数量运算公式总结

合集下载

数量关系重点公式及例题讲解

数量关系重点公式及例题讲解

数量关系重点公式及例题讲解数量关系重点公式:重点公式1、弃9验算法利用被9除所得余数的性质,对四则运算的结果进行检验的一种方法,叫“弃9验算法”。

用此方法验算,首先要找出一个数的“弃9数”,即把一个数的各个数位上的数字相加,如果和大于9或等于9都要减去9,直至剩下的一个小于9的数,我们把这个数称为原数的“弃9数”。

对于加减乘运算,可利用原数的弃九数替代进行运算,结果弃九数与原数运算后的弃九数相等注:1.弃九法不适合除法2.当一个数的几个数码相同,但0的个数不同,或数字顺序颠倒,或小数点的位置不同时,它的弃9数却是相等的。

这样就导致弃9数虽相同,而数的实际大小却不相同的情况,这一点要特别注意重点公式2、传球问题重点公式N个人传M次球,记X=N-1^M/N,则与X最接近的整数为传给“非自己的某人”的方法数,与X第二接近的整数便是传给自己的方法数重点公式3、整体消去法在较复杂的计算中,可以将近似的数化为相同,从而作为一个整体消去重点公式4、裂项公式1/nn-k =1/k 1/n-k-1/n重点公式5、平方数列求和公式1^2+2^2+3^2…+n^2=1/6 nn+12n+1重点公式6、立方数列求和公式1^3+2^3+3^3…+n^3=[1/2 nn+1 ]^2重点公式7、行程问题1分别从两地同时出发的多次相遇问题中,第N次相遇时,每人走过的路程等于他们第一次相遇时各自所走路程的2n-1倍2A.B距离为S,从A到B速度为V_1,从B回到A速度为V_2,则全程平均速度V= 〖2V〗_1 V_2/V_1+V_2 ,3沿途数车问题:同方向相邻两车的发车时间间隔×车速=同方向相邻两车的间隔4环形运动问题:异向而行,则相邻两次相遇间所走的路程和为周长同向而行,则相邻两次相遇间所走的路程差为周长5自动扶梯问题能看到的级数=人速+扶梯速×顺行运动所需时间能看到的级数=人速-扶梯速×逆行运动所需时间6错车问题对方车长为路程和,是相遇问题路程和=速度和×时间7队伍行走问题V_1为传令兵速度,V_2为队伍速度,L为队伍长度,则从队尾到队首的时间为:L/V_1-V_2从队首到队尾的时间为:L/V_1+V_2重点公式8、比赛场次问题N为参赛选手数,淘汰赛仅需决出冠亚军比赛场次=N-1,淘汰赛需决出前四名比赛场次=N,单循环赛比赛场次=_N^2,双循环赛比赛场次=A_N^2重点公式9、植树问题两端植树:距离/间隔+1 = 棵数一端植树环形植树:距离/间隔= 棵数俩端均不植树:距离/间隔-1=棵数双边植树:距离/间隔-1*2=棵数重点公式10、方阵问题最为层每边人数为N方阵总人数=N^2最外层总人数=N-1×4相邻两层总人数差=8行数和列数>3去掉一行一列则少2N-1人空心方阵总人数=最外层每边人数-层数×层数×4重点公式11、几何问题N边形内角和=N-2×180°球体体积=4/3 πr^3圆柱体积=πr^2 h圆柱体积=1/3 πr^2 h重点公式12、牛吃草问题牛头数-每天长草量×天数=最初总草量重点公式13、日期问题一年加1,闰年加2,小月30天加2,大月31天加3,28年一周期 4年1闰,100年不闰,400年再闰重点公式14、页码问题如:一本书的页码一共用了270个数字,求这本书的页数。

数量关系公式大全

数量关系公式大全

数量关系公式大全01.分数比例形式整除若a∶b=m∶n(m、n互质),则a是m的倍数,b是n的倍数。

若a=m/n×b,则a=m/(m+n)×(a+b),即a+b是m+n的倍数02.尾数法选项尾数不同,且运算法则为加、减、乘、乘方运算,优先使用尾数进行判定;所需计算数据多,计算复杂时考虑尾数判断快速得到答案。

常用在容斥原理中。

03.等差数列相关公式和=(首项+末项)×项数÷2=平均数×项数=中位数×项数;项数=(末项-首项)÷项数+1。

从1开始,连续的n个奇数相加,总和=n×n,如:1+3+5+7=4×4=16,……04.几何边端问题相关公式单边线型植树公式(两头植树):棵树=总长÷间隔+1,总长=(棵树-1)×间隔植树不移动公式:在一条路的一侧等距离栽种m棵树,然后要调整为种n 棵树,则不需要移动的树木棵树为:(m-1)与(n-1)的最大公约数+1棵;单边环型植树公式(环型植树):棵树=总长÷间隔,总长=棵树×间隔单边楼间植树公式(两头不植):棵树=总长÷间隔-1,总长=(棵树+1)×间隔方阵问题:最外层总人数=4×(N-1),相邻两层人数相差8人,n阶方阵的总人数为n²05.火车过桥核心公式路程=桥长+车长(火车过桥过的不是桥,而是桥长+车长)06.相遇追及问题公式相遇距离=(速度1+速度2)×相遇时间追及距离=(速度1-速度2)×追及时间07.队伍行进问题公式队首→队尾:队伍长度=(人速+队伍速度)×时间队尾→队首:队伍长度=(人速-队伍速度)×时间08.流水行船问题公式顺速=船速+水速,逆速=船速-水速09.往返相遇问题公式两岸型两次相遇:S=3S1-S2,(第一次相遇距离A为S1,第二次相遇距离B为S2)单岸型两次相遇:S=(3S1+S2)/2,(第一次相遇距离A为S1,第二次相遇距离A为S2);左右点出发:第N次迎面相遇,路程和=(2N-1)×全程;第N次追上相遇,路程差=(2N-1)×全程。

小学数学公式及知识点总结

小学数学公式及知识点总结

小学数学公式及知识点总结常用数量关系计算公式:1.两个加数相加得到和,其中一个加数等于和减去另一个加数。

2.被减数减去减数等于差,差加上减数等于被减数。

3.两个因数相乘得到积,其中一个因数等于积除以另一个因数。

4.被除数除以除数等于商,商乘以除数等于被除数。

5.每份数量乘以份数等于总数,总数除以每份数量等于份数,总数除以份数等于每份数量。

6.1倍数乘以倍数等于几倍数,几倍数除以1倍数等于倍数,几倍数除以倍数等于1倍数。

7.速度乘以时间等于路程,路程除以速度等于时间,路程除以时间等于速度。

8.单价乘以数量等于总价,总价除以单价等于数量,总价除以数量等于单价。

9.单产量乘以数量等于总产量,总产量除以数量等于单产量,总产量除以单产量等于数量。

10.工作效率乘以工作时间等于工作总量,工作总量除以工作效率等于时间,工作总量除以时间等于工作效率。

图形计算公式和线:直线是没有端点的,可以向两端无限延长。

射线只有一个端点,可以向一端无限延长。

线段有两个端点。

垂线是两条直线相交,其中一个角是直角,另一条直线叫做垂线,交点叫做垂足。

从直线外一点到直线所画的线段中,垂线最短。

角可以分为锐角、直角、钝角、平角和周角。

平行线是在同一平面内的两条不相交的直线。

面积和地积:面积是用来表示一个物体的表面或者平面的大小。

地积是土地的面积。

体积和容积:体积用来表示物体所占空间的大小。

容积是一个所能容纳物体的体积。

三角形、正方形、长方形、平行四边形和梯形的面积公式分别为:三角形的面积=底×高÷2公式S= a×h÷2正方形的面积=边长×边长公式S= a×a长方形的面积=长×宽公式S= a×b平行四边形的面积=底×高公式S= a×h梯形的面积=(上底+下底)×高÷2公式S=(a+b)h÷2内角和:三角形的内角和等于180度。

四年级数量关系公式大全

四年级数量关系公式大全

四年级数量关系公式大全以下是一些常见的四年级数量关系公式大全:
1. 加法公式:
- a + b = c
2. 减法公式:
- a - b = c
3. 乘法公式:
- a × b = c
4. 除法公式:
- a ÷ b = c
5. 平方公式:
- a² = b
6. 开方公式:
- √a = b
7. 倍数关系公式:
- a 是 b 的 n 倍:a = n × b
8. 倒数关系公式:
- a 的倒数是 b:1/a = b
9. 百分比关系公式:
- a% = b/100
10. 比例关系公式:
- a:b = c:d
11. 比值关系公式:
- a 是 b 的 m/n:a = (m/n) × b
12. 等式关系公式:
- a = b + c
13. 大小关系公式:
- a > b 或 a < b
14. 逆运算:
- a 表示一个运算前的值,b 表示一个运算后的值,逆运算就是找到 b 对应的运算前的值 a。

这些是一些常见的四年级数量关系公式,可以根据题目和情况选择适合的公式来解决问题。

小学数学常用公式大全(数量关系计算公式)

小学数学常用公式大全(数量关系计算公式)

小学数学常用公式大全(数量关系计算公式)1、单价×数量=总价2、单产量×数量=总产量3、速度×时间=路程4、工效×时间=工作总量5、加数+加数=和一个加数=和+另一个加数被减数-减数=差减数=被减数-差被减数=减数+差因数×因数=积一个因数=积÷另一个因数被除数÷除数=商除数=被除数÷商被除数=商×除数有余数的除法:被除数=商×除数+余数一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。

例:90÷5÷6=90÷(5×6)6、1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米1吨=1000千克1千克= 1000克= 1公斤= 1市斤1公顷=10000平方米。

1亩=666.666平方米。

1升=1立方分米=1000毫升1毫升=1立方厘米7、什么叫比:两个数相除就叫做两个数的比。

如:2÷5或3:6或1/3比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。

8、什么叫比例:表示两个比相等的式子叫做比例。

如3:6=9:189、比例的基本性质:在比例里,两外项之积等于两内项之积。

10、解比例:求比例中的未知项,叫做解比例。

如3:χ=9:1811、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。

如:y/x=k( k一定)或kx=y12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。

小学1-6年级所有数学公式 数量关系

小学1-6年级所有数学公式 数量关系

1、单价×数量=总价2、单产量×数量=总产量3、速度×时间=路程4、工效×时间=工作总量5、加数+加数=与6、一个加数=与-另一个加数7、被减数-减数=差8、减数=被减数-差9、被减数=减数+差10、因数×因数=积11、一个因数=积÷另一个因数12、被除数÷除数=商13、除数=被除数÷商14、被除数=商×除数15、有余数得除法:被除数=商×除数+余数一个数连续用两个数除,可以先把后两个数相乘,再用它们得积去除这个数,结果不变。

例:90÷5÷6=90÷(5×6)1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米1平方米=100平方分米1平方分米=100平方厘米021.正方形正方形得周长=边长×4 公式:C=4a正方形得面积=边长×边长公式:S=a×a正方体得体积=边长×边长×边长公式:V=a×a×a2.长方形长方形得周长=(长+宽)×2公式:C=(a+b)×2长方形得面积=长×宽公式:S=a×b长方体得体积=长×宽×高公式:V=a×b×h3.三角形三角形得面积=底×高÷2公式:S=a×h÷24、平行四边形平行四边形得面积=底×高公式:S=a×h5、梯形梯形得面积=(上底+下底)×高÷2公式:S=(a+b)h÷2 6.圆直径=半径×2 公式:d=2r半径=直径÷2 公式:r=d÷2圆得周长=圆周率×直径公式:c=πd =2πr圆得面积=半径×半径×π公式:S=πrr7.圆柱圆柱得侧面积=底面得周长×高公式:S=ch=πdh=2πrh圆柱得表面积=底面得周长×高+两头得圆得面积公式:S=ch+2s=ch+2πr2圆柱得总体积=底面积×高公式:V=Sh8.圆锥圆锥得总体积=底面积×高×1/3公式:V=1/3Sh9、三角形内角与=180度031、加法交换律:两数相加交换加数得位置,与不变。

数量关系计算公式方面

数量关系计算公式方面

数量关系计算公式方面1、单价×数量=总价2、单产量×数量=总产量3、速度×时间=路程4、工效×时间=工作总量6、1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米1吨=1000千克1千克= 1000克= 1公斤= 1市斤1公顷=10000平方米。

1亩=666.666平方米。

1升=1立方分米=1000毫升1毫升=1立方厘米8、什么叫比例:表示两个比相等的式子叫做比例。

如3:6=9:189、比例的基本性质:在比例里,两外项之积等于两内项之积。

10、解比例:求比例中的未知项,叫做解比例。

如3:χ=9:1811、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。

如:y/x=k( k一定)或kx=y12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。

如:x×y = k( k一定)或k / x = y16、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。

(或几个数公有的约数,叫做这几个数的公约数。

其中最大的一个,叫做最大公约数。

)17、互质数:公约数只有1的两个数,叫做互质数。

18、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。

19、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。

(通分用最小公倍数)20、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。

数量关系计算公式

数量关系计算公式

一、页码问题对多少页出现多少1或2的公式如果是X千里找几,公式是 1000+X00*3 如果是X百里找几,就是100+X0*2,X有多少个0 就*多少。

依次类推!请注意,要找的数一定要小于X ,如果大于X就不要加1000或者100一类的了,比如,7000页中有多少3 就是 1000+700*3=3100(个) 20000页中有多少6就是 2000*4=8000 (个) 友情提示,如3000页中有多少3,就是300*3+1=901,请不要把3000的3忘了二、握手问题N个人彼此握手,则总握手数S=(n-1){a1+a(n-1)}/2=(n-1){1+1+(n-2)}/2=『n^2-n』/2 =N ×(N-1)/2 例题:某个班的同学体育课上玩游戏,大家围成一个圈,每个人都不能跟相邻的2个人握手,整个游戏一共握手152次,请问这个班的同学有( )人A、16 B、17 C、18 D、19 【解析】此题看上去是一个排列组合题,但是却是使用的多边形对角线的原理在解决此题。

按照排列组合假设总数为X人则Cx取3=152 但是在计算X时却是相当的麻烦。

我们仔细来分析该题目。

以某个人为研究对象。

则这个人需要握x-3次手。

每个人都是这样。

则总共握了x×(x-3)次手。

但是没2个人之间的握手都重复计算了1次。

则实际的握手次数是x×(x-3)÷2=152 计算的x=19人三,钟表重合公式钟表几分重合,公式为: x/5=(x+a)/60 a时钟前面的格数四,时钟成角度的问题设X时时,夹角为30X ,Y分时,分针追时针5.5,设夹角为A.(请大家掌握) 钟面分12大格60小格每一大格为360除以12等于30度,每过一分钟分针走6度,时针走0.5度,能追5.5度。

1.【30X-5.5Y】或是360-【30X-5.5Y】【】表示绝对值的意义(求角度公式) 变式与应用 2.【30X-5.5Y】=A或360-【30X-5.5Y】=A (已知角度或时针或分针求其中一个角) 五,往返平均速度公式及其应用(引用) 某人以速度a从A地到达B地后,立即以速度b返回A地,那么他往返的平均速度v=2ab/(a+b )。

小学数学常见数量关系和计算公式

小学数学常见数量关系和计算公式

小学数学常见数量关系和计算公式数量关系是数学中的一个基本概念,它涉及到物体或事物之间的数量的大小和变化。

在小学数学中,常见的数量关系有等量关系、比例关系和代数关系等。

下面将介绍一些常见的数量关系和计算公式。

1.等量关系:等量关系是指两个物体或事物具有相等的数量。

在小学数学中,加法和减法是最常见的表达等量关系的运算。

(1)加法:加法是指将两个或多个数或量相加,得到它们的总和。

它的计算公式是:a+b=c,其中a、b是被加数,c是和。

(2)减法:减法是指将一个数或量从另一个数或量中相减,得到它们的差。

它的计算公式是:a-b=c,其中a是被减数,b是减数,c是差。

2.比例关系:比例是指两个或多个数之间的相对大小关系。

在小学数学中,常见的比例关系有比例、百分比和倍数。

(1)比例:比例是指两个或多个数之间的相对大小关系。

它的计算公式是:a:b=c:d,其中a、c是比例的前项,b、d是比例的后项。

(2)百分比:百分比是指一部分与整体之间的比例关系。

它的计算公式是:百分比=(一部分÷整体)×100%。

(3)倍数:倍数是指一个数可以被另一个数整除。

它的计算公式是:a×b=c,其中a是倍数,b是乘数,c是积。

3.代数关系:代数关系是指通过字母符号和运算符号表示数与量之间的关系。

在小学数学中,常见的代数关系有等式、不等式和方程等。

(1)等式:等式是指两个数或量之间相等的关系。

它的计算公式是:a=b,其中a、b是等式的两边。

(2)不等式:不等式是指两个数或量之间不等的关系。

它的计算公式可以是:a>b (大于)、a<b(小于)或a≥b(大于等于)、a≤b(小于等于)。

(3)方程:方程是指含有未知数的等式。

它的计算公式是:a+b=c,其中a、b是已知数,c是未知数。

总结起来,小学数学常见的数量关系和计算公式包括等量关系的加法和减法、比例关系的比例、百分比和倍数,以及代数关系的等式、不等式和方程等。

小学数学数量关系计算公式

小学数学数量关系计算公式

数量关系计算公式方面1、每份数×份数=总数/总数÷每份数=份数/ 总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-另一个加数=一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷另一个因数=一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1 、正方形C周长S面积a边长周长=边长×4 C=4a边长=周长÷4 a=C÷4面积=边长×边长S=a×a=a22 、正方体V:体积a:棱长表面积=棱长×棱长×6 S表=a×a×6体积=棱长×棱长×棱长V=a×a×a=a33 、长方形C周长S面积a长b宽周长=(长+宽)×2 C=(a+b)×2长=周长÷2-宽宽=周长÷2-长面积=长×宽S=a×b4 、长方体V:体积s:面积a:长b: 宽h:高(1)表面积=长×宽×2+长×高×2+宽×高×2S=2(ab+ah+bh)(2)体积=长×宽×高V=abh长=体积÷(宽×高)宽=体积÷(长×高)高=体积÷(长×宽)5 三角形s面积a底h高面积=底×高÷2 s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6 平行四边形s面积a底h高面积=底×高s=ah底=面积÷高高=面积÷底7 梯形s面积a上底b下底h高面积=(上底+下底)×高÷2 s=(a+b)× h÷2高=面积×2÷(上底+下底)上底=面积×2÷高-下底下底=面积×2÷高-上底8 圆形S面积C周长∏ d=直径r=半径直径=半径×2 d=2r 半径=直径÷2 r= d÷2(1)周长=直径×π=2×π×半径C= π d =2πr直径=周长÷π d= C ÷ π半径=周长÷(2π)r=C÷(2π)(2)面积=π×半径×半径s=πr29 圆柱体v:体积h:高s;底面积r:底面半径c:底面周长(1)侧面积=底面周长×高①侧面积=π d×高(据直径求侧面积)②侧面积=2πr×高(据半径求侧面积)(2)表面积=侧面积+底面积×2①π d×高+π()2×2(据直径求表面积)②2πr×高+π r2 ×2(据半径求表面积)(3)体积=底面积×高V=Sh底面积=体积÷高S=V÷H高=体积÷底面积H=V÷S长方体(正方体、圆柱体)的体积=底面积×高V=Sh10 圆锥体v:体积h:高s;底面积r:底面半径体积=底面积×高÷3 V= S H底面积=体积×3÷高高=体积×3÷底面积利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)原售价=实际售价÷折扣实际售价=原售价×折扣应纳税额=总收入×税率税率=应纳税额÷总收入总收入=应纳税额÷税率利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)长度单位换算1公里=1千米1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米面积单位换算1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米1亩=666.666平方米体(容)积单位换算1立方米=1000立方分米1立方分米=1000立方厘米1立方分米=1升1立方厘米=1毫升1立方米=1000升重量单位换算1吨=1000 千克1千克=1000克1千克=1公斤(1公斤= 2市斤)人民币单位换算1元=10角1角=10分1元=100分时间单位换算1世纪=100年1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒小学数学定义定理公式(二)一、算术方面1.加法交换律:a+b=b+a两数相加交换加数的位置,和不变。

数量公式大全

数量公式大全

(6、8、10) 。 13. 经济利润问题常用公式 利润=售价-进价,利润率=利润÷ 进价,总利润=单利润× 销量 售价=进价+利润=原价× 折扣 14. 溶液问题基本公式 溶液=溶质+溶剂,浓度=溶质÷ 溶液,溶质=溶液× 浓度 混合溶液的浓度=(溶质 1+溶质 2)÷ (溶液 1+溶液 2) 第三部分 资料分析 必考点 1 基期量相关 题目特征:已知现在……求过去(具体数值)…… 基本公式: 式子 1:已知现期量,增长量,求基期量?基期量=现期量-增长量; 式子 2:已知现期量,增长率,求基期量? 基期量= 技巧匹配: 一般采用截位直除法,啥是截位直除法?a÷ b,a 不变,b 截取前三位,然后相除。 必考点 2 增长量相关 题目特征: (现在)……比(过去)……增长(下降) (具体值) 基本公式: 1. 已知现期量,基期量,求增长量? 增长量=现期量-基期量 ; 2. 已知基期量,增长率,求增长量? 增长量=基期量 增长率 3. 已知现期量,增长率,求增长量? 增长量= 秒杀技巧: 增长量的计算:公式
增长量的比较:大大则大(若量 A 的现期量和增长率均大于量 B,则量 A 的增长量也应大 于量 B。)
必考点 3 增长率相关 题目特征: (现在)……比(过去)……增长(下降)……% 基本公式: 核心公式:给基期量,现期量,求增长率? 增长率=
现期量-基期量 ; 基期量
变形公式:给基期量,增长量,求增长率? 增长率=
现期量 1+增长率
现期量 增长率 。 1+增长率
A r% 比较复杂,难度比较高,最简单的方法即为特殊分数法。 1+r% A A 1 r% = 若 r%= ,则 。 1+r% 1+n n 1 1 1 1 1 常见特殊分数: =16.7%, =14.3%, =12.5%, =11.1%, =9.1%。 6 7 8 9 11

数量关系计算公式方面

数量关系计算公式方面

数量关系计算公式方面1、单价×数量=总价2、单产量×数量=总产量3、速度×时间=路程4、工效×时间=工作总量5、加数+加数=和一个加数=和+另一个加数被减数-减数=差减数=被减数-差被减数=减数+差被除数=商×除数被除数÷除数=商除数=被除数÷商因数×因数=积一个因数=积÷另一个因数有余数的除法:被除数=商×除数+余数一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。

6、1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米1吨=1000千克1千克= 1000克= 1公斤= 1市斤1公顷=10000平方米。

1亩=666.666平方米。

1升=1立方分米=1000毫升1毫升=1立方厘米7、比:两个数相除就叫做两个数的比。

如:比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。

8、比例:表示两个比相等的式子叫做比例。

9、比例的基本性质:在比例里,两外项之积等于两内项之积。

10、解比例:求比例中的未知项,叫做解比例。

11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。

如:y/x=k( k一定)或kx=y12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。

如:x×y = k( k一定)或k / x = y百分数:表示一个数是另一个数的百分之几的数,叫做百分数。

百分数也叫做百分率或百分比。

数量关系—数学运算 必背 资料整理

数量关系—数学运算 必背 资料整理

数量关系—数学运算 必背 资料整理(一) 数的整除特性 一、数的整除检定被被被被被二、数的整除性质1.如果两个整数a 、b 都能被c 整除,那么a+b /a-b 也能被c 整除2.如果两个整数a 、b 都不能被c 整除.那么a 与b 的和(或差)能或不能被c 整除.这是一个不肯定的结论。

3.如果整数a 能被c 整除,m为任意整数,那么am 也能被c 整除4.如果a 、b 、c 这三个数中,a 能被b 整除,b 又能被c 整除,那么a 一定能被c 整除(这是整除的传递性).5. 如果a 能被b 整除,a 又能被c 整除,且b 和c 互质,那么a 能被bc 整除 (二)数的约数和倍数(对于求大数之间的最大公约数问题,一般采用辗转相除法) EG :6731÷2809=2……1113;2809÷1113=2……583; 1113÷583=1……530 ; 583÷530=1……53 ; 530÷53=10所以6731和2809的最大公因数是53(三)同余与剩余问题一、余数性质:1.基本公式:被除数=除数³商+余数2.余数总是小于除数,即0≤d<b二、同余问题:1.两个整数a、b,若他们除以m所得的余数相同,则称a与b对于m同余,或称a与b同余。

EG:23÷5余3;18÷5余3;则23与15同余。

2.对于同一个除数m,两个数和(差、积)的余数与余数的和同余。

EG:15÷7余1;18÷7余4;则:18+15=33,1+4=5,33÷7的余数与5同余。

18-15=3, 4-1=3,3÷7的余数与3同余。

18³15=270,1³4=4,270÷7的余数与4同余。

三、剩余问题:1.同时满足被A整除余X,被B整除余Y……的数可以表示为nk+m,其中k为A、B的最小公倍数,m为同时满足被A整除余X,被B整除余Y……的最小的整数。

数量关系计算公式方面

数量关系计算公式方面

、单价×数量=总价、单产量×数量=总产量、速度×时间=路程、工效×时间=工作总量、加数加数=和一个加数=和+另一个加数被减数-减数=差减数=被减数-差被减数=减数+差被除数=商×除数被除数÷除数=商除数=被除数÷商因数×因数=积一个因数=积÷另一个因数有余数地除法:被除数=商×除数余数一个数连续用两个数除,可以先把后两个数相乘,再用它们地积去除这个数,结果不变.、公里=千米千米=米米=分米分米=厘米厘米=毫米平方米=平方分米平方分米=平方厘米平方厘米=平方毫米立方米=立方分米立方分米=立方厘米立方厘米=立方毫米文档收集自网络,仅用于个人学习吨=千克千克克公斤市斤公顷=平方米. 亩=平方米.升=立方分米=毫升毫升=立方厘米、比:两个数相除就叫做两个数地比.如:比地前项和后项同时乘以或除以一个相同地数(除外),比值不变.文档收集自网络,仅用于个人学习、比例:表示两个比相等地式子叫做比例.、比例地基本性质:在比例里,两外项之积等于两内项之积.、解比例:求比例中地未知项,叫做解比例.、正比例:两种相关联地量,一种量变化,另一种量也随着化,如果这两种量中相对应地地比值(也就是商)一定,这两种量就叫做成正比例地量,它们地关系就叫做正比例关系.如:( 一定)或文档收集自网络,仅用于个人学习、反比例:两种相关联地量,一种量变化,另一种量也随着变化,如果这两种量中相对应地两个数地积一定,这两种量就叫做成反比例地量,它们地关系就叫做反比例关系.如:×( 一定)或文档收集自网络,仅用于个人学习百分数:表示一个数是另一个数地百分之几地数,叫做百分数.百分数也叫做百分率或百分比.、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号.其实,把小数化成百分数,只要把这个小数乘以%就行了.文档收集自网络,仅用于个人学习把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位.、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数.其实,把分数化成百分数,要先把分数化成小数后,再乘以%就行了.文档收集自网络,仅用于个人学习把百分数化成分数,先把百分数改写成分数,能约分地要约成最简分数.、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数地最大公约数.(或几个数公有地约数,叫做这几个数地公约数.其中最大地一个,叫做最大公约数.)文档收集自网络,仅用于个人学习、互质数:公约数只有地两个数,叫做互质数.、最小公倍数:几个数公有地倍数,叫做这几个数地公倍数,其中最小地一个叫做这几个数地最小公倍数.、通分:把异分母分数地分别化成和原来分数相等地同分母地分数,叫做通分.(通分用最小公倍数)、约分:把一个分数化成同它相等,但分子、分母都比较小地分数,叫做约分.(约分用最大公约数)、最简分数:分子、分母是互质数地分数,叫做最简分数.分数计算到最后,得数必须化成最简分数.个位上是、、、、地数,都能被整除,即能用进行约分.个位上是或者地数,都能被整除,即能用进行约分.各个位上地数加起来能被整除这个数就能被整除.在约分时应注意利用.文档收集自网络,仅用于个人学习、偶数和奇数:能被整除地数叫做偶数.不能被整除地数叫做奇数.、质数(素数):一个数,如果只有和它本身两个约数,这样地数叫做质数(或素数).、合数:一个数,如果除了和它本身还有别地约数,这样地数叫做合数.不是质数,也不是合数.、利息=本金×利率×时间(时间一般以年或月为单位,应与利率地单位相对应)、利率:利息与本金地比值叫做利率.一年地利息与本金地比值叫做年利率.一月地利息与本金地比值叫做月利率.文档收集自网络,仅用于个人学习、自然数:用来表示物体个数地整数.也是自然数.、循环小数:一个小数,从小数部分地某一位起,一个数字或几个数字依次不断地重复出现,这样地小数叫做循环小数.如. 文档收集自网络,仅用于个人学习、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断地重复出现,这样地小数叫做不循环小数.如. 文档收集自网络,仅用于个人学习、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断地重复出现,这样地小数叫做无限不循环小数.文档收集自网络,仅用于个人学习、什么叫代数? 代数就是用字母代替数.、什么叫代数式?用字母表示地式子叫做代数式.三、一般运算规则每份数×份数=总数总数÷每份数=份数总数÷份数=每份数倍数×倍数=几倍数几倍数÷倍数=倍数几倍数÷倍数=倍数速度×时间=路程路程÷速度=时间路程÷时间=速度单价×数量=总价总价÷单价=数量总价÷数量=单价工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率加数+加数=和和-一个加数=另一个加数被减数-减数=差被减数-差=减数差+减数=被减数因数×因数=积积÷一个因数=另一个因数被除数÷除数=商被除数÷商=除数商×除数=被除数。

向量的数量积运算的所有公式

向量的数量积运算的所有公式

向量的数量积运算的所有公式1.数量积定义公式:A·A=A₁A₁+A₂A₂+…+AAAA2.量积的坐标表示:设A=(A₁,A₂,…,AA)和A=(A₁,A₂,…,AA)是两个n维向量,则A·A=A₁A₁+A₂A₂+…+AAAA3.量积的几何表示:A·A = ‖A‖‖A‖cosA其中,‖A‖和‖A‖是A和A的长度,A是A和A之间的夹角。

4.正交性:当A·A=0时,A和A互相垂直,即A与A正交。

5.长度平方:A·A=‖A‖²即一个向量与自身的量积等于其长度的平方。

6.长度平方的展开:A·A=A₁²+A₂²+…+AA²7.向量之和的数量积:(A+A)·A=A·A+A·A8.向量乘以标量的数量积:(AA)·A=A(A·A)其中,A是标量。

9.向量乘法与交换律:A·A=A·A10.关于数乘的结合律:(AA)·A=A(A·A)=A·(AA)11.加法可分配律:A·(A+A)=A·A+A·A12.数乘可分配律:(A+A)A·A=AA·A+AA·A13. Einsteain求和约定:当上下两个指标相同时,指标重复出现的求和,例如:A·A=AᵢAᵢ,其中i=1,2,…,n,对于所有的i求和。

14.柯西-施瓦兹不等式:‖A·A‖≤‖A‖‖A‖,其中等号成立当且仅当A和B线性相关。

这些公式展示了向量的数量积运算的一些基本性质和计算公式。

通过利用这些公式,我们可以将向量的数量积运用于解决各种问题,例如计算向量的夹角、向量的投影等。

六年级数学数量关系式与计算公式及学习方法

六年级数学数量关系式与计算公式及学习方法

六年级数学数量关系式与计算公式及学习方法1. 引言六年级是学习数学中重要的阶段之一。

在这个阶段,学生开始接触更加复杂的数学概念和计算方法。

数量关系式和计算公式是数学学习中不可或缺的部分,它们有助于我们理解数学问题,解决实际生活中的计算难题。

本文将介绍一些六年级数学中常见的数量关系式和计算公式,并提供学习方法,帮助学生更好地掌握这些知识。

2. 数量关系式2.1 简单的数量关系式在六年级数学中,我们经常会遇到简单的数量关系式。

这些关系式通常是由两个量之间的相等关系组成,如下所示:$$ a = b \\quad (1) $$这个关系式表明,量a和量b是相等的。

学生需要理解这个关系式的含义,从中推导出相关的解题步骤,解决实际问题。

在实际生活中,我们经常会用到这种关系式,比如计算两个商品的价格是否相等,或者解决简单的运算问题。

2.2 复杂的数量关系式除了简单的数量关系式,六年级数学中还会遇到一些复杂的关系式。

这些关系式包括多个量之间的相等关系,以及各种数学运算符号的运用。

例如:$$ a + b = c \\quad (2) $$这个关系式表明,量a和量b的和等于量c。

学生需要通过理解关系式中的运算符号,推导出相关的计算步骤,解决实际问题。

这种关系式在数学中非常常见,学生需要熟练掌握运算的规则,灵活运用在解决问题中。

3. 计算公式3.1 基本的计算公式计算公式是数学学习中不可或缺的一部分。

在六年级数学中,我们常常会遇到一些基本的计算公式,如下所示:•乘法公式:$a \\cdot b = c$这个公式表明,量a和量b的乘积等于量c。

在实际生活中,乘法公式经常被用来计算面积、体积等问题。

学生需要熟练掌握乘法公式的运用,从而能够快速解决相关的计算难题。

3.2 综合的计算公式除了基本的计算公式,六年级数学中还会有一些综合性的计算公式。

这些公式涉及多个量之间的关系,需要学生掌握一定的运算规则和解题技巧。

例如:•速度计算公式:$v = \\dfrac{s}{t}$这个公式表明,速度v等于路程s除以时间t。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数量关系常用公式
1.两次相遇公式:单岸型 S=(3S1+S2)/2 两岸型 S=3S1-S2
例题:两艘渡轮在同一时刻垂直驶离 H 河的甲、乙两岸相向而行,一艘从甲岸驶向乙岸,另一艘从乙岸开往甲岸,它们在距离较近的甲岸 7 20 米处相遇。

到达预定地点后,每艘船都要停留 10 分钟,以便让乘客上船下船,然后返航。

这两艘船在距离乙岸 400 米处又重新相遇。

问:该河的宽度是多少?
A. 1120 米
B. 1280 米
C. 1520 米
D. 1760 米
2.漂流瓶公式: T=(2t逆*t顺)/ (t逆-t顺)
无动力的木筏,它漂到B城需多少天?
3.沿途数车问题公式:发车时间间隔T=(2t1*t2)/(t1+t2 )车速/人速=(t2+t1)/(t2-t1) 例题:小红沿某路公共汽车路线以不变速度骑车去学校,该路公共汽车也以不变速度不停地运行,每隔6分钟就有辆公共汽车从后面超过她,每隔10分钟就遇到迎面开来的一辆公共汽车,公共汽车的速度是小红骑车速度的()倍?
A. 3
B.4
C. 5
D.6
4.往返运动问题公式:V均=(2v1*v2)/(v1+v2)
例题:一辆汽车从A地到B地的速度为每小时30千米,返回时速度为每小时20千米,则它的平均速度为多少千米/小时?()
A.24
B.24.5
C.25
D.25.5
5.电梯问题:能看到级数=(人速+电梯速度)*顺行运动所需时间(顺)能看到级数=(人速-电梯速度)*逆行运动所需时间(逆)
6.什锦糖问题公式:均价A=n /{(1/a1)+(1/a2)+(1/a3)+(1/an)}例题:商店购进甲、乙、丙三种不同的糖,所有费用相等,已知甲、乙、丙三种糖每千克费用分别为4.4 元,6 元,6.6 元,如果把这三种糖混在一起成为什锦糖,那么这种什锦糖每千克成本多少元?
A.4.8 元 B.5 元 C.5.3 元 D.5.5 元
7.十字交叉法:A/B=(r-b)/(a-r)
例:某班男生比女生人数多80%,一次考试后,全班平均成级为75 分,而女生的平均分比男生的平均分高20% ,则此班女生的平均分是:8.N人传接球M次公式:次数=(N-1)的M次方/N 最接近的整数为末次传他人次数,第二接近的整数为末次传给自己的次数。

例题:四人进行篮球传接球练习,要求每人接球后再传给别人。

开始由甲发球,并作为第一次传球,若第五次传球后,球又回到甲手中,则共有传球方式()。

A. 60种
B. 65种
C. 70种
D. 75种
9.对折问题:一根绳连续对折N次,从中剪M刀,则被剪成(2的N次方*M+1)段
10.方阵问题:方阵人数=(最外层人数/4+1)的2次方 N排N列最外层有:4N-4人
11.过河问题:M个人过河,船能载N个人。

需要A个人划船,共需过河(M-A)/ (N-A)次。

例题 (广东05)有37名红军战士渡河,现在只有一条小船,每次只能载5人,需要几次才能渡完?()
A.7
B. 8
C.9
D.10
12.星期日期问题:闰年(被4整除)的2月有29日,平年(不能被4整除)的2月有28 日,记口诀:一年就是1,润日再加1;一月就是2,多少再补算
例:2002年 9月1号是星期日 2008年9月1号是星期几?
13.复利计算公式:本息=本金*{(1+利率)的N次方},N为相差年数。

例题:某人将10万元存入银行,银行利息2%/年,2年后他从银行取钱,需缴纳利息税,税率为20%,则税后他能实际提取出的本金合计约为多少万元?()
A.10.32
B.10.44
C.10.50 D10.61
14.牛吃草问题:草场原有草量=(牛数-每天长草量)*天数
例题:有一水池,池底有泉水不断涌出,要想把水池的水抽干,10台抽水机需抽8小时,8台抽水机需抽12小时,如果用6台抽水机,那么需抽多少小时?
A、16
B、20
C、24
D、28
15.植树问题:线型棵数=总长/间隔+1 环型棵数=总长/间隔楼间棵数=总长/间隔-1
16:比赛场次问题:淘汰赛仅需决冠亚军比赛场次=N-1;淘汰赛需决前四名场次=N;单循环赛场次为组合N人中取2;双循环赛场次为排列N人中排2。

例题:100名男女运动员参加乒乓球单打淘汰赛,要产生男女冠军各一名,则要安排单打赛多少场?( )。

相关文档
最新文档