七年级数学下学期第二次月考试卷分析
2020-2021学年福建省龙岩市漳平市七年级(下)第二次月考数学试卷(附答案详解)
2020-2021学年福建省龙岩市漳平市七年级(下)第二次月考数学试卷一、选择题(本大题共10小题,共40.0分)1. 下列方程组中,是二元一次方程组的是( )A. {x +4y =41x +2y =9B. {x +2y =5y +3z =7C. {x =1x −4y =6D. {x −y =4xyx −2y =1 2. 方程组{x +y =102x +y =16的解是( ) A. {x =6y =4 B. {x =5y =6 C. {x =3y =6 D. {x =2y =8 3. 利用加减消元法解方程组{2x +5y =−10 ①5x −3y =6 ②,下列做法正确的是( ) A. 要消去y ,可以将①×5+②×2B. 要消去x ,可以将①×3+②×(−5)C. 要消去y ,可以将①×5+②×3D. 要消去x ,可以将①×(−5)+②×24. 若方程mx +ny =6的两个解是{x =1y =1,{x =2y =−1,则m ,n 的值为( ) A. 4,2 B. 2,4 C. −4,−2 D. −2,−45. 若m >n ,则下列不等式正确的是( )A. m −2<n −2B. m 4>n 4C. 6m <6nD. −8m >−8n6. 若方程组{4x +3y =1ax +(a −1)y =3的解x 与y 相等,则a 的值等于( ) A. 4 B. 10 C. 11 D. 127. x 的2倍减去7的差不大于−1,可列关系式为( )A. 2x −7≤−1B. 2x −7<−1C. 2x −7=−1D. 2x −7≥−18. 购买铅笔7支,作业本3本,圆珠笔1支共需3元;购买铅笔10支,作业本4本,圆珠笔1支共需4元,则购买铅笔11支,作业本5本,圆珠笔2支共需( )A. 4.5元B. 5元C. 6元D. 6.5元9. 某抗战纪念馆馆长找到大学生团干部小张,联系青年志愿者在周日参与活动,活动累计56个小时的工作时间,需要每名男生工作5个小时,每名女生工作4个小时,小张可以安排学生参加活动的方案共有( )A. 1种B. 2种C. 3种D. 4种10. 如图,在正方形ABCD 的每个顶点上写一个数,把这个正方形每条边的两端点上的数加起来,将和写在这条边上,已知AB 上的数是3,BC 上的数是7,CD 上的数是12,则AD 上的数是( )A. 2B. 7C. 8D. 15二、填空题(本大题共6小题,共24.0分)11. 已知{x +2y =2020y +2z =2021z +2x =2022,则x +y +z 的值______.12. 如果4x a+2b−5−2y 3a−b−3=8是二元一次方程,那么a −b =___.13. 已知关于x ,y 的二元一次方程组{2x +3y =k x +2y =−1的解互为相反数,则k 的值是______. 14. 若a −3b =2,3a −b =6,则b −a 的值为______.15. 已知a >b ,则−12a +c ______−12b +c(填>、<或=).16. 爸爸沿街匀速行走,发现每隔7分钟从背后驶过一辆103路公交车,每隔5分钟从迎面驶来一辆103路公交车,假设每辆103路公交车行驶速度相同,而且103路公交车总站每隔固定时间发一辆车,那么103路公交车行驶速度是爸爸行走速度的______倍.三、解答题(本大题共9小题,共86.0分)17. 用不等式表示.(1)m 与3的和是负数;(2)x 减去8的差大于4;(3)a 的2倍大于或等于6;(4)x 与y 的和不大于−2.18. 解方程组{0.2x +0.6y =1.50.15x −0.3y =0.5.19. 已知y =ax 2+bx +c ,当x =1时,y =0;当x =2时,y =5;当x =−3时,y =0,求a ,b ,c 的值.20. 已知{x =3y =−2是方程组{ax +by =3bx +ay =−7的解,求代数式(a +b)(a −b)的值.21. 根据不等式的性质,把下列不等式化成x >a 或x <a 的形式.(1)x +7>9;(2)6x<5x−3;(3)15x<25;(4)−23x>−1.22.为了提高市民的环保意识,倡导“节能减排、绿色出行”,某市计划在城区投放一批“共享单车”.这批单车分为A、B两种不同款型,其中A型车单价400元,B型车单价320元.今年年初,“共享单车”试点投放在某市中心城区正式启动,投放A、B两种款型的单车共100辆,总价值36800元,试问本次投放的A型车与B型车各多少辆?23.为确保信息安全,在传输时往往需加密,发送方发出一组密码a,b,c时,则接收方对应收到的密码为A,B,C.双方约定:A=2a−b,B=2b,C=b+c,例如发出1,2,3,则收到0,4,5(1)当发送方发出一组密码为2,3,5时,则接收方收到的密码是多少?(2)当接收方收到一组密码2,8,11时,则发送方发出的密码是多少?24.小亮在匀速行驶的汽车里,注意到公路里程碑上的数如下表所示:那么小亮在12:00时看到的两位数是______,并写出解答过程.25.小明同学四次到某超市购买A,B两种商品,其中有两次是有折扣的,购买数量及消费金额如下表所示:解答下列问题:(1)第______次购买有折扣;(2)求A、B两种商品的原价;(3)若A、B两种商品折扣数不变,求A、B两种商品的折扣数各是多少.答案和解析1.【答案】C【解析】解:A 、1x 与2y 是分式,故该选项错误;B 、有三个未知数,故该选项错误;C 、符合二元一次方程组的定义;D 、第一个方程中的xy 是二次的,故该选项错误.故选:C .组成二元一次方程组的两个方程应共含有两个未知数,且未知数的项最高次数都应是一次的整式方程.本题考查了二元一次方程组的定义.一定要紧扣二元一次方程组的定义“由两个二元一次方程组成的方程组”,细心观察排除,得出正确答案.2.【答案】A【解析】解:{x +y =10 ①2x +y =16 ②, ②−①得:x =6,把x =6代入①得:y =4,则方程组的解为{x =6y =4, 故选:A .方程组利用加减消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.3.【答案】D【解析】【分析】方程组利用加减消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.【解答】解:利用加减消元法解方程组{2x +5y =−10 ①5x −3y =6 ②, 要消去x ,可以将①×(−5)+②×2.故选:D .4.【答案】A【解析】【分析】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值. 将x 与y 的两对值代入方程计算即可求出m 与n 的值.【解答】解:将{x =1y =1,{x =2y =−1分别代入mx +ny =6中, 得:{m +n =6 ①2m −n =6 ②, ①+②得:3m =12,即m =4,将m =4代入①得:n =2,故选:A .5.【答案】B【解析】【分析】本题主要考查不等式的性质,解题的关键是掌握不等式的基本性质,尤其是性质:不等式的两边同时乘以(或除以)同一个正数,不等号的方向不改变;不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.将原不等式两边分别都减2、都除以4、都乘以6、都乘以−8,根据不等式的基本性质逐一判断即可得.【解答】解:A 、将m >n 两边都减2得:m −2>n −2,此选项错误;B 、将m >n 两边都除以4得:m 4>n 4,此选项正确;C 、将m >n 两边都乘以6得:6m >6n ,此选项错误;D 、将m >n 两边都乘以−8,得:−8m <−8n ,此选项错误;故选:B .6.【答案】C【解析】解:根据题意得:{4x +3y =1(1)ax +(a −1)y =3(2)x =y(3),把(3)代入(1)解得:x =y =17,代入(2)得:17a +17(a −1)=3,解得:a =11.故选:C .理解清楚题意,运用三元一次方程组的知识,解出a 的数值.本题的实质是解三元一次方程组,用加减法或代入法来解答.7.【答案】A【解析】解:根据题意,得2x −7≤−1.故选:A .理解:不大于−1,即是小于或等于−1.本题考查把文字语言的不等关系转化为用数学符号表示的不等式.8.【答案】B【解析】解:设铅笔的单价是x 元,作业本的单价是y 元,圆珠笔的单价是z 元.购买铅笔11支,作业本5本,圆珠笔2支共需a 元.则由题意得{7x +3y +z =3 ①10x +4y +z =4 ②11x +5y +2z =a ③由②−①得3x +y =1 ④由②+①得17x +7y +2z =7 ⑤由⑤−④×2−③得0=5−a∴a =5故选:B .首先假设铅笔的单价是x 元,作业本的单价是y 元,圆珠笔的单价是z 元.购买铅笔11支,作业本5本,圆珠笔2支共需a 元.根据题目说明列出方程组{7x +3y +z =3 ①10x +4y +z =4 ②11x +5y +2z =a ③,解方程组求出a 的值,即为所求结果.解答此题的关键是列出方程组,用加减消元法求出方程组的解.9.【答案】B【解析】解:设安排女生x 人,安排男生y 人,依题意得:4x +5y =56,则x =56−5y 4.当y =4时,x =9.当y =8时,x =4.即安排女生9人,安排男生4人;安排女生4人,安排男生8人.共有2种方案.故选:B .设安排女生x 人,安排男生y 人,由“累计56个小时的工作时间”列出方程求得正整数解.考查了二元一次方程的应用.注意:根据未知数的实际意义求其整数解.10.【答案】C【解析】【分析】此题主要考查了方程组的应用,注意利用整体思想求出x +z 的值是解题关键.根据题意首先设A 点数为x ,B 点数为y ,则C 点数为7−y ,D 点数为z ,得出x +y =3①,z +7−y =12②,从而得出x +z 的值.【解答】解:设A 点数为x ,B 点数为y ,则C 点数为7−y ,D 点数为z ,根据题意可得:x +y =3①,C 点数为7−y ,故z +7−y =12②,故①+②得:x +y +z +7−y =12+3,故x +z =8,即AD 上的数是:8.故选C .11.【答案】2021【解析】解:{x +2y =2020①y +2z =2021②z +2x =2022③,①+②+③得:3x +3y +3z =6063,则x +y +z =2021.故答案为:2021.方程组三个方程相加求出所求即可.此题考查了解三元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.12.【答案】0【解析】【分析】本题主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.根据二元一次方程的定义即可得到x 、y 的次数都是1,则得到关于a ,b 的方程组求得a ,b 的值,则代数式的值即可求得.【解答】解:根据题意得:{a +2b −5=13a −b −3=1, 解得:{a =2b =2. 则a −b =0.故答案为:0.13.【答案】−1【解析】解:解方程组{2x +3y =k x +2y =−1得:{x =2k +3y =−2−k , 因为关于x ,y 的二元一次方程组{2x +3y =k x +2y =−1的解互为相反数, 可得:2k +3−2−k =0,解得:k =−1.故答案为:−1.将方程组用k 表示出x ,y ,根据方程组的解互为相反数,得到关于k 的方程,即可求出k 的值.此题考查方程组的解,关键是用k 表示出x ,y 的值.14.【答案】−2【解析】解:由题意知{a −3b =2①3a −b =6②, ①+②,得:4a −4b =8,则a −b =2,∴b −a =−2,故答案为:−2.本题主要考查解二元一次方程组,解题的关键是掌握等式的基本性质的灵活运用.将两方程相加可得4a −4b =8,再两边都除以4得出a −b 的值,继而由等式的性质和相反数定义即可得出答案.15.【答案】<【解析】解:∵a >b ,∴−12a <−12b ,∴−12a +c <−12b +c .不等式两边加或减某个数或式子,乘或除以同一个正数,不等号的方向不变;不等式两边乘或除以一个负数,不等号的方向改变.主要考查了不等式的基本性质.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.16.【答案】6【解析】解:设103路公交车行驶速度为x 米/分钟,爸爸行走速度为y 米/分钟,两辆103路公交车间的间距为s 米,根据题意得:{7x −7y =s 5x +5y =s解得:x =6y .故答案为:6.设103路公交车行驶速度为x 米/分钟,爸爸行走速度为y 米/分钟,两辆103路公交车间的间距为s 米,根据“每隔7分钟从背后驶过一辆103路公交车,每隔5分钟从迎面驶来一辆103路公交车”,即可得出关于x 、y 的二元一次方程组,消去s 即可得出x =6y ,此题得解.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.17.【答案】解:(1)m +3<0;(2)x −8>4;(3)2a ≥6;(4)x +y ≤−2.【解析】直接利用负数的定义以及结合不等关系得出不等式即可.此题主要考查了由实际问题抽象出一元一次不等式,正确掌握相关定义是解题关键.18.【答案】解:{0.2x +0.6y =1.5①0.15x −0.3y =0.5②, ②×2+①,得0.5x =2.5,解得:x =5,把x =5代入①,得1+0.6y =1.5,解得:y =56,所以原方程组的解为{x =5y =56.【解析】②×2+①得出0.5x =2.5,求出x ,再把x =5代入①求出y 即可.此题主要考查了解二元一次方程组的方法,要熟练掌握,注意代入消元法和加减消元法的应用.19.【答案】解:由题意,得{a +b +c =0①4a +2b +c =5②9a −3b +c =0③,②−①得:3a +b =5④,③−①得:8a −4b =0,即2a −b =0⑤,④+⑤得:5a =5,解得:a =1,把a =1代入④得:3+b =5,解得:b =2,把a =1,b =2代入①得:1+2+c =0,解得:c =−3,则方程组的解{a =1b =2c =−3.【解析】把x 与y 的值代入y =ax 2+bx +c 得到方程组,求出方程组的解即可.此题考查了解三元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.【答案】解:把{x =3y =−2代入方程组得:{3a −2b =3①3b −2a =−7②, ①+②得:a +b =−4,①−②得:5a −5b =10,即a −b =2,则(a +b)(a −b)=(−4)×2=−8.【解析】把x 与y 的值代入方程组求出a 与b 的值,把a +b =−4,a −b =2代入原式计算即可求出值.此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.21.【答案】解:(1)∵x +7>9,∴x >2.(2)∵6x <5x −3,∴6x −5x <−3.∴x <−3.(3)∵15x <25, ∴15x ×5<25×5. ∴x <2.(4)∵−23x >−1,∴−2x >−3.∴x <32.【解析】(1)根据不等式的性质(不等式两边减去同一个数,不等号方向不变)解决此题.(2)根据不等式的性质(不等式两边加上同一个数,不等号方向不变;不等式两边同时除以一个不为0的数,不等号方向不变)解决此题.(3)根据不等式的性质(不等式两边同乘一个不为0的数,不等号方向不变)解决此题.(4)根据不等式的性质(不等式两边同时乘或除不为0的正数,不等号方向不变;不等式两边同乘或除不为0的负数,不等号方向不变)解决此题.本题主要考查不等式的非负性,熟练掌握绝对值的非负性是解决本题的关键.22.【答案】解:设本次投放的A 型车为x 辆,B 型车为y 辆,根据题意,得:{x +y =100400x +320y =36800, 解得:{x =60y =40, 答:本次投放A 型车60辆,B 型车40辆.【解析】设本次投放的A 型车为x 辆,B 型车为y 辆,由题意:A 型车单价400元,B 型车单价320元.投放A 、B 两种款型的单车共100辆,总价值36800元,列出二元一次方程组,解方程组即可.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.23.【答案】解:(1)由题意得:{2×2−3=A B =2×3C =3+5,解得:A =1,B =6,C =8,答:接收方收到的密码是1、6、8;(2)由题意得:{2a −b =22b =8b +c =11,解得:a =3,b =4,c =7,答:发送方发出的密码是3、4、7.【解析】(1)根据题意可得方程组,再解方程组即可.(2)根据题意可得方程组,再解方程组即可.此题主要考查了方程组的应用,关键是正确理解题意,根据密文与明文之间的关系列出方程组.24.【答案】27;解:设第一次他看到的两位数的个位数为x ,十位数为y ,汽车行驶速度为v ,根据题意得:{10x +y −(10y +x)=v 100y +x −(10y +x)=4v, 解得:x =72y ,∵x ,y 为1~9的自然数,∴x =7,y =2.答:小亮在12:00时看到的两位数是27.【解析】本题考查了三元一次方程组的应用,解题关键是弄清题意,合适的等量关系,列出方程组.本题涉及一个常识问题:两位数=10×十位数字+个位数字,并且在求两位数或三位数时,一般是不能直接设这个两位数或三位数的,而是设它各个数位上的数字为未知数.设第一次他看到的两位数的个位数为x ,十位数为y ,汽车行驶速度为v ,第一次看到的两位数为10y +x ,行驶一小时后看到的两位数为10x +y ,第三次看到的三位数为100y +x ,由汽车均速行驶可得16时行驶的路程,即可列出两个方程求解得出x =72y ,再根据x 、y 都为1~9的自然数,即可判断出答案.25.【答案】三、四【解析】解:(1)由题意得:第三、四次购买有折扣,故答案为:三、四;(2)设A 商品的原价为x 元,B 商品的原价为y 元,根据题意,得:{4x +5y =3202x +6y =300, 解得:{x =30y =40, 答:A 商品的原价为30元,B 商品的原价为40元;(3)设A 商品折扣数为m 折,B 商品折扣数为n 折,根据题意,得:{5×30×m 10+7×40×n 10=2584×30×m 10+7×40×n 10=240, 解得:{m =6n =6, 答:A 商品折扣数为6折,B 商品折扣数为6折.(1)由表中数据即可得出结论;(2)设A 商品的原价为x 元,B 商品的原价为y 元,由表中数据列出二元一次方程组,解方程组即可;(3)设A 商品折扣数为m 折,B 商品折扣数为n 折,由(2)的结果结合表中数据列出二元一次方程组,解方程组即可.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.。
2017-2018学年贵州省贵阳三中七年级(下)第二次月考数学试卷(解析版)
2017-2018学年贵州省贵阳三中七年级(下)第二次月考数学试卷一、选择题(本大题共12个小题,每小题5分,共60分>在每小题给出的四个选项中,只有一项是符合题目要求的)1.在下列“禁毒”、“和平”、“志愿者”、“节水”这四个标志中,属于轴对称图形的是()A.B.C.D.2.的平方根是()A.B.2C.±2D.3.如图,数轴上的A、B、C、D四点中,与表示数﹣的点最接近的是()A.点A B.点B C.点C D.点D4.若x,y为实数,且|x+2|+=0,则的值为()A.2B.﹣2C.1D.﹣15.如图,直角△ABC的周长为24,且AB:AC=5:3,则BC=()A.6B.8C.10D.126.端午节三天假期的某一天,小明全家上午8时自架小汽车从家里出发,到某著名旅游景点游玩.该小汽车离家的距离S(千米)与时间t(小时)的关系如图所示.根据图象提供的有关信息,下列说法中错误的是()A.景点离小明家180千米B.小明到家的时间为17点C.返程的速度为60千米每小时D.10点至14点,汽车匀速行驶7.下列说法错误的个数是()①无理数都是无限小数;②的平方根是±2;③﹣9是81的一个平方根;④=()2;⑤与数轴上的点一一对应的数是实数.A.1个B.2个C.3个D.4个8.△ABC中,∠A:∠B:∠C=3:5:8,则△ABC是()A.锐角三角形B.直角三角形,且∠C=90°C.直角三角形,且∠B=90°D.直角三角形,且∠A=90°9.2002年8月在北京召开的国际数学大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图),如果大正方形的面积是13,小正方形的面积是1,直角三角形较短的直角边为a,较长的直角边为b,那么(a+b)2的值为()A.13B.19C.25D.16910.实数a、b在数轴上对应点的位置如图,则|a﹣b|﹣的结果是()A.2a﹣b B.b﹣2a C.b D.﹣b11.正三角形ABC所在平面内有一点P,使得△PAB、△PBC、△PCA都是等腰三角形,则这样的P点有()A.1个B.4个C.7个D.10个12.如图所示,四边形ABCD中,DC∥AB,BC=1,AB=AC=AD=2.则BD的长为()A.B.C.D.二、填空题(每题题5分,满分20,将答案填在答题纸上)13.等腰三角形的两边长分别是3和5,则这个等腰三角形的周长为.14.如图,在△ABC中,AB=AD=DC,∠BAD=20°,则∠C=.15.实数﹣,0,,,0.1010010001…(两个1之间一次多一个0),,中,无理数有:.16.已知y=﹣24,则=.三、解答题(本大题共70分,解答应写出文字说明、证明过程或演算步骤)17.(12分)计算(1)(﹣2)0++(2)(﹣2)×﹣618.(10分)如图:小刚站在河边的A点处,在河的对面(小刚的正北方向)的B处有一电线塔,他想知道电线塔离他有多远,于是他向正西方向走了20步到达一棵树C处,接着再向前走了20步到达D处,然后他左转90°直行,当小刚看到电线塔、树与自己现处的位置E在一条直线时,他共走了100步.(1)根据题意,画出示意图;(2)如果小刚一步大约50厘米,估计小刚在点A处时他与电线塔的距离,并说明理由.19.(12分)在Rt△ABC中,∠C=90°,BC=6,AC=8,点D在线段AC上从C向A运动,若设CD=x,△ABD的面积为y.(1)写出y与x的关系式;(2)当x取何值时,y有最大值?最大值是多少?此时点D在什么位置?(3)当△ABD的面积是△ABC面积的一半时,点D在什么位置?20.(12分)某商店周年庆,印涮了10000张奖券,其中印有老虎图案的有10张,每张奖金1000元,印有羊图案的有50张,每张奖金100元,印有鸡图案的有100张,每张奖金20元,印有兔子图案的有400张,每张奖金2元,其余印有花朵图案但无奖金.从中任意抽取一张,请解答下列问题:(1)获得1000元奖金的概率是多少?(2)获得奖金的概率是多少?(3)若要使获得2元奖金的概率为,则需要将多少张印有花朵图案的奖券换为印有兔子图案的奖券?21.(12分)(1)如图1,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.(2)如图2,AB∥CD,AB=CD,BF=DE,求证:∠AEF=∠CFB.22.(12分)王老师在一次“探究性学习”课中,设计了如下数表:(1)请你分别观察a、b、c与n之间的关系,并用含自然数n的代数式表示:a=,b=,c=.(2)猜想以a、b、c为边的三角形是否为直角三角形?并证明你的猜想?(3)观察下列勾股数:32+42=52,52+122=132,72+242=252,92+402=412,分析其中的规律,根据规律写出第五组勾股数.2017-2018学年贵州省贵阳三中七年级(下)第二次月考数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,共60分>在每小题给出的四个选项中,只有一项是符合题目要求的)1.在下列“禁毒”、“和平”、“志愿者”、“节水”这四个标志中,属于轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念进行判断即可.【解答】解:A、不是轴对称图形,故选项错误;B、是轴对称图形,故选项正确;C、不是轴对称图形,故选项错误;D、不是轴对称图形,故选项错误.故选:B.【点评】本题考查的是轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.2.的平方根是()A.B.2C.±2D.【分析】首先根据算术平方根的定义化简,然后根据平方根的定义即可得出结果.【解答】解:∵=4,又∵22=4,(﹣2)2=4,∴的平方根为±2;故选:C.【点评】本题主要考查了平方根和算术平方根的定义.解题注意算术平方根和平方根的区别.平方根的定义:如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.3.如图,数轴上的A、B、C、D四点中,与表示数﹣的点最接近的是()A.点A B.点B C.点C D.点D【分析】先估算出≈2.236,所以﹣≈﹣2.236,根据点A、B、C、D表示的数分别为﹣3、﹣2、﹣1、2,即可解答.【解答】解:∵≈2.236,∴﹣≈﹣2.236,∵点A、B、C、D表示的数分别为﹣3、﹣2、﹣1、2,∴与数﹣表示的点最接近的是点B.故选:B.【点评】本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.4.若x,y为实数,且|x+2|+=0,则的值为()A.2B.﹣2C.1D.﹣1【分析】根据非负数的性质列方程求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,x+2=0,y﹣2=0,解得x=﹣2,y=2,所以,==﹣1.故选:D.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.5.如图,直角△ABC的周长为24,且AB:AC=5:3,则BC=()A.6B.8C.10D.12【分析】设AB=5x,AC=3x,则根据勾股定理可求出BC,再由直角△ABC的周长为24可解得x 的值,这样也就得出了BC的值.【解答】解:设AB=5x,AC=3x,则BC==4x,又∵直角△ABC的周长为24,∴5x+3x+4x=24,解得:x=2,∴BC=8.故选:B.【点评】本题考查勾股定理的应用,属于基础题,解答本题的关键先求出BC含x的表达式,然后列出方程解出x.6.端午节三天假期的某一天,小明全家上午8时自架小汽车从家里出发,到某著名旅游景点游玩.该小汽车离家的距离S(千米)与时间t(小时)的关系如图所示.根据图象提供的有关信息,下列说法中错误的是()A.景点离小明家180千米B.小明到家的时间为17点C.返程的速度为60千米每小时D.10点至14点,汽车匀速行驶【分析】根据函数图象的纵坐标,可判断A;根据待定系数法,可得返回的函数解析式,根据函数值与自变量的对应关系,可判断B;根据函数图象的纵坐标,可得返回的路程,根据函数图象的横坐标,可得返回的时间,根据路程与时间的关系,可判断C;根据函数图象的纵坐标,可判断D.【解答】解:A、由纵坐标看出景点离小明家180千米,故A正确;B、由纵坐标看出返回时1小时行驶了180﹣120=60千米,180÷60=3,由横坐标看出14+3=17,故B正确;C、由纵坐标看出返回时1小时行驶了180﹣120=60千米,故C正确;D、由纵坐标看出10点至14点,路程不变,汽车没行驶,故D错误;故选:D.【点评】本题考查了函数图象,观察函数图象的纵坐标得出路程,观察函数图象的横坐标得出时间是解题关键.7.下列说法错误的个数是()①无理数都是无限小数;②的平方根是±2;③﹣9是81的一个平方根;④=()2;⑤与数轴上的点一一对应的数是实数.A.1个B.2个C.3个D.4个【分析】根据无理数、平方根、数轴、二次根式的性质,分别对每一项进行分析即可.【解答】解:①无理数都是无限不循环小数,故本选项错误;②的平方根是±,故本选项错误;③﹣9是81的一个平方根,故本选项正确;④当a≥0时,=()2,故本选项错误;⑤与数轴上的点一一对应的数是实数,故本选项正确;错误的个数是3个,故选:C.【点评】此题考查了实数,用到的知识点是无理数、平方根、数轴、二次根式的性质,关键是熟练掌握有关定义与性质.8.△ABC中,∠A:∠B:∠C=3:5:8,则△ABC是()A.锐角三角形B.直角三角形,且∠C=90°C.直角三角形,且∠B=90°D.直角三角形,且∠A=90°【分析】根据已知条件∠A:∠B:∠C=3:5:8和三角形的内角和即可求得∠C=×180°=90°,于是得到结论.【解答】解:∵∠A:∠B:∠C=3:5:8,∠A+∠B+∠C=180°,∴∠C=×180°=90°∴△ABC是直角三角形,故选:B.【点评】本题考查了三角形的内角和,直角三角形的判定,熟练掌握三角形的内角和定理是解题的关键.9.2002年8月在北京召开的国际数学大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图),如果大正方形的面积是13,小正方形的面积是1,直角三角形较短的直角边为a,较长的直角边为b,那么(a+b)2的值为()A.13B.19C.25D.169【分析】根据勾股定理,知两条直角边的平方等于斜边的平方,此题中斜边的平方即为大正方形的面积13,2ab即四个直角三角形的面积和,从而不难求得(a+b)2.【解答】解:(a+b)2=a2+b2+2ab=大正方形的面积+四个直角三角形的面积和=13+(13﹣1)=25.故选:C.【点评】注意完全平方公式的展开:(a+b)2=a2+b2+2ab,还要注意图形的面积和a,b之间的关系.10.实数a、b在数轴上对应点的位置如图,则|a﹣b|﹣的结果是()A.2a﹣b B.b﹣2a C.b D.﹣b【分析】首先由数轴可得a<b<0,然后利用二次根式与绝对值的性质,即可求得答案.【解答】解:根据题意得:a<b<0,∴a﹣b<0,∴|a﹣b|﹣=|a﹣b|﹣|a|=(b﹣a)﹣(﹣a)=b﹣a+a=b.故选:C.【点评】此题考查了数轴、二次根式与绝对值的性质.此题难度适中,注意=|a|.11.正三角形ABC所在平面内有一点P,使得△PAB、△PBC、△PCA都是等腰三角形,则这样的P点有()A.1个B.4个C.7个D.10个【分析】(1)点P在三角形的内部时,点P到△ABC的三个顶点的距离相等,所以点P是三角形的外心;(2)点P在三角形的外部时,每条边的垂直平分线上的点只要能够使顶点这条边的两端点连接而成的三角形是等腰三角形即可.【解答】解:(1)点P在三角形内部时,点P是边AB、BC、CA的垂直平分线的交点,是三角形的外心;(2)分别以三角形各顶点为圆心,边长为半径,交垂直平分线的交点就是满足要求的.每条垂直平分线上得3个交点,再加三角形的垂心,一共10个.故选:D.【点评】本题主要考查等腰三角形的性质;要注意分点在三角形内部和三角形外部两种情况讨论,思考全面是正确解答本题的关键.12.如图所示,四边形ABCD中,DC∥AB,BC=1,AB=AC=AD=2.则BD的长为()A.B.C.D.【分析】以A为圆心,AB长为半径作圆,延长BA交⊙A于F,连接DF.在△BDF中,由勾股定理即可求出BD的长.【解答】解:以A为圆心,AB长为半径作圆,延长BA交⊙A于F,连接DF.∵DC∥AB,∴=,∴DF=CB=1,BF=2+2=4,∵FB是⊙A的直径,∴∠FDB=90°,∴BD==.故选:B.【点评】本题考查了勾股定理,解题的关键是作出以A为圆心,AB长为半径的圆,构建直角三角形,从而求解.二、填空题(每题题5分,满分20,将答案填在答题纸上)13.等腰三角形的两边长分别是3和5,则这个等腰三角形的周长为11或13.【分析】分3是腰长与底边两种情况讨论求解.【解答】解:①3是腰长时,三角形的三边分别为3、3、5,能组成三角形,周长=3+3+5=11,②3是底边长时,三角形的三边分别为3、5、5,能组成三角形,周长=3+5+5=13,综上所述,这个等腰三角形的周长是11或13.故答案为:11或13.【点评】本题考查了等腰三角形的性质,难点在于分情况讨论并利用三角形的三边关系判断是否能组成三角形.14.如图,在△ABC中,AB=AD=DC,∠BAD=20°,则∠C=40°.【分析】先根据等腰三角形的性质及三角形内角和定理可求出∠B的度数,再根据三角形外角的性质可求出∠ADC的度数,再由三角形内角和定理解答即可.【解答】解:∵AB=AD,∠BAD=20°,∴∠B===80°,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD=80°+20°=100°,∵AD=DC,∴∠C===40°.【点评】本题涉及到三角形的内角和定理、三角形外角的性质及等腰三角形的性质,属较简单题目.15.实数﹣,0,,,0.1010010001…(两个1之间一次多一个0),,中,无理数有:0.1010010001…(两个1之间一次多一个0),,.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:0.1010010001…(两个1之间一次多一个0),,是无理数,故答案为:0.1010010001…(两个1之间一次多一个0),,.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.16.已知y=﹣24,则=6.【分析】根据二次根式有意义的条件列出不等式,求出x、y,根据算术平方根的概念计算即可.【解答】解:由题意得,2x+3≤0,﹣3﹣2x≥0,解得,x=﹣,y=﹣24,=6,故答案为:6.【点评】本题考查的是二次根式有意义的条件、算术平方根的计算,掌握二次根式的被开方数是非负数是解题的关键.三、解答题(本大题共70分,解答应写出文字说明、证明过程或演算步骤)17.(12分)计算(1)(﹣2)0++(2)(﹣2)×﹣6【分析】(1)直接利用零指数幂的性质以及二次根式的性质化简得出答案;(2)直接利用二次根式的乘法运算法则计算得出答案.【解答】解:(1)(﹣2)0++=1+﹣1+3=4;(2)(﹣2)×﹣6=3﹣6﹣6×=﹣6.【点评】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.18.(10分)如图:小刚站在河边的A点处,在河的对面(小刚的正北方向)的B处有一电线塔,他想知道电线塔离他有多远,于是他向正西方向走了20步到达一棵树C处,接着再向前走了20步到达D处,然后他左转90°直行,当小刚看到电线塔、树与自己现处的位置E在一条直线时,他共走了100步.(1)根据题意,画出示意图;(2)如果小刚一步大约50厘米,估计小刚在点A处时他与电线塔的距离,并说明理由.【分析】(1)根据题意所述画出示意图即可.(2)根据AAS可得出△ABC≌△DEC,即求出DE的长度也就得出了AB之间的距离.【解答】解:(1)所画示意图如下:(2)在△ABC和△DEC中,,∴△ABC≌△DEC,∴AB=DE,又∵小刚共走了100步,其中AD走了40步,∴走完DE用了60步,步大约50厘米,即DE=60×0.5米=30米.答:小刚在点A处时他与电线塔的距离为30米.【点评】本题考查全等三角形的应用,像此类应用类得题目,一定要仔细审题,根据题意建立数学模型,难度一般不大,细心求解即可.19.(12分)在Rt△ABC中,∠C=90°,BC=6,AC=8,点D在线段AC上从C向A运动,若设CD=x,△ABD的面积为y.(1)写出y与x的关系式;(2)当x取何值时,y有最大值?最大值是多少?此时点D在什么位置?(3)当△ABD的面积是△ABC面积的一半时,点D在什么位置?【分析】(1)△ABD的面积=AD×BC,把相关数值代入化简即可;(2)由(1)可得x最小时,y最大,易得此时点D的位置;(3)让(1)中的y为10列式求值即可.【解答】解:(1)∵设CD=x,△ABD的面积为y.∴y=AD×BC=×(8﹣x)×6=﹣3x+24;(2)当x=0时,y有最大值,最大值是24,此时点D与点C重合.=×6×8=24(3)∵S△ABC=12时,即y=﹣3x+24=12时,x=4,∴当y=S△ABC即CD=4=AC,此时点D在AC的中点处.【点评】此题主要考查了三角形的面积和一次函数的应用;判断出所求三角形的底边及底边上的高是解决本题的突破点.20.(12分)某商店周年庆,印涮了10000张奖券,其中印有老虎图案的有10张,每张奖金1000元,印有羊图案的有50张,每张奖金100元,印有鸡图案的有100张,每张奖金20元,印有兔子图案的有400张,每张奖金2元,其余印有花朵图案但无奖金.从中任意抽取一张,请解答下列问题:(1)获得1000元奖金的概率是多少?(2)获得奖金的概率是多少?(3)若要使获得2元奖金的概率为,则需要将多少张印有花朵图案的奖券换为印有兔子图案的奖券?【分析】(1)根据10000张奖券中有10张印有老虎图案,每张奖金1000元,再根据概率公式即可得出答案;(2)先求出能获得奖金的奖票张数,再根据概率公式即可得出答案;(3)设需要将x张印有花朵图案的奖券换为印有兔子图案的奖券,根据概率公式列出算式,求出x 的值即可得出答案.【解答】解:(1)获得1000元奖金的概率是=;(2)由题意知:能获得奖金的奖票有10+50+100+400=560张获得奖金的概率是=;(3)设需要将x张印有花朵图案的奖券换为印有兔子图案的奖券,根据题意得:=,解得:x=600,答:需要将600张印有花朵图案的奖券换为印有兔子图案的奖券.【点评】本题考查概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.21.(12分)(1)如图1,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.(2)如图2,AB∥CD,AB=CD,BF=DE,求证:∠AEF=∠CFB.【分析】(1)推出EF∥BC,根据平行线性质求出∠ACB,求出∠FCB,根据角平分线求出∠ECB,根据平行线的性质推出∠FEC=∠ECB,代入即可.(2)根据平行线的性质、线段间的和差关系证得∠B=∠D、BE=DF;然后由全等三角形的判定定理SAS推知△ABE≌△CDF;最后由全等三角形的对应角相等证得结论;【解答】解:(1)∵EF∥AD,AD∥BC,∴EF∥BC,∴∠ACB+∠DAC=180°,∵∠DAC=120°,∴∠ACB=60°,又∵∠ACF=20°,∴∠FCB=∠ACB﹣∠ACF=40°,∵CE平分∠BCF,∴∠BCE=20°,∵EF∥BC,∴∠FEC=∠ECB,∴∠FEC=20°.(2)∵AB∥CD(已知),∴∠B=∠D,又∵BF=DE,∴BF﹣EF=DE﹣EF,即BE=DF,∴在△ABE和△CDF中,,∴△ABE≌△CDF(SAS),∴∠A=∠C,∴∠BEA=∠DFC,∴:∠AEF=∠CFB.【点评】本题考查了平行线的性质和判定,平行公理及推论,全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.(12分)王老师在一次“探究性学习”课中,设计了如下数表:(1)请你分别观察a、b、c与n之间的关系,并用含自然数n的代数式表示:a=n2﹣1,b=2n,c=n2+1.(2)猜想以a、b、c为边的三角形是否为直角三角形?并证明你的猜想?(3)观察下列勾股数:32+42=52,52+122=132,72+242=252,92+402=412,分析其中的规律,根据规律写出第五组勾股数.【分析】(1)探究规律后,利用规律即可解决问题;(2)根据勾股定理的逆定理证明即可;(3)观察发现第一个数的奇数,另外两个数的底数的和是这个奇数的平方,由此即可解决问题;【解答】解:(1)由题意:a=n2﹣1,b=2n,c=n2+1,故答案为:n2﹣1,2n,n2+1;(2)猜想:以a、b、c为边的三角形是直角三角形.理由:∵a=n2﹣1,b=2n,c=n2+1,∴a2+b2=(n2﹣1)2+4n2=n4+2n2+1=(n2+1)2=c2,∴以a、b、c为边的三角形是直角三角形.(3)观察可知:第五组勾股数为:112+602=612.【点评】本题考查勾股数、规律型问题,解题的关键是学会观察,学会寻找规律,利用规律解决问题.。
北师大版七年级数学(下)第二次月考试卷(含解析)
北师大版七年级数学(下)数学第二次月考数学试卷一、选择题(每小题3分,共30分)1.(3分)下列运算中正确的是()A.3a+2b=5ab B.2a2+3a2=5a5C.a10÷a5=a2D.(xy2)3=x3y62.(3分)如下字体的四个汉字中,可以看作是轴对称图形的是()A.中B.国C.加D.油3.(3分)下面每组数分别是三根小木棒的长度,它们能摆成三角形的是()A.5,1,3B.2,4,2C.3,3,7D.2,3,4 4.(3分)下列事件中,是必然事件的是()A.同位角相等B.如果a2=b2,那么a=bC.对顶角相等D.两边及其一角分别相等的两个三角形全等5.(3分)如图,点E在AD的延长线上,下列条件中能判断AB∥CD的是()A.∠1=∠4B.∠2=∠3C.∠C=∠CDE D.∠C+∠CDA=180°(5题)(6题)(7题)6.(3分)如图是一个平分角的仪器,其中AB=AD,BC=DC,将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线,这条射线就是角的平分线,在这个操作过程中,运用了三角形全等的判定方法是()A.SSS B.SAS C.ASA D.AAS 7.(3分)如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则矩形MNPQ的面积是()A.10B.16C.20D.368.(3分)如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,S△ABC=7,DE=2,AB=4,则AC长是()(8题)(10题)A.6B.5C.4D.39.(3分)若a+b=3,ab=2,则a﹣b的值为()A.1B.±1C.﹣1D .±10.(3分)如图,△ACB和△DCE均为等腰直角三角形,且∠ACB=∠DCE=90°,点A、D、E在同一条直线上,CM平分∠DCE,连接BE.以下结论:①AD=CE;②CM⊥AE;③AE=BE+2CM;④CM∥BE,正确的有()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共18分)11.(3分)新冠病毒的平均直径为100纳米(1米=109纳米),则100nm可以表示为米.12.(3分)已知一个等腰三角形的一个内角为40°,则它的顶角等于.13.(3分)如果x2+2(m﹣1)x+4是一个完全平方式,则m =.14.(3分)如图,在方格纸中,随机选择标有序号①②③④⑤⑥中的一个小正方形涂黑,与图中的阴影部分构成轴对称图形的概率是.14题15题16题15.(3分)如图,在△ABC中,DE是边AC的垂直平分线,AE=5cm,△ABD的周长为24cm,则△ABC的周长为cm.16.(3分)如图,在△ABC中,AB=AC ,AO平分∠BAC,OD垂直平分AB,将∠C沿着EF折叠,使得点C与点O重合,∠AFO=52°,则∠OEF=.三、解答题(共52分)17.(12分)计算(1)(﹣2x2yz)2•3x2y÷(﹣15x2y2);(2)(﹣)﹣2+(3.14﹣π)0﹣(2019×2021﹣20202);(3)先化简,再求值:[(x+3y)2﹣2x(x﹣2y)+(x+y)(x﹣y)]÷2y,其中x =﹣l,y=.18.(5分)尺规作图:已知△ABC,请用尺规在AB上找一点P,使得PB=PC(不写作法,但要保留作图痕迹).19.(5分)如图,在△ABC中,∠EGF+∠BEC=180°,∠EDF=∠C,试判断DE 与BC的位置关系并说明理由.20.(6分)小亮和小颖选用同一副扑克牌中花色为红桃的扑克牌做游戏,游戏规则为:小亮先从中任意抽取一张(不放回),所抽到的牌面数字为2,小颖再从剩余的牌中任意抽取一张(A、J、Q、K分别代表1,11,12,13),如果两人抽取的牌面数字之和为3的倍数,则小颖获胜,求小颖获胜的概率.21.(6分)“五一”期间,小华约同学一起开车到距家48千米的景点旅游,出发前,汽车油箱内储油55升,行驶过程中汽车的平均耗油量为0.6升/千米.(1)写出剩余油量y(升)与行驶路程x(千米)的关系式(不要求写出x的取值范围);(2)如果往返途中不加油,他们能否回到家?请说明理由.22.(8分)小明将一个底面为正方形,高为n的无盖纸盒展开,如图(a)所示.(1)请你计算图(a)所示的无盖纸盒的表面展开图的面积S1;(2)将阴影部分剪拼成一个长方形,如图(b)所示,请你计算该长方形的面积S2.(3)比较(1)(2)的结果,你得出什么结论?23.(10分)(1)问题提出:如图(1),将长方形ABCD的一个角沿AE折叠,使点B落在对角线AC上的点B'处,若∠ACB=36°,则∠EAD=;(2)问题探究:如图(2),将长方形ABCD的两个角分别沿AE、CF折叠,使点B、D分别落在对角线AC上的B'、D'处.试说明:D'F=B'E.(3)问题解决:如图(3),长方形ABCD中,AB=6,BC=8,对角线AC=10,点E在AC上,CE=CB,连接BE,将∠EBC折叠,折痕过BE的中点M,交BC 于点N,点B对应点B'落在对角线AC上,求四边形BMB'N的面积.七年级(下)第二次月考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列运算中正确的是()A.3a+2b=5ab B.2a2+3a2=5a5C.a10÷a5=a2D.(xy2)3=x3y6【分析】分别根据合并同类项法则,同底数幂的除法法则以及积的乘方运算法则逐一判断即可.【解答】解:A.3a与2b不是同类项,所以不能合并,故本选项不合题意;B.2a2+3a2=5a2,故本选项不合题意;C.a10÷a5=a5,故本选项不合题意;D.(xy2)3=x3y6,正确.故选:D.【点评】本题主要考查了合并同类项、同底数幂的除法,幂的乘方与积的乘方,熟记相关运算法则是解答本题的关键.2.(3分)如下字体的四个汉字中,可以看作是轴对称图形的是()A.中B.国C.加D.油【分析】根据轴对称图形的概念求解.【解答】解:A、“中”可以看作是轴对称图形,故本选项符合题意;B、“国”不是轴对称图形,故本选项不合题意;C、“加”不是轴对称图形,故本选项不合题意;D、“油”不是轴对称图形,故本选项不合题意.故选:A.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.(3分)下面每组数分别是三根小木棒的长度,它们能摆成三角形的是()A.5,1,3B.2,4,2C.3,3,7D.2,3,4【分析】看哪个选项中两条较小的边的和不大于最大的边即可.【解答】解:A、3+1<5,不能构成三角形,故A错误;B、2+2=4,不能构成三角形,故B错误;C、3+3<7,不能构成三角形,故C错误;D、2+3>4,能构成三角形,故D正确,故选:D.【点评】本题主要考查了三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.4.(3分)下列事件中,是必然事件的是()A.同位角相等B.如果a2=b2,那么a=bC.对顶角相等D.两边及其一角分别相等的两个三角形全等【分析】根据平行线的性质、有理数的乘方、对顶角相等、全等三角形的判定定理判断即可.【解答】解:A、两直线平行,同位角相等,∴同位角相等,是随机事件;B、如果a2=b2,那么a=b,是随机事件;C、对顶角相等,是必然事件;D、两边及其一角分别相等的两个三角形全等,是随机事件;故选:C.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.(3分)如图,点E在AD的延长线上,下列条件中能判断AB∥CD的是()A.∠1=∠4B.∠2=∠3C.∠C=∠CDE D.∠C+∠CDA=180°【分析】结合图形分析两角的位置关系,根据平行线的判定方法判断.【解答】解:A、∠1和∠4是AD、BC被BD所截得到的一对内错角,∴当∠1=∠4时,可得AD∥BC,故A不正确;B、∠2和∠3是AB、CD被BD所截得到的一对内错角,∴当∠2=∠3时,可得AB∥CD,故B正确;C、∠C和∠CDE是AD、BC被CD所截得到的一对内错角,∴当∠C=∠CDE时,可得AD∥BC,故C不正确;D、∠C和∠ADC是AD、BC被CD所截得到的一对同旁内角,∴当∠C+∠ADC=180°时,可得AD∥BC,故D不正确;故选:B.【点评】本题主要考查平行线的判定,掌握平行线的性质和判定是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行,④a∥b,b∥c⇒a∥c.6.(3分)如图是一个平分角的仪器,其中AB=AD,BC=DC,将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线,这条射线就是角的平分线,在这个操作过程中,运用了三角形全等的判定方法是()A.SSS B.SAS C.ASA D.AAS【分析】根据题目所给条件可利用SSS定理判定△ADC≌△ABC,进而得到∠DAC =∠BAC.【解答】解:在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,∴AC就是∠DAB的平分线.故选:A.【点评】此题主要考查了全等三角形的判定与性质,关键是掌握全等三角形的判定定理:SSS、SAS、ASA、AAS、HL.7.(3分)如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则矩形MNPQ的面积是()A.10B.16C.20D.36【分析】易得当R在PN上运动时,面积不断在增大,当到达点P时,面积开始不变,到达Q后面积不断减小,得到PN和QP的长度,相乘即可得所求的面积.【解答】解:∵x=4时,及R从N到达点P时,面积开始不变,∴PN=4,同理可得QP=5,∴矩形的面积为4×5=20.故选:C.【点评】考查动点问题的函数的有关计算;根据所给图形得到矩形的边长是解决本题的关键.8.(3分)如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,S△ABC=7,DE=2,AB=4,则AC长是()A.6B.5C.4D.3【分析】过点D作DF⊥AC于F,然后利用△ABC的面积公式列式计算即可得解.【解答】解:过点D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=2,∴S△ABC =×4×2+AC×2=7,解得AC=3.故选:D.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质并利用三角形的面积列出方程是解题的关键.9.(3分)若a+b=3,ab=2,则a﹣b的值为()A.1B.±1C.﹣1D .±【分析】原式利用完全平方公式变形,将已知等式代入计算即可求出值.【解答】解:∵a+b=3,ab=2,∴(a﹣b)2=(a+b)2﹣4ab=9﹣8=1,则a﹣b=±1,故选:B.【点评】此题考查了平方根,以及完全平方公式,熟练掌握平方根定义及公式是解本题的关键.10.(3分)如图,△ACB和△DCE均为等腰直角三角形,且∠ACB=∠DCE=90°,点A、D、E在同一条直线上,CM平分∠DCE,连接BE.以下结论:①AD=CE;②CM⊥AE;③AE=BE+2CM;④CM∥BE,正确的有()A.1个B.2个C.3个D.4个【分析】由“SAS”可证△ACD≌△BCE,可得AD=BE,∠ADC=∠BEC,可判断①,由等腰直角三角形的性质可得∠CDE=∠CED=45°.CM⊥AE,可判断②,由全等三角形的性质可求∠AEB=∠CME=90°,可判断④,由线段和差关系可判断③,即可求解.【解答】解:∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE,∠ADC=∠BEC,故①错误,∵△DCE为等腰直角三角形,CM平分∠DCE,∴∠CDE=∠CED=45°,CM⊥AE,故②正确,∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°,∴∠AEB=∠CME=90°,∴CM∥BE,故④正确,∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM.∴AE=AD+DE=BE+2CM.故③正确,故选:C.【点评】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,证明△ACD≌△BCE是本题的关键.二、填空题(每小题3分,共18分)11.(3分)新冠病毒的平均直径为100纳米(1米=109纳米),则100nm可以表示为1×10﹣7米.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:100nm可以表示为100×10﹣9=1×10﹣7米.故答案为:1×10﹣7.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.(3分)已知一个等腰三角形的一个内角为40°,则它的顶角等于40°或100°.【分析】分两种情况:当40°的内角为顶角时;当40°的角为底角时,利用三角形的内角和结合等腰三角形的性质可计算求解.【解答】解:当40°的内角为顶角时,这个等腰三角形的顶角为40°;当40°的角为底角时,则该等腰三角形的另一底角为40°,∴顶角为:180°﹣40°﹣40°=100°,故答案为40°或100°.【点评】本题主要考查等腰三角形的性质,三角形的内角和定理,注意分类讨论.13.(3分)如果x2+2(m﹣1)x+4是一个完全平方式,则m=3或﹣1.【分析】利用完全平方公式的结构特征判断即可得到m的值.【解答】解:∵x2+2(m﹣1)x+4是完全平方式,∴m﹣1=±2,m=3或﹣1故答案为:3或﹣1【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.14.(3分)如图,在方格纸中,随机选择标有序号①②③④⑤⑥中的一个小正方形涂黑,与图中的阴影部分构成轴对称图形的概率是.【分析】直接利用轴对称图形的性质结合概率公式得出答案.【解答】解:只有将②③④中的一个小正方形涂黑,图中的阴影部分才构成轴对称图形,故图中的阴影部分构成轴对称图形的概率为:=.故答案为:.【点评】此题主要考查了利用轴对称设计图案以及概率公式,正确掌握轴对称图形的性质是解题关键.15.(3分)如图,在△ABC中,DE是边AC的垂直平分线,AE=5cm,△ABD的周长为24cm,则△ABC的周长为34cm.【分析】根据线段垂直平分线的性质结合△ABD的周长可求AB+BC=24,进而可求解△ABC的周长.【解答】解:∵DE是边AC的垂直平分线,AE=5cm,∴AD=CD,AC=2AE=10,∵△ABD的周长为24cm,∴AB+BD+AD=AB+BD+CD=AB+BC=24(cm),∴C△ABC=AB+BC+AC=24+10=34(cm).故答案为34.【点评】本题主要考查线段垂直平分线的性质,灵活运用线段垂直平分线的性质是解题的关键.16.(3分)如图,在△ABC中,AB=AC,AO平分∠BAC,OD垂直平分AB,将∠C沿着EF折叠,使得点C与点O重合,∠AFO=52°,则∠OEF =104°.【分析】连接OB、OC,根据线段垂直平分线上的点到两端点的距离相等可得OA =OB,再由角平分线条件与等腰三角形的条件证明△OAB≌△OAC,得OA=OB =OC,得∠OBA=∠OAB=∠OAC=∠OCA,根据折叠性质得OF=CF,进而求得∠OCF,再由三角形内角和定理,求得∠OBC+∠OCB,进而由等腰三角形的性质求得∠OCB ,再由折叠性质求得结果.【解答】解:连接OB、OC,∵OD垂直平分AB,∴OA=OB,∴∠OAB=∠OBA,∵AO平分∠BAC,∴∠BAO=∠CAO,∵AB=AC,AO=AO,∴△OAB≌△OAC(SAS),∴OB=OC,∠ABO=∠ACO,∴OA=OB=OC,∴∠OBA=∠OAB=∠OAC=∠OCA,∵∠AFO=52°,∴∠OFC=180°﹣∠AFO=128°,由折叠知,OF=CF,∴∠OCF=∠COF=,∴∠OBA=∠OAB=∠OAC=∠OCA=26°,∴∠OBC+∠OCB=180°﹣4×26°=76°,∵OB=OC,∴∠OBC=∠OCB=38°,由折叠知,OE=CE,∠OEF=∠CEF,∴∠COE=∠OCE=38°,∴∠OEC=180°﹣2×38°=104°.故答案为:104°.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形三线合一的性质,等边对等角的性质,以及翻折变换的性质,作辅助线,构造出等腰三角形是解题的关键.三、解答题(共52分)17.(12分)计算(1)(﹣2x2yz)2•3x2y÷(﹣15x2y2);(2)(﹣)﹣2+(3.14﹣π)0﹣(2019×2021﹣20202);(3)先化简,再求值:[(x+3y)2﹣2x(x﹣2y)+(x+y)(x﹣y)]÷2y,其中x =﹣l,y =.【分析】(1)先算积的乘方、再算乘法,最后算除法即可求解;(2)先根据负整数指数幂、零指数幂,平方差公式计算,再算加减法即可求解;(3)原式中括号中第一项利用完全平方公式展开,第二项利用单项式乘多项式法则化简,第二项利用平方差公式化简,去括号合并后利用多项式除以单项式法则计算得到最简结果,将x与y的值代入计算即可求出值.【解答】解:(1)(﹣2x2yz)2•3x2y÷(﹣15x2y2)=4x4y2z2•3x2y÷(﹣15x2y2)=12x6y3z2÷(﹣15x2y2)=﹣x4yz2;(2)(﹣)﹣2+(3.14﹣π)0﹣(2019×2021﹣20202)=9+1﹣[(2020﹣1)×(2020+1)﹣20202]=9+1﹣(20202﹣1﹣20202)=9+1+1=11;(3)[(x+3y)2﹣2x(x﹣2y)+(x+y)(x﹣y)]÷2y=(x2+6xy+9y2﹣2x2+4xy+x2﹣y2)÷2y=(10xy+8y2)÷2y=5x+4y,当x=﹣l,y =时,原式=﹣5+2=﹣3.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.18.(5分)尺规作图:已知△ABC,请用尺规在AB上找一点P,使得PB=PC(不写作法,但要保留作图痕迹).【分析】作线段AB的垂直平分线交AB于点P,点P即为所求.【解答】解:如图,点P即为所求.【点评】本题考查作图﹣复杂作图,线段的垂直平分线的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.19.(5分)如图,在△ABC中,∠EGF+∠BEC=180°,∠EDF=∠C,试判断DE 与BC的位置关系并说明理由.【分析】本题主要考查平行线的性质与判定,根据同旁内角互补两直线平行可判断DF∥AC,进而可得∠EDF=∠BFD,再利用平行线的判定可求解.【解答】解:DE∥BC.理由如下:∵∠EGF+∠BEC=180°,∴DF∥AC,∴∠BFD=∠C,∵∠EDF=∠C,∴∠EDF=∠BFD,∴DE∥BC.【点评】本题主要考查平行线的性质与判定,掌握平行线的性质与判定定理是解题的关键.20.(6分)小亮和小颖选用同一副扑克牌中花色为红桃的扑克牌做游戏,游戏规则为:小亮先从中任意抽取一张(不放回),所抽到的牌面数字为2,小颖再从剩余的牌中任意抽取一张(A、J、Q、K分别代表1,11,12,13),如果两人抽取的牌面数字之和为3的倍数,则小颖获胜,求小颖获胜的概率.【分析】用列表法列举出所有可能出现的结果,从中找出“两人抽取的牌面数字之和为3的倍数”的结果数,进而求出概率.【解答】解:用列表法表示所有可能出现的结果情况如下:共有12种等可能出现的结果,其中“两人抽取的牌面数字之和为3的倍数”的有5种,∴P(两人抽取的牌面数字之和为3的倍数)=,即小颖获胜的概率为.【点评】本题考查列表法或树状图法求等可能事件发生的概率,使用此方法一定注意每一种结果出现的可能性是均等的,即为等可能事件.21.(6分)“五一”期间,小华约同学一起开车到距家48千米的景点旅游,出发前,汽车油箱内储油55升,行驶过程中汽车的平均耗油量为0.6升/千米.(1)写出剩余油量y(升)与行驶路程x(千米)的关系式(不要求写出x的取值范围);(2)如果往返途中不加油,他们能否回到家?请说明理由.【分析】(1)由剩余油量=55升﹣耗油量,可求解析式;(2)先求出55升油能行驶的路程,与往返的总路程比较,可求解.【解答】解:(1)由题意可得:y=55﹣0.6x;(2)当y=0时,0=55﹣0.6x,∴x =,∵<48×2,∴往返途中不加油,他们不能回到家.【点评】本题考查了一次函数关系式,根据数量关系列出函数关系式是解题的关键.22.(8分)小明将一个底面为正方形,高为n的无盖纸盒展开,如图(a)所示.(1)请你计算图(a)所示的无盖纸盒的表面展开图的面积S1;(2)将阴影部分剪拼成一个长方形,如图(b)所示,请你计算该长方形的面积S2.(3)比较(1)(2)的结果,你得出什么结论?【分析】(1)大正方形的面积减去4个小正方形的面积的差,即为无盖纸盒的表面展开图的面积S1;(2)利用矩形的面积公式即可计算该长方形的面积S2;(3)根据(1)(2)表示的面积相等即可得到结论.【解答】解:(1)无盖纸盒的表面展开图的面积S1=32﹣4n2=9﹣4n2;(2)长方形的长是:3+2n,宽是:3﹣2n,∴长方形的面积S2=(3+2n)(3﹣2n);(3)由题可得,9﹣4n2=(3+2n)(3﹣2n).【点评】本题主要考查了平方差公式的几何背景,表示出图形阴影部分面积是解题的关键.立体图形的侧面展开图体现了平面图形与立体图形的联系,立体图形问题可以转化为平面图形问题解决.23.(10分)(1)问题提出:如图(1),将长方形ABCD的一个角沿AE折叠,使点B落在对角线AC上的点B'处,若∠ACB=36°,则∠EAD =63°;(2)问题探究:如图(2),将长方形ABCD的两个角分别沿AE、CF折叠,使点B、D分别落在对角线AC上的B'、D'处.试说明:D'F=B'E.(3)问题解决:如图(3),长方形ABCD中,AB=6,BC =8,对角线AC=10,点E在AC上,CE=CB,连接BE,将∠EBC折叠,折痕过BE的中点M,交BC 于点N,点B对应点B'落在对角线AC上,求四边形BMB'N的面积.【分析】(1)依据三角形内角和定理以及折叠的性质,即可得到∠BAE的度数,进而得出∠DAE的度数;(2)依据平行线的性质以及折叠的性质,即可得到△CB'E≌△AD'F,依据全等三角形的性质即可得出D'F=B'E;(3)连接BB',依据折叠的性质以及三角形内角和定理,即可得到BB'⊥AC,N 是BC的中点,进而得出S四边形BMB'N=S△BCE,求得△BCE的面积,即可得出结论.【解答】解:(1)∵∠B=90°,∠ACB=36°,∴Rt△ABC中,∠BAC=54°,由折叠可得,∠BAE=∠BAC=27°,∵∠BAD=90°,∴∠DAE=90°﹣27°=63°,故答案为:63°;(2)证明:∵AD∥BC,∴∠ECB'=∠F AD',由折叠可得,∠B=∠AB'E=90°,∠D=∠CD'F=90°,AB=AB'=CD=CD',∴∠CB'E=∠AD'F=90°,CB'=AD',在△CB'E和△AD'F中,,∴△CB'E≌△AD'F(ASA),∴D'F=B'E;(3)如图3,连接BB',由折叠可得,BM=B'M,∴∠MBB'=∠MB'B,∵M是BE的中点,∴BM=ME,∴ME=MB',∴∠MEB'=∠MB'E,又∵∠MEB'+∠MB'E+∠MB'B+∠MBB'=180°,∴∠MB'E+∠MB'B=90°,即BB'⊥AC,∴∠BB'C=90°,∴∠BB'N+∠CB'N=90°,∠B'BN+∠B'CN=90°,由折叠可得,BN=B'N,∴∠BB'N=∠B'BN,∴∠CB'N=∠B'CN,∴NC=NB',∴BN=CN,即N是BC的中点,∴S△BB'N =S△BB'C,∵M是BE的中点,∴S△BB'M =S△BB'E,∴S四边形BMB'N =S△BCE,∵长方形ABCD中,AB=6,BC=8,对角线AC=10,∴AB×BC =AC×BB',即BB'===4.8,又∵CE=CB=8,BB'⊥AC,∴S△BCE =CE×BB'=×8×4.8=19.2,∴S四边形BMB'N =×19.2=9.6.【点评】本题主要考查了折叠问题,平行线的性质以及三角形内角和定理的综合运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.。
数学第二次月考质量分析.(优选)
第二次月考质量分析(数学)一、 试卷分析本次月考为了触动学生学习的自信心,所以在试卷试题难度上设计整体偏易,除选择题10题考查数列与分段函数的单调性相结合,填空题16题讨论N 的奇偶时数列求和的问题,大题22题为2012新课标地区高考真题较难外,其他题目均为常见常考题型。
17题、18题考查三角函数化简求值正余弦定理的直接应用,19题、20、考查数列求通项求和及n a 与S n 之间的关系,裂项求和,错位相减求和。
21立体几何建系确定点的坐标,求法向量二面角,计算上略有难度。
三、 试卷上存在问题从选择填空题来看,学年普遍存在基础相对薄弱的特点,简单的小题在运算上丢分,涉及到知识的综合运用问题显得不够灵活,甚至会读不懂题目的内在含义,等价转化、数形结合、分类讨论的数学思想没有灵活运用到题目当中,17.三角函数化简求值问题不够熟练。
18.涉及到证明的问题薄弱,解三角形问题(正余弦定理的应用)简单的应用还可以但是在灵活运用上还有待加强。
19.20.数列的求通项求和中分类讨论的思想缺乏,涉及到错位相减法求和的复杂计算上容易出现问题。
21.证明线线垂直概念不清提条件不够,步骤不够规范,向量运算中坐标求不对,计算出错,法向量求不准,个别同学用几何法求二面角非常简便,有同学在答题结束时不回扣主题(即问什么答什么)。
22.复合函数求导,商的导数,积的导数运算,导数的几何意义还需要加大训练的力度。
主要问题体现可归纳为以下几个方面内容:第一,基础知识掌握不到位,概念及公式理解不够透,不足以灵活运用。
第二,知识之间的内在联系和综合运用不熟练,对于问题的变形、变式生疏,看不懂或理解不上去。
第三,在解题时忽略数学思想和方法的重要性,解题做题,做不到举一反、三触类旁通、学懂一题会做一类问题的程度。
第四,计算能力上对自己要求不严,训练不到位,以至于考试时不能用较少的时间完成简单的题目,以至于后面较难的题目没有充足的时间来完成。
数学第二次月考分析
第二次月考分析总结姓名:陈龙龙学科:数学班级:八(1)班、八(2)班教学工作已经进行了近乎一半,为了检测10月份学生对各科的掌握情况,举行了10月份月考,从中让学生进一步的总结自己学习上的不足,意识到自己需要加强和巩固的地方,同时也让我们教师发现近一个月来教学过程中的不足,为今后的教学工作做好调查和铺设。
以下是这次月考的情况:一、试卷分析试卷题型全面,试题紧扣教材,既考查基础知识, 也考查了学生的综合能力的运用,符合考纲要求。
但由于我们学生基础较差,对于我们的学生而言,本次试题难度稍大。
再者,本次考试之前都没有进行复习,这也是学生得分低的一个原因。
这次月考试卷共分为三个部分,第一部分为选择题,出现错误较多的是第7题和第10题。
第7题出错的原因是,考察的是构成三角形的条件和三角形周长差的综合知识,学生不会分析,没有解题思路。
第10题考察的是利用一次函数的图像判断比较函数值的大小,学生出错的原因是不会画函数的大概图像,不会利用图像比较函数值的大小。
第二部分为填空题,出错较多的是13题和14题。
13题考的是给出三角形字母表示的三边,比较它们的大小,学生出错的原因是比较不好抽象的字母。
14题考察的是利用图像、实际问题写出一次函数,难度较大,很少有同学写出来,说明学生在用一次函数联系实际问题存在差距。
第三部分为解答题,出错较多的是16题,16题出错的原因是,学生不会做辅助线,不会利用学习过的三角形的一个外角等于不相邻的两个内角的和。
第19题出错较多,出错较多的原因是,学生不会设一次函数一般关系式,不会找两点带入,不会解二元一次方程组。
23题出错较多,出错的原因是学生不会从函数图像中获取有效的信息,不会利用函数图像求函数解析式,今后复习要把这方面做为重点。
二、平均分八(1)八(2)三、学生分析、课堂问题1、优生不多。
及时成绩排名靠前的学生也存在不同程度的偏科,不利于学生的均衡发展。
2、中等生多,缺乏学习攀比精神。
七年级数学下学期第二次月考试卷分析
七年级数学下学期第二次月考试卷分析上个星期进行了第二次月考考试,在这我就我们七年级数学考试试题和学生的答题情况以及以后的教学方向分析如下.一、试题特点试卷包括选择题、填空题、解答题三个大题,共120分,以基础知识为主。
对于整套试题来说,容易题约占60%、中档题约占30%、难题约占10%,主要考查了七年级下册第九章《三角形》、第十章《一元一次不等式与一元一次不等式组。
这次数学试卷检测的范围应该说内容全面,难易也适度,注重基础知识、基本技能的测检,比较能如实反映出学生的实际数学知识的掌握情况。
试卷能从检测学生的学习能力入手,细致、灵活地来抽测每章的数学知识。
打破了学生的习惯思维,能测试学生思维的多角度性和灵活性。
二、考试成绩分析年级的平均分是75.4分,其中100分以上46人,优秀率为28.75%,及格人数99人,及格率为61.88%。
大部分学生的基础知识,基本运算能够过关,但最后的4个大题学生问题比较多,有学生不得分或不能的满分。
根据对试卷成绩的分析,学生在答卷过程中存在以下几方面的问题:1、数学联系生活的能力稍欠。
2、2、4、6班基本计算能力有待提高。
计算能力的强弱对数学答题来说,有着举足轻重的地位。
3、数学思维能力差,有些题不能够很清楚地知道怎么应变。
4、审题能力及解题的综合能力不强。
审题在答题中比较关键,如果对题目审得清楚,从某种程度上可以说此题已做对一半,数学不仅是一门科学,也是一种语言,在解题过程中,不仅要要求学生学会如何解决问题,还必须要让学生学会阅读和理解题目,会用口头和书面形式把思维的过程与结果向别人表达。
四、改进措施:1、立足教材,教材是我们教学之本,在教学中,我们一定要扎扎实实地给学生渗透教材的重难点内容。
不能忽视自认为是简单的或是无关紧要的知识。
2、多做多练,切实培养学生的计算能力。
有时他们是凭自己的直觉做题,不讲道理,不想原因,这点从试卷上很清楚地反映出来了。
3、关注生活,培养实践能力加强教学内容和学生生活的联系,让数学从生活中来,到生活中去,从而培养学生解决实际生活中问题的能力。
2019-2020学年河南省洛阳五十六中七年级(下)第二次月考数学试卷(6月份) 解析版
2019-2020学年河南省洛阳五十六中七年级(下)第二次月考数学试卷(6月份)一.选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的。
1.(3分)点P(2,﹣3)到x轴的距离等于()A.﹣2B.2C.﹣3D.32.(3分)下列调查中,最适合采用抽样调查方式的是()A.对某飞机上旅客随身携带易燃易爆危险物品情况的调查B.对我国首艘国产“002型”航母各零部件质量情况的调查C.对渝北区某中学初2019级1班数学期末成绩情况的调查D.对全国公民知晓“社会主义核心价值观”内涵情况的调查3.(3分)下列计算正确的是()A .=±4B .C .D .4.(3分)如图,关于x的不等式x ≥的解集表示在数轴上,则a的值为()A.﹣1B.2C.1D.35.(3分)解方程组①,②,比较简便的方法是()A.都用代入法B.都用加减法C.①用代入法,②用加减法D.①用加减法,②用代入法6.(3分)下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容,则回答正确的是()已知:如图,∠BEC=∠B+∠C.求证:AB∥CD.证明:延长BE交__※__于点F,则∠BEC=__⊙__+∠C又∵∠BEC=∠B+∠C,∴∠B=▲∴AB∥CD(__□__相等,两直线平行)A.⊙代表∠FEC B.□代表同位角C.▲代表∠EFC D.※代表AB7.(3分)在平面直角坐标系中有一点A(﹣2,1),将点A先向右平移3个单位长度,再向下平移2个单位长度,则平移后点A的坐标为()A.(1,﹣3)B.(﹣5,3)C.(1,﹣1)D.(﹣5,﹣1)8.(3分)如图,在长方形ABCD中,放入六个形状大小相同的长方形,所标尺寸如图所示,则图中阴影部分面积为()A.44cm2B.36cm2C.96cm2D.84cm29.(3分)关于x的不等式组的解集中所有整数之和最大,则a的取值范围是()A.﹣3≤a≤0B.﹣1≤a<1C.﹣3<a≤1D.﹣3≤a<1 10.(3分)如图1,∠DEF=20°,将长方形纸片ABCD沿直线EF折叠成图2,再沿折痕为BF折叠成图3,则图3中∠CFE的度数为()A.100°B.120°C.140°D.160°二.填空题(每小题3分,共15分)11.(3分)一个正数的两个平方根分别为3﹣a和2a+1,则这个正数是.12.(3分)一个样本有20个数据:35,31,33,35,37,39,35,38,40,39,36,34,35,37,36,32,34,35,36,41.在列频数分布表时,如果取组距为3,那么应分成组.13.(3分)如图,一束光线从点C出发,经过平面镜AB反射后,沿与AF平行的线段DE 射出(此时∠1=∠2),若测得∠DCF=100°,则∠A=.14.(3分)已知方程组的解是,则方程组的解是.15.(3分)在平面直角坐标系中,A(﹣2,0),B(﹣1,2),C(1,0),连接AB,点D 为AB的中点,连接OB交CD于点E,则四边形DAOE的面积为.三.解答题(本大题共8小题,共75分)16.(8分)计算:(1)++|1﹣|+2;(2)++|1﹣|.17.(8分)解不等式组,把解集表示在数轴上,并求出不等式组的整数解.18.(8分)若关于x,y的二元一次方程组与方程组有相同的解.(1)求这个相同的解;(2)求m﹣n的值.19.(10分)如图,点A、B、C的坐标分别为(﹣1,1)(3,﹣3)(1.﹣2)三角形A1B1C1是由三角形ABC向上平移2个单位长度,再向右平移2个单位长度后得到的,其中点A1、B1、C1分别是点A、B、C的对应点.(1)画出三角形A1B1C1,并写出点A1、B1、C1的坐标:(2)连接AA1和CC1,若x轴上有一点P(x,0),使得三角形P A1C1的面积等于四边形ACC1A1的面积,求x的值.20.(10分)“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.21.(10分)对于不等式:a x>a y(a>0且a≠1),当a>1时,x>y;当0<a<1时,x<y,请根据以上信息,解答以下问题:(1)解关于x的不等式:25x﹣1>23x+1;(2)若关于x的不等式:a x﹣k<a5x﹣2(a>0且a≠1),在﹣2≤x≤﹣1上存在x的值使其成立,求k的取值范围.22.(11分)已知点D在∠ABC内,E为射线BC上一点,连接DE,CD.(1)如图1,点E在线段BC上,连接AE,∠AED=∠A+∠D.①求证AB∥CD;②过点A作AM∥ED交直线BC于点M,请猜想∠BAM与∠CDE的数量关系,并加以证明;(2)如图2,点E在BC的延长线上,∠AED=∠A﹣∠D.若M平面内一动点,MA∥ED,请直接写出∠MAB与∠CDE的数量关系.23.(10分)已知某水果行租赁甲、乙两种货车同时装运香蕉和荔枝,调查了两种车满载时的装运能力,数据如表所示.甲车(辆)乙车(辆)荔枝共计(吨)香蕉共计(吨)1163241610(1)请分析表中数据,分别求出甲、乙货车每辆可以装运荔枝和香蕉各多少吨;(2)现计划将荔枝30吨,香蕉13吨运往外地,若租用甲、乙两种货车共10辆,求安排甲、乙两种货车有几种方案.2019-2020学年河南省洛阳五十六中七年级(下)第二次月考数学试卷(6月份)参考答案与试题解析一.选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的。
吉林省长春市九台区九郊中学2021-2022学年七年级下学期第二次月考数学试题(含答案)
吉林省长春市九台区九郊中学2021-2022学年七年级下学期第二次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列各数中,不是无理数的是( )A B .0.5 C .2π D2.计算63a a ÷,正确的结果是( ) A .3B .3aC .2aD .3a 【答案】B【分析】根据同底数幂的除法运算法则求解即可.【详解】解:63633a a a a -÷==.故选B .【点睛】本题考查了同底数幂的除法.解题的关键在于正确的计算.3.下列各数中,比3-小的数是( )A .π-B C . D .83-故选A.【点睛】此题主要考查了实数比较大小,正确估算出无理数的大小是解题关键.4.若a b ,且a 与b 为连续整数,则a 与b 的值分别为( )A .1;2B .2;3C .3;4D .4;55,0,2270.1010010001⋯(每相邻两个1之间依次多1个0),2π中无理数有( ) A .0个B .1个C .2个D .3个 【详解】解:342,=0,227,30.125中无理数有:0.1010010001(每相邻两个【点睛】本题考查的是无理数的定义与识别,掌握6.下列计算正确的是( )A .236x x x ⋅=B .633x x x ÷=C .3362x x x +=D .()3326x x -= 【答案】B【分析】根据同底数幂的乘除法,积的乘方运算法则,合并同类项逐项分析判断即可求解.【详解】解:A 、235x x x ,则此项错误,不符题意;B、633÷=,则此项正确,符合题意;x x xC、333+=,则此项错误,不符题意;x x x2D、()33-=-,则此项错误,不符题意.x x28故选:B.【点睛】本题考查了同底数幂的乘除法、合并同类项、积的乘方,熟练掌握各运算法则是解题关键.7.若(-2x+a)(x-1)的展开式中不含x的一次项,则a的值是()A.-2B.2C.-1D.任意数【答案】A【分析】原式利用多项式乘多项式法则计算,再根据结果中不含x的一次项即可确定出a的值.【详解】(-2x+a)(x-1)=-2x2+(a+2)x-a,由结果中不含x的一次项,得到a+2=0,即a=-2.故选A.【点睛】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.8.x2+mx+16是一个完全平方式,则m的值为()A.4B.8C.4或﹣4D.8或﹣89.已知y(y-16)+a=(y-8)2,则a的值是()A.8B.16C.32D.64【答案】D【分析】根据完全平方公式,即可解答.【详解】解:∵ y(y−16)+a=(y−8)2,∵y2−16y+a=y2−16y+64∵a=64,故选D .【点睛】本题考查了完全平方公式,解决本题的关键是熟记完全平方公式.10.已知x ,y 满足3135x y x y +=-⎧⎨-=⎩,则229x y -的值为( ) A .—5B .4C .5D .25 【答案】A【分析】根据题意利用平方差公式将229x y -变形,进而整体代入条件即可求得答案.【详解】解:2222(59(3)(3))315x x y y x y x y ==+-=---⨯=-.故选:A.【点睛】本题考查代数式求值,熟练掌握平方差公式的运用以及结合整体思维分析是解题的关键.11.计算20212020(2)(2)-+-的值是( )A .2-B .20202-C .20202D .2 【答案】B【分析】直接找出公因式进而提取公因式,进行分解因式即可.【详解】解:()20212020202202200200(2)(2212)(2)(2)=⨯-+=-=--+---. 故选:B【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键. 12.若定义表示3xyz ,表示2b d a c -,则运算的结果为( )A .3412m n -B .256m n -C .4312m nD .3412m n【答案】A 【分析】根据新定义列出算式进行计算,即可得出答案.【详解】解:根据定义得:=3×m ×n ×2×(-2)×m 2×n 3=-12m 3n 4,故选:A .【点睛】本题考查了整式的混合运算,根据新定义列出算式是解决问题的关键. 13.x 为正整数,且满足11632326x x x x ++⋅-=,则x =( )A .2B .3C .6D .12 【答案】C【分析】先逆用同底数幂的乘法法则,将原式变形,再提取公因式,然后逆用积的乘方,即可得到x 的值.【详解】原式可化为63323226x x x x ⋅⋅-⋅=,提取公因式,得632(32)6x x ⋅-=,∵6(32)6x ⨯=,∵x =6.故选:C .【点睛】本题考查了幂的运算:同底数幂的法则的逆用、积的乘方的逆用,解题的关键是掌握幂的运算的法则.14.有一个数值转换器,原理如下,当输入的x 为81时,输出的y 是( )AB .9C .3D .15.如图所示,将四张全等的长方形硬纸片围成一个正方形,根据图形阴影部分面积的关系,可以直观地得到一个关于a 、b 的恒等式为( )A .()()22a b a b a b -=+-B .()2222a b a ab b +=++C .()()224a b a b ab -=+-D .()2a ab a a b +=+ 【答案】C【分析】用两种方法正确的表示出阴影部分的面积,再根据图形阴影部分面积的关系,即可直观地得到一个关于a 、b 的恒等式.【详解】解:方法一:阴影部分的面积为:()2a b -,方法二:阴影部分的面积为:()24a b ab +-,所以根据图形阴影部分面积的关系,可以直观地得到一个关于a 、b 的恒等式为()()224a b a b ab -=+-. 故选:C .【点睛】本题主要考查了完全平方公式的几何背景,解题的关键是用两种方法正确的表示出阴影部分的面积.16.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和()na b +的展开式的各项系数,此三角形称为“杨辉三角”,根据“杨辉三角”计算()9a b +的展开式中第三项的系数为( )A .22B .28C .36D .56【答案】C【分析】根据图形中的规律不难发现()n a b +的第三项系数为()()12321n n +++⋯+-+-,据此即可求出()9a b +的展开式中第三项的系数.【详解】解:找规律发现()3a b +的第三项系数为312=+;()4a b +的第三项系数为6123=++; ()5a b +的第三项系数为101234=+++;…… ∵不难发现()na b +的第三项系数为()()12321n n +++⋯+-+-, ∵()9a b +第三项系数为1234567836+++++++=,故选:C .【点睛】本题主要考查了多项式乘多项式的规律,通过观察、分析、归纳发现其中的规律,并应用发现的规律解决问题是解题的关键.二、填空题17.81的平方根是_____.【答案】±9【分析】直接根据平方根的定义填空即可.【详解】解:∵(±9)2=81,∵81的平方根是±9.故答案为:±9.【点睛】本题考查了平方根,理解平方根的定义是解题的关键.183______.0(填“>”、“=”或“<”).193=,则x =______.20.已知二次三项式223(25)()x x k x x a +-=-+,则=a _____,k =_____. 【答案】 4 20【分析】先将等式右边进行化解,再根据多项式的项、项数或次数的定义建立二元一次方程组,解方程组即可得到答案.【详解】解:由223(25)()x x k x x a +-=-+得22232(25)5x x k x a x a +-=+--,∵2535a a k -=⎧⎨-=⎩, 解得:420a k ==,,故答案为:4,20.【点睛】本题考查二元一次方程组的应用,解题的关键是根据题意建立正确的方程组. 21.若2412x x k -+是完全平方式,则k 的值为______________.【答案】9【分析】根据完全平方公式求出k =32,再求出即可.【详解】解:∵多项式4x 2-12x +k 是一个完全平方式,∵(2x )2-2•2x •3+k 是一个完全平方式,∵k =32=9,故答案为:9.【点睛】本题考查了完全平方式,能熟记完全平方式是解此题的关键,完全平方式有a 2+2ab +b 2和a 2-2ab +b 2.22.现有甲、乙、丙三种不同的矩形纸片(边长如图).小亮要用这三种纸片紧密拼接成一个大正方形,先取甲纸片1块,再取乙纸片4块,还需取丙纸片____块.【答案】4【分析】根据222(2)44a b a ab b +=++,即可得.【详解】解:∵222(2)44a b a ab b +=++∵甲纸片1块,再取乙纸片4块,取丙纸片4块,可以拼成一个边长为a+2b 的正方形, 故答案为:4.【点睛】本题考查了完全平方公式,解题的关键是掌握完全平方公式.三、解答题23.已知一个正数a 的两个平方根分别是x +3和2x -15,求x 和a 的值.【答案】x =4,a =49【分析】根据正数的平方根互为相反数列方程求解即可.【详解】解:由题意得,x +3=-(2x -15),解得x =4,a =(4+3)2=49,∵x =4,a =49.【点睛】本题主要考查平方根的知识,熟练根据正数的平方根互为相反数列方程求解是解题的关键.24.(1)已知2139273m m ⨯⨯=,求()()3232m m m -÷⋅的值. (2)已知1124273,x y y x ,求x y -的值. 【答案】(1)4-;(2)3【分析】(1)先将已知等式化为同底数幂乘积的形式,利用同底数幂相乘求出m ,再代入计算即可;(2)根据幂的乘方逆运算,将已知等式化为22312233x y y x +-==,,求出x ,y ,代入计算即可.【详解】解:(1)2139273m m ⨯⨯=,23213333m m ⨯⨯=()(),23213333m m ⨯⨯=,1232133m m ++=,12321m m ,解得:4m =,()()3232m m m -÷⋅65m mm =-, 当4m =时,原式4=-;(2)∵1124273,x y y x ,∵21312233x y y x +-==(),(),∵22312233x y y x +-==,,∵22,31x y y x =+=-,解得:4,1x y ==,∵413x y -=-=.【点睛】此题考查了幂的性质,熟记同底数幂乘法计算法则,幂的乘方计算法则是解题的关键.25.先化简,再求值:(1)()()()232x y x y x y ---+,其中12x =,1y =-. (2)()23325466x y x y x x -+÷,其中2x =-,2y =.26.(1)已知3x m =,5x n =,用含有m ,n 的代数式表示14x ;(2)定义新运算⊗:对于任意实数m ,n ,都有()m n m m n n ⊗=-+,若()()319x -⊗-=,求x 的值.【答案】(1)143x m n =;(2)x 的值为1【分析】(1)根据n m n m a a a +⨯=,把14x 化简为:95x x ⨯,即可;(2)根据定义新运算:()m n m m n n ⊗=-+的运算法则,即可求出x .【详解】(1)∵3x m =,5x n =,∵()31495353x x x x x m n =⨯=⨯=; (2)∵()m n m m n n ⊗=-+,∵()()31x -⊗-()()()()3311x x =----+-⎡⎤⎣⎦()()()3311x x =---++-()()()321x x =---+-631x x =++-54x =+,∵549x +=,∵1x =.【点睛】本题考查幂的运算,一元一次方程的知识,解题的关键掌握幂的运算法则,理解定义新运算的运算.27.小华和小明同时计算一道整式乘法题(2)(3)x a x b ++.小华抄错了第一个多项式中a 的符号,即把a +抄成了a -,得到结果为261110x x +-;小明把第二个多项式中的3x 抄成了x ,得到结果为22910x x -+.(1)你知道式子中a ,b 的值各是多少吗?(2)请你计算出这道题的正确结果. 【答案】(1)5a =-,2b =-(2)61910xx -+【分析】(1)根据题意可得(2)(3)x a x b -+261110x x =+-;(2)()x a x b ++22910x x =-+,从而得出231129b a a b -=⎧⎨+=-⎩,解二元一次方程组即可; (2)将,a b 的值代入,然后根据多项式乘以多项式运算法则进行计算即可.【详解】(1)解:根据题意得:(2)(3)x a x b -+26(23)x b a x ab =+--261110x x =+-;(2)()x a x b ++22(2)x a b x ab =+++22910x x =-+,∵231129b a a b -=⎧⎨+=-⎩, 解得:5a =-,2b =-;(2)正确的算式为2(25)(32)61910x x x x --=-+.【点睛】本题考查了多项式乘以多项式的运算法则以及解二元一次方程组,读懂题意,根据题意列出二元一次方程组求出,a b 的值是解本题的关键.28.如图,将长方形ABCD 与长方形CEFG 拼在一起,B C E ,,三点在同一直线上,且11=22AB BC a EF CE b ==,=连接BD BF ,.(1)请用a b ,表示图中阴影部分的面积;(2)若8,10a b ab +==求阴影部分的面积. BCD BEF CEFG S S S -长方形+即可列式求解;)根据完全平方公式变形代入即可求解.12a EF CEb ==,= BCD BEF CEFG S S S +-长方形()12222a b b b a b +⋅-+ 2ab b --。
七年级数学月考试卷分析
七年级数学月考试卷分析从孩子的这次数学试卷分析看,应该说还算比较认真,这次的成绩与他的真实水平也算接近了。
具体分析如下:首先,孩子对待考试的态度比较端正。
主要表现:一是在是卷面书写上与以往试卷相比,认真了。
这说明孩子真的很在意这次考试,从心里上重视了。
这也是孩子一惯的风格,正规考试较平时考试在书写上更认真一些。
二是没有在以往容易丢分的计算上失误。
这点很难得。
这也是家长最担忧的问题。
大风大浪轻松过,小河沟里却翻船,这点以往常让家长为之恼火,孩子过后懊悔。
第二,从孩子错题内容与扣分看,有四大类。
一是审题不严谨,没有认真思考。
如第1页第一大题第4小题,64分米=()米,孩子把分米与米之间的换算按百分计算,扣1分;二是在知识点掌握上,还有漏洞。
如第3页第四大题第4题第②小题除法计算,扣3分;三是孩子在数学问题的答复上,步骤与方法还没有完全把握,属于茶壶煮饺子,有货倒不出。
如第4页第五题第5小题,这属于这类问题,扣1分;四是不会检查。
如上述提到的第一类错误,完全可以通过检查防止。
第三,从孩子考试暴露的问题看,对家长也是一个警示,一个提醒。
对于升入初中的孩子,家长是应该放手,但放手不等于撒手,尤其是对于新入学的孩子,还要在好的学习习惯、方法上加以引导。
对孩子平时的错题还要重视。
尤其是老师要求孩子平时做的错题本,更要重视,必须到达每道错题都能按正确的步骤与方法改正,否那么错题本就失去了它的真正作用。
家长也必须要帮助孩子好好检查订正的错题。
如孩子失分的最后一道题,就是孩子曾错过的类似题,当时以为孩子写到错题本上了,应该没问题,但事实上,孩子订正的并不对。
时间长了,竟忘了到底应该如何做。
通过试卷分析,今后我们家长会针对孩子暴露的问题,一一帮孩子改正。
也希望老师对孩子的要求更严,标准更高。
谢谢。
人教版七年级下学期第二次月考数学试卷(含答案解析)
人教版七年级下学期第二次月考数学试卷一、选择题(本题共10小题,每题3分,共30分)1.下列计算正确的是()A.x2+x2=x4B.(2x)3=6x3C.(﹣2a﹣3)(2a﹣3)=9﹣4a2D.(2a﹣b)2=4a2﹣2ab+b22.如图,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3B.∠2=∠3C.∠4=∠5D.∠2+∠4=180°3.下列事件中,是必然事件的是()A.任意买一张电影票,座位号是2的倍数B.13个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨4.如图,要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使BC=CD,再作出BF的垂线DE,使点A、C、E在同一条直线上(如图),可以说明△ABC≌△EDC,得AB=DE,因此测得DE的长就是AB的长,判定△ABC≌△EDC,最恰当的理由是()A.SAS B.HL C.SSS D.ASA5.某校八年级同学到距学校6千米的郊外春游,一部分同学步行,另一部分同学骑自行车,如图,l1、l2分别表示步行和骑车的同学前往目的地所走的路程y(千米)与所用时间x (分钟)之间的函数图象,则以下判断错误的是()A.骑车的同学比步行的同学晚出发30分钟B.步行的速度是6千米/时C.骑车的同学从出发到追上步行的同学用了20分钟D.骑车的同学和步行的同学同时到达目的地6.如图,已知方格纸中是4个相同的小正方形,则∠1+∠2的度数为()A.30°B.45°C.60°D.90°7.如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B 恰好落在AC边上的点E处,若∠A=26°,则∠CDE度数为()A.71°B.64°C.80°D.45°8.如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,下述结论错误的是()A.BD平分∠ABC B.△BCD的周长等于AB+BCC.AD=BD=BC D.点D是线段AC的中点。
七年级数学月考试卷分析课教案
七年级数学月考试卷分析课教案教案:七年级数学月考试卷分析课一、教学目标:1.了解七年级数学月考试卷的题型和难度分布;2.分析学生在考试中的常见错误和薄弱环节;3.提出相应的学习建议和改进措施。
二、教学内容:1.七年级数学月考试卷的题型和难度分布;2.学生在考试中的常见错误和薄弱环节;3.学习建议和改进措施。
三、教学过程:1.导入:复习上次课的内容,回顾学生上次考试的成绩,分析考试结果。
2.讲解分析方法:a. 将数学试卷按题型进行分类,比如选择题、填空题、解答题等;b. 分析每个题型的难度特点,比如选择题的选项干扰、填空题的计算错误等;c. 根据学生的考试成绩,分析学生在哪些题型上表现较好,哪些题型上表现较差;d. 分析学生在考试中常犯的错误类型,比如计算错误、概念理解不清等;e. 分析学生在解答题中的思路和解题方法是否合理。
3.分析学生在考试中的常见错误和薄弱环节: a. 根据学生的答卷,找出学生在计算过程中常犯的错误,比如运算符号混淆、计算方法错误等; b. 分析学生在选择题选项干扰上的表现,找出学生容易被干扰的选项; c. 分析学生在解答题中的思路和解题方法,找出学生解题思路不清晰或解题方法不正确的地方。
4.提出学习建议和改进措施:a. 针对学生在考试中的常见错误和薄弱环节,提出相应的学习建议,比如加强对概念的理解、提高计算准确性等;b. 鼓励学生多做练习题,特别是对于常见错误和薄弱环节的题型,多进行训练;c. 引导学生掌握解题方法和技巧,比如画图、列式、逻辑推理等;d. 鼓励学生主动参与课堂讨论和互动,提高学生的学习兴趣和主动性。
5.总结课堂内容,布置下次课的预习任务。
四、教学反思:本节课通过分析七年级数学月考试卷的题型和难度分布,以及学生在考试中的常见错误和薄弱环节,帮助学生了解自己的学习情况,提出相应的学习建议和改进措施。
通过这样的分析和反思,有助于学生在今后的学习中找到自己的不足之处,并采取相应的措施进行改进。
七年级数学第二次月考质量分析
七年级数学第二次月考质量分析
本次试题包括第五章相交线、平行线和第六章平面直角坐标系。
题型灵活多样,有填空、选择、画图、解答、等,从不同角度考察了两章必须掌握的主要内容,以及这些内容反映出来的数学思想和方法,立足基础,多角度、多层次、全方位地考查学生对数学思想方法的领悟程度。
通过检测,填空题第6题、第13小题。
选择题第19题,简答题25题。
对于初一学生来说有点难度,学生失分率有点高。
一、学生情况分析
本次考试我班共有学生47人,从成绩来看,这次考试很不理想,关键学生在考试的过程中没有认真的审题,导致好多容易的地方失分比较高,这有待于我今后认真加强。
二、试卷分析
1、选择题第24题有一半以上同学错选,纠其原因主要是对图形没有认真观察分析、性质理解不够透彻。
2、第6小题求点的坐标,学生没有认真掌握性质。
3、第22、24小题:学生根据证明填写条件,学生很混乱,(到底是两直线平行在前,还是在后没有弄明白)这有待于加强。
4、第25题画图有30%的同学作平面直角坐标系不正确,这类题平时老师强调最多,但出现问题不少,说明学生平时学习态度不够端正。
最新2022-2022年七年级下第二次月考数学试卷含答案
七年级(下)第二次月考数学试卷一、选择题1.(3分)下列说法(shuōfǎ)正确的是()A.若两个(liǎnɡ ɡè)角相等,则这两个角是对顶角B.若两个(liǎnɡ ɡè)角是对顶角,则这两个角是相等C.若两个角不是(bù shi)对顶角,则这两个角不相等D.所有(suǒyǒu)的对顶角相等2.(3分)已知一个圆的半径为Rcm,若这个圆的半径增加2cm,则它的面积增加()A.4cm2B.(2R+4)cm2C.(4R+4)cm2D.以上都不对3.(3分)在同一平面内,a、b、c是直线,下列说法正确的是()A.若a∥b,b∥c 则 a∥c B.若a⊥b,b⊥c,则a⊥cC.若a∥b,b⊥c,则a∥c D.若a∥b,b∥c,则a⊥c4.(3分)下列计算正确的是()A.(a4)3=a7B.a8÷a4=a2C.(ab)3=a3b3D.(a+b)2=a2+b2 5.(3分)已知∠α与∠β互为补角,∠α=120°30′,则∠β的余角是()A.29°30′B.30°30′C.31°30′D.59°30′6.(3分)下列式子正确的是()A.a2﹣4b2=(a+2b)(a﹣2b)B.(a﹣b)2=a2﹣b2C.(a+b)2=a2+b2D.(x+3y)(x﹣3y)=x2﹣3y27.(3分)下列图形中,线段AD的长表示点A到直线BC距离的是()A.B.C.D.8.(3分)计算(jì suàn)的结果(jiē guǒ)是()A.﹣B.C.﹣D.9.(3分)在同一平面内,有8条互不重合(chónghé)的直线,l1,l2,l3 (8)若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推(yǐ cǐ lèi tuī),则l1和l8的位置(wèi zhi)关系是()A.平行B.垂直C.平行或垂直D.无法确定10.(3分)算式(2+1)×(22+1)×(24+1)×…×(232+1)+1计算结果的个位数字是()A.4 B.2 C.8 D.6二、填空题11.(3分)某学校有A、B、C三栋教学楼,B楼在A楼的正北方向上,与A 楼相距40米;C楼在A楼的东偏南30°方向上,与A楼相距80米,通过画图(用1厘米代表20米),量出B、C两楼间的距离为米(精确到米).12.(3分)如图,已知AB∥CD,F为CD上一点,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度数为整数,则∠C的度数为.13.(3分)直线a外有一定点A,A到直线a的距离是5cm,P是直线a上的任意一点,则AP5cm(填写<或>或=或≤或≥)14.(3分)若x2﹣16x+m2是一个完全平方式,则m=;若m﹣=9,则m2+=.15.(3分)若一个角是34°,则这个角的余角是°.16.(3分)如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作(cāozuò),分别作∠ABE n﹣1和∠DCE n﹣1的平分线,交点(jiāodiǎn)为E n.若∠E n=1度,那∠BEC等于(děngyú)度三、解答(jiědá)题17.在求1+2+22+23+24+25+26的值时,小明发现:从第二个加数(jiā shù)起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26①然后在①式的两边都乘以2,得:2S=2+22+23+24+25+26+27 ②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.(1)求1+3+32+33+34+35+36的值;(2)求1+a+a2+a3+…+a2021(a≠0且a≠1)的值.18.如图,某工程队从A点出发,沿北偏西67°方向修一条公路AD,在BD路段出现塌陷区,就改变方向,由B点沿北偏东23°的方向继续修建BC段,到达C点又改变方向,从C点继续修建CE段,若使所修路段CE∥AB,∠ECB应为多少度?试说明理由.此时CE与BC有怎样的位置关系?以下是小刚不完整的解答,请帮她补充完整.解:由已知,根据得∠1=∠A=67°所以,∠CBD=23°+67°=°;根据当∠ECB+∠CBD=°时,可得CE∥AB.所以∠ECB=°此时CE与BC的位置关系为.19.一种电讯信号转发装置的发射直径为31km.现要求:在一边长为30km的正方形城区选择(xuǎnzé)若干个安装点,每个点安装一个这种转发装置,使这些装置转发的信号能完全覆盖这个城市.问:(1)能否找到这样的4个安装点,使得这些点安装了这种转发装置后能达到(dá dào)预设的要求?在图1中画出安装点的示意图,并用大写字母M、N、P、Q表示安装点;(2)能否找到这样(zhèyàng)的3个安装点,使得在这些点安装了这种转发装置后能达到预设的要求?在图2中画出示意图说明,并用大写字母M、N、P表示安装点,用计算、推理和文字来说明你的理由.20.如图,已知两条射线(shèxiàn)OM∥CN,动线段(xiànduàn)AB的两个端点A、B分别在射线OM、CN上,且∠C=∠OAB=108°,F在线段CB上,OB平分∠AOF,OE平分∠COF.(1)请在图中找出与∠AOC相等的角,并说明理由;(2)若平行移动AB,那么∠OBC与∠OFC的度数比是否随着AB位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值;(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=2∠OBA?若存在,请求出∠OBA度数;若不存在,说明理由.21.问题(wèntí)再现:数形结合是解决数学问题的一种(yī zhǒnɡ)重要的思想方法,借助这种方法可将抽象的数学知识变得直观起来并且具有可操作性,从而可以帮助我们快速解题.初中数学里的一些代数公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.例如:利用图形(túxíng)的几何意义证明完全平方公式.证明:将一个边长为a的正方形的边长增加b,形成(xíngchéng)两个矩形和两个正方形,如图1:这个图形的面积可以(kěyǐ)表示成:(a+b)2或a2+2ab+b2∴(a+b)2 =a2+2ab+b2这就验证了两数和的完全平方公式.类比解决:(1)请你类比上述方法,利用图形的几何意义证明平方差公式.(要求画出图形并写出推理过程)问题提出:如何利用图形几何意义的方法证明:13+23=32?如图2,A表示1个1×1的正方形,即:1×1×1=13B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23而A、B、C、D恰好可以拼成一个(1+2)×(1+2)的大正方形.由此可得:13+23=(1+2)2=32尝试解决:(2)请你类比上述推导过程,利用图形的几何意义确定:13+23+33=.(要求写出结论并构造图形写出推证过程).(3)问题拓广:请用上面(shàng miɑn)的表示几何图形面积的方法探究:13+23+33+…+n3=.(直接(zhíjiē)写出结论即可,不必写出解题过程)22.计算(jì suàn):(1)(﹣)﹣2+(π﹣3.14)0+(﹣2)2(2)a•a3•(﹣a2)3.23.已知,AB∥CD,点E为射线(shèxiàn)FG上一点.(1)如图1,直接(zhíjiē)写出∠EAF、∠AED、∠EDG之间的数量关系;(2)如图2,当点E在FG延长线上时,求证:∠EAF=∠AED+∠EDG;(3)如图3,AI平分∠BAE,DI交AI于点I,交AE于点K,且∠EDI:∠CDI=2:1,∠AED=20°,∠I=30°,求∠EKD的度数.参考答案与试题(shìtí)解析一、选择题1.(3分)下列说法(shuōfǎ)正确的是()A.若两个(liǎnɡ ɡè)角相等,则这两个角是对顶角B.若两个(liǎnɡ ɡè)角是对顶角,则这两个角是相等C.若两个(liǎnɡ ɡè)角不是对顶角,则这两个角不相等D.所有的对顶角相等【解答】解:根据对顶角的定义:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角;∴选项A、C错误;根据对顶角的性质:对顶角相等;∴选项D错误;故选:B.2.(3分)已知一个圆的半径为Rcm,若这个圆的半径增加2cm,则它的面积增加()A.4cm2B.(2R+4)cm2C.(4R+4)cm2D.以上都不对【解答】解:∵S2﹣S1=π(R+2)2﹣πR2,=π(R+2﹣R)(R+2+R),=4π(R+1),∴它的面积增加4π(R+1)cm2.故选:D.3.(3分)在同一平面内,a、b、c是直线,下列说法正确的是()A.若a∥b,b∥c 则 a∥c B.若a⊥b,b⊥c,则a⊥cC.若a∥b,b⊥c,则a∥c D.若a∥b,b∥c,则a⊥c【解答】解:A、∵a∥b,b∥c,∴a∥c,故本选项符合(fúhé)题意;B、在同一(tóngyī)平面内,当a⊥b,b⊥c时,a∥c,故本选项不符合(fúhé)题意;C、当a∥b,b⊥c时,a⊥c,故本选项不符合(fúhé)题意;D、当a∥b,b∥c时,a∥c,故本选项不符合(fúhé)题意;故选:A.4.(3分)下列计算正确的是()A.(a4)3=a7B.a8÷a4=a2C.(ab)3=a3b3D.(a+b)2=a2+b2【解答】解:∵(a4)3=a12,∴选项A不符合题意;∵a8÷a4=a4,∴选项B不符合题意;∵(ab)3=a3b3,∴选项C符合题意;∵(a+b)2=a2+b2+2ab,∴选项D不符合题意.故选:C.5.(3分)已知∠α与∠β互为补角,∠α=120°30′,则∠β的余角是()A.29°30′B.30°30′C.31°30′D.59°30′【解答】解:∵∠α与∠β互为补角,∠α=120°30′,∴∠β=180°﹣120°30′=59°30′,∴∠β的余角=90°﹣59°30′=30°30′.故选:B.6.(3分)下列式子正确的是()A.a2﹣4b2=(a+2b)(a﹣2b)B.(a﹣b)2=a2﹣b2C.(a+b)2=a2+b2D.(x+3y)(x﹣3y)=x2﹣3y2【解答(jiědá)】解:A、a2﹣4b2=(a+2b)(a﹣2b),故原题分解(fēnjiě)正确;B、(a﹣b)2=a2﹣2ab+b2,故原题计算错误;C、(a+b)2=a2+2ab+b2,故原题计算错误;D、(x+3y)(x﹣3y)=x2﹣9y2,故原题计算错误;故选:A.7.(3分)下列图形中,线段(xiànduàn)AD的长表示点A到直线BC距离的是()A.B.C.D.【解答(jiědá)】解:线段AD的长表示点A到直线(zhíxiàn)BC距离的是图D,故选:D.8.(3分)计算的结果是()A.﹣B.C.﹣D.【解答】解:原式=(﹣×1.5)2021×(﹣1.5)=﹣1.5=﹣,故选:A.9.(3分)在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是()A.平行B.垂直C.平行或垂直D.无法(wúfǎ)确定【解答(jiědá)】解:∵l2∥l3,l3⊥l4,l4∥l5,l5⊥l6,l6∥l7,l7⊥l8,∴l2⊥l4,l4⊥l6,l6⊥l8,∴l2⊥l8.∵l1⊥l2,∴l1∥l8.故选:A.10.(3分)算式(suànshì)(2+1)×(22+1)×(24+1)×…×(232+1)+1计算结果的个位数字是()A.4 B.2 C.8 D.6【解答(jiědá)】解:原式=(2﹣1)(2+1)×(22+1)×(24+1)×…×(232+1)+1=(22﹣1)×(22+1)×(24+1)×…×(232+1)+1=(24﹣1)×(24+1)×…×(232+1)+1=(232﹣1)×(232+1)+1=264﹣1+1=264,因为(yīn wèi)21=2,22=4,23=8,24=16,25=32,所以底数为2的正整数次幂的个位数是2、4、8、6的循环,所以264的个位数是6.故选:D.二、填空题11.(3分)某学校有A、B、C三栋教学楼,B楼在A楼的正北方向上,与A 楼相距40米;C楼在A楼的东偏南30°方向上,与A楼相距80米,通过画图(用1厘米代表20米),量出B、C两楼间的距离为106米(精确到米).【解答】解:在图形上测量知B,C两楼之间的距离为106米.12.(3分)如图,已知AB∥CD,F为CD上一点(yī diǎn),∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度数(dù shu)为整数,则∠C的度数(dù shu)为36°或37°.【解答(jiědá)】解:如图,过E作EG∥AB,∵AB∥CD,∴GE∥CD,∴∠BAE=∠AEG,∠DFE=∠GEF,∴∠AEF=∠BAE+∠DFE,设∠CEF=x,则∠AEC=2x,∴x+2x=∠BAE+60°,∴∠BAE=3x﹣60°,又∵6°<∠BAE<15°,∴6°<3x﹣60°<15°,解得22°<x<25°,又∵∠DFE是△CEF的外角(wài jiǎo),∠C的度数为整数,∴∠C=60°﹣23°=37°或∠C=60°﹣24°=36°,故答案为:36°或37°.13.(3分)直线a外有一定点A,A到直线a的距离(jùlí)是5cm,P是直线a 上的任意一点,则AP≥5cm(填写(tiánxiě)<或>或=或≤或≥)【解答(jiědá)】解:根据题意,得A到直线(zhíxiàn)a的垂线段的长是5cm,由垂线(chuí xiàn)段最短,得AP≥5cm.故填:≥.14.(3分)若x2﹣16x+m2是一个完全平方式,则m=±8;若m﹣=9,则m2+=83.【解答】解:∵x2﹣16x+m2是完全平方式,∴16x=2×8•x,∴m2=82,解得m=±8;∵m﹣=9,∴(m﹣)2=m2﹣2+=81,解得m2+=81+2=83.15.(3分)若一个角是34°,则这个角的余角是56°.【解答】解:若一个角是34°,则这个角的余角是90°﹣34°=56°,故答案为:56.16.(3分)如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作,分别作∠ABE n﹣1和∠DCE n﹣1的平分线,交点为E n.若∠E n=1度,那∠BEC等于2n 度【解答(jiědá)】解:如图①,过E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠B=∠1,∠C=∠2,∵∠BEC=∠1+∠2,∴∠BEC=∠ABE+∠DCE;如图②,∵∠ABE和∠DCE的平分线交点(jiāodiǎn)为E1,∴∠CE1B=∠ABE1+∠DCE1=∠ABE+∠DCE=∠BEC.∵∠ABE1和∠DCE1的平分线交点(jiāodiǎn)为E2,∴∠BE2C=∠ABE2+∠DCE2=∠ABE1+∠DCE1=∠CE1B=∠BEC;如图②,∵∠ABE2和∠DCE2的平分线,交点(jiāodiǎn)为E3,∴∠BE3C=∠ABE3+∠DCE3=∠ABE2+∠DCE2=∠CE2B=∠BEC;…以此类推(yǐ cǐ lèi tuī),∠E n=∠BEC.∴当∠E n=1度时,∠BEC等于2n度.故答案为:2n .三、解答(jiědá)题17.在求1+2+22+23+24+25+26的值时,小明发现(fāxiàn):从第二个加数起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26①然后(ránhòu)在①式的两边(liǎngbiān)都乘以2,得:2S=2+22+23+24+25+26+27 ②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.(1)求1+3+32+33+34+35+36的值;(2)求1+a+a2+a3+…+a2021(a≠0且a≠1)的值.【解答(jiědá)】解:(1)1+3+32+33+34+35+36=[(1+3+32+33+34+35+36)×3﹣(1+3+32+33+34+35+36)]÷(3﹣1)=[(3+32+33+34+35+36+37)﹣(1+3+32+33+34+35+36)]÷2=(37﹣1)÷2=2186÷2=1093;(2)1+a+a2+a3+…+a2021(a≠0且a≠1)═[(1+a+a2+a3+…+a2021)×a﹣(1+a+a2+a3+…+a2021)]÷(a﹣1)=[(a+a2+a3+…+a2021+a2021)﹣(1+a+a2+a3+…+a2021)]÷(a﹣1)=(a2021﹣1)÷(a﹣1)=.18.如图,某工程队从A点出发,沿北偏西67°方向修一条公路AD,在BD路段出现塌陷区,就改变方向,由B点沿北偏东23°的方向继续修建BC段,到达C点又改变方向,从C点继续修建CE段,若使所修路段CE∥AB,∠ECB应为多少度?试说明理由.此时CE与BC有怎样的位置关系?以下是小刚不完整的解答,请帮她补充完整.解:由已知,根据两直线平行,同位角相等得∠1=∠A=67°所以,∠CBD=23°+67°=90°;根据(gēnjù)同旁内角(tónɡ pánɡ nèi jiǎo)互补,两直线平行当∠ECB+∠CBD=180°时,可得CE∥AB.所以(suǒyǐ)∠ECB=90°此时CE与BC的位置(wèi zhi)关系为垂直(chuízhí).【解答】解:由已知,根据两直线平行,同位角相等得:∠1=∠A=67°,所以,∠CBD=23°+67°=90°,根据同旁内角互补,两直线平行,当∠ECB+∠CBD=180°时,可得CE∥AB,所以∠ECB=90°,此时CE与BC的位置关系为垂直,故答案为:两直线平行,同位角相等,90,同旁内角互补,两直线平行,180,90,垂直.19.一种电讯信号转发装置的发射直径为31km.现要求:在一边长为30km的正方形城区选择若干个安装点,每个点安装一个这种转发装置,使这些装置转发的信号能完全覆盖这个城市.问:(1)能否找到这样的4个安装点,使得这些点安装了这种转发装置后能达到预设的要求?在图1中画出安装点的示意图,并用大写字母M、N、P、Q表示安装点;(2)能否找到这样的3个安装点,使得在这些点安装了这种转发装置后能达到预设的要求?在图2中画出示意图说明,并用大写字母M、N、P表示安装点,用计算、推理和文字来说明你的理由.【解答(jiědá)】解:(1)如图1,将正方形等分成如图的四个小正方形,将这4个转发装置(zhuāngzhì)安装在这4个小正方形对角线的交点处,此时(cǐ shí),每个小正方形的对角线长为,每个转发装置都能完全覆盖一个(yī ɡè)小正方形区域,故安装(ānzhuāng)4个这种装置可以达到预设的要求;(2)(画图正确给1分)将原正方形分割成如图2中的3个矩形,使得BE=31,OD=OC.将每个装置安装在这些矩形的对角线交点处,则AE=,,∴OD=,即如此安装三个这个转发装置,也能达到预设要求.20.如图,已知两条射线(shèxiàn)OM∥CN,动线段(xiànduàn)AB的两个端点A、B分别在射线OM、CN上,且∠C=∠OAB=108°,F在线段(xiànduàn)CB 上,OB平分∠AOF,OE平分(píngfēn)∠COF.(1)请在图中找出与∠AOC相等的角,并说明(shuōmíng)理由;(2)若平行移动AB,那么∠OBC与∠OFC的度数比是否随着AB位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值;(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=2∠OBA?若存在,请求出∠OBA度数;若不存在,说明理由.【解答】解:(1)∵OM∥CN,∴∠AOC=180°﹣∠C=180°﹣108°=72°,∠ABC=180°﹣∠OAB=180°﹣108°=72°,又∵∠BAM=∠180°﹣∠OAB=180°﹣108°=72°,∴与∠AOC相等的角是∠AOC,∠ABC,∠BAM;(2)∵OM∥CN,∴∠OBC=∠AOB,∠OFC=∠AOF,∵OB平分∠AOF,∴∠AOF=2∠AOB,∴∠OFC=2∠OBC,∴∠OBC:∠OFC=;(3)设∠OBA=x,则∠OEC=2x,在△AOB中,∠AOB=180°﹣∠OAB﹣∠ABO=180°﹣x﹣108°=72°﹣x,在△OCE中,∠COE=180°﹣∠C﹣∠OEC=180°﹣108°﹣2x=72°﹣2x,∵OB平分∠AOF,OE平分∠COF,∴∠COE+∠AOB=∠COF+∠AOF=∠AOC=×72°=36°,∴72°﹣x+72°﹣2x=36°,解得x=36°,即∠OBA=36°,此时(cǐ shí),∠OEC=2×36°=72°,∠COE=72°﹣2×36°=0°,点C、E重合(chónghé),所以(suǒyǐ),不存在.21.问题(wèntí)再现:数形结合是解决数学问题的一种重要的思想方法,借助这种方法可将抽象的数学知识变得直观起来并且具有可操作性,从而可以帮助我们快速解题.初中数学里的一些代数(dàishù)公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.例如:利用图形的几何意义证明完全平方公式.证明:将一个边长为a的正方形的边长增加b,形成两个矩形和两个正方形,如图1:这个图形的面积可以表示成:(a+b)2或a2+2ab+b2∴(a+b)2 =a2+2ab+b2这就验证了两数和的完全平方公式.类比解决:(1)请你类比上述方法,利用图形的几何意义证明平方差公式.(要求画出图形并写出推理过程)问题提出:如何利用图形几何意义的方法证明:13+23=32?如图2,A表示1个1×1的正方形,即:1×1×1=13B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23而A、B、C、D恰好可以拼成一个(1+2)×(1+2)的大正方形.由此可得:13+23=(1+2)2=32尝试(chángshì)解决:(2)请你类比上述推导(tuīdǎo)过程,利用图形的几何意义确定:13+23+33= 62.(要求写出结论(jiélùn)并构造图形写出推证过程).(3)问题(wèntí)拓广:请用上面的表示几何图形面积(miàn jī)的方法探究:13+23+33+…+n3=[n (n+1)]2.(直接写出结论即可,不必写出解题过程)【解答】解:(1)∵如图,左图的阴影部分的面积是a2﹣b2,右图的阴影部分的面积是(a+b)(a﹣b),∴a2﹣b2=(a+b)(a﹣b),这就验证了平方差公式;(2)如图,A表示1个1×1的正方形,即1×1×1=13;B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23;G与H,E与F和I可以表示3个3×3的正方形,即3×3×3=33;而整个图形恰好可以拼成一个(1+2+3)×(1+2+3)的大正方形,由此可得:13+23+33=(1+2+3)2=62;故答案(dá àn)为:62;(3)由上面表示几何图形的面积(miàn jī)探究可知,13+23+33+…+n3=(1+2+3+…+n)2,又∵1+2+3+…+n=n(n+1),∴13+23+33+…+n3=[n(n+1)]2.故答案(dá àn)为:[n(n+1)]2.22.计算(jì suàn):(1)(﹣)﹣2+(π﹣3.14)0+(﹣2)2(2)a•a3•(﹣a2)3.【解答(jiědá)】解:(1)(﹣)﹣2+(π﹣3.14)0+(﹣2)2=4+1+4=9;(2)a•a3•(﹣a2)3=a•a3•(﹣a6)=﹣a10.23.已知,AB∥CD,点E为射线FG上一点.(1)如图1,直接写出∠EAF、∠AED、∠EDG之间的数量关系;(2)如图2,当点E在FG延长线上时,求证:∠EAF=∠AED+∠EDG;(3)如图3,AI平分(píngfēn)∠BAE,DI交AI于点I,交AE于点K,且∠EDI:∠CDI=2:1,∠AED=20°,∠I=30°,求∠EKD的度数(dù shu).【解答(jiědá)】解:(1)∠AED=∠EAF+∠EDG.理由(lǐyóu):如图1,过E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠EAF=∠AEH,∠EDG=∠DEH,∴∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)证明(zhèngmíng):如图2,设CD与AE交于点H,∵AB∥CD,∴∠EAF=∠EHG,∵∠EHG是△DEH的外角,∴∠EHG=∠AED+∠EDG,∴∠EAF=∠AED+∠EDG;(3)∵AI平分(píngfēn)∠BAE,∴可设∠EAI=∠BAI=α,则∠BAE=2α,∵AB∥CD,∴∠CHE=∠BAE=2α,∵∠AED=20°,∠I=30°,∠DKE=∠AKI,∴∠EDI=α+30°﹣20°=α+10°,又∵∠EDI:∠CDI=2:1,∴∠CDI=∠EDK=α+5°,∵∠CHE是△DEH的外角(wài jiǎo),∴∠CHE=∠EDH+∠DEK,即2α=α+5°+α+10°+20°,解得α=70°,∴∠EDK=70°+10°=80°,∴△DEK中,∠EKD=180°﹣80°﹣20°=80°.内容总结(1)+a2021(a≠0且a≠1)的值.【解答】解:(1)1+3+32+33+34+35+36=[(1+3+32+33+34+35+36)×3﹣(1+3+32+33+34+35+36)]÷(3﹣1)=[(3+32+33+34+35+36+37)﹣(1+3+32+33+34+35+36)]÷2=(37﹣1)÷2=2186÷2=1093。
七年级下第二次月考数学试题及答案
七年级第二次月水平测试数学试卷时间100分钟 满分120分一、选择题(每题3分,共30分)1.有下列长度的三条线段,能组成三角形的是( )A 、3cm 4cm 8cm 、、 B 、4cm 4cm 8cm 、、 C 、5cm 6cm 10cm 、、 D 、2cm 5cm 10cm 、、 2.已知有长为1、2、3的线段若干条,任取其中三条构造三角形,则最多能构成形状或大小不同的三角形个数是( )A 、5B 、6C 、7D 、83.下列说法①任意一个三角形的三条高至少有一条在此三角形内部;②一个多边形从一个顶点共引出三条对角线,此多边形一定是五边形;③一个三角形中,至少有一个角不小于060;④以a 为底的等腰三角形其腰长一定大于2a ;⑤以cb a ,,为边,且c b a >+能构成一个三角形 ;⑥一个多边形增加一条边,那么它的外角均增加0180.其中正确的是( )A 、①②③④B 、①③④⑤C 、③④⑤⑥D 、①②③⑥4.如图所示,下列图案是我国几家银行的标志,其中不是轴对称图形的有( )5.下列结论错误的是( )A 、等边三角形是轴对称图形B 、轴对称图形的对应边相等,对应角相等C 、成轴对称的两条线段必在对称轴同侧D 、成轴对称的两个图形的对应点的连线被对称轴垂直平分6.两个图形关于某直线对称,对称点一定是( )A 、这条直线的两旁B 、这条直线的同旁C 、这条直线上D 、这条直线两旁或这条直线上7.甲、乙、丙、丁四名同学在讨论数学问题时作了如下发言:甲:因为三角形中最多有一个钝角,因此三角形的外角之中最多只有一个锐角;乙:在求n 个角都相等的n 边形的一个内角的度数时,可用结论: 180°-n 1×360°; 丙:多边形的内角和总比外角和大;丁:n 边形的边数每增加一条,对角线就增加n 条.四位同学的说法正确的是( ).A 、甲、丙B 、乙、丁C 、甲、乙D 、乙、丙8.如果三角形的一个外角与它不相邻的两内角的和为180º,那么与这个外角相邻的内角等于( )A 、30ºB 、60ºC 、90ºD 、120º9.一个多边形的内角和比它的外角和的3倍少0180,这个多边形的边数是( )A 、5条B 、6条C 、 7条D 、8条10.下列正多边形的组合中,能够铺满地面的是( )A 、正八边形和正方形B 、正五边形和正八边形C 、正六边形和正三角形D 、正五边形和正六边形二、填空题(每题3分,共30分)11.把一张正方形纸沿两对角线对折两次,形成了四个同样大小的三角形.12.工人师傅在做完门框后.为防小变形常常像图1中所示的那样上两条斜拉的木条(即图1中的AB ,CD ),这样做根据的数学道理是 .13.如图2 ,⊿ABC 中,AD 是∠BAC 的平分线,AE 是BC 边上的高,已知∠B=47º∠C=73º,则∠DAE= .14.如图3,AD 是△ABC 的外角平分线,∠B=30º,∠DA E=55º,则∠ACD= .15.等腰三角形的周长为12,则腰长a 的取值范围是 .16.一个多边形减少一条边,它的内角和减少 度,如果一个多边形减少一条边后,内角和为1260度,那么原来的多边形的边数为 .17.n边形的内角和等于t边形的外角和的2倍,则n= .18.已知一个多边形的边数恰好是从一个顶点出发的对角线条数的2倍,则这个多边形的边数是,内角和是.19.一个多边形的每一个内角都相等,并且它的一个外角与一个内角之比为2:3,则这个多边形是边形.20.如图4三、解答题(7个小题,共60分)21.(10分)如图,四边形ABCD中,∠A=∠C=90°,B E平分∠ABC,DF平分∠ADC,试问BE与DF平行吗?为什么?22.(10分)如图,∠ACD是△ABC的一个外角,∠ABC和∠ACD的平分线BE、CE交于一点E,试说明∠A=2∠E.23.(9分)过m边形的一个顶点有8条对角线,n边形没有对角线,p边形有p条对角线,试求n( 的值.pm)24.(8分)已知等腰三角形的周长为28厘米,①底边长和腰长之比为3:2,求各边长;②底边比腰小2厘米,求各边长.25、(6分)请用1个等腰三角形,2个长方形,3个圆设计一个轴对称图形,并用简炼的文字说明你的创意。
七年级数学月考质量分析
七年级数学月考质量分析为了总结经验,吸取教训,取长补短,改进教学,提高教育教学质量,对于本次月考我进行了认真的分析和总结。
一、试卷分析本次考试试题范围涉及了第一章和第二章 2.1-2.6的所用内容,其中选择题30分,填空题24分,解答题46分。
安排合理科学,注重了学生基础知识的考察,题型灵活多样,符合新课改的要求,让每位学生都能发现自己的优势和劣势二、学生分析我所带的七1班学生,活泼好动,思维敏捷,发言积极,但眼高手低,过于浮躁。
七2班学生认真踏实,但太过死板,可塑性不强。
在本次考试中七2班略胜一筹,两个班两级分化严重,最高分100分,但最低分低到30多分。
每班多有五六名不及格的学生。
纵观整份试卷难度不大,有些题型耳熟能详,是平时研究中遇见过的题型,学生容易得到基本分,但有些学生的成绩还是不尽人意。
凭简单的记忆,忽略细节,粗心大意,不认真审题,造成失误。
平时没有养成良好的研究惯。
三、存在问题1、学生基础知识不够扎实。
本次试题简单,得分容易,可学生却因为种种原因而失分较大,比如概念混淆,知识掌握不到位,计算能力不强。
像两个负数相加,一部分学生法则理解不准确,和尽然为正等等低级错误。
2、综合应用能力较弱,对综合性强的知识解答失分较大。
3、部分学生表述较差,导致因书写乱,不规范而失分。
4、做题不认真,审题不仔细,使不该失的分而没得分。
5、个别学生不关注月考,表现在测验前和测验中没有一点紧张气氛。
四、改进措施1、优化教室教学过程,加强对观点的教学,加强基础知识的教学,这虽然是老生常谈,却是个不易做好的问题,故要做到备课细致,备教材、备学生,备过程,切实提高教室效率。
2、学生的数学研究两极分化现象日趋严重.对研究有困难的学生,要给予及时的关照与帮助,要鼓励他们主动参与数学研究活动,尝试着用自己的方式去解决问题,发表自己的看法;要及时地肯定他们的点滴进步,对出现的错误要耐心地引导他们分析其产生的原因,并鼓励他们自己去改正,从而增强研究数学的兴趣和信心。
广西北部湾经济区2021-2022学年七年级下学期段考月考数学试题(二)(含答案解析)
广西北部湾经济区2021-2022学年七年级下学期段考月考数学试题(二)学校:___________姓名:___________班级:___________考号:___________一、单选题1.64的立方根是()A .4B .±4C .8D .±82.下面四个图形中∠1与∠2是对顶角的是()A .B .C .D .3.若分式6x x-的值为0,则x 的值为()A .6x =B .6x =-C .0x =D .0x =或6x =4.下列说法错误的是()A .两条直线相交,只有一个交点B .在连接直线外一点与直线上各点的线段中,垂线段最短C .同一平面内,过一点有且只有一条直线垂直于已知直线D .直线外一点到直线的距离就是这点到直线的垂线段5.在显微镜下,人体内一种细胞的形状可以近似地看成圆,它的半径约为0.00000078m ,这个数据用科学记数法表示为()A .40.7810m-⨯B .77.810m-⨯C .87.810m-⨯D .87810m-⨯6.下列实数:3π127,0.1010010001(L 两个1之间依次增加一个0),无理数的个数有()A .1个B .2个C .3个D .4个7.下列运算错误的是()A .246a a a ⋅=B .236()a a =C .333()ab a b =D .222()a b a b -=-8.关于x 的一元一次不等式组的解集在数轴上表示如图,则这个不等式组的解集为()A .32x -≤≤B .32x -<≤C .32x -≤<D .32x -<<9.把分式xyx y+中的x 和y 都扩大到原来的3倍,分式的值()A .扩大到原来的3倍B .不变C .扩大到原来的6倍D .缩小为原来的1310.若关于x 的分式方程3144x m x x++=--有增根,则m 的值是()A .0B .1C .2D .1-11.定义新运算:对于任意实数a ,b 都有()1a b a a b ⊕=-+,如:()2522515⊕=-+=-,那么不等式42x ⊕≥的正整数解的个数是()A .1B .2C .3D .412.若实数a ,b 满足2254404a b a b +-++=,则a b -的值为()A .0B .1C .1-D .12-二、填空题13的绝对值是______.14.用剪刀剪东西时,剪刀张开的角度如图所示,若∠1=25°,则∠2=________15.因式分解:4xy y -=______.16.分式212x 、3xy 、2x的最简公分母是______.17.不等式()231x x ≥+的解集为______.18.观察下列各式的计算过程:2113312224-=⨯=;2211132414211232233233⎛⎫⎛⎫--=⨯⨯⨯⨯= ⎪⎪⎝⎭⎝⎭222111132435155111234223344248⎛⎫⎛⎫⎛⎫---=⨯⨯⨯⨯⨯=⨯= ⎪⎪⎝⎭⎝⎭⎝⎭L 根据上面算法,计算:22222111111111123420222023⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫---⋯--= ⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭______.三、解答题19011(314)()2π--+-.20.解不等式组:()2132324x x x x +<-⎧⎨--≤⎩.21.解分式方程:1133x xx x =+++.22.先化简,再求值:22211111x x x x x x ⎛⎫++÷- ⎪---⎝⎭,其中3x =-.23.把下列多项式分解因式:(1)32a ab -;(2)32242x x x -+.24.计算:(1)()()2(23)33x x x +--+;(2)()32232221284(2)x y x y x y xy +-÷-.25.如图,直线AB 、CD 相交于点O ,OM CD ⊥,垂足为O ,28BOD =︒∠.(1)求AOM ∠的度数;(2)若OA 平分MOE ∠,求COE ∠,∠BOE 的度数.26.A、B两地之间有一条长为180千米的平直公路,甲,乙两车由A地同时出发驶往B 地,已知乙车比甲车每小时多行驶20千米,乙车到达B地时,甲车离B地还有40千米.(1)求甲、乙两车的速度;(2)若乙车到达B地后停留半小时,然后沿原路以原速度返回A地,甲车到达B地后立即沿原路提速返回A地,若乙车返回到A地时甲车距A地不超过18千米,求甲车至少提速多少千米/时?参考答案:1.A【详解】解:∵43=64,∴64的立方根是4,故选A考点:立方根.2.C【分析】根据对顶角的定义逐个选项进行判断即可得解.【详解】选项A、没有公共顶点,不满足题意,选项B、两个角的两边没有分别互为反向延长线,不满足题意,选项C、满足对顶角的定义,满足题意,选项D、两个角的两边没有分别互为反向延长线,不满足题意,故选:C.【点睛】本题考查对顶角的概念,关键是熟知对顶角的位置关系.3.A【分析】根据分式的值为0的条件解答即可.【详解】解:由题意60xx-=⎧⎨≠⎩,解得6x=.故选:A.【点睛】本题考查的是分式的值为零的条件,熟知分式值为零的条件是分子等于零且分母不等于零是解题的关键.4.D【分析】根据相交直线的定义,垂线段的性质,垂线的性质,垂线段的定义解答即可.【详解】解:A.两条直线相交,只有一个交点,原说法正确,故本选项不符合题意;B.在连接直线外一点与直线上各点的线段中,垂线段最短,原说法正确,故本选项不符合题意;C.在同一平面内,过一点有且只有一条直线垂直于已知直线,原说法正确,故本选项不符合题意;D.从直线外一点到这条直线的垂线段的长度,叫这个点到这条直线的距离,原说法错误,故本选项符合题意;故选:D .【点睛】本题考查了垂线的定义,点到直线的距离的定义,垂线段最短等知识点,能熟记知识点的内容是解此题的关键.5.B【分析】科学记数法就是将一个数字表示成10n a ⨯的形式,其中110a ≤<,n 表示整数.n 为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n 次幂.【详解】解:70.000000787.810m -=⨯故选:B .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,当原数为较大数时,n 为整数位数减1;当原数为较小数(大于0小于1的小数)时,n 为第一个非0数字前面所有0的个数的相反数.6.C【分析】根据无理数、有理数的定义解答即可.2=-,127,是有理数,无理数有3π,0.1010010001( 两个1之间依次增加一个0),共有3个.故选:C .【点睛】此题考查了无理数的定义.解题的关键是掌握无理数的定义,注意初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001(⋯每两个1之间0的个数依次加1)等有这样规律的数.7.D【分析】根据同底数幂的乘法法则、幂的乘方的运算法则、积的乘方的运算法则、完全平方公式解答即可.【详解】解:A 、246a a a ⋅=,原计算正确,故此选项不符合题意;B 、236()a a =,原计算正确,故此选项不符合题意;C 、333()ab a b =,原计算正确,故此选项不符合题意;D 、222()2a b a ab b -=-+,原计算错误,故此选项符合题意.故选:D .【点睛】本题主要考查了同底数幂的乘法法则、幂的乘方的运算法则、积的乘方的运算法则、完全平方公式,熟练掌握相关的法则和公式是解题的关键.8.C【分析】根据不等式组的解集在数轴上的表示方法求出不等式组的解集即可.【详解】解:由题意得,不等式组的解集为:32x -≤<.故选:C .【点睛】本题考查的是解一元一次不等式组,熟知同大取大;同小取小;大小小大中间找;大大小小找不到的原则是解题的关键.9.A【分析】利用分式的基本性质,进行计算即可解答.【详解】解:由题意得:3393333()x y xy xyx y x y x y⋅==+++,∴把分式xyx y+中的x 和y 都扩大到原来的3倍,分式的值扩大到原来的3倍,故选:A .【点睛】本题考查了分式的基本性质,熟练掌握分式的基本性质是解题的关键.10.D【分析】根据题意可得4,x =,然后把x 的值代入整式方程中进行计算即可解答.【详解】解:3144x m x x++=--,3()4x m x -+=-,解得:72mx -=,∵分式方程有增根,∴4x =,把4x =代入72mx -=中得:742m-=,解得:1m =-,故选:D .【点睛】本题考查的是分式方程的增根,在分式方程变形的过程中,产生的不适合原方程的根叫做分式方程的增根.增根使最简公分母等于0,不适合原分式方程,但是适合去分母后的整式方程.11.C【分析】根据新定义列出关于x 的一元一次不等式,解不等式可得.【详解】解:根据题意,原不等式转化为:()4412x -+≥,去括号,得:16412x -+≥,移项、合并同类项,得:415x -≥-,系数化为1,得:154x ≤,正整数解有3个,为1,2,3.故选:C .【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.12.B【分析】通过配方得到()2212102a b ⎛⎫-++= ⎪⎝⎭,根据非负数的性质得到102a -=,210b +=,求得a ,b 的值,于是得到结论.【详解】解:∵2254404a b a b +-++=,∴()22144104a a b b ⎛⎫-++++= ⎝⎭,即()2212102a b ⎛⎫-++= ⎪⎝⎭,∴102a -=,210b +=,∴12a =,12b =-,∴11122a b -=+=.故选:B .【点睛】此题考查配方法的运用,非负数的性质,掌握分组分解与完全平方公式是解决问题的关键.13【分析】根据绝对值的定义求解即可.,【点睛】本题考查了绝对值,掌握绝对值的定义是解题的关键.14.25【分析】首先判断所求角与∠1的关系,然后利用对顶角的性质求解.【详解】解:∵∠1与∠2是对顶角,∴∠2=∠1=25°.故答案为25.15.()4y x -【分析】根据提取公因式法进行分解即可.【详解】解:()44xy y y x -=-,故答案为:()4y x -.【点睛】本题考查了因式分解,熟练掌握因式分解的方法是解题的关键.16.22x y ##22yx 【分析】最简公分母应分两部分看:系数找最小公倍数,字母应找所有因式的最高次幂.【详解】解:根据最简公分母的概念,2、1、1最小公倍数为1,x 的最高次幂为2,y 的最高次幂为1,故它们的最简公分母是22x y .故答案为:22x y .【点睛】此题考查了确定最简公分母的方法,如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里.17.3x ≤-【分析】根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得.【详解】解:()231x x ≥+,233x x ≥+,233x x -≥,3x ∴-≥,3x ∴≤-.故答案为:3x ≤-.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.18.20234044【分析】先把减法化成乘法,再约分计算.【详解】解:22222111111111123420222023⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫---⋯-- ⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭132420212023223320222022=⨯⨯⨯⨯⨯⨯ 1202322022=⨯20234044=,故答案为:20234044.【点睛】本题考查了数字的变化类及有理数的混合运算,平方差公式的运用是解题的关键.19.0【分析】根据二次根式的性质,零指数幂法则,负整数指数幂法则,立方根式的性质进行计算便可.【详解】解:原式2123=-+-0=.【点睛】本题考查了实数的运算,零指数幂,负数整数指数幂,熟记混合运算的顺序和运算法则是解题的关键.20.35x <≤【分析】分别求出各不等式的解集,再求出其公共解集即可.【详解】解:()2132324x x x x +<-⎧⎪⎨--≤⎪⎩①②由①得,3x >,由②得,5x ≤,故不等式组的解集为:35x <≤.【点睛】本题考查的是解一元一次不等式组,熟知同大取大;同小取小;大小小大中间找;大大小小找不到的原则是解题的关键.21.3x =-【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:1133x x x x =+++去分母,得33(1)x x x =++,解此方程,得3x =-,经检验,3x =-是原分式方程的根.【点睛】本题考查了解分式方程,解分式方程的关键是将分式方程转化为整式方程,不要忘记检验.22.11x x +-,12-【分析】根据分式除法的运算先化简,然后代入求解即可.【详解】解:原式22(1)111x x x x +-=÷--22(1)111x x x x +-=⋅--()()2(1)1111x x x x x +-=⋅-+-11x x+=-,当3x =-时,原式()311132-+==---.【点睛】题目主要考查分式的化简求值,熟练掌握分式的混合运算法则是解题关键.23.(1)()()a ab a b +-(2)22(1)x x -【分析】(1)先提公因式a ,再利用平方差公式即可;(2)先提公因式2x ,再利用完全平方公式即可进行因式分解.【详解】(1)原式()22a a b =-()()a a b a b =+-;(2)原式()2221x x x =-+22(1)x x =-.【点睛】本题考查提公因式法、公式法分解因式,掌握完全平方公式、平方差公式的结构特征是正确解答的前提.24.(1)2512x x+(2)321x y +-【分析】(1)利用完全平方公式及平方差公式计算,然后合并同类项即可;(2)根据多项式除以单项式的计算方法求解即可.【详解】(1)解:()()2(23)33x x x +--+()2241299x x x =++--2241299x x x =++-+2512x x =+;(2)()32232221284(2)x y x y x y xy +-÷-()()3223222212844x y x y x y x y =+-÷()()()3222232222221248444x y x y x y x y x y x y =÷+÷-÷321x y =+-.【点睛】题目主要考查整式的计算,包括完全平方公式及平方差公式,多项式除以单项式,熟练掌握各个运算法则是解题关键.25.(1)62︒(2)34COE ∠=︒,118BOE ∠=︒【分析】(1)根据垂直的定义得出90MOC ∠=︒,再由对顶角相等得出28AOC BOD ∠∠==︒,结合图形即可求解;(2)由(1)及角平分线得62EOA AOM ∠∠==︒,结合图形利用邻补角求解即可.【详解】(1)解:OM CD ⊥ ,90MOC ∠∴=︒,28AOC BOD ∠∠==︒ ,902862AOM ∠∴=︒-︒=︒;(2)OA 平分MOE ∠,62EOA AOM ∠∠∴==︒,622834COE AOE AOC ∠∠∠∴=-=︒-︒=︒,180BOE AOE ∠∠+=︒ ,18062118BOE ∠∴=︒-︒=︒.【点睛】题目主要考查角平分线及角度的计算,结合图形,找准各角之间的关系是解题关键.26.(1)甲车的速度是70千米/时,乙车的速度是90千米/时(2)甲车至少提速14千米/时.【分析】(1)设甲车的速度是x 千米/时,则乙车的速度是()20x +千米/时,利用时间=路程÷速度,即可得出关于x 的分式方程,解之经检验后,即可得出甲车的速度,再将其代入()20x +中,可求出乙车的速度;(2)设甲车提速m 千米/时,利用路程=速度⨯时间,结合乙车返回到A 地时甲车距A 地不超过18千米,即可得出关于m 的一元一次不等式,解之取其中的最小值,即可得出结论.【详解】(1)解:设甲车的速度是x 千米/时,则乙车的速度是()20x +千米/时,根据题意得:1804018020x x -=+,解得:70x =,经检验,70x =是所列方程的解,且符合题意,∴20702090x +=+=.答:甲车的速度是70千米/时,乙车的速度是90千米/时;(2)解:设甲车提速m 千米/时,根据题意得:()118040701801829070m ⎛⎫++-≥- ⎝⎭,解得:14m ≥,∴m 的最小值为14.答:甲车至少提速14千米/时.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.。
数学试卷分析
七年级月考数学试卷分析一、基本情况分析本次平均分为58.8分,合格率为43%,优秀率为12%。
其中最高分97分,最低分只有8 分。
二、试卷特点1、题型保持稳定分为选择、填空、解答三大块,考查数学基础知识,基本技能,基本方法,运算能力,解决实际问题的能力。
本次考试重视对基础知识、基本技能的考查。
基础知识只考直接应用;基本技能,不考繁杂的题目。
2、试卷结构。
题型比例:整卷共七道题,满分100 分,考试时间为60分钟。
全卷选择题30 分,填空题24 分,解答题46 分。
三、学生答题情况统计及分析一、题考查学生对基本概念的理解情况,包括平行线和平面直角坐标系。
从答题情况来看学生对这些基本概念理解的并不透彻,得分率仅有76%。
二、题考查的是的内容与第一题相仿,但难度加深了。
但是由于选项内容与课本上的推论并不完全一样,很多学生都无法答出正确答案,说明学生对基本定理的理解仍不够深入,该题的得分率只有71%。
三、15 题考查的是平行线的性质和判定,学生基本理解了基本定理,但是在答题过程中出现丢掉角的符号和性质判定混淆的现象16题考察的是坐标系的建立以及点的坐标的表示。
因为是新学的知识,学生理解的还不透彻17题是一个很简单的平行线性质的证明题得分稍高一些18是一个折叠问题,学生对图形不理解,丢分较多20题有关平行线辅助线的的计算证明,本题有点难度,学生不知从何入手。
学生得分很低,基本都丢掉了4分。
三、学生问题分析1、基础知识不扎实,基本技能的训练不到位。
①对七年级数学中的概念、法则、性质、公式、公理、定理的理解、存储、提取、应用均存在明显的差距。
不理解概念的实质,不理解知识形成发展过程,死记硬背,因而不能在一定的数学情境中正确运用概念,不能正确辨明数学关系,导致推理发生错误。
②在推理论证过程中不能合乎逻辑地、准确地表述自己的思想,出现层次不清、逻辑不严密、语言表述混乱的现象。
2、数学思想方法的体验、理解、运用还有一定的差距。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学下学期第二次月考试卷分析
常峰峰上个星期我们进行了第二次月考考试,在这我就我们七年级(2)数学考试试题和学生的答题情况以及以后的教学方向分析如下.
一、试题特点
试卷包括选择题、填空题、解答题三个大题,共100分,以基础知识为主。
对于整套试题来说,容易题约占60%、中档题约占30%、难题约占10%,主要考查了七年级下册第三章《三角形的全等》第五章《生活中的轴对称》以及第一章《整式的运算》。
这次数学试卷检测的范围应该说内容全面,难易也适度,注重基础知识、基本技能的测检,比较能如实反映出学生的实际数学知识的掌握情况。
试卷能从检测学生的学习能力入手,细致、灵活地来抽测每章的数学知识。
打破了学生的习惯思维,能测试学生思维的多角度性和灵活性。
二.考试成绩分析:
本班的平均分是79.8分,其中有20人及格,及格率为98%。
大部分学生都能完成平时的学习任务,基础的东西都没有失分,整体上感觉我们班学生的基础都很扎实,平时比较认真,所以这次考试的60%的基础题学生都可以掌握,这是我们比较肯定的一点!不好的地方在于,有三道大题是比较有难度的,分值也比较大,对于学生来说,要答对的可能性很小,而这几道题的分值很大,也造成了部分学生考试成绩不是很理想,主要原因就这三道题上,这三道题都是三角形全等的大题,每题10分,图形比较复杂多变。
学生证明起来很有难度,不能
够完全的证明出来,但这也很正常,因为试题有时候比较简单,有时候很难,不能一次成绩就全盘否定,我们班的学生整体上都是很优秀的,我们的成绩也在全县名列前茅!所以这次的考试成绩虽然有所下滑,但是我并不担心我们的成绩,我们每一名学生都很努力,我们是一个整体,我们会全心全意的学好数学的!
根据对试卷成绩的分析,学生在答卷过程中存在以下几主面的问题
1、数学联系生活的能力稍欠
2、基本计算能力有待提高。
计算能力的强弱对数学答题来说,有着举足轻重的地位。
3、数学思维能力差,有些题不能够很清楚地知道怎么应变。
4、审题能力及解题的综合能力不强。
审题在答题中比较关键,如果对题目审得清楚,从某种程度上可以说此题已做对一半,数学不仅是一门科学,也是一种语言,在解题过程中,不仅要要求学生学会如何解决问题,还必须要让学生学会阅读和理解材料,会用口头和书面形式把思维的过程与结果向别人表达。
四、今后的教学注意事项:
通过这次考试学生的答题情况来看,我认为在以后的教学中应从以下几个方面进行改进:
1、立足教材,教材是我们教学之本,在教学中,我们一定要扎扎实实地给学生渗透教材的重难点内容。
不能忽视自认为是简单的或是无关紧要的知识。
2、教学中要重在突显学生的学习过程,培养学生的分析能力。
在平
时的教学中,作为教师应尽可能地为学生提供学习材料,创造自主学习的机会。
尤其是在应用题的教学中,要让学生充分展示思维,让他们自己分析题目设计解题过程。
3、多做多练,切实培养学生的计算能力。
有时他们是凭自己的直觉做题,不讲道理,不想原因,这点从试卷上很清楚地反映出来了。
4、关注生活,培养实践能力加强教学内容和学生生活的联系,
让数学从生活中来,到生活中去,从而培养学生解决实际生活中问题的能力。
5、关注过程,引导探究创新,数学教学不仅要使学生获得基础知识和基本技能,而且要着力引导学生进行自主探索,培养自觉发现。