ
密度ρ:不包括孔隙在内的岩石密度。(g/cm3)
M V V0
坚固的石灰岩、砂岩、大理岩、不坚固的花岗 岩、黄铁矿 一般的砂岩、铁矿 砂质页岩、页岩质砂岩
Ⅴ
中等
坚固的粘土质岩石、不坚固的砂岩和石灰岩
4
Ⅴa
Ⅵ Ⅵa Ⅶ Ⅶa Ⅷ Ⅸ Ⅹ
中等
较软弱 较软弱 软弱 软弱 土质岩石
各种不坚固的页岩、致密的泥灰岩
软弱的页岩,很软的石灰岩,白垩、岩盐、石 膏、冻土 碎石质土壤,破碎页岩、坚固的煤等
3)磨蚀性
岩石对工具的磨蚀能力,主要与岩石的成分有关。
4)凿岩性
岩石被凿碎的难易程度:用每米炮眼所消耗
的钎头数,纯凿速,比能三指标表示
5)爆破性 表示岩石被爆碎的难易程度:用单位原岩的
炸药消耗量和所需炮眼长度表示。
第三节
1 普氏分级法
岩石的分级
1)基本观点 是岩石的坚固性所综合上述各特性趋于一 致,即硬度、强度、凿岩性、爆破性是一致的。 2)分级方法 用坚固性系数f来大致概括,作为分级的根 据。f=R/10,或 共分10级。
图1-2 冲击载荷与时间的关系
②岩石变形不均匀,质点运动速度不一致
即岩石中各质点不是以一致速度运动,岩石不是均匀地 变形,这是与静载作用根本区别所在。如图1-3。 运动与变形首先开始
于受冲击的端面,端面处
质点受到扰动后,产生变 形和应力,由于质点间的
1.1岩石的性质及其分级
密度(g/cm)
2.6~2.7 2.8~3.0 2.85~3.0 2.71~2.85 2.5~2.6 2.58~2.69 2.2~2.4 2.3~2.7 2.9~3.0 2.6~2.7 2.65~2.9 1.6~2.1 1.5~1.7
容重(t/m3)
2.56~2.67 2.75~2.90 2.8~2.9 2.46~2.65 2.3~2.4 2.47~2.56 2.0~2.3 2.1~2.57 2.65~2.85 2.5 2.54~2.85 1.6~2.0 1.4~1.6
视频1
视频2
ρ不包括孔隙在内的岩石密度。
M
V
V0
γ包括孔隙在内的岩石单位体积重 量,也称岩石的体重。
G V
视频1 视频2
岩石的孔隙度、密度、容重主要影 响岩石的抛掷、堆积和装运。 一般来说,密度和容重越大,就越 难破碎,在抛掷爆破时需消耗较多的能 量去克服重力的影响。 几种岩石孔隙度、密度、容重 见表1-1。
第1章 岩石的性质及其分级
岩石的物理性质 岩石的力学性质 岩石的分级
凿岩爆破的对象是岩石, 正确认识岩石的相关性质,并 在此基础上对岩石进行分级, 能为爆破设计、施工、制定生 产定额以及成本核算等提供依 据。
1
岩石的矿物成分和组织特性
1)矿物成分 三大类岩石(侵入岩、沉积岩、变质 岩)具有不同的矿物成分,含有方解石 CaCO3,长石K[AlSi3O6],硅酸盐和氧化 物(SiO2)的岩石硬度高,如花岗岩、玄武 岩;含泥质矿物的岩石硬度低,如石炭 岩、泥页岩等。 硬度高低对凿岩效果有重要影响。
视频1 视频2
2)岩石的结构构造 结构 矿物晶粒的形状及晶粒之间的连结。 一般矿物晶粒愈细,愈致密,强度越 大,凿爆越难,沉积岩还与胶结成分有关; 硅质,泥质不同,硅质页岩与炭质页岩不 同。
岩石的分类及性质
岩石固体部分的质量与其体积的比值。它不包含
孔隙在内,因此其大小仅取决于组成岩石的矿物
密度及其含量。
颗粒密度
s
ms Vs
固体部分质量 固体部分体积
(一) 岩石的密度
2. 岩石的块体密度
是指岩石单位体积内的质量,按岩石的含水状态, 又有干密度(ρd)、饱和密度(ρsat)和天然密度 (ρ)之分,在未指明含水状态时一般指岩石的天 然密度。
《岩土工程勘察规范》分类
坚硬程 度
坚硬岩
较硬岩
较软岩
饱和单
轴抗压 强度,
>60
30-60 15-30
MPa
软岩 5-15
极软岩 <5
岩体的工程分类
岩石:是固态矿物或矿物的混合物,由一种或多 种矿物组成,具有一定结构、构造的集合体。
岩体:含有结构面的原生地质体,是由处于一定 地质环境中的各种岩性和结构特征岩石所组成的 集合体。特点:显著的不连续性。
密度(g/cm3) 2.37~2.75 2.75~2.80 2.59~3.06 2.70~2.90 2.75左右 2.72~2.84
(二) 岩石的孔隙特性
孔隙度:岩石中孔隙体积与岩石总体积之比 (多 用百分数表示)。 裂隙率:岩石中各种节理、裂隙的体积与岩石总 体积之比称裂隙率。 孔隙度与裂隙率含义相同,孔隙度多用于相对松 散土、石,裂隙率多用于结晶连接的坚硬岩石。 一般岩石的孔隙度在10%-35%之间。
完整岩块的工程分类
编号 I
单轴饱和 类别 抗压强度
(MPa)
代表性岩石
中细粒花岗岩,花岗片麻岩,闪长岩, 硬质岩 > 80 辉绿岩,安山岩,流纹岩,石英砂岩,
硅质灰岩,硅质胶结砾岩
岩石的基本物理性质以及工程分类
mW 1 100% ms
1.2 .3 岩石的水理性质
岩石的水理性质: 饱和吸水率
岩石的饱和吸水率( ρ )是指岩石在高压(一般压力为 15Mpa )或真 空条件下吸入水的质量( mw2)与岩样干质量( ms )之比 ,用百分数表示,
VV V
d *100%=(1- s
)100%
(1-4) (1-5) (1-6) (1-7) (1-8)
VV 0 V VVb V VVa V VVc V
*100% *100% *100%=n0-nb *100%=n-n0
1.2 .3 岩石的水理性质
岩石的水理性质:
岩石在水溶液作用下表现出来的性质,称为水理性质。主要有吸水 性、软化性、抗冻性、渗透性、膨胀性及崩解性等。 1) 岩石的吸水性 岩石在一定的试验条件下吸收水分的能力,称为岩石的吸水性。常 用吸水率,饱和吸水率与饱水系数等指标表示。
Kh Rcw Rc
(1-13)
KR愈小则岩石软化性愈强。研究表明:岩石的软化性取决于岩石的 矿物组成与空隙性。 当岩石中含有较多的亲水性和可溶性矿物,且含大开空隙较多时, 岩石的软化性较强,软化系数较小。
1.2 .3 岩石的水理性质
岩石的水理性质: 岩石的抗冻性 岩石抵抗冻融破坏的能力,称为抗冻性。常用冻融系数和质量损失 率来表示。
1.2 .3 岩石的水理性质
岩石的水理性质: 岩石的膨胀性 岩石的膨胀性是指岩石浸水后体积增大的性质。 大多数结晶岩和化学岩是不具有膨胀性的,这是因为岩石中的矿物 亲水性小和结构联结力强的缘故。如果岩石中含有绢云母、石墨和 绿泥石一类矿物,由于这些矿物结晶具有片状结构的特点,水可能 渗进片状层之间,同样产生楔劈效应,有时也会引起岩石体积增大。 岩石膨胀大小一般用膨胀力和膨胀率两项指标表示,这些指标可通 过室内试验确定。目前国内大多采用土的固结仪和膨胀仪的方法测 定岩石的膨胀性。
1.5 岩石的工程性质及工程分类
变形性质
OA段:裂隙压密阶段 AB段:弹性变形阶段 BC段:塑性变形、裂
隙扩展阶段
岩石变形性质的指标
变形模量 弹性模量 泊松比
E0=σ/ε
E50=σ50/εD
ν= ε /ε
横纵
常见岩石的变形特性指标
岩石名称
E
(×104 MPa)
ν 岩石名称
花岗岩 流纹岩 闪长岩 安山岩 辉长岩 玄武岩 砂岩
5~10 5~10 7~15 5~12 7~15 6~12 0.5~10
野外试验 10−4 ~ 10−9
10−2 ~ 10−7
1×10−3 ~ 3×10−8
10−8 ~ 10−11 10−3 ~ 10−7
10−3 ~ 10−7 2 ×10−7
岩石的软化性
软化性用软化系数来表示,它是指岩石 饱和状态下与天然风干状态下单轴抗压强度 之比,即:
KR
=
Rc R
软化性取决于岩石中的矿物成分和孔隙性。
岩石名称 花岗岩 流纹岩 玄武岩 闪长岩 安山岩
辉绿岩
凝灰岩 砾岩 砂岩 页岩
软化系数
0.72~0.97 0.75~0.95 0.30~0.95 0.60~0.80 0.81~0.91
0.33~0.90
0.52~0.86 0.50~0.96 0.21~0.75 0.24~0.74
岩石名称
软化系数
泥灰岩 石灰岩 泥岩 硅质板岩 石英片岩、角闪片
岩石名称
容重
岩石名称
容重
花岗岩 闪长岩 辉长岩 辉绿岩 砂岩 页岩
2.52~2.81 2.67~2.96 2.85~3.12 2.80~3.11 2.17~2.70 2.06~2.66
石灰岩 白云岩 片麻岩 片岩 大理岩 板岩
1、岩石性质与工程分级
土类矿物意义重大。取决于矿物成分、孔隙度和含水量。
与埋深也有关。
二、岩石的孔隙性
指岩石的裂隙和孔隙发育的程度,用孔隙度n和孔隙比e来表示。
n V Vc 100% V
V Vc e 100% Vc
随着岩石孔隙度增大,一方面消弱了岩石的整体稳定性, 使其密度和强度降低,透水性增大;另一方面会增加风
4.岩石的硬度:岩石抵抗其他较硬物体侵入的能力。 5.岩石的可钻性与可爆性
第四节 岩体工程分类
为岩石工程建设的勘察、设计、施工和编制定额提供
必要的基本依据。
便于施工方法的总结、交流、推广。
便于行业内技术改革和管理。
分类指标:
岩石强度:单轴抗压强度为岩体稳定性评价的重要指标。 结构面内物质成分等。 水对岩体的影响:水对岩体稳定性有着重要的影响。岩体 遇水后可以发生泥化、崩解、碎裂,致使岩体膨胀并大大 降低强度。
围岩类别 小松 动圈 I
分类名称 稳定围岩
围岩松动圈 /cm 0~40
支护机理及方法 喷混凝土支护
备注 围岩整体性好,不 易风化的可不支护
Ⅱ
中松 动圈 Ⅲ Ⅳ 大松 动圈
较稳定围岩
一般围岩
40~100
100~150 150~200
锚杆悬吊理论,喷层局部支护
锚杆悬吊理论,喷层局部支护
局部锚杆支护
刚性支护有局部破 坏,采用可缩性支护
O
衍 射角 度 (单位 : 度)
第二节 岩石物理性质
一、岩石的ห้องสมุดไป่ตู้重与容重
相对密度(比重):取决于组 成岩石的矿物的相对密度。
绝对干燥时体积为Vc的岩石质量G 比重= 岩石固体实体积Vc 水的密度 w
第一章岩石的性质及其工程分级
——从地壳中切取出来的小块体,不包含软弱面(岩体中的地质 遗迹、层理、节理、断层、裂隙面),近似认为各向同性的连续介 质。
第四页,共75页
1.1概述
(4)弱面 ——层理、节理、断面及裂隙面与所研究岩体的岩块比较,具有 强度低、易变形的特点,称为弱面。
岩体与岩块的差异: 岩体的强度小,岩块的强度大; 岩块的各向同性与岩体的各向异性。
• 1.3.2 岩石强度理论 • 1.3.3 岩石的硬度 • 1.3.4 岩石的可钻性与可爆性
第二十二页,共75页
第二十三页,共75页
1.3.1 岩石的变形特征
• 1)岩石的弹性和塑性
•
岩石受力后既可能出现弹性变形,也可能出现塑性变形,
而且弹性变形和塑性变形往往同时出现。
•
岩石的弹性是指在力的作用下,岩石改变形状和体积,
第十一页,共75页
1.2.1 岩石的相对密度和密度
1)相对密度(曾称比重)
岩石的相对密度是指岩石固体实体积(不包括孔隙体积)的质量与同体积 水的质量的比值。
计算公式为:
式中:
G d
VcW
d —岩石的相对密度(无量纲量);
G—绝对干燥时体积为VC的岩石质量,g; VC—岩石固体实体积(不包括孔隙体积) ,cm3; ρW—水的密度,g/cm3。
岩石名称 胀碎系数K
表 1—2 几种岩石的碎胀系数
砂、砾石 1.05~1.2
砂质粘土 1.2~1.25
中硬岩石 1.3~1.5
坚硬岩石 1.5~2.5
第十九页,共75页
1.2.4 岩石的碎胀性
(3)影响碎胀系数大小的因素
岩石的物理性质、破碎后的块度大小及其排列状态。
(4)残余碎胀系数K' —岩石破碎后经过压实的总体积V1 '与原岩破碎前整体状态
岩芯质量指标Rockqualitydesignationindex
单向抗压强度;
4. 膨胀性和崩解性 膨胀压力
治水
22
四. 岩石的碎胀性-----选用装载、运输、提升等设备
碎胀系数
破碎后总体积 原岩体积
坚硬程度、块度大小、堆积排列情况
岩石名称 碎胀系数 k
砂、砾岩 砂质粘土 中硬岩石 坚硬岩石 煤 1.05~1.2 1.2~1.25 1.3~1.5 1.5~2.5 < 1.2
2
本章主要参考书
3
第一节 概述
岩石力学是研究岩石的力学性状的一门理论和应 用科学,它是力学的一个分支,是探讨岩石对其周围 物理环境中力场的反应。
4
1、岩石
岩石是由一种或几种矿物所组成的集合体,它是岩体 的基本组成部分,一般将岩石分为表土和基岩两个部分。
(1)表土:覆盖在地壳上部的第四纪沉积物称为表土或 松散性岩石,如黄土、流砂、粘土、淤泥、砾石等。
16
D.I.A.N.E.
17
第二节 岩石物理性质
岩石物理力学性质是岩体最基本、最重要的性质之一, 也是岩石力学学科中研究最早、最完善的内容之一。
一. 岩石的比重与密度
1.
相对密度(比重):比
重
=绝对干燥时体积为Vc的岩石重量G
岩石固体实体积Vc 水的密度w
2.30~2.80,组成岩石的矿物的比重
15
决定。
常用建筑材料的特性
连续的
Continuous
均质的
Homogeneous
各向同性的 Isotropic
C.H.I.L.E.
线弹性的
Lineraly Elastic
岩体的特性(具有尺度效应)
不连续的 Discontinuous 非均质的 Inhomogeneous 各向异性的 Anisotropic 非线弹性的 Non-Lineraly Elastic
1岩石力学-岩石物理力学性质
d
s
A h
式中,γd为岩石的干密度(g/cm3);gs为被测岩样在 105℃一110℃的温度下烘干24 小时的质量(g);A为被测 岩样的平均断面积(cm2);h为被测岩样平均高度(cm)。
38
一、岩石的质量指标 岩石密度测定方法二:水中称重法 首先称量不规则岩样的质量(gs),再浸入水 中称其质量(gw) ,根据阿基米德原理计算出 不规则岩样的体积(V),即可计算出岩样密 度(γ)。 遇水崩解、溶解和干缩湿胀的岩石不能用此 法测其密度。
岩石力学
胶 结 连 结
二、岩石的常见结构类型
岩石中的微结构面,是指存在于矿物颗粒内 部或矿物颗粒及矿物集合体之间微小的弱面及 空隙。包括矿物的解理、晶格缺陷、晶粒边界、 粒间空隙、微裂隙等。 岩石中的微结构面一般是很小的,通常需在 显微镜下观察才能见到,但它们对岩石工程性 质的影响却是相当大的。 有些专家认为缺陷是影响岩石力学性质的决 定性因素。
岩石力学
岩 浆 岩
三、岩石的地质成因分类
沉积岩是由风化剥蚀作用或火山作用形成的物 质,在原地或被外力搬运,在适当条件下沉积下 来,经胶结和成岩作用而形成的,其矿物成分主 要是粘土矿物、碳酸盐和残余的石英长石等。
沉 积 岩
岩石力学
三、岩石的地质成因分类
岩石力学
三、岩石的地质成因分类
沉积岩具有层理构造,岩性 一般具有明显的各向异性。 沉 积 岩
变 质 岩
岩石力学
三、岩石的地质成因分类
3、区域变质岩 这类变质岩分布范围较广,岩石厚度较大, 变质程度较为均一,最常见的有片麻岩、片岩、 千枚岩、板岩、石英岩和大理岩,混合岩是介 于片麻岩与岩浆岩之间的一种岩石。
变 质 岩
岩石力学
岩石力学-岩石物理力学性质
形状:圆形试件不易产生应力集中,好加工 尺寸:大于矿物颗粒的10倍; φ50的依据 高径比:研究表明;h/d≥(2-3)较合理 (3)加载速度 加载速度越大,表现强度越高 我国规定加载速度为0.5 -1.0MPa/s (4)环境 含水量:含水量越大强度越低;岩石越软越明显,对泥岩、 粘土等软弱岩体,干燥强度是饱和强度的2-3倍。 温度度:180℃以下部明显:大于180℃,湿度越高强度越 小。
计算公式:由弹性力学Boursinesq公式
σt
=
2P πdt
劈裂破坏时最大压力 岩石圆盘试件厚度
岩石圆盘试件直径
①荷载沿轴向均匀分布 要求
②破坏面必须通过试件的直径 注:①端部效应 ②并非完全单向应力
由巴西人Hondros提出
抗弯法(梁的三点弯曲试验)
梁边缘到中性轴的距离
σ t = MC / I 梁截面绕中性轴的惯性矩
岩石单轴抗压强度
试验施加的围压
S ''' c
=
Sc
+
1+ 1−
sin sin
ϕ ϕ
σa
岩石三轴抗压强度
岩石内摩擦角
粘聚力 内摩擦角
Mohr’s strength envelop
1.4.1.4点荷载强度指标(point load strength index)
是上世纪发展起来的一种简便的现场试验方法。 试件:任何形状,尺寸大致5cm,不做任何加工。 试验:在直接带到现场的点荷载仪上,加载劈裂破坏。
岩石三向压缩强度的影响因素
(1)侧压力的影响 围压越大,轴向压力越大
(2)加载途径对岩石三向压缩强度影响(下图)
工程地质学——矿物和岩石-知识归纳整理
第一章 矿物和岩石第一节 主要造岩矿物一、定义:在地质作用下形成的具有一定化学成分和物理性质的天然均质体,叫矿物。
二、物理性质:(一)(一)晶体形态:⎩⎨⎧质点为有序罗列)晶体矿物(组成矿物的火山玻璃、胶体蛋白的质点为无序罗列):非晶体矿物(组成矿物⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧、钟乳状状、粒状、块状、土状几何体:纤维状、鳞片立方体、菱面体片状、板状针状、柱状单体(二)光学性质:⎪⎩⎪⎨⎧应后的颜色假色:矿物表面氧化反离子的颜色。
它色:矿物中混入色素的混合色。
长的光波后,其余光波自色:矿物吸收某一波、颜色12、条痕:矿物粉末的颜色。
⎪⎩⎪⎨⎧⎩⎨⎧、土状光泽几何体光泽:丝绢光泽断口光泽:油脂光泽珍珠光泽晶面光泽:玻璃光泽、单体光泽:光的能力:、光泽:矿物表面反射3 ⎪⎩⎪⎨⎧不透明半透明透明的程度:、透明度:矿物透射光4(三)力学性质1、硬度:反抗外力刻划的能力(在晶面上)摩氏硬度:滑石 石膏 方解石 萤石 磷灰石 正长石 石英 黄玉 刚玉 金刚石 1 2 3 4 5 6 7 8 9 102、解理:外力敲击下,沿结晶薄弱面平行裂开的性能。
知识归纳整理⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧︒︒︒︒见平整光滑处无解理:解理面肉眼难光滑较小,断口发育中等解理:解理面平整分光滑彻底解理:解理面大部全光滑挤彻底解理:解理面完解理程度:,辉石:,角闪石:解理交角:解理组数938756124⎪⎪⎩⎪⎪⎨⎧平整状参差状锯齿状贝壳状沿任意方向的裂开:、断口:外力敲击下,3⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧白云石:遇镁试剂变蓝气泡方解石:遇稀盐酸剧烈化学反应:磁性可塑性滑感挠性弹性(四)其它特殊性质:三、常见矿物的简易鉴定1、浅色矿物:石英 正长石 斜长石 方解石 白云石 白云母 石膏 滑石 硬度大 硬度中等 硬度小半透明 肉红色 灰白色 菱面体 弯曲菱面体 薄片状 丝绢光泽 有滑感 断口油脂光泽 两组解理 遇HCL 起泡 遇镁试剂变兰 珍珠光泽无解理 白色弹性2、暗色矿物:橄榄石 辉石 角闪石 黑云母 绿泥石 硬度大 硬度小颗粒状 短柱状 长柱状 薄片状 薄片状半透明 解理交角近90º 解理交角124 º 弹性 挠性橄榄绿色 多为黑色 黑绿色 黑色 墨绿色珍珠光泽求知若饥,虚心若愚。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章岩石的物理性质及工程分类学习指导:为了正确掌握岩土体的变形和破坏规律,对岩土体的稳定性做出合乎实际的分析和评价,首先需要对岩土体的物理性质、水理性质及工程分类等有清晰的认识。
本章的学习任务就是要大家掌握这方面的内容。
重点:要求掌握岩土的物理性质指标的含义;对密度、比重及含水率三个实测指标要理解,对各指标的计算方法及指标之间的换算要搞清楚;掌握无粘性土及粘性土的状态指标及应用;理解土的三相组成;了解岩土的工程分类。
1.1 岩土体的特性岩土体是地壳的物质组成。
岩体是地壳表层圈层,经建造和改造而形成的具一定组分和结构的地质体。
1.1.2岩(石)体的特性岩石是由矿物的组成的,按成因岩石可划分为岩浆岩、沉积岩和变质岩。
成因类型不一样,差别也很大,因此,工程性质极为多样。
1)岩浆岩的性质岩浆岩具有较高的力学强度,可作为各种建筑物良好的地基及天然建筑石料。
但各类岩石的工程性质差异很大,如:深成岩具结晶联结,晶粒粗大均匀,孔隙率小、裂隙较不发育,岩块大、整体稳定性好,但值得注意的是这类岩石往往由多种矿物结晶组成,抗风化能力较差,特别是含铁镁质较多的基性岩,则更易风化破碎,故应注意对其风化程度和深度的调查研究。
浅成岩中细晶质和隐晶质结构的岩石透水性小、抗风化性能较深成岩强,但斑状结构岩石的透水性和力学强度变化较大,特别是脉岩类,岩体小,且穿插于不同的岩石中,易蚀变风化,使强度降低、透水性增大。
喷出岩常具有气孔构造、流纹构造和原生裂隙,透水性较大。
此外,喷出岩多呈岩流状产出,岩体厚度小,岩相变化大,对地基的均一性和整体稳定性影响较大。
2)沉积岩的性质碎屑岩的工程地质性质一般较好,但其胶结物的成分和胶结类型影响显著,如硅质基底式胶结的岩石比泥质接触式胶结的岩石强度高、孔隙率小、透水性低等。
此外,碎屑的成分、粒度、级配对工程性质也有一定的影响,如石英质的砂岩和砾岩比长石质的砂岩为好。
粘土岩和页岩的性质相近,抗压强度和抗剪强度低,受力后变形量大,浸水后易软化和泥化。
若含蒙脱石成分,还具有较大的膨胀性。
这两种岩石对水工建筑物地基和建筑场地边坡的稳定都极为不利,但其透水性小,可作为隔水层和防渗层。
化学岩和生物化学岩抗水性弱,常具不同程度的可溶性。
硅质成分化学岩的强度较高,但性脆易裂,整体性差。
碳酸盐类岩石如石灰岩、白云岩等具中等强度,一般能满足水工设计要求,但存在于其中的各种不同形态的喀斯特,往往成为集中渗漏的通道。
易溶的石膏、岩盐等化学岩,往往以夹层或透镜体存在于其他沉积岩中,质软,浸水易溶解,常常导致地基和边坡的失稳。
上述各类沉积岩都具有成层分布的规律,存在各向异性特征,因此,在水工建设中尚需特别重视对其成层构造的研究。
3)变质岩的性质变质岩的工程性质与原岩密切相关,往往与原岩的性质相似或相近。
一般情况下,由于原岩矿物成分在高温高压下重结晶的结果,岩石的力学强度较变质前相对增高。
但是,如果在变质过程中形成某些变质矿物,如滑石、绿泥石、绢云母等,则其力学强度(特别是抗剪强度)会相对降低,抗风化能力变差。
动力变质作用形成的变质岩(包括碎裂岩、断层角砾岩、糜棱岩等)的力学强度和抗水性均甚差。
变质岩的片理构造(包括板状、千枚状、片状及片麻状构造)会使岩石具有各向异性特征,水工建筑中应注意研究其在垂直及平行于片理构造方向上工程性质的变化。
岩体是地壳表层圈层,经建造和改造而形成的具一定组分和结构的地质体。
岩体在一般情况下是非均质的、各向异性的不连续体。
在其形成过程中,经受了构造变动、风化作用及卸荷作用等各种内外力地质作用的破坏与改造,因此,岩体经常被软弱夹层、节理、断层、层面及片理面等地质界面所切割,使其成为具有一定结构的多裂隙体。
一般把切割岩体的这些地质界面称为结构面。
结构面在空间按不同组合,可将岩体切割成不同形状和大小的块体,这些被结构面所围限的岩块称为结构体。
岩体就是由结构面、结构体这两个基本单元所组成的组合体。
岩体和岩石的概念是不同的。
岩石是矿物的集合体,其特征可以用岩块来表征,其变形和强度性质取决于岩块本身的矿物成分、结构构造;岩体则是由一种岩石或多种岩石组成,是由结构面和结构体构成的组合体,其变形和强度性质取决于结构面和岩体结构的特性。
1.2物理性质指标1.2.2 岩石(体)的基本物理性质岩石和土一样,也是由固体、液体和气体组成的。
它的物理性质是指在岩石中三相组分的相对含量不同所表现的物理状态。
与工程相关密切的基本物理性质有密度和空隙性。
1)岩石的密度岩石密度(rock density)是指单位体积内岩石的质量,单位为g/cm3。
它是研究岩石风化、岩体稳定性、围岩压力和选取建筑材料等必需的参数。
岩石密度又分为颗粒密度和块体密度,常见岩石的密度列于表1-2。
(1)颗粒密度岩石的颗粒密度(ρs)是指岩石固体相部分的质量与其体积的比值。
它不包括空隙在内,因此其大小仅取决于组成岩石的矿物密度及其含量。
如基性、超基性岩浆岩,含密度大的矿物比较多,岩石颗粒密度也偏大,一般为2.7~3.2g/cm3;酸性岩浆岩含密度小的矿物较多,岩石颗粒密度也小,其ρs值多在2.5~2.85g/cm3之间变化;而中性岩浆岩则介于上二者之间。
又如硅质胶结的石英砂岩,其颗粒密度接近于石英密度;石灰岩和大理岩的颗粒密度多接近于方解石密度,等等。
岩石的颗粒密度属实测指标,常用比重瓶法进行测定。
(2)块体密度块体密度(或岩石密度)是指岩石单位体积内的质量,按岩石试件的含水状态,又有干密度(ρd)、饱和密度(ρsat )、和天然密度(ρ)之分,在未指明含水状态时一般是指岩石的天然密度。
各自的定义如下: ρd =Vm s(1-16) ρsat =Vm sat (1-17) V m=ρ (1-18)式中:m s 、m sat 、m 分别为岩石试件的干质量、饱和质量和天然质量;V 为试件的体积。
岩石的块体密度除与矿物组成有关外,还与岩石的空隙性及含水状态密切相关。
致密而裂隙不发育的岩石,块体密度与颗粒密度很接近,随着空隙、裂隙的增加,块体密度相应减小。
岩石的块体密度可采用规则试件的量积法及不规则试件的蜡封法测定。
2)岩石的空隙性岩石是有较多缺陷的矿物材料,在矿物间往往留有空隙。
同时,由于岩石又经受过多种地质营力作用,往往发育有不同成因的结构面,如原生裂隙、风化裂隙及构造裂隙等。
所以,岩石的空隙性比土复杂的多,即除了空隙外,还有裂隙存在。
另外,岩石中的空隙有些部分往往是互不连通的,而且与大气也不相通。
因此,岩石中的空隙有开型空隙和闭空隙之分,开型空隙按其开启程度又有大、小开型空隙之分。
与此相对应,可把岩石的空隙率分为总空隙率(n )、总开空隙率(n 0)、大开空隙率(n b )、小开空隙率(n a )和闭空隙率(n c )几种,各自的定义如下: n=V V V 100%=(1-s d ρρ)100% (1-19) n 0=V V V 0100% (1-20) n b =V V Vb 100% (1-21) n a =VV Va100%=n 0-n b (1-22) n c =V V Vc100%=n-n 0 (1-23) 式中:V V 、V Vo 、V Vb 、V va 、V vc 分别为岩石中空隙的总体积、总开空隙体积、大开空隙体积、小开空隙体积及闭空隙体积;其它符号意义同前。
一般提到的岩石空隙率系指总空隙率,其大小受岩石的成因、时代、后期改造及其埋深的影响,其变化范围很大。
常见岩石的空隙率见表1-2,由表可知,新鲜结晶岩类的n 一般小于3%,沉积岩的n 较高,为1%~10%,而一些胶结不良的砂砾岩,其n 可达10%~20%,甚至更大。
岩石的空隙性对岩块及岩体的水理、热学性质影响很大。
一般说来,空隙率愈大,岩块的强度愈低、塑性变形和渗透性愈大,反之亦然。
同时岩石由于空隙的存在,使之更易遭受各种风化营力作用,导致岩石的工程地质性质进一步恶化。
对可溶性岩石来说,空隙率大,可以增强岩体中地下水的循环与联系,使岩溶更加发育,从而降低了岩石的力学强度并增强其透水性。
当岩体中的空隙被粘土等物质充填时,则又会给工程建设带来诸如泥化夹层或夹泥层等岩体力学问题。
因此,对岩石空隙性的全面研究,是岩体力学研究的基本内容之一。
岩石的空隙性指标一般不能实测,只能通过密度与吸水性等指标换算求得,其计算方法将在1.2.3中讨论。
1.2.3 岩石的水理性质岩石在水溶液作用下表现出来的性质,称为水理性质。
主要有吸水性、软化性、抗冻性、渗透性、膨胀性及崩解性等。
1) 岩石的吸水性岩石在一定的试验条件下吸收水分的能力,称为岩石的吸水性。
常用吸水率,饱和吸水率与饱水系数等指标表示。
(1)吸水率岩石的吸水率(ωa )是指岩石试件在大气压力条件下自由吸入水的质量(m w1)与岩样干质量(m s )之比,用百分数表示,即 %1001⨯=s W m m ω (1-24)实测时先将岩样烘干并称干质量,然后浸水饱和。
由于试验是在常温常压下进行的,岩石浸水时,水只能进入大开空隙,而小开空隙和闭空隙水不能进入。
因此可用吸水率来计算岩石的大开空隙率(n b ),即: a d a d Vb b V V n ωρρωρω==⨯=%100 (1-25) 式中:ρw 为水的密度,取ρw =1g/cm 3。
岩石的吸水率大小主要取决于岩石中孔隙和裂隙的数量、大小及其开裂程度,同时还受到岩石成因、时代及岩性的影响。
大部分岩浆岩和变质岩的吸水率多为0.1%~2.0%之间,沉积岩的吸水性较强,其吸水率多变化在0.2%~7.0%之间。
常见岩石的吸水率列于表1-2和表1-3中。
(2)饱和吸水率岩石的饱和吸水率(ωρ)是指岩石在高压(一般压力为15Mpa )或真空条件下吸入水的质量(m w2)与岩样干质量(m s )之比,用百分数表示,即:ωp = s w m m 2×100% (1-26)在高压(或真空)条件下,一般认为水能进入所有开空隙中,因此岩石的总开空隙率可表示为:n 0= V V v 0×100%= wp d ρωρ=ρd ωP (1-27)岩石的饱和吸水率也是表示岩石物理性质的一个重要指标。
由于它反映了岩石总开空隙率的发育程度,因此亦可间接地用它来判定岩石的风化能力和抗冻性。
常见岩石的饱和吸水率见表1-3。
(3)饱水系数岩石的吸水率(ωa )与饱和吸水率(ωp )之比,称为饱水系数。
它反映了岩石中大、小开空隙的相对比例关系。
一般说来,饱水系数愈大,岩石中的大开空隙相对愈多,而小开空隙相对愈少。
另外,饱水系数大,说明常压下吸水后余留的空隙就愈少,岩石愈容易被冻胀破坏,因而其抗冻性差。
几种常见岩石的饱水系数列于表1-3。
2) 岩石的软化性岩石浸水饱和后强度降低的性质,称为软化性,用软化系数(K R )表示。