时间序列分析 第五章-非平稳序列的随机分析

合集下载

时间序列分析第五章非平稳序列的随机分析

时间序列分析第五章非平稳序列的随机分析
xt xt xt1
考察差分运算对该序列线性趋势信息的提 取作用
2020/3/12
时间序列分析
差分前后时序图
原序列时序图
差分后序列时序图
2020/3/12
时间序列分析
例5.2
尝试提取1950年——1999年北京市民用 车辆拥有量序列的确定性信息
2020/3/12
时间序列分析
Green函数递推公式
1 1 1 2 1 1 2 2

j 1 j1 pd j pd j
t


2
,
E(
t
s
)

0,
s

t
Exs t 0,s t
2020/3/12
时间序列分析
ARIMA 模型族
d=0 ARIMA(p,d,q)=ARMA(p,q)
P=0 ARIMA(P,d,q)=IMA(d,q)
q=0 ARIMA(P,d,q)=ARI(p,d)
d=1,P=q=0 ARIMA(P,d,q)=random walk model
差分后序列时序图
一阶差分
二阶差分
2020/3/12
时间序列分析
例5.3
差分运算提取1962年1月——1975年12月平均 每头奶牛的月产奶量序列中的确定性信息
2020/3/12
时间序列分析
差分后差分
2020/3/12
时间序列分析
过差分
足够多次的差分运算可以充分地提取原 序列中的非平稳确定性信息
2020/3/12
时间序列分析
随机游走模型( random walk)
模型结构

时间序列分析 第五章-非平稳序列的随机分析

时间序列分析 第五章-非平稳序列的随机分析

图(1)考虑对该序列进行1阶差分运算,同时考察差分序列的平稳性,在原程序基础上添加相关命令,程序修改如下:图(2)时序图显示差分后序列difx没有明显的非平稳特征。

(2)“identify var=x(1);”,使用该命令可以识别差分后序列的平稳性。

纯随机性和适当的拟合图(6)普通最小二乘估计结果图(8)最终拟合模型输出结果图(9)拟合效果图图(12)带有延迟因变量的回归模型拟合效果图5.8.3拟合GARCH模型SAS系统中AUTOREG过程功能非常强大,不仅可以提供上述的分析功能,还可以提供异方差性检验乃至条件异方差模型建模。

以临时数据集example5_3数据为例,介绍GARCH模型的拟合,相关命令如下:data example5_3;input x@@;t=_n_;cards;10.77 13.30 16.64 19.54 18.97 20.52 24.3623.51 27.16 30.80 31.84 31.63 32.68 34.9033.85 33.09 35.46 35.32 39.94 37.47 35.2433.03 32.67 35.20 32.36 32.34 38.45 38.1732.14 39.70 49.42 47.86 48.34 62.50 63.5667.61 64.59 66.17 67.50 76.12 79.31 78.8581.34 87.06 86.41 93.20 82.95 72.96 61.1061.27 71.58 88.34 98.70 97.31 97.17 91.1780.20 85.12 81.40 70.87 57.75 52.35 67.5087.95 85.46 84.55 98.16 102.42 113.02 119.95122.37 126.96 122.79 127.96 139.20 141.05 140.87137.08 145.53 145.59 134.36 122.54 106.92 97.23110.39 132.40 152.30 154.91 152.69 162.67 160.31142.57 146.54 153.83 141.81 157.83 161.79 142.07139.43 140.92 154.61 172.33 191.78 199.27 197.57189.29 181.49 166.84 154.28 150.12 165.17 170.32;proc gplot data=example5_3;plot x*t=1;symbol1c=black i=join v=start;proc autoreg data=example5_3;model x=t/nlag=5dwprob archtest;model x=t/nlag=2noint garch=(p=1,q=1);output out=out p=p residual=residual lcl=lcl ucl=ucl cev=cev;data out;set out;l95=-1.96*sqrt(51.42515);u95=1.96*sqrt(51.42515);Lcl_GARCH=-1.96*sqrt(cev);Ucl_GARCH=1.96*sqrt(cev);Lcl_p=p-1.96*sqrt(cev);Ucl_p=p+1.96*sqrt(cev);proc gplot data=out;plot residual*t=2 l95*t=3 Lcl_GARCH*t=4 u95*t=3 Ucl_GARCH*t=4/overlay; plot x*t=5 lcl*t=3 LCL_p*t=4 ucl*t=3 UCL_p*t=4/overlay;symbol2c=green i=needle v=none;symbol3v=black i=join c=none w=2l=2;symbol4c=red i=join v=none;symbol5c=green i=join v=none;run;该序列输出时序图如图(13)所示。

时 间 序 列 分 析 实 验 报 告实例

时 间 序 列 分 析 实 验 报 告实例

应用时间序列分析实验报告实验名称第五章非平稳序列的随机分析专业班级姓名学号一、上机练习程序及其结果分析:data ex3_1;input x@@;time=_n_;cards;0.30 -0.45 0.36 0.00 0.17 0.45 2.154.42 3.48 2.99 1.74 2.40 0.11 0.960.21 -0.10 -1.27 -1.45 -1.19 -1.47 -1.34-1.02 -0.27 0.14 -0.07 0.10 -0.15 -0.36-0.50 -1.93 -1.49 -2.35 -2.18 -0.39 -0.52-2.24 -3.46 -3.97 -4.60 -3.09 -2.19 -1.210.78 0.88 2.07 1.44 1.50 0.29 -0.36-0.97 -0.30 -0.28 0.80 0.91 1.95 1.771.80 0.56 -0.11 0.10 -0.56 -1.34 -2.470.07 -0.69 -1.96 0.04 1.59 0.20 0.391.06 -0.39 -0.162.07 1.35 1.46 1.500.94 -0.08 -0.66 -0.21 -0.77 -0.52 0.05;procgplot data=ex3_1;plot x*time=1;symbol1c=red I=join v=star;run;结果分析:上图是数据对应的时序图,从图上曲线分析来看,数据并没有周期性或者趋向性规律,因而可以初步判断这是平稳数列。

procarima data=ex3_1;identifyVar=x nlag=8;run;结果分析:本过程中,我们建立了8阶自回归分析模型,图上依次是变量的描述性统计量、样本自相关图、样本逆相关图和样本偏自相关图。

由于本次实验探究的是平稳序列,因而样本逆相关图先不作分析。

从自相关图来看,自相关系数趋于0的速度是比较快的,再结合时序图来看,可以确定这组数列是属于平稳数列。

时间序列分析中的非平稳信号分析方法研究

时间序列分析中的非平稳信号分析方法研究

时间序列分析中的非平稳信号分析方法研究时间序列分析是统计学中的领域,用来研究一组与时间有关的数据。

时间序列分析非常重要,因为它可以帮助研究者预测机器人,股市和其他急于观察的数据。

但是,有时候我们会遇到一些非平稳的信号,导致预测分析非常困难。

在这种情况下,对非平稳信号的分析方法成为了非常重要的研究领域。

I. 什么是非平稳信号?平稳信号是指时间序列中平均值和方差都不随时间而变化的信号。

在这种情况下,我们可以使用平稳信号的统计模型进行分析和预测。

但是,在现实生活中,出现非平稳信号的情况是普遍存在的。

例如,物价、股票价格等往往都呈现出随时间变化的趋势性和季节性。

II. 非平稳信号的特点非平稳信号是指时间序列中均值,方差或者两者都在变化的信号。

与平稳信号不同,非平稳信号的各种统计量都会随时间的推移而变化,因此在真实的数据应用过程中非常常见。

1. 缺乏稳定性:不同时间点的数据存在着不同的特征,可以说非平稳序列在统计特征上表现出的一种不稳定性。

2. 时间相关性:非平稳时间序列中的不同时间点可能不是独立的,也就是说以前的一个时间点可能会对后续的时间点产生影响,这种影响通常以趋势的形式呈现。

3. 不存在平稳的统计模型:由于非平稳信号缺乏稳定性,所以不存在平稳的统计模型,要研究非平稳信号需要寻找其他方法。

III. 非平稳信号分析方法在研究非平稳信号的过程中,最常用的方法包括:时间序列分解、差分方法、ARIMA和ARCH模型等。

1. 时间序列分解时间序列分解是将非平稳信号分解为一些成分,例如趋势、周期和随机元素。

这种方法可以使我们更好地理解信号的变化过程和对不同成分的影响。

时间序列分解同时也对信号的去除趋势和季节成分非常有用。

2. 差分方法差分方法是通过对时间序列之间差异的计算,将其转化为平稳时间序列,从而避免非平稳信号带来的影响,使得时间序列分析得以进行。

这种方法适用于不太具有周期性的时序数据。

3. ARIMA模型ARIMA模型是最常用的时间序列分析方法之一。

【2019年整理】时间序列分析--第五章非平稳序列的随机分析

【2019年整理】时间序列分析--第五章非平稳序列的随机分析

尝试提取1950年——1999年北京市民用 车辆拥有量序列的确定性信息
4/8/2019
时间序列分析
差分后序列时序图

一阶差分

二阶差分
4/8/2019
时间序列分析
例5.3

差分运算提取1962年1月——1975年12月平均 每头奶牛的月产奶量序列中的确定性信息
4/8/2019
时间序列分析
差分后序列时序图
4/8/2019
时间序列分析
差分方式的选择



序列蕴含着显著的线性趋势,一阶差分 就可以实现趋势平稳 序列蕴含着曲线趋势,通常低阶(二阶 或三阶)差分就可以提取出曲线趋势的 影响 对于蕴含着固定周期的序列进行步长为 周期长度的差分运算,通常可以较好地 提取周期信息
时间序列分析
4/8/2019
例5.1
时间序列分析
ARIMA模型建模步骤
获 得 观 察 值 序 列 平稳性 检验 N 差分 运算 Y 白噪声 检验 N 拟合 ARMA 模型
时间序列分析
Y
分 析 结 束
4/8/2019
例5.6

对1952年——1988年中国农业实际国民 收入指数序列建模
4/8/2019
时间序列分析
一阶差分序列时序图
第五章
非平稳序列的随机分析
4/8/2019
时间序列分析
本章结构


差分运算 ARIMA模型 Auto-Regressive模型 异方差的性质 方差齐性变化 条件异方差模型
4/8/2019
时间序列分析
5.1 差分运算

差分运算的实质 差分方式的选择 过差分

时间序列分析--第五章非平稳序列的随机分析

时间序列分析--第五章非平稳序列的随机分析

50
乘积季节模型
使用场合
序列的季节效应、长期趋势效应和随机波动之间有着复 杂地相互关联性,简单的季节模型不能充分地提取其中 的相关关系
构造原理
短期相关性用低阶ARMA(p,q)模型提取
季节相关性用以周期步长S为单位的ARMA(P,Q)模型提取
假设短期相关和季节效应之间具有乘积关系,模型结构
3
差分运算的实质
差分方法是一种非常简便、有效的确定 性信息提取方法
Cramer分解定理在理论上保证了适当阶 数的差分一定可以充分提取确定性信息
差分运算的实质是使用自回归的方式提 取确定性信息
d
d xt (1 B)d xt (1)i Cdi xti i0
5/10/2019
模型中有部分系数省缺了,那么该模型 称为疏系数模型。
5/10/2019
课件
34
疏系数模型类型
如果只是自相关部分有省缺系数,那么该疏系 数模型可以简记为ARIMA(( p1,, pm ), d, q)
p1,, pm 为非零自相关系数的阶数
如果只是移动平滑部分有省缺系数,那么该疏 系数模型可以简记为 ARIMA( p, d, (q1,, qn ))
26
建模
定阶
ARIMA(0,1,1)
参数估计
(1 B)xt 4.99661 (1 0.70766 B) t
Var(t ) 56.48763
模型检验
模型显著 参数显著
5/10/2019
课件
27
ARIMA模型预测
原则
最小均方误差预测原理
Green函数递推公式
一阶差分

时间序列分析-第五章非平稳序列的随机分析

时间序列分析-第五章非平稳序列的随机分析
【例1.1】1964年——1999年中国纱年产 量序列蕴含着一个近似线性的递增趋势。 对该序列进行一阶差分运算
xt xt xt1
考察差分运算对该序列线性趋势信息的提 取作用
2020/1/4
时间序列分析
差分前后时序图
原序列时序图
差分后序列时序图
2020/1/4
时间序列分析
例5.2
第五章
非平稳序列的随机分析
2020/1/4
时间序列分析
本章结构
差分运算 ARIMA模型 Auto-Regressive模型 异方差的性质 方差齐性变化 条件异方差模型
2020/1/4
时间序列分析
5.1 差分运算
差分运算的实质 差分方式的选择 过差分
2020/1/4
时间序列分析
差分运算的实质
差分方法是一种非常简便、有效的确定 性信息提取方法
Cramer分解定理在理论上保证了适当阶 数的差分一定可以充分提取确定性信息
差分运算的实质是使用自回归的方式提 取确定性信息
d
d xt (1 B)d xt (1)i Cdi xti i0
尝试提取1950年——1999年北京市民用 车辆拥有量序列的确定性信息
2020/1/4
时间序列分析
差分后序列时序图
一阶差分
二阶差分
2020/1/4
时间序列分析
例5.3
差分运算提取1962年1月——1975年12月平均 每头奶牛的月产奶量序列中的确定性信息
2020/1/4
时间序列分析
2020/1/4
时间序列分析
ARIMA模型的平稳性
ARIMA(p,d,q) 模 型 例5.5

第五章 非平稳序列的随机分析041019123931

第五章 非平稳序列的随机分析041019123931

第五章 非平稳序列的随机分析非平稳序列的确定性因素分解方法(第四章)的优点为原理简单、操作简便、易于解释等,因此在宏观经济管理与预测领域有着广泛的应用。

缺点主要有:(1)确定性因素分解方法只能提取强劲的确定性信息,对随机性信息浪费严重。

(2)确定性因素分解方法把所有序列的变化都归结为四大因素的综合影响,却始终无法提供明确、有效的方法判断各大因素之间确切的作用关系。

这些问题导致确定性因素分解方法不能允分提取观察值序列中的有效信息,导致模型拟合精度通常不够理想。

随机时序分析方法发展的必要性:弥补确定性因素分解方法的不足,为人们提供更加丰富、更加精确的时序分析工具。

5.1 差分运算5.1.1 差分运算的实质拿到观察值序列之后,无论是采用确定性时序分析方法还是随机时序分析方法,分析的第一步都是要通过有效的手段提取序列中所蕴含的确定性信息。

确定性信息的提取方法非常多,前面我们介绍过的构造季节指数、拟合长期趋势模型、移动平均、指数平滑等诸多方法都是确定性信息提取方法。

但是它们对确定性信息的提取都不够充分。

Cox 和Jenkins 在Time Series Analysis Forecasting and Control 一书中特别强调差分方法的使用,他们使用大量的案例分析证明差分方法是一种非常简便、有效的确定性信息提取方法。

而Cramer 分解定理则在理论上保证了适当阶数的差分一定可以充分提取确定性信息。

根据Cramer 分解定理,方差齐性非平稳序列都可以分解为如下形式:式中,为零均值白噪声序列。

{}t a 离散序列的d 阶差分就相当于连续变量的d 阶求导,显然,在Cramer 分解定理的保证下,d 阶差分就可以将中蕴含的d 次(关于时间的)确定性信息充分提取。

(如何证明?){}t a展开1阶差分,有等价于这意味着1阶差分实质上就是一个自回归过程,它是用延迟一期的历史数据作为自变{}1-t x量来解释当期序列值的变动状况,差分序列度量的是l 阶自回归过程中产生{}t x {}t x ∇{}t x 的随机误差的大小。

时间序列分析--第五章非平稳序列的随机分析

时间序列分析--第五章非平稳序列的随机分析
第五章
非平稳序列的随机分析
2020/6/14
课件
1
本章结构
差分运算 ARIMA模型 Auto-Regressive模型 异方差的性质 方差齐性变化 条件异方差模型
2020/6/14
课件
2
5.1 差分运算
差分运算的实质 差分方式的选择 过差分
2020/6/14
课件
3
差分运算的实质
方差大
Var(xt ) Var(at at1)
2 2
Var(2xt ) Var(at 2at1 at2 )
6 2
2020/6/14
课件ቤተ መጻሕፍቲ ባይዱ
14
5.2 ARIMA模型
ARIMA模型结构 ARIMA模型性质 ARIMA模型建模 ARIMA模型预测 疏系数模型 季节模型
2020/6/14
1 1 1 2 1 1 2 2
j 1 j1 pd j pd j
2020/6/14
课件
28
预测值
xtl ( tl 1 tl1 l1 t1) ( l t l1 t1 )
et (l)
xˆt (l)
E[et (l)] 0
Var[et (l)]
(1
2 1
2 l 1
)
2
2020/6/14
课件
29
例5.7
已知ARIMA(1,1,1)模型为
(1 0.8B)(1 B)xt (1 0.6B) t
且 xt1 4.5
xt 5.3
t 0.8
2
1
求 xt3 的95%的置信区间
2020/6/14
课件
30
预测值
等价形式
(11.8B 0.8B2 )xt (1 0.6B)t xt 1.8xt1 0.8xt2 t 0.6t1

时间序列分析中的平稳性与非平稳性

时间序列分析中的平稳性与非平稳性

时间序列分析中的平稳性与非平稳性时间序列分析是一种用来研究时间数据的统计方法,它可以揭示出时间序列数据的模式和趋势,并预测未来的发展。

在进行时间序列分析时,我们经常会遇到平稳性和非平稳性的问题,本文将重点讨论这两个概念及其在时间序列分析中的重要性。

1. 什么是平稳性?平稳性是指时间序列在统计特性上具有不变性,即其均值和方差不随时间的推移而发生改变。

具体而言,平稳时间序列的均值在时间维度上是稳定的,方差也不会随时间变化而增加或减小。

此外,平稳时间序列的自协方差只与时间间隔有关,而与特定时间点无关。

2. 平稳性的判断方法为了判断一个时间序列是否具有平稳性,我们可以使用一些统计检验方法。

常见的方法有ADF检验(Augmented Dickey-Fuller test)、KPSS检验(Kwiatkowski-Phillips-Schmidt-Shin test)等。

ADF检验通常用于检验平稳性,其原假设是时间序列具有单位根(非平稳),如果检验结果拒绝了原假设,则可以得出时间序列是平稳的结论。

3. 非平稳性的表现形式非平稳性的时间序列可能会呈现出明显的趋势、季节性或周期性变化。

趋势是时间序列长期的、持续的上升或下降,季节性是指时间序列在特定时间点上出现的周期性波动,周期性是指时间序列存在长期的、不规则的上升或下降。

4. 非平稳性的处理方法如果时间序列是非平稳的,我们需要对其进行处理,以使其具备平稳性。

常见的处理方法有差分法、对数变换等。

差分法可以通过计算相邻时间点的差值来消除趋势和季节性,对数变换则可以通过对时间序列取对数来减少其波动性。

5. 平稳性的重要性平稳性在时间序列分析中非常重要,具有以下几个方面的意义: - 简化模型:平稳时间序列的统计特性稳定,可以简化模型的建立和预测。

- 降低误差:平稳时间序列的随机误差具有恒定的方差,使得模型的预测更准确。

- 提高可靠性:基于平稳时间序列建立的模型具有更好的可靠性和稳定性,可以更好地应对未来的变化。

非平稳时间序列的随机分析

非平稳时间序列的随机分析

4、ARIMA模型预测
PPT文档演模板
非平稳时间序列的随机分析
4、ARIMA模型预测
PPT文档演模板
非平稳时间序列的随机分析
预测值:线性最小方差预测原则
•>arima(x = chafen, order = c(0, 0, 1), method =
"ML")
•Coefficients:

ma1 intercept
• 0.6710 4.9947
•s.e. 0.1648 2.0139
•sigma^2 estimated as 53.42: log likelihood = -
PPT文档演模板
•平稳性 •检验
•N
•差分 •运算
•Y •白噪声 •检验
•N
•拟合 •ARMA •模型
•Y •分 •析 •结 •束
非平稳时间序列的随机分析
例4.6
n 对1952年——1988年中国农业实际国民 收入指数序列建模
>d=read.csv("shouru.csv",head=F)
>shouru=ts(d,start=1952,end=1988,freq =1)
非平稳时间序列的随机 分析
PPT文档演模板
2021/1/4
非平稳时间序列的随机分析
•4.1 时间序列的分解 •4.1.1 Wold分解定理 •4.1.2 Cramer分解定理
•引 例
PPT文档演模板
非平稳时间序列的随机分析
4.1.1、Wold分解定理(1938)
n 对于任何一个离散平稳过程 它都可以分解为两个 不相关的平稳序列之和,其中一个为确定性的,另 一个为随机性的,不妨记作

非平稳时间序列的随机分析

非平稳时间序列的随机分析
Cramer分解定理为我们研究非平稳时间序列 奠定了理论基础。
第二节 差分运算
对于随机非平稳序列来说,我们难以直接找 到其变化发展规律,主要是因为非平稳序列通常 都具有某种不稳定的趋势。所以,分析非平稳序 列的第一步是采取有效的手段提取其趋势使序列 变为平稳序列,然后利用平稳序列分析方法来处 理。提取序列趋势的工具主要是差分运算。
kt
t
例如,若
xt a bt t
则对序列 xt 做一阶差分
xt b t
就提取了序列中的确定性趋势信息。
若 xt a bt ct2 t ,则对 xt 做二阶差分
2 x 2c 2
t
t
即可提取序列中的确定性趋势信息。
yt 01yt q 2yt q1 vt
式中,vt 为残差序列。如果我们基于历史信息: ytq , ytq1, 预测 yt 的值,则 vt 可以理解为预测
误差,记 Var(v ) 2(q) ,显然有 2(q) Var( y ) ,
t
v
v
t
且滞后期 q 越大,意味着预测的步长越长,预测
的误差就越大,即2v(q) 越大。
实际上,时间序列中的差分运算类似于函数的 求导运算,如果一个时间序列的确定性趋势是时间 的 d 次多项式,则 d 阶差分后的序列的确定性趋势 就一定是常数,将不会再蕴含时间趋势,从而实现 序列的平稳化。
d
d
tj
j k,
( k 为常数)
j0
而由Cramer分解定理知,方差齐性非平稳序 列都可以分解为如下形式:
y
)t
,说明序列发展的
随机性强,历史信息对现值估计效果差,这时称
序列 yt是随机序列。
例如,对于平稳的ARMA(p,q) 模型:

时间序列分析——基于R答案

时间序列分析——基于R答案

时间序列分析——基于R 王燕答案第一章时间序列分析简介略第二章时间序列的预处理#========================================## 2.5习题-1##========================================library(tseries)par(mfrow=c(1,2))x=rep(1:20)temp=ts(x)plot(temp)#不是平稳序列as.vector(acf(temp)$acf[1:6])#序列的自相关系数递减到零的速度相当缓慢,#在很长的延迟时期里,自相关系数一直为正,#而后又一直为负,在自相关图上显示出明显的#三角对称性,这是具有单调趋势的非平稳序列#的一种典型的自相关图形式。

这和该序列时序#图显示的显著的单调递增性是一致的。

#======================================== ## 2.5习题-2##======================================== library(tseries)par(mfrow=c(1,2))volcano.co2=read.table('习题2.2数据.txt',sep='\t',header=F) data=ts(as.vector(t(as.matrix(volcano.co2))),start=c(1975,1)) plot(data)#不是平稳序列as.vector(acf(data,lag.max=23)$acf)#序列自相关系数长期位于零轴的一边。

这是#具有单调趋势序列的典型特征,同时自相关#图呈现出明显的正弦波动规律,这是具有周#期变化规律的非平稳序列的典型特征。

自相#关图显示出来的这两个性质和该序列时序图#显示出的带长期递增趋势的周期性质是非常#吻合的。

#========================================## 2.5习题-3##======================================== library(tseries)par(mfrow=c(1,2))rain=read.table('习题2.3数据.txt',sep='\t',header=F) data=ts(as.vector(t(as.matrix(rain))),start=c(1945,1)) plot(data)#该序列为平稳序列as.vector(acf(data,lag.max = 23)$acf)#该序列的自相关系数一直都比较小,#基本控制在2倍的标准差范闹以内,#可以认为该序列自始至终都在零轴附#近波动,这是随机性非常强的平稳时#间序列通常具有的自相关图特征。

第五章 非平稳序列的随机分析_11.10

第五章 非平稳序列的随机分析_11.10

g 3、转换函数的确定:要使得Var[g(xt)]等于常数, (⋅) 与 h(⋅) 、转换函数的确定: 等于常数, 1 具有倒函数关系, 具有倒函数关系,即 g ′( µ t ) = h( µ t )
常用转换函数的确定
实践中,许多金融时序都呈现出异方差性质, 实践中,许多金融时序都呈现出异方差性质,通 常序列的标准差与其均值具有某种正比关系。 常序列的标准差与其均值具有某种正比关系。
1、零均值 、
E (ε t ) = 0
2、纯随机 Cov (ε t , ε t −i ) = 0, ∀i ≥ 1 、 3、方差齐性 、
Var (ε t ) = σ ε
2
5.4 异方差的性质
异方差的定义
如果随机误差序列的方差会随着时间的变化而 如果随机误差序列的方差会 随着时间的变化而 变化, 变化,这种情况被称作为异方差
拟合模型口径及拟合效果图
∇ log( xt ) = ε t ⇔ log( xt ) − log( xt −1 ) = ε t
注:图中星号为序列观察值;红色曲线为序列拟合值 图中星号为序列观察值;
例5.11的SAS过程 的 过程
data a; input returns@@; dif=dif(returns); /*构建残差序列 构建残差序列*/ 构建残差序列 r2=dif**2; /*构建残差平方和序列 构建残差平方和序列*/ 构建残差平方和序列 y=log(returns); /*原序列对数变换 原序列对数变换*/ 原序列对数变换 dify=dif(y); /*对数变换后序列差分 对数变换后序列差分*/ 对数变换后序列差分 time=intnx('month','1apr1963'd,_n_-1); format time year4.; cards; 原始数据 ; proc gplot; plot returns*time dif*time r2*time y*time dify*time; /*对应书上的图 对应书上的图5-37~图5-41*/ 对应书上的图 图 symbol c=black i=join v=none;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图(1)考虑对该序列进行1阶差分运算,同时考察差分序列的平稳性,在原程序基础上添加相关命令,程序修改如下:图(2)时序图显示差分后序列difx没有明显的非平稳特征。

(2)“identify var=x(1);”,使用该命令可以识别差分后序列的平稳性。

纯随机性和适当的拟合图(6)普通最小二乘估计结果图(8)最终拟合模型输出结果图(9)拟合效果图图(12)带有延迟因变量的回归模型拟合效果图5.8.3拟合GARCH模型SAS系统中AUTOREG过程功能非常强大,不仅可以提供上述的分析功能,还可以提供异方差性检验乃至条件异方差模型建模。

以临时数据集example5_3数据为例,介绍GARCH模型的拟合,相关命令如下:data example5_3;input x@@;t=_n_;cards;10.77 13.30 16.64 19.54 18.97 20.52 24.3623.51 27.16 30.80 31.84 31.63 32.68 34.9033.85 33.09 35.46 35.32 39.94 37.47 35.2433.03 32.67 35.20 32.36 32.34 38.45 38.1732.14 39.70 49.42 47.86 48.34 62.50 63.5667.61 64.59 66.17 67.50 76.12 79.31 78.8581.34 87.06 86.41 93.20 82.95 72.96 61.1061.27 71.58 88.34 98.70 97.31 97.17 91.1780.20 85.12 81.40 70.87 57.75 52.35 67.5087.95 85.46 84.55 98.16 102.42 113.02 119.95122.37 126.96 122.79 127.96 139.20 141.05 140.87137.08 145.53 145.59 134.36 122.54 106.92 97.23110.39 132.40 152.30 154.91 152.69 162.67 160.31142.57 146.54 153.83 141.81 157.83 161.79 142.07139.43 140.92 154.61 172.33 191.78 199.27 197.57189.29 181.49 166.84 154.28 150.12 165.17 170.32;proc gplot data=example5_3;plot x*t=1;symbol1c=black i=join v=start;proc autoreg data=example5_3;model x=t/nlag=5dwprob archtest;model x=t/nlag=2noint garch=(p=1,q=1);output out=out p=p residual=residual lcl=lcl ucl=ucl cev=cev;data out;set out;l95=-1.96*sqrt(51.42515);u95=1.96*sqrt(51.42515);Lcl_GARCH=-1.96*sqrt(cev);Ucl_GARCH=1.96*sqrt(cev);Lcl_p=p-1.96*sqrt(cev);Ucl_p=p+1.96*sqrt(cev);proc gplot data=out;plot residual*t=2 l95*t=3 Lcl_GARCH*t=4 u95*t=3 Ucl_GARCH*t=4/overlay; plot x*t=5 lcl*t=3 LCL_p*t=4 ucl*t=3 UCL_p*t=4/overlay;symbol2c=green i=needle v=none;symbol3v=black i=join c=none w=2l=2;symbol4c=red i=join v=none;symbol5c=green i=join v=none;run;该序列输出时序图如图(13)所示。

图(13)序列时序图时序图显示序列具有显著线性递增趋势,且波动幅度随时间递增,所以考虑使用AUTOREG过程建图(19)残差序列在两种方差假定下的置信区间效果图图(21)序列在两种方差假定下的置信区间效果图图中,中间的波动曲线为残差序列或原序列,虚线为根据无条件方差得到的95%置信区间,而实线为根据条件方差得到的95%置信区间。

习题1data example5_1;input x@@;difx=dif(x);t=_n_;cards;304 303 307 299 296 293 301 293 301 295 284 286 286 287 284282 278 281 278 277 279 278 270 268 272 273 279 279 280 275271 277 278 279 283 284 282 283 279 280 280 279 278 283 278270 275 273 273 272 275 273 273 272 273 272 273 271 272 271273 277 274 274 272 280 282 292 295 295 294 290 291 288 288290 293 288 289 291 293 293 290 288 287 289 292 288 288 285282 286 286 287 284 283 286 282 287 286 287 292 292 294 291288 289;proc gplot;plot x*t;symbol v=star c=black i=join;proc gplot;plot x*t difx*t;symbol v=star c=black i=join;proc arima;identify var=x(1);estimate p=1;forecast lead=5id=t;run;实验结果:图5.1序列时序图由时序图可知该序列不平稳,即该序列为一个非平稳序列。

图5.4预测结果由上图可得,预测1939—1945年英国绵羊的数量分别为1851,1872,1879,1880,1879,1877,1875。

习题六data example5_3;input x@@;t=_n_;lagx=lag(x);cards;4.99 55.03 5.03 5.25 5.26 5.3 5.45 5.49 5.52 5.75.68 5.65 5.86.5 6.45 6.48 6.45 6.35 6.4 6.43 6.436.44 6.45 6.48 6.4 6.35 6.4 6.3 6.32 6.35 6.13 5.75.58 5.18 5.18 5.17 5.15 5.21 5.23 5.05 4.65 4.65 4.64.67 4.69 4.68 4.62 4.63 4.95.44 5.566.04 6.06 6.068.07 8.07 8.1 8.05 8.06 8.07 8.06 8.11 8.6 10.8 1111 11 9.48 9.18 8.62 8.3 8.47 8.44 8.44 8.46 8.498.54 8.54 8.5 8.44 8.49 8.4 8.46 8.5 8.5 8.47 8.478.47 8.48 8.48 8.54 8.56 8.39 8.89 9.91 9.89 9.91 9.919.9 9.88 9.86 9.86 9.74 9.42 9.27 9.26 8.99 8.83 8.838.83 8.82 8.83 8.83 8.79 8.79 8.69 8.66 8.67 8.72 8.779 9.61 9.7 9.94 9.94 9.94 9.95 9.94 9.96 9.97 10.8310.75 11.2 11.4 11.54 11.5 11.34 11.5 11.5 11.58 12.42 12.8513.1 13.12 13.1 13.15 13.1 13.2 14.2 14.75 14.6 14.6 14.4514.5 14.8 15.85 16.2 16.5 16.4 16.4 16.35 16.1 13.7 13.514 12.3 12 14.35 14.6 12.5 12.75 13.7 13.45 13.55 12.612 11 11.6 12.05 12.35 12.7 12.45 12.55 12.2 12.1 11.1511.85 12.1 12.5 12.9 12.5 13.2 13.65 13.65 13.5 13.45 13.35 14.45 14.3 15.05 15.55 15.65 14.65 14.15 13.3 12.65 12.7 12.8 14.5 15.1 15.15 14.3 14.25 14.05 14.7 15.05 14.05 13.8 13.25 13 12.85 12.6 11.8 13 12.35 11.45 11.35 11.55 10.85 10.912.3 11.7 12.05 12.3 12.9 13.05 13.3 13.85 14.65 15.05 15.15 14.85 15.7 15.4 15.1 14.8 15.8 15.8 15 14.4 13.8 14.314.15 14.45 14.1 14.05 13.75 13.3 13 12.55 12.25 11.85 11.511.1 11.15 10.7 10.25 10.55 10.25 10.3 9.6 8.4 8.2 7.25图6.5模型最终拟合结果。

相关文档
最新文档