旋风除尘器设计与计算

合集下载

旋风除尘器计算程序

旋风除尘器计算程序

粒径um
30.8
2.09 2.67
尺寸比
粉尘粒径分布
粒径um ﹤15um 17.5 22.5 27.5 32.5 37.5 42.5 47.5 52.5 57.5 62.5 67.5 72.5 77.5 82.5 87.5 ﹥90 合计 % 捕集效率% 加权捕集效率% 12.4 36.5 4.5 13.8 74.4 10.3 12.8 82.7 10.6 9.1 88.3 8.0 8.2 92.0 7.5 6.5 94.6 6.1 3.9 96.3 3.8 3.5 97.5 3.4 5.4 98.3 5.3 6.0 98.9 5.9 4.4 99.2 4.4 2.4 99.5 2.4 1.6 99.6 1.6 2.2 99.8 2.2 2.9 99.8 2.9 1.1 99.9 1.1 3.8 99.9 3.8 100.0 83.9 当量粒径 5.8
单位 Pa.S kg/m3 m/s2 3 kg/m k 3 m /s m m m m ° m m m m m m m/s m/s mmH2O 0.58 0.12 0.45 0.48 0.25
100 105000
℃ m3/h
1.39 尺寸比 1.42 此值建议为1.5 2.82 尺寸比
尺寸比
mmH2O 166.7 9.58 8.9 um 0.7895 90.9 % 83.9 % 41.71 7.93 m 10.15 m 0.72 为0时效率最高
92.5 23.4
备注:中位粒径:30.8um;平均粒径:38.2um;blaine:2990cm2/g;80um筛余8%
Hale Waihona Puke 旋风除尘器计算程序旋风名称:
说明: 1、在绿框内输入参数,红框内将自动生成数据。2、几个设计原则:①总高度应与最佳总高度接 近,这样螺旋气流正好到达除尘器底部;总高度大效率高而阻力还略有下降。②根据粉尘性质选取入口速 度,入口速度太大旋风筒的磨损将急剧增大,速度太小入口易积灰,一般旋风的入口风速在12-20m/s之间, 通常为18m/s;对大多数粉尘速度大于21m/s肯定不会积灰,因此入口风速最大取21m/s。③对涡卷入口:入口 宽度大高度小效率更高,但为了防止气流进入除尘器时突然收缩而干扰涡流的形成,入口宽度不宜大于(DcDo)/2,④排尘口直径应大于0.3Do⑤在总高度一定时,锥体高度小效率更高,但太小的锥体高度会产生二次扬 尘或下灰困难,锥体角度宜取75°

旋风除尘器cad结构图纸设计及技术参数

旋风除尘器cad结构图纸设计及技术参数

七、旋风除尘器的效率检验
• 已知处理烟气温度T=180℃,查表或用公式可得常 压下烟气密度ρg=0.8kg/m3,动力黏度μ=2.5×10-5 Pa·s。
由几何尺寸,可得自然返回长
L 2 . 3 D 0 ( D e 2 / H i ) 1 / 3 2 W . 3 0 . 8 ( 0 . 4 4 2 / 0 . 4 2 0 . 1 2 ) 1 / 3 8 2 m
明细表
总质量
311kg
切流式旋风除尘器
图号
外形图
比例 日期
设计 制图 校对 审核
LX-0
1:10 2006年1月
十、零件图的画法
A.蜗壳的画法
1)蜗壳出口断面尺寸确定 出口风速:v=12~15m/s abv=Q,取a=b; a=(Q/v)1/2=〔5000/(15×3600)〕 1/2 =
0.304~0.340 取a=b=320mm 2)确定偏心距 考虑焊接方便,蜗壳出口内壁距旋风出气管20mm, 于是中心线到出口蜗壳出口内壁距半径:r=230mm, 中心线距蜗壳外壁半径:R=210+20+320=550mm。 偏心距:e=320/4=8mm
1020 320
80 480
1030
550
蜗壳
设计 制图 校对 审核
图号
LX-06
比例
1:2
日期
2006年1月
A.法兰的画法
1)法兰材料的确定
采用角钢,查手册:选不等边角钢40×25×4 还可选等边角钢:36×4 2)螺栓孔距确定 需满足JB/ZQ4248-86。如螺栓直径为8mm,孔距大于28mm。对于旋风除尘
实际风速为:Vc=Q/(3600×0.42×0.18)= 19.5m/s 4. 由尺寸比确定筒体直径和高:

旋风除尘器的设计

旋风除尘器的设计
总高度 h 入口类型 入口管型
1.066 0.466 0.166 0.466 0.078 7.75 2.54 切线 矩形
2.3 旋风除尘器的参数计算
4
许多学者都致力于旋风除尘器的研究,通过各种假设,他们提出了许多不同的计算 方法。由于旋风除尘器内实际的气、尘两相流动非常复杂,因此根据某些假设条件得出 的理论公式目前还不能进行较精确的计算。
1.分割粒径(dc50) 计算旋风除尘器的分割粒径(dc50)是确定除尘器效率的基础。在计算时,因假设条 件和选用系数不同,计算分割粒径的公式也各不同。下面简要介绍一种计算方法,以说 明旋风除尘器的除尘原理。 处于外涡旋的尘粒在径向会受到两个力的作用: 惯性离心力
(2-3-1) 式中 vt——尘粒的切线速度,可以近似认为等于该点气流的切线速度,m/s;
2
二.说明书
2.1 图形设计:
旋风除尘器图
(图 1)
2.2 设计数据: 表 1 旋风除尘径 r 粉尘出口管半径 r 出口管到底部高 h
数据 0.4 0.2 0.2 2.07
3
园部高 h 气体出口管长度 l 入口管宽度 b 入口管高度 h 入口管面积 A 锥角
3.1 旋风除尘器的原理
旋风除尘器是利用旋转气流所产生的离心力将尘粒从合尘气流中分离出来的除尘 装置。它具有结构简单,体积较小,不需特殊的附属设备,造价较低.阻力中等,器 内无运动部件,操作维修方便等优点。旋风除尘器一般用于捕集 5-15 微米以上的颗 粒.除尘效率可达 80%以上,近年来经改进后的特制旋风除尘器.其除尘效率可达 5% 以上。旋风除尘器的缺点是捕集微粒小于 5 微米的效率不高. 旋风除尘器内气流与尘粒的运动概况: 旋转气流的绝大部分沿器壁自圆简体,呈螺旋状由上向下向圆锥体底部运动,形成下 降的外旋含尘气流,在强烈旋转过程中所产生的离心力将密度远远大于气体的尘粒甩 向器壁,尘粒一旦与器壁接触,便失去惯性力而靠入口速度的动量和自身的重力沿壁 面下落进入集灰斗。旋转下降的气流在到达圆锥体底部后.沿除尘器的轴心部位转而 向上.形成上升的内旋气流,并由除尘器的排气管排出。 自进气口流人的另一小部分气流,则向旋风除尘器顶盖处流动,然后沿排气管外侧向 下流动,当达到排气管下端时,即反转向上随上升的中心气流一同从诽气管排出,分 散在其中的尘粒也随同被带走。

旋风除尘器的设计说明书

旋风除尘器的设计说明书
旋风除尘器的设计
一、旋风除尘器的结构 旋风除尘器由进气管、
筒体、锥体、出气管、下 灰管、灰斗、卸灰阀组成。
二、旋风除尘器的效率
1. 转圈理论 分级效率
1 exp[ Vt (ND0 )]
Vc Wi
所转圈数
N 2H1 H2 2H
离心沉降速度
Vt
a
pd p2 18
• 第二组:
原始资料: 有一台锅炉,处理烟气量: Q=5000m3/h,排烟温度常温,入口浓度 C0=10g/m3,要求出口浓度C=1.5g/m3。 粉尘密度ρp=2500kg/m3,粒度分布见原表, 设计旋风除尘器。
• 第三组:
有一台锅炉,处理烟气量:Q=8000m3/h, 其它条件同第二组,设计旋风除尘器。
由筛分理论,其粉尘分割径为
dc
18Q / 2 pLVc2
18 2.5105 5000
2 3600 2000 219.52
8 m
将分割径代入筛分理论效率公式,将所计算的 分级效率填入表中。其总效率为
n
T Di 0.06 0.268 0.12 0.542 0.22 0.876 i 1 0.29 0.991 0.18 0.999 0.131 0.871 87.1%
VC 2 r
2. 筛分理论 分级效率
1 exp[0.693 d p ]
dc
粉尘分割径 dc 18Q / 2 p LVc2
自然返回长
L 2.3D0( De2 / HWi )1/ 3
三、旋风除尘器的阻力
经验公式
p k gVc2
2
阻力系数 k =6~9。
四、旋风除尘器的尺寸比
• 因ηT >85%,故满足设计要求。

旋风除尘器设计与计算

旋风除尘器设计与计算

目录1 设计背景 (2)1.1 除尘设计的有关标准 (2)1.1.1 环境空气质量标准(GB3095-1996)环境空气质量分类和分级 (2)1.2 旋风除尘器简介 (3)1.3 旋风除尘器工作原理 (4)1.4 旋风除尘器中的流场 (5)1.4.1 切向速度 (5)1.4.2 径向速度 (5)1.5 离心分离理论 (6)1.5.1 转圈理论(沉降分离理论) (6)1.5.2 筛分理论(平衡轨道理论) (6)1.5.3 边界层分离理论 (7)2 设计计算部分 (7)2.1 单个旋风除尘器的选择计算 (7)2.1.1 工作状况下的气体流量 (7)2.1.2 除尘器型号的选择与相关参数计算(参见书本P177表6—3) (7)2.1.3 求d C(分割直径) (8)2.1.4 计算压力损失 (9)2.1.5 分级除尘效率 (9)2.1.6 总除尘效率 (9)2.2 两个旋风除尘器并联 (9)2.2.1 工作状态下的气体流量 (9)2.2.2 除尘器型号的选择与相关参数计算(参见书本P177表6—3) (10)2.2.3 求d C(分割直径) (10)2.2.4 计算压力损失 (11)2.2.5 分级除尘效率 (11)2.2.6 总除尘效率 (11)3 设计总结 (11)参考文献 (12)回转窑石膏粉尘旋风除尘器工艺设计[摘要]:旋风除尘器广泛地应用于各个行业除尘系统中,本设计针对旋风除尘器的结构及工作原理,分析影响旋风除尘器压力损失的因素,介绍了旋风除尘器内部流场和除尘机理。

针对旋风除尘器除尘效率问题进行了分析,总结了现有改进方案,指出存在的不足,并结合前人的改进思路提出了新的改进方案,以提高旋风除尘器的分离效率,为进一步挖掘旋风除尘器的潜在性能开辟新的思路。

简要地设计了一款旋风除尘器,并在学习中慢慢摸索。

[关键词]:旋风除尘器压力损失分离效率改进方案1 设计背景1.1 除尘设计的有关标准1.1.1 环境空气质量标准(GB3095-1996)环境空气质量分类和分级⑴一类区为自然保护区、风景名胜区和其它需要特殊保护的地区。

旋风除尘器设计(五篇范例)

旋风除尘器设计(五篇范例)

旋风除尘器设计(五篇范例)第一篇:旋风除尘器设计中南大学本科生课程设计(实践)任务书、设计报告题目学生姓名指导教师学院专业班级学生学号除尘器设计计算苏小根马爱纯能源科学与工程学院热能与动力工程090210030904192012年月21日1.除尘器1.1 除尘器简介除尘器是把粉尘从烟气中分离出来的设备叫除尘器或除尘设备。

除尘器的性能用可处理的气体量、气体通过除尘器时的阻力损失和除尘效率来表达。

日常工业上使用的除尘器主要有:重力除尘器、惯性除尘器、电除尘器、湿除尘器、袋式除尘器、旋风除尘器等。

重力除尘器是使含尘气体中的粉尘借助重力作用自然沉降来达到净化气体的装置,它的特点是结构简单,阻力小,但体积大,除尘效率低,设备维修周期长。

惯性除尘器是一种利用粉尘在运动中惯性力大于气体惯性力的作用,将粉尘从气体中分离出来的除尘设备,特点是结构简单,阻力较小,但除尘效率低。

电除尘器利用含尘气体在通过高压电场电离时,尘粒荷电并受电场力的作用,沉积于电极上,从而使尘粒和气体分离的一种除尘设备,其特点是效率高、阻力低、适用于高温和除去细微粉尘等优点。

湿式除尘器是使含尘气体与水或者其他液体相接触,利用水滴和尘粒的惯性膨胀及其他作用而把尘粒从气流中分离出来,特点是投资低、造作简单,占地面积小,能同时进行有害气体的净化、含尘气体的冷却和加湿等优点。

袋式除尘器主要依靠编织的或毡织的滤布作为过滤材料达到分离含尘气体中粉尘的目的,特点是适应性比较强,不受粉尘比电阻的影响,也不存在水的污染问题,同时存在过滤速度低、压降大、占地面积大、换袋麻烦等缺点。

1.2除尘器的概念和分类除尘器是把粉尘从烟气中分离出来的设备叫做除尘器或除尘设备。

除尘器的性能用可处理的气体量、气体通过除尘器时的阻力损失和除尘效率来表达。

同时,除尘器的价格、运行和维护费用、使用寿命长短和操作管理的难易也是考虑其性能的重要因素。

除尘器是锅炉及工业生产中常用的设施。

在国家采暖通风与空气调节术语标准中,明确了若干除尘器的具体含义,摘抄部分如下:除尘器:用于捕集、分离悬浮于空气或气体中粉尘例子粒子的设备,也称收尘器。

旋风除尘器cad结构图纸设计和技术参数

旋风除尘器cad结构图纸设计和技术参数
有一台锅炉旳粒度分布见表,其他条件同第三 组,设计旋风除尘器。
n 第七组:
原始数据同实例,要求总效率>95%,设计两台串 联旋风除尘器。
Q235-A
1
Q235-A
1
Q235-A
1
Q235-A
1
Q235-A
1 Q235-A,成品
数量
材料
55 15 73
82 12 65
重量kg 附注
明细表
总质量
311kg
切流式旋风除尘器 外形图
设计 制图 校对 审核
图号
百分比 日期
LX-0
1:10
2023年1月
十、零件图旳画法
A.蜗壳旳画法
1)蜗壳出口断面尺寸拟定 出口风速:v=12~15m/s abv=Q,取a=b; a=(Q/v)1/2=〔5000/(15×3600)〕 1/2 =
2. 筛分理论 分级效率 粉尘分割径
1 exp[0.693 d p ]
dc
dc 18Q / 2 p LVc2
自然返回长
L 2.3D0 ( De2 / HWi )1/ 3
三、旋风除尘器旳阻力
经验公式
p k gVc2
2
阻力系数 k =6~9。
四、旋风除尘器旳尺寸比
1. 筒体直径: D0=150~1100mm 2. 筒体高度:H 1 = 1~1.5D0 3. 入口尺寸:H/W=2~4, H=0.5 D0,W=0.2D0 4. 排气管:De=0.4~0.6D0 ;S≥H 5. 锥体: H 2 ≥ L- H 1 ≈2D0 6. 排尘口: Dd ≈ 1/3D0
0.304~0.340 取a=b=320mm 2)拟定偏心距 考虑焊接以便,蜗壳出口内壁距旋风出气管20mm, 于是中心线到出口蜗壳出口内壁距半径:r=230mm, 中心线距蜗壳外壁半径:R=210+20+320=550mm。 偏心距:e=320/4=8mm

旋风除尘器设计计算

旋风除尘器设计计算

1.1、工作原理⑴气流的运动普通旋风除尘器是由进气管、筒体、锥体和排气管等组成;气流沿外壁由上向下旋转运动:外涡旋;少量气体沿径向运动到中心区域;旋转气流在锥体底部转而向上沿轴心旋转:内涡旋;气流运动包括切向、轴向和径向:切向速度、轴向速度和径向速度。

图1⑵尘粒的运动:切向速度决定气流质点离心力大小,颗粒在离心力作用下逐渐移向外壁;到达外壁的尘粒在气流和重力共同作用下沿壁面落入灰斗;上涡旋-气流从除尘器顶部向下高速旋转时,一部分气流带着细小的尘粒沿筒壁旋转向上,到达顶部后,再沿排出管外壁旋转向下,最后从排出管排出。

1.2、影响旋风器性能的因素⑴二次效应-被捕集粒子的重新进入气流在较小粒径区间内,理应逸出的粒子由于聚集或被较大尘粒撞向壁面而脱离气流获得捕集,实际效率高于理论效率;在较大粒径区间,粒子被反弹回气流或沉积的尘粒被重新吹起,实际效率低于理论效率;通过环状雾化器将水喷淋在旋风除尘器内壁上,能有效地控制二次效应;临界入口速度。

⑵比例尺寸在相同的切向速度下,筒体直径愈小,离心力愈大,除尘效率愈高;筒体直径过小,粒子容易逃逸,效率下降;锥体适当加长,对提高除尘效率有利;排出管直径愈少分割直径愈小,即除尘效率愈高;直径太小,压力降增加,一般取排出管直径d e=(0.6~0.8)D;特征长度(natural length)-亚历山大公式:排气管的下部至气流下降的最低点的距离旋风除尘器排出管以下部分的长度应当接近或等于l ,筒体和锥体的总高度以不大于5倍的筒体直径为宜。

⑶运行系统的密闭性,尤其是除尘器下部的严密性:特别重要,运行中要特别注意。

在不漏风的情况下进行正常排灰 ⑷ 烟尘的物理性质气体的密度和粘度、尘粒的大小和比重、烟气含尘浓度 ⑸操作变量提高烟气入口流速,旋风除尘器分割直径变小,除尘器性能改善 ;入口流速过大,已沉积的粒子有可能再次被吹起,重新卷入气流中,除尘效率下降;效率最高时的入口速度,一般在10-25m/s 范围。

旋风除尘器设计,自动计算表格

旋风除尘器设计,自动计算表格

旋风除尘器设计,自动计算表格
适用范围陶瓷多管高效除尘器和陶瓷多管脱硫除尘净化器适用于各种然少方式的燃煤锅
炉工业锅炉冲天锅炉等烟气的除尘脱硫治理
原理当含尘烟气进入除尘器后通过导向器由直线运动转换成圆周运动含尘烟气在离心力
作用下粉尘被分离捕集落入灰斗经下灰口排放进化后的烟气形成内漩流向上经排气管
进入汇风室后通过引风机排入烟囱陶瓷多管脱硫除尘净化器是在陶瓷多管的基础上增加
一个脱硫室烟气进入脱硫室经物化处理的脱硫环吸附烟气中的二氧化硫净化后排除
结构特点耐磨损腐蚀高温寿命长
节构合理性能稳定操作简单管理方便安全可靠造价低廉占地面积小使用范围广
技术性指标
除尘效率〉95%
阻力:700-900pa
林格曼黑度:〈1级
Xtj/g 型脱硫效率〉=60%
Xztd型号规格参数
吨位处理风量外形尺寸设备重量
A b h t
4t/h 12000m3/h 1070 1690 4544 3.5
进出烟口尺寸
a b c
350 1000 100
基础尺寸
L1 1390
F1 1315
L2 1990
F2 1915
旋风除尘器其特点是:没有运动部件,制作、管理十分方便。

处理相同的风量情况下效率高、
阻力低、体积小、性能稳定、造价低,作为除尘器使用时,可以立式安装,亦可以卧式安装,
使用方便,处理大风量时便于多台并联使用,效率阻力不受影响,因此使用范围广,为锅炉
及其它烟尘治理提供了理想的设备。

旋风除尘器原理介绍及计算

旋风除尘器原理介绍及计算

---------------------------------------------------------------最新资料推荐------------------------------------------------------1 / 10旋风除尘器原理介绍及计算1、 、 重力沉降室 特点 除尘效率:40% %~ ~70 % 优点:简单 、 投资少 、 易维护 缺点:占地大 , 除尘效率低 应用:初级除尘 复 习 2、 、 重力沉降室 设计注意事项 1 1 .保证粉尘能沉降,L L 足够长; 2 2 . 气流在沉降室的停留时间要大于尘粒沉降所需的时间; ; 3 3 . 能 100% % 沉降的最小粒径 (临界粒径 )。

沉降室内的气流速度 V 要根据尘粒的密度和粒径确定,一般为 0.3 ~ 2m/s 。

多层沉降室 1. 锥形阀;2. 清灰孔;3. 隔板 3.2 旋风除尘器 一、 工作原理 六、 旋风除尘器的设计 二、 旋风除尘器特点 三、旋风除尘器的性能指标 五、 旋风除尘器的类型 四、 影响旋风除尘器性能的因素 一、工作原理: : 旋风除尘器是利用 旋转气流产生的离心力 使尘粒从气流中分离的 , 用来分离粒径 大于5 510 m m 的尘粒 。

工业上已有 100 多年的历史。

1 1 、 旋风除尘器结构 普通旋风除尘器是由以下等部分组成排气管 进气管 筒体 锥体 旋风除尘器组 22 、除尘器内气流与尘粒的运动外涡旋内涡旋上涡旋含尘气流由进口沿切线方向进入除尘器后,沿器壁由上而下作旋转运动,这股旋转向下的气流称为外涡旋(外涡流)。

外涡旋到达锥体底部转而沿轴心向上旋转,最后经排出管排出。

这股向上旋转的气流称为内涡旋(内涡流)。

带着细尘粒一部分气流沿外壁面旋转向上,到达顶部后,再沿排出管旋转向下,从排出管排出。

这股旋转向上的气流称为上涡旋。

3 3 、旋风除尘器原理示意图结构简单、占地面积小,投资低,操作维修方便,压力损失中等,动力消耗不大,可用于各种材料制造,能用于高温、高压及腐蚀性气体,并可回收干颗粒物。

旋风除尘器设计

旋风除尘器设计

. . .. . .设计工程:旋风除尘器的设计设计者:班级:座号:一、设计题目*工厂一台锅炉,风量10000立方米∕小时,烟气温度573℃,粉尘密度4.5克∕立方米,烟尘密度2000千克∕立方米,573K时空气粘度u=2.9*10-5pa经测试,粉尘粒径分布如表1所示。

要求经除尘装置后粉尘排放浓度为0.8克∕立方米,压力损失ΔP不大于2000Pa,v=23m/s。

烟尘粒度分布根据以上数据设计一旋风除尘器.. .专二、选取旋风除尘器理由及选择的型号1.其他除尘器的特点〔1〕重力沉降室是使含尘气流中的尘粒借助重力作用自然沉降来到达净化气体的目的的装置。

这种装置具有构造简单、造价低、施工容易〔可以用砖砌或用钢板焊制〕、维护管理方便、阻力小〔一般50-150Pa〕等优点,但由于它体积大,除尘效率低〔一般只有40%-50%〕,适于捕集大于μ粉尘粒子,故一般只用于多级除尘系统中的第一级除尘。

50m〔2〕惯性除尘器是利用尘粒在运动中惯性力大于气体惯性力的作用,将尘粒从含尘气体中别离出来的设备。

这种除尘器构造简单、阻力较小、但除尘效率较低,一般常用于一级除尘。

惯性除尘器用于净化密度和粒μ以上的粗尘粒〕的金属或矿物性粉尘,具有较高径较大〔捕集10-20m的除尘效率。

对于黏结性和纤维性粉尘,因其易堵塞,故不宜采用。

〔3〕电除尘器是含尘气体在通过高压电场进展电离的过程中,是尘粒荷电,并在电场力的作用下使尘粒趁机在集尘板上,将尘粒从含尘气体中别离出来的一种除尘设备。

其与其他除尘器的根本区别在于,别离力直接作用在粒子上,因此具有耗能小、气流阻力小的特点。

其主要优点有压力损失小、处理烟气量大、耗能低、对粉尘具有很高的捕集效率和可在高温或强腐蚀性气体下操作。

但其缺点为一次性投资大、安装精度要求高和需要调节比电阻。

〔4〕湿式除尘器是使含尘气体与液体密切接触,利用水滴和颗粒的惯性碰撞及其他作用捕集颗粒或使粒径增大的装置。

它具有构造简单、造价低、占地面积小、操作及维修方便和净化效率高等优点,能处理高温、高湿的气流,将着火、爆炸的可能减至最低。

旋风除尘器设计计算

旋风除尘器设计计算

大气污染控制工程实习设计说明书学院:资源环境学院姓名:学号:2014011321旋风除尘器设计计算1、前言介绍:尘器是利用旋转气流产生的离心力使尘粒从气流中分离的,用来分离粒径大于5—10μm以上的的颗粒物。

工业上已有100多年的历史。

特点:结构简单、占地面积小,投资低,操作维修方便,压力损失中等,动力消耗不大,可用于各种材料制造,能用于高温、高压及腐蚀性气体,并可回收干颗粒物。

优点:效率80%左右,捕集<5μm颗粒的效率不高,一般作预除尘用。

类型:除尘器的结构形式按进气方式可分为直入式、蜗壳式和轴向进入式;按气流组织分类有回流式、直流式、平流式和旋流式多种2、工作原理旋风除尘器是利用旋转气流所产生的离心力将尘粒从合尘气流中分离出来的除尘装置。

旋风除尘器内气流与尘粒的运动概况:旋转气流的绝大部分沿器壁自圆简体,呈螺旋状由上向下向圆锥体底部运动,形成下降的外旋含尘气流,在强烈旋转过程中所产生的离心力将密度远远大于气体的尘粒甩向器壁,尘粒一旦与器壁接触,便失去惯性力而靠入口速度的动量和自身的重力沿壁面下落进入集灰斗。

旋转下降的气流在到达圆锥体底部后.沿除尘器的轴心部位转而向上.形成上升的内旋气流,并由除尘器的排气管排出。

自进气口流人的另一小部分气流,则向旋风除尘器顶盖处流动,然后沿排气管外侧向下流动,当达到排气管下端时,即反转向上随上升的中心气流一同从诽气管排出,分散在其中的尘粒也随同被带走。

3、影响旋风器性能的因素⑴二次效应-被捕集粒子的重新进入气流在较小粒径区间内,理应逸出的粒子由于聚集或被较大尘粒撞向壁面而脱离气流获得捕集,实际效率高于理论效率;在较大粒径区间,粒子被反弹回气流或沉积的尘粒被重新吹起,实际效率低于理论效率;通过环状雾化器将水喷淋在旋风除尘器内壁上,能有效地控制二次效应;临界入口速度。

⑵比例尺寸在相同的切向速度下,筒体直径愈小,离心力愈大,除尘效率愈高;筒体直径过小,粒子容易逃逸,效率下降;锥体适当加长,对提高除尘效率有利;排出管直径愈少分割直径愈小,即除尘效率愈高;直径太小,压力降增加,一般取排出管直径de=(0.6~0.8)D;特征长度-亚历山大公式:排气管的下部至气流下降的最低点的距离,旋风除尘器排出管以下部分的长度应当接近或等于l,筒体和锥体的总高度以不大于5倍的筒体直径为宜。

旋风惰性除尘器计算公式

旋风惰性除尘器计算公式

旋风惰性除尘器计算公式引言。

在工业生产中,粉尘是一种常见的污染物质,它不仅影响了生产环境的清洁度,还对工人的健康造成了危害。

因此,除尘器的使用变得至关重要。

旋风惰性除尘器是一种常见的除尘设备,它通过离心力和惯性力将粉尘分离出来,从而达到除尘的目的。

在设计和使用旋风惰性除尘器时,需要考虑到各种参数,其中最重要的就是计算公式。

本文将介绍旋风惰性除尘器的计算公式及其应用。

旋风惰性除尘器的工作原理。

旋风惰性除尘器是一种利用气体旋转运动和离心力将粉尘分离出来的设备。

它的工作原理如下,当含有粉尘的气体通过旋风惰性除尘器时,由于设备内部的结构设计,气体被迫产生旋转运动。

在旋转过程中,粉尘由于惯性作用,会沿着气体的旋转方向向外运动,最终被分离出来,而干净的气体则从旋风惰性除尘器的出口排出。

这种工作原理使得旋风惰性除尘器能够高效地去除粉尘,成为工业生产中常用的除尘设备之一。

旋风惰性除尘器的计算公式。

旋风惰性除尘器的计算公式是设计和使用该设备时必不可少的工具。

下面将介绍旋风惰性除尘器的主要计算公式及其应用。

1. 旋风惰性除尘器的分离效率计算公式。

旋风惰性除尘器的分离效率是指在单位时间内,设备能够去除的粉尘的比例。

分离效率通常用η表示,其计算公式为:η = (1 (1 (R / D))^2) 100%。

其中,R表示旋风惰性除尘器的半径,D表示旋风惰性除尘器的直径。

通过该公式,可以计算出旋风惰性除尘器的分离效率,从而评估设备的除尘效果。

2. 旋风惰性除尘器的压降计算公式。

旋风惰性除尘器的压降是指气体通过设备时产生的压力损失,通常用ΔP表示。

压降的大小直接影响着设备的运行效率和能耗。

旋风惰性除尘器的压降计算公式为:ΔP = K (V^2 / (2 g)) + (f L V^2) / (2 g D)。

其中,K表示旋风惰性除尘器的阻力系数,V表示气体的速度,g表示重力加速度,f表示摩擦系数,L表示旋风惰性除尘器的长度,D表示旋风惰性除尘器的直径。

旋风除尘器设计

旋风除尘器设计

旋风除尘器设计计算说明书1、旋风除尘器简介旋风除尘器是利用旋转气流产生的离心力使尘粒从气流中分离的,用来分离粒径大于5—10μm以上的的颗粒物。

工业上已有100多年的历史。

特点:结构简单、占地面积小,投资低,操作维修方便,压力损失中等,动力消耗不大,可用于各种材料制造,能用于高温、高压及腐蚀性气体,并可回收干颗粒物。

优点:效率80%左右,捕集<5μm颗粒的效率不高,一般作预除尘用。

旋风除尘器的结构形式按进气方式可分为直入式、蜗壳式和轴向进入式;按气流组织分类有回流式、直流式、平流式和旋流式多种1.1 工作原理(1)气流的运动普通旋风除尘器是由进气管、筒体、锥体和排气管等组成;气流沿外壁由上向下旋转运动:外涡旋;少量气体沿径向运动到中心区域;旋转气流在锥体底部转而向上沿轴心旋转:内涡旋;气流运动包括切向、轴向和径向:切向速度、轴向速度和径向速度。

图1(2)尘粒的运动:切向速度决定气流质点离心力大小,颗粒在离心力作用下逐渐移向外壁;到达外壁的尘粒在气流和重力共同作用下沿壁面落入灰斗;上涡旋-气流从除尘器顶部向下高速旋转时,一部分气流带着细小的尘粒沿筒壁旋转向上,到达顶部后,再沿排出管外壁旋转向下,最后从排出管排出。

1.2 影响旋风器性能的因素(2)二次效应-被捕集粒子的重新进入气流在较小粒径区间内,理应逸出的粒子由于聚集或被较大尘粒撞向壁面而脱离气流获得捕集,实际效率高于理论效率;在较大粒径区间,粒子被反弹回气流或沉积的尘粒被重新吹起,实际效率低于理论效率;通过环状雾化器将水喷淋在旋风除尘器内壁上,能有效地控制二次效应;临界入口速度。

(2)比例尺寸在相同的切向速度下,筒体直径愈小,离心力愈大,除尘效率愈高;筒体直径过小,粒子容易逃逸,效率下降;锥体适当加长,对提高除尘效率有利;排出管直径愈少分割直径愈小,即除尘效率愈高;直径太小,压力降增加,一般取排出管直径d e=(0.6~0.8)D;特征长度(natural length)-亚历山大公式:排气管的下部至气流下降的最低点的距离旋风除尘器排出管以下部分的长度应当接近或等于l,筒体和锥体的总高度以不大于5倍的筒体直径为宜。

旋风除尘器的设计与计算

旋风除尘器的设计与计算

一、实习目的1、进一步了解旋风除尘器的有关计算2、熟悉用CAD画效果图3、查阅和整理各方面资料,了解旋风除尘器各方面性能及影响因素;二、设计题目设计一台处在常温(20°C),常温下含尘空气的旋风除尘器。

已知条件为:处理气量Q=1300m³/h,粉尘密度ρp=1960kg/m³,空气密度ρ=1.29 kg/m,空气粘度μ=1.8x10-5Pa.s,进入的粉尘粒度分布见下表:设计要求:XLT旋风除尘器,最后实现污染物的达标排放,且除尘效率为85%,压力损失不高于2000Pa。

提交文件:设计说明+旋风除尘器图(CAD制图),图纸输出A4纸。

三、旋风除尘器的工作原理1.1 工作原理(1)气流的运动普通旋风除尘器是由进气管、筒体、锥体和排气管等组成;气流沿外壁由上向下旋转运动:外涡旋;少量气体沿径向运动到中心区域;旋转气流在锥体底部转而向上沿轴心旋转:内涡旋;气流运动包括切向、轴向和径向:切向速度、轴向速度和径向速度。

(2)尘粒的运动:切向速度决定气流质点离心力大小,颗粒在离心力作用下逐渐移向外壁;到达外壁的尘粒在气流和重力共同作用下沿壁面落入灰斗;上涡旋-气流从除尘器顶部向下高速旋转时,一部分气流带着细小的尘粒沿筒壁旋转向上,到达顶部后,再沿排出管外壁旋转向下,最后从排出管排出。

1.2特点(1)旋风除尘器与其他除尘器相比,具有结构简单、占地面积小、投资低、操作维修方便以及适用面宽的优点。

(2)旋风除尘器的除尘效率一般达85%左右,高效的旋风除尘器对于输送、破碎、卸料、包装、清扫等工业生产过程产生的含尘气体除尘效率可达95%-98%,对于燃煤炉窑产生烟气的除尘效率可以达到92%-95%。

(3)XLT 旋风除尘器的主要特点(4)旋风除尘器捕集<5μm 颗粒的效率不高,一般可以作为高浓度除尘系统的预除尘器,与其他类型高效除尘器合用。

可用于10μm 以上颗粒的去除,符合此题的题设条件。

旋风除尘器的设计概念

旋风除尘器的设计概念
旋风除尘器的设计
一、旋风除尘器的结构 旋风除尘器由进气管
、筒体、锥体、出气管、 下灰管、灰斗、卸灰阀组 成。
二、旋风除尘器的效率
1. 转圈理论 分级效率 所转圈数离
心沉降速度
2. 筛分理论 分级效率 粉尘分割径
自然返回长
三、旋风除尘器的阻力
经验公式
阻力系数 k =6~9。
四、旋风除尘器的尺寸比
A.法兰的画法
1) 法兰材料的确定 采用角钢,查手册:选不等边角钢40×25×4 还可选等边角钢:36×4
2) 螺栓孔距确定 需满足JB/ZQ4248-86。如螺栓直径为8mm,孔距大于28mm。对于旋风
除尘器法兰,总满足。故可视法兰尺寸而定,见法兰设计图 3) 孔径确定
采用通孔。10~15mm
4) 螺栓直径、长度及螺纹长度的确定(C级全螺纹) 考虑时间关系,不作受力分析。螺栓直径视孔径而定,GB5277-85。选
七、旋风除尘器的效率检验
已知处理烟气温度T=180℃,查表或用公式可得常压下烟气
密度ρg=0.8kg/m3,动力黏度μ=2.5×10-5 Pa·s。
由几何尺寸,可得自然返回长
由筛分理论,其粉尘分割径为
将分割径代入筛分理论效率公式,将所计算的 分级效率填入表中。其总效率为
因ηT >85%,故满足设计要求。
1. 资料收集: 气体性质、粉尘性质、净化要求 2. 根据原始浓度和排放标准确定除尘效率; 3. 确定入口风速:16~22m/s; 4. 确定入口断面积,由尺寸比定进气管宽和高 5. 由尺寸比确定筒体直径,如果超过1100mm,可考虑并
联方式;确定其它几何尺寸。 6. 由分级效率公式验证旋风除尘器设计尺寸的合理性,如
图号
LX-07
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档