第一章、晶体结构

合集下载

第一章晶体的结构

第一章晶体的结构

求晶面指数的方法
OA1 ra1, OA2 sa2 , OA3 ta3
h1 : h2 : h3 1 1 1 : : r s t
n
N
a3
O
d
a2
A2 A1
a1
设 a 1 , a 2 , a 3的末端上的格点分别在离原点距离h1d、h2d、
h3d的晶面上,这里 h1、h2、h3为整数 。 基矢
格点只在顶角上,内部和面上都不包含其他格点,整个原胞 只包含一个格点。
3、晶胞
原胞往往不能反映晶体的对称性
晶胞:能反映晶体对称性的最小结构重复单元
是原胞的数倍。晶胞的基矢用 a b c
原胞:
表示
a1 a2 a3
*几种典型晶体结构的原胞和晶胞
每种原子都各自构成一种相同的Bravais格子,这些Bravais 格子相互错开一段距离,相互套构而形成的格子。即复式 格子是由若干相同的Bravais格子相互位移套构而成的。
*几种典型的复式晶格
NaCl结构(Sodium Chloride structure ) 复式面心立方
例:MgO、KCl、AgBr 等
用来描述晶体中原子排列的紧密程度,原子排 列越紧密,配位数越大
简单立方(简立方)(simple cubic, sc)
配位数
6
晶胞内有 1 个原子
体心立方( body-centered cubic, bcc )
排列:ABABAB……
配位数
8
晶胞内有 2 个原子 具有体心立方结构的金属晶体:LI、Na、K、Fe等
重复周期为二层。形成AB AB AB· · · · · · 方式排列。
具有六角结构的金属: Mg,Co,Zn等

材料科学基础第一章晶体结构(三单质晶体结构)

材料科学基础第一章晶体结构(三单质晶体结构)
a=4/3r/3; a=2r。
Smith W F. Foundations of Materials Science and Engineering. McGRAW.HILL.3/E
配位数 12;8(8+6);12 致密度 0.74;0.68; 0.74
配位数(CN):晶体结构中 任一原子周围最近且等距离 的原子数。 致密度(K):晶体结构中 原子体积占总体积的百分数。 K=nv/V。
linear density
<100>
a
2 1 2

1
aa
a
2 1 2

1
aa
<110>
2a
2
1 2

0.7
2a a
2a
2
1 2

1

1.4
2a a
<111>
3a
2

1 2
1

1.16
3a a
3a
2
1 2

0.58
3a a
案例讨论:工程上大量使用低碳钢渗碳件,试分析材 料的渗碳行为与哪些因素有关? 晶格常数? 结构类型? 致密度?....?
1.4单质晶体结构
同种元素组成的晶体称为单质晶体。 一、金属晶体的结构 二、非金属元素单质的晶体结构
一、金属晶体的结构
香港国际机场 案例讨论:工程上大量使用钢铁材料,钢和铁在 性能上差别较大,各有优势,设想这种差别的来 源。
一、金属晶体的结构
1.常见金属晶体结构
典型金属的晶体结构是最简单的晶体结构。由于金属键的性质, 使典型金属的晶体具有高对称性,高密度的特点。常见的典型金属晶 体是面心立方、体心立方和密排六方三种晶体,其晶胞结构如图1-10 所示。另外,有些金属由于其键的性质发生变化,常含有一定成分的 共价键,会呈现一些不常见的结构。锡是A4型结构(与金刚石相似), 锑是A7型结构等。

第一章 晶体结构

第一章 晶体结构

1.点对称操作
点对称操作:对称操作前后空间中至少保持一个不动的点的操作.
(1)n度旋转对称 2 n度旋转对称轴:晶体绕旋转 后仍能复原的轴. n 晶体只具有1、2、3、4、6度对称轴. (2)中心反演 中心反演的对称元素是一个点,中心反演操作用i表示. i操作作用 于(x,y,z)使之变换为(-x,-y,-z). 目录
(3)镜像(m,对称素为面) 镜像操作常用m表示,镜像的操作的对称元素是平面. 若选z=0为对称面,该操作使点(x,y,z)变换为(x,y,-z) (4)n度旋转反演对称 该操作由n度旋转对称和中心反演两个操作组成.晶体先绕一固定轴 旋转 2 n后,再经过中心反演,晶体能与自身重合.该轴称为n度旋 转反演轴. 晶体n度旋转反演对称中n只能取1,2,3,4,6中的数值,通常用 n 表示n度旋转反演轴. 注: a.1度旋转反演对称与中心反演i实质是同一操作. b. 2度旋转反演对称与镜像m实质是同一操作.
a


ak
a1 a 2 a j

a3
目录
ai
a-Fe的晶体结构
固体物理学原胞的体积: 3.面心立方(fcc)结构
Ω a1 (a2 a3 ) a
3
2
每个晶胞包含4个 格点.基矢为:
a a1 ( j k ) 2 a a2 ( k i ) 2 a a3 (i j ) 2
abc
900
5.四角系: a b c 900 (正方晶系) 6.六角晶系: 900 1200
abc
7.立方晶系: 900
abc
简立方(12),体心立方(13), 面心立方(14) 目录

晶体结构.01

晶体结构.01
2
1.1 几种常见的晶体结构
一、晶体的定义
晶 体: 组成固体的原子(或离子)在微观上的 排列具有长程周期性结构
非晶体:组成固体的粒子只有短程序(在近邻或 次近邻原子间的键合:如配位数、键长 和键角等具有一定的规律性),无长程 周期性 准 晶: 有长程的取向序,沿取向序的对称轴方向 有准周期性,但无长程周期性
第一章 晶体结构(crystal structure)
1-1 几种常见的晶体结构 1-2 晶格的周期性 1-3 晶向、晶面和它们的标志 1-4 对称性和Brawais点阵
1-5 倒点阵及其基本性质
1-6 晶体衍射物理基础
1
1-1几种常见的晶体结构
主要内容
1.1简立方晶格结构(cubic)
1) NaCl晶体的结构 氯化钠由Na+和Cl-结合而成 —— 一种典型的离子晶体 Na+构成面心立方格子;Cl-也构成面心立方格子
20
2) CsCl晶体的结构 CsCl结构 —— 由两个简单立方子晶格彼此沿立方体空间对 角线位移1/2 的长度套构而成
21
CsCl晶体
22
3) ZnS晶体的结构 —— 闪锌矿结构 立方系的硫化锌 —— 具有金刚石类似的结构 化合物半导体 —— 锑化铟、砷化镓、磷化铟
六角密排晶格的原胞基矢选取 —— 一个原胞中包含A层 和B层原子各一个 —— 共两个原子 k
定义:
i
j
原胞基矢为:
a1 , a2 , a3
a1 a2 a3
(四)晶格周期性的描述 —— 布拉伐格子
Bravais lattices
由于组成晶体的组分和 组分的原子排列方式的 多样性,使得实际的晶 体结构非常复杂。

第一章晶体结构

第一章晶体结构

第一章晶体结构1 布喇菲点阵和初基矢量晶体结构的特点在于原子排列的周期性质。

布喇菲点阵是平移操作112233R n a n a n a =++所联系的诸点的列阵。

布喇菲点阵是晶体结构周期性的数学抽象。

点阵矢量112233R n a n a n a =++,其中,1n ,2n 和3n 均为整数,1a ,2a 和3a 是不在同一平面内的三个矢量,叫做布喇菲点阵的初基矢量,简称基矢。

初基矢量所构成的平行六面体是布喇菲点阵的最小重复单元。

布喇菲点阵是一个无限的分立点的列阵,无论从这个列阵中的哪个点去观察,周围点的分布和排列方位都是完全相同的。

对一个给定的布喇菲点阵,初级矢量可以有多种取法。

2 初基晶胞(原胞)初基晶胞是布喇菲点阵的最小重复单元。

初基晶胞必定正好包含布喇菲点阵的一个阵点。

对于一个给定的布喇菲点阵,初基晶胞的选取方式可以不只一种,但不论初基晶胞的形状如何,初基晶胞的体积是唯一的,()123c V a a a =⋅⨯。

3 惯用晶胞(单饱)惯用晶胞是为了反映点阵的对称性而选用的晶胞。

惯用晶胞可以是初基的或非初基的。

惯用晶胞的体积是初基晶胞体积的整数倍,c V nV =。

其中,n 是惯用晶胞所包含的阵点数。

确定惯用晶胞几何尺寸的数字叫做点阵常数。

4 维格纳—赛兹晶胞(W-S 晶胞)维格纳—赛兹晶胞是另一种能够反映晶体宏观对称性的晶胞,它是某一阵点与相邻阵点连线的中垂面(或中垂线)所围成的最小体积。

维格纳—赛兹晶胞是初基晶胞。

5 晶体结构当我们强调一个实际的晶体与布喇菲点阵的抽象几何图案的区别时,我们用“晶体结构”这个名词[1]。

理想的晶体结构是由相同的物理单元放置在布喇菲点阵的阵点上构成的。

这些物理单元称为基元,它可以是原子、分子或分子团(有时也可以指一组抽象的几何点)。

将基元平移布喇菲点阵的所有点阵矢量,就得到晶体结构,或等价地表示为基元十点阵=晶体结构[2]当选用非初基的惯用晶胞时,一个布喇菲点阵可以用带有基元的点阵去描写。

固体物理-第一章

固体物理-第一章



ai
aj
ak




顶角8个格点→8×1/8=1个原 子;→平均包含1个原子
原胞的体积 V a1 (a2 a3 ) a3
➢晶体的周期性
面心立方晶胞



ABC ABC 排列(立方密堆)


a1

a 2
jk
顶角8个格点→8×1/8=1个原子;面心6个原 子→6×½=3个原子;→平均包含4个原子
1.1 晶体的周期性
1.1.1 常见的晶体
沸石晶体
方沸石
化学式:RR[Alx+2ySin-(x+2y)O2n]·mH2O含水架状结 构铝硅酸盐矿物,单斜和正交(斜方)晶系为主。 式中R代表碱金属离子,基本上为K+或Na+。
菱沸石
纯净的各种沸石均为无色或白色,但可因混入杂质而呈各种浅色。玻璃光泽。解 理随晶体结构而异。沸石的晶体结构是由硅(铝)氧四面体连成三维的格架,格架中 有各种大小不同的空穴和通道,具有很大的开放性。碱或碱土金属子和水分子均分布 在空穴和通道中,与格架的联系较弱。不同的离子交换对沸石结构影响很小,但使沸 石的性质发生变化。晶格中存在的大小不同空腔,可以吸取或过滤大小不同的其他物 质的分子。工业上常将其作为分子筛,以净化或分离混合成分的物质 ,如气体分离、 石油净化、处理工业污染等。此外沸石还具有独特的吸附性、催化性、离子交换性, 离子的选择性、耐酸性、热稳定性、多成份性、及很高的生物活性和抗毒性等。
1.1.3 基本概念
晶体的特点:晶体具有规则 的几何外形,固定的熔 点,某些晶体具有一定 的解理性。
周期性:晶体中 微粒的排列按照 一定的方式不断 的做周期性重复 的性质,称为晶 体结构的周期性。

第一章 晶体结构(Crystal Structure)

第一章 晶体结构(Crystal Structure)

§1.3 晶格的周期性
一、布拉菲(Bravais)格子
布喇菲(A. Bravais),法国学者,1850年提出。 定义: 各晶体是由一些基元(或格点)按一定规则, 周期重 复排列而成。任一格点的位矢均可以写成形式 R n a n a n a n 1 n 2 n 3 、 、 a1 a2 。其中, 、 、 取整数, n 1 1 2 2 3 3 a Rn 为基矢, 为布拉菲格子的格矢,或称 正格矢。 3 能用上式表示的空间点阵称为布拉菲点阵,相应的 空间格子称为布拉菲格子.
§1.2 空间点阵
空间点阵定义: 晶体的内部结构可以概括为是由一些相同的 点子在空间有规则地作周期性的无限分布,这 些点子的总体称为点阵。 X射线衍射技术从实验上证明。
1、格点与基元 如果晶体是由完全相同的一种原子所组成 的,则格点代表原子或原子周围相应点的位置, 如铜的晶体结构。 点阵(lattice) 在空间任何方向 上均为周期排列的无 限个全同点的集合。
基元( basis)
构成晶体的基本结构单元。 基元是化学组成、空间结构、排列取向、周 围环境相同的原子、分子、离子或离子团的集 合。 可以是一个原子(如铜、金、银等),可以是 两个或两个以上原子(如金刚石、氯化钠、磷化 镓等),有些无机物晶体的一个基元可有多达 100个以上的原子,如金属间化合物NaCd2的基 元包含1000 多个原子,而蛋白质晶体的一个基 元包含多达10000 个以上的原子。
复式晶格:
如果晶体的基元中包含两种或两种以上的原 子。显然,每一种等价原子各构成与晶体基元代表 点的空间格子相同的网格 , 称为晶体的 子晶格 . 每 一种等价原子的子晶格具有相同的几何结构,整 个晶格可视为,子晶格相互位移套构而成。该晶 体晶格称为复式晶格. 例如:氯化钠晶体

第一章晶体结构

第一章晶体结构

第一章晶体结构1-1. 试述晶态、非晶态、准晶、多晶和单晶的特征性质。

解:晶态固体材料中的原子有规律的周期性排列,或称为长程有序。

非晶态固体材料中的原子不是长程有序地排列,但在几个原子的范围内保持着有序性,或称为短程有序。

准晶态是介于晶态和非晶态之间的固体材料,其特点是原子有序排列,但不具有平移周期性。

另外,晶体又分为单晶体和多晶体:整块晶体内原子排列的规律完全一致的晶体称为单晶体;而多晶体则是由许多取向不同的单晶体颗粒无规则堆积而成的。

1-2. 晶格点阵与实际晶体有何区别和联系?解:晶体点阵是一种数学抽象,其中的格点代表基元中某个原子的位置或基元质心的位置,也可以是基元中任意一个等价的点。

当晶格点阵中的格点被具体的基元代替后才形成实际的晶体结构。

晶格点阵与实际晶体结构的关系可总结为:晶格点阵+基元=晶体结构1-3. 晶体结构可分为Bravais格子和复式格子吗?解:晶体结构可以分为Bravais格子和复式格子,当基元只含一个原子时,每个原子的周围情况完全相同,格点就代表该原子,这种晶体结构就称为简单格子或Bravais格子;当基元包含2个或2个以上的原子时,各基元中相应的原子组成与格点相同的网格,这些格子相互错开一定距离套构在一起,这类晶体结构叫做复式格子。

心四方解:(a)“面心+体心”立方不是布喇菲格子。

从“面心+体心”立方体的任一顶角上的格点看,与它最邻近的有12个格点;从面心任一点看来,与它最邻近的也是12个格点;但是从体心那点来看,与它最邻近的有6个格点,所以顶角、面心的格点与体心的格点所处的几何环境不同,即不满足所有格点完全等价的条件,因此不是布喇菲格子,而是复式格子,此复式格子属于简立方布喇菲格子。

(b)“边心”立方不是布喇菲格子。

从“边心”立方体竖直边心任一点来看,与它最邻近的点子有8个;从“边心”立方体水平边心任一点来看,与它最邻近的点子也有8个。

虽然两者最邻近的点数相同,距离相等,但他们各自具有不同的排列。

第一章 晶体结构

第一章 晶体结构

第一章 晶体结构本章首先从晶体结构的周期性出发,来阐述完整晶体中离子、原子或分子的排列规律。

然后,简略的阐述一下晶体的对称性与晶面指数的特征,介绍一下倒格子的概念。

§1.1晶体的周期性一、晶体结构的周期性1.周期性的定义从X 射线研究的结果,我们知道晶体是由离子、原子或分子(统称为粒子)有规律地排列而成的。

晶体中微粒的排列按照一定的方式不断的做周期性重复,这样的性质成为晶体结构的周期性。

周期性:晶体中微粒的排列按照一定的方式不断的做周期性重复,这样的性质成为晶体结构的周期性。

晶体结构的周期性可由X-Ray 衍射直接证实,这种性质是晶体最基本或最本质的特征。

(非晶态固体不具备结构的周期性。

非晶态的定义等略),在其后的学习中可发现,这种基本性质对固体物理的学习具有重要的意义或是后续学习的重要基础。

2.晶格 格点和点阵晶格:晶体中微粒重心,做周期性的排列所组成的骨架,微粒重心所处的位置称为晶格的格点(或结点)。

格点的总体称为点阵。

整个晶体的结构,可看成是由格点沿空间三个不同方向, 各自按一定距离周期性平移而构成。

每个平移的距离称为周期。

在某一特定方向上有一定周期,在不同方向上周期不一定相同。

晶体通常被认为具有周期性和对称性,其中周期性最为本质。

对称性其实质是来源于周期性。

故周期性是最为基本的对称性,即“平移对称性”(当然,有更为复杂或多样的对称性,但周期性或平移对称性是共同的)。

3.平移矢量和晶胞据上所述,基本晶体的周期性,我们可以在晶体中选取一定的单元,只要将其不断地重复平移,其每次的位移为a 1,a 2,a 3,就可以得到整个晶格。

则→1a ,→2a ,→3a 就代表重复单元的三个棱边之长及其取向的矢量,称为平移矢量,这种重复单元称为晶胞,其基本特性为:⑴晶胞平行堆积在一起,可以充满整个晶体⑵任何两个晶胞的对应点上,晶体的物理性质相同,即:()⎪⎭⎫⎝⎛+++=→→→332211anananrQrQ其中→r为晶胞中任一点的位置矢量。

固体物理-第一章

固体物理-第一章
B A
B
C
(3)金刚石晶格
金刚石和石墨 金刚石由碳原子构成,在一个面心立方 原胞内还有四个原子,这四个原子分别 位于四个空间对角线的 1/4处。一个碳 原子和其它四个碳原子构成一个正四面 体。
金刚石晶格
c
c
金刚石晶格是由两个面心晶格重叠相嵌而成。两个面心立方 子晶格沿体对角线位移1/4的长度套构而成,
ak
a1
aj
a2 a3
ai
典型的晶体结构
结构型 单胞中的 原子在单胞 最近邻 原子个数 中的位置 距离 配位数
(Cu)
fcc
4 2
Cs+ 1
bcc
11 ( (000) 0) 22 1 1 ( 0 ) (0 1 1 ) 2 2 22
2a 2 3a 2 3a 2
12
(W)
(000)
11 1 ( ) 22 2
§1.1
一些晶格的实例
一、晶格(晶体的格子)中原子排列的具体形式。
(1)考虑原子球层的正方排列形成的晶格结构
原子正方排列: 把原子看成原子球,一层层排列,一个原子与相邻原 子组成正方形,每层都为正方排列.
如此堆积而成的晶格分为两类:
(i) 简单立方晶格
原子球规则排列最简单的形式为正方排列,如果把这样的原子层叠起来,各层的 球完全对应,上下对称,为简单立方晶格。
(1 ,2 ,3 )为一组整数
对于金刚石晶格,面心立方顶点位置的原子的位置:
1 a1 2 a 2 3 a 3
面心立方体对角线1/4处位置的原子位置: 1 a1 2 a 2 3 a 3 r 一组 1 a1 2 a 2 3 a 3 可以包括所有的格点 布拉伐格子: 由 1 a1 2 a 2 3 a 3 确定的空间格子 任一点的位矢 r,V(r ) V(r 1 a1 2 a 2 3 a 3 ),

第一章 晶体结构

第一章 晶体结构
σ (m)
19
1.3 对称性和布拉维格子的分类
二 基本对称操作
1 i,Cn,σ (m)
2 n度旋转 ─ 反演轴
绕μ轴旋转
2π后再进行中心反演:
n
1,2,3,,4, i, m 八种独立的对称操作。
宏观上看,晶体是有限的,描述晶体宏观对称性 不包含平移对称操作;但从微观上看,晶体是无 限的,为描述晶体结构的对称性,应加上平移对 称操作。
衍射斑点(峰) ↔ 晶格中的一族晶面 倒格子 ↔ 正格子 点子 ↔ 晶面
斑点分布 ↔ 晶格基矢 → 晶体结构
25
1.4 倒格子/倒易点阵
一 定义
设布拉维格子的基矢为:av1 ,av2 , av3

v Rl
=
l1av1
+
l2av2
+
l3av3 决定的格子称为正格子
(direct lattice),
满足
2vπ Gh
4 两点阵位矢的关系
v Rn

v Gh
=
2πm
m为整数
利用
aavvii
• •
v bvj bj
= =
2π 0
i= j i≠ j
( ) Rv n •Gvh = (l1av1 + l2av2 + l3av3 )•
v h1b1
+
v h2b2
+
v h3b3
= l1h1 • 2π + l2h2 • 2π + l3h3 • 2π
按坐标系的性质,晶体可划分为七大晶 系,每一晶系有一种或数种特征性的布拉 维原胞,共有14种布拉维原胞:
三斜(简单三斜) 单斜(简单、底心) 正交(简单、底心、体心、面心) 四方(简单、体心) 三角 六角 立方(简单、体心、面心)

材料科学基础第一章晶体结构(一结晶学基础知识)

材料科学基础第一章晶体结构(一结晶学基础知识)

说明: a 指数意义:代表一组平行的晶面; b 0的意义:面与对应的轴平行; c 平行晶面:指数相同,或数字相同但正负号相反; d 晶面族:晶体中具有相同条件(原子排列和晶面间距完全相
同),空间位向不同的各组晶面。用{hkl}表示。 e 若晶面与晶向同面,则hu+kv+lw=0; f 立方晶系若晶面与晶向垂直,则u=h, k=v, w=l。
(2)晶面指数的标定 a 建立坐标系:确定原点(非阵点)、坐标轴和度量单位。 b 量截距:x,y,z。 c 取倒数:h’,k’,l’。 d 化整数:h,k,k。 e 加圆括号:(hkl)。 (最小整数?)
(2)晶面指数的标定
例:标定下列A,B,C面的指数。
(c) 2003 Brooks/Cole Publishing / Thomson Learning™
平移坐标原点:为了标定方便。
2.六方晶系的晶面指数和晶向指数
六方晶系的晶胞如图1-4所示,是边长为a,高为c的 六方棱柱体。
四轴定向:晶面符号一般写为(hkil),指数的排 列顺序依次与a轴、b轴、d轴、c轴相对应,其中a、b、d 三轴间夹角为120o,c轴与它1们垂直。它们之间的关系为: i=-(h+k)。
晶面指数:结晶学中经常用(hkl)来表示一组平行晶面,称为晶 面指数。数字hkl是晶面在三个坐标轴(晶轴)上截距的倒数的互 质整数比。
晶向:点阵可在任何方向上分解为相互平行的直线组,结点 等距离地分布在直线上。位于一条直线上的结点构成一个晶 向。 同一直线组中的各直线,其结点分布完全相同,故其中任何 一直线,可作为直线组的代表。不同方向的直线组,其质点 分布不尽相同。 任一方向上所有平行晶向可包含晶体中所有结点,任一结点 也可以处于所有晶向上。

第一章第1节--晶体结构与性质

第一章第1节--晶体结构与性质

第一章晶体结构与性质第一节晶体的常识一、知识框架1晶体非晶体结构特征结构微粒周期性有序排列结构微粒无序排列性质特征自范性有无熔点固定不固定异同表现各向异性各向同性二者区别方法间接方法看是否有固定的熔点科学方法对固体进行X-射线衍射实验2(1)熔融态物质凝固。

(2)气态物质冷却不经液态直接凝固(凝华)。

(3)溶质从溶液中析出。

3.晶胞(1)概念:描述晶体结构的基本单元。

(2)晶体中晶胞的排列——无隙并置①无隙:相邻晶胞之间没有任何空隙。

②并置:所有晶胞平行排列、取向相同。

4.晶胞中微粒的计算方法——均摊法二、典型例题例题1.最近发现,只含镁、镍和碳三种元素的晶体竟然也具有超导性,因这三种元素都是常见元素,从而引起广泛关注。

该新型超导晶体的一个晶胞如图所示,则该晶体的化学式为( )A .Mg 2CNi 3B .MgCNi 3C .MgCNi 2D .MgC 2Ni解析:利用均摊法确定晶胞的化学式,位于顶点的一个原子被8个晶胞占有,位于面心上的原子被2个晶胞占有,位于体心上的一个原子被一个晶胞占有,据此计算晶胞的化学式。

根据晶胞结构可知,碳原子位于该晶胞的体心上,所以该晶胞中含有一个碳原子;镁原子个数=8×1/8=1,所以该晶胞中含有一个镁于原子;镍原子位于面心上,因此镍原子个数=6×1/2=3,该晶胞中含有3个镍原子,所以该晶胞的化学式为MgBNi 3,因此答案选B 。

【答案】B例题2. (2014·高考全国卷Ⅰ,37)早期发现的一种天然二十面体准晶颗粒由Al 、Cu 、Fe 三种金属元素组成,回答下列问题:(1)准晶是一种无平移周期序,但有严格准周期位置序的独特晶体,可通过________方法区分晶体、准晶体和非晶体。

(2)基态Fe 原子有________个未成对电子。

Fe 3+的电子排布式为________。

可用硫氰化钾检验Fe 3+,形成的配合物的颜色为________。

第一章-晶体结构-《固体物理学》黄昆-韩汝琦

第一章-晶体结构-《固体物理学》黄昆-韩汝琦

6. 几种化合物晶体的晶格 1) NaCl晶体的结构 氯化钠由Na+和Cl-结合而成 —— 一种典型的离子晶体 Na+构成面心立方格子;Cl-也构成面心立方格子
01_01_一些晶体的实例 —— 晶体结构
2) CsCl晶体的结构 CsCl结构 —— 由两个简单立方子晶格彼此沿立方体空间对 角线位移1/2 的长度套构而成
16 /16
第一章 晶体结构
晶体:在微米量级的范围是有序排列的 —— 长程有序
—— 在熔化过程中,晶态固体的长程有序解体时对应一定 的熔点
晶体的规则外形
—— 最显著的特点是晶面有规则、对称地配置 —— 一个理想完整的晶体,相应的晶面的面积相等
01_01_一些晶体的实例 —— 晶体结构
01/ 28
不同生长条件下NaCl晶体的外形___b, c, d
—— 20世纪三十年代,建立了固体能带论和晶格动力学
01_00_绪论 —— 固体物理_黄昆
10 /16
—— 固体能带论说明了导体与绝缘体的区别,并断定有 一类固体,其导电性质介于两者之间______半导体
—— 20世纪四十年代末,以诸、硅为代表的半导体单晶的 出现并制成了晶体三极管______ 产生了半导体物理
体心立方晶格中,A层中原Байду номын сангаас球的距离等于A-A层之间的距
离,A层原子球的间隙 —— 0.31r0
r0 —— 原子球的半径
—— 体心立方晶格 结构的金属
Li、Na、K、Rb、 Cs、Fe 等
01_01_一些晶体的实例 —— 晶体结构
10 / 28
体心立方晶格结构金属 —— Iron
01_01_一些晶体的实例 —— 晶体结构
钙钛矿结构 —— 钛酸钙(CaTiO3)结构 —— 重要介电晶体 钛酸钡(BaTiO3) 锆酸铅(PbZrO3) 铌酸锂(LiNbO3) 钽酸锂(LiTaO3)等

第一章晶体结构

第一章晶体结构

NaCl结构
每个原胞中含两个或多 个原子,且原子不等价
复式晶格
简单晶格
举例 简立方晶格, 体心立方晶格, 面心立方晶格等
特征:每个原胞中只含一 个原子,且所有原子等价
复式晶格
举例 金刚石, 六方密排, 闪锌矿结构等 特征:每个原胞中含两个 或多个原子,且原子不等 价
复式晶格与简单晶格结构有何联系?
• 1.4金刚石结构(Diamond) • 1.5化合物的晶格结构(NaCl,CsCl,C……)
基本概念
晶格(lattice)是指晶体中原子排列的具体形式。
具有不同晶格是指原子规则排列的形式不同;
具有相同晶格是指原子排列形式相同而原子 间距不同。
1.1 简立方晶格
结构特征
原子球占据立方 体的8个顶点; 配位数为6; 立方体边长a定 义为晶格常数。
3、 六角密排与立方密排密堆结构图示
• 第一步:将全同小球 平铺成密排面(A 层); 第二步:第二层密排 面的球心对准A层的 球隙,即B层; A 第三步:第三层密排 B 面放在B层的球隙上, 可形成两种不同的晶 格,即六角密排和立 方密排结构。 六角密排


立方密排(面心 立方)(A-B-C)
(-A-B-)

S原子 Zn原子
§1-2晶格的周期性(periodicity)
主要内容
• (一)原胞与基矢(primitive cell and unit vitor) • (二)晶胞(crystal unit cell) • (三)简单晶格与复杂晶格(crystal lattice) • (四)布拉伐格子(Bravais lattice)
的对称性高于平行六面体原胞。
(二)晶胞(晶格学单胞 crystal unit cell) 1、定义:晶体学通常选取较大的周期单元来研

第一章 晶体结构

第一章 晶体结构

面心立方密排方式
间隙(Interstice):
四、八面体间隙(tetrahedral and octahedral interstice) fcc,hcp 间隙为正多面体,且八面体和四面体间隙相互独立 bcc间隙不是正多面体,四面体间隙包含于八面体间隙之中
五.晶面与晶向
1.晶面:同处一个结点面内的所有阵点构成的阵点面。
简单晶胞(初级晶胞):只在平行六面体每个顶角上有一阵点; 复杂晶胞:除在顶角外,在体心、面心或底心上也有阵点。
4.晶体结构的分类
(1)七个晶系:立方、正方、正交、三方、
六方、单斜、三斜
(2)14种布拉菲格子 (3)32种点群(point group)
点群—晶体中所有点对称元素的集合。根据晶体外 形对称性,共有32种点群。
B b
A a
等效晶面族{h k l}中的晶面数:
a)hkl三个数不等,且都≠0,则此晶面族中有3!×4=24组; 如{123} b)hkl有两个数字相等 且都≠0,则有:(3!/2!)×4=12组; 如{112} c)hkl三个数相等,则有:(3!/3!)×4=4组; 如{111} d)hkl有一个为0,应除以2,则有(3!/2)×4=12组; 如{120} 有二个为0,应除以22,则有(3!/2!22)×4=3组; 如{100}
立方晶系
d hkl
d hkl
a h k l
2 2 2
正交晶系
1 h k l a b c
2 2 2
六方晶系
d hkl
1 4 h hk k l 2 3 a c
2 2 2 2
立方晶系:
3.晶向(晶列):阵点连线的指向。相互平行的阵点

1.晶体结构

1.晶体结构









晶体结构=空间点阵+基元
Ci (i)、 CS (m)和 S4( 4 )
四、点群(32种) Schö nflies符号:用主轴+脚标表示 主轴:Cn、Dn、Sn、T和O Cn:n次旋转轴 Sn : n次旋转-反映轴 Dn:n次旋转轴加上一个与之垂直的二次轴 T: 四面体群 O: 八面体群 脚标:h、v、d h:垂直于n次轴(主轴)的水平面为对称面 v:含n次轴(主轴)在内的竖直对称面 d:垂直于主轴的两个二次轴的平分面为对称面
第一章 晶体结构
§1.1 几种常见的晶体结构
一、晶体的定义
晶 体: 组成固体的原子(或离子)在微观上的
排列具有长程周期性结构 非晶体:组成固体的粒子只有短程序,但无长程
周期性 准 晶: 有长程的取向序,沿取向序的对称轴方向 有准周期性,但无长程周期性
规则网络
无规网络
Al65Co25Cu10合金 准 晶
体心立方的基矢和Wigner-Seitz原胞
面心立方基矢、原胞和Wigner-Seitz原胞
4. 晶格的分类 简单晶格:每个晶格原胞中只含有一个原子, 晶格中所有原子在化学、物理和几何环境 上都是完全等同的。 例:Na、Cu、Al等晶格均为简单晶格
复式晶格:每个晶格原胞中含有两个或两个以上的 原子或离子。 简单晶格必须由同种原子组成;反之,由同种原子组成 的晶格却不一定是简单晶格。 如:金刚石、Mg、Zn 、 C60和NaCl等晶格都是复式晶格
b3 a1 a 2 a 3 va
2 a 2 a 3
倒格矢:G n n1 b1 n2 b 2 n3 b3 , n1、n2、n3都是整数。 倒格子原胞体积:

第一章_晶体结构与结晶

第一章_晶体结构与结晶
晶Si半导体。
多晶体:由许多位向不同的晶粒构成的晶体。
晶粒(单晶体)
晶界
1、实际金属中的晶体缺陷
——实际金属晶体结构与理想结构的偏离。
金属晶体结构中存在的不完整区域称为晶体缺陷。 实际金属中存在着大量的晶体缺陷,按形状可分三 类,即点、线、面缺陷。
(1)点缺陷:空位、间隙原子、置换原子
(2)线缺陷:位错
2. 1) 凡是由液体凝固成固体的过程都是结晶过程。( No ) 2) 室温下,金属晶粒越细,则强度越高、塑性越低。( No )
3. 1) 金属结晶时,冷却速度越快,其实际结晶温度将: a. 越高 b. 越低 c. 越接近理论结晶温度
2) 为细化晶粒,可采用: a. 快速浇注 b. 加变质剂
√ √
位 错 壁 亚晶粒 大角度和小角度晶界
说明:
1、点缺陷破坏了原子的平衡状态,使晶格发生扭曲
(晶格畸变),从而使强度、硬度提高,塑性、
韧性下降。 2、位错能够在金属的结晶、相变和塑性变形等过程 中形成,晶体中的位错密度对金属的性能有着极 其重要的影响,减少或是增加位错密度都可以提 高金属的强度。
晶粒(单晶 体) 面缺陷引起晶格畸变, 晶粒越细,则晶界越多,强度和塑性越高。
四、金属的同素异构性
1.同素异构转变 物质在固态下晶体结构随温度变化的现象。
铁在固态冷却过 程中有两次晶体 结构变化,其变
化为:
-Fe ⇄ -Fe ⇄ -Fe
1394℃
912℃
-Fe、 -Fe为体心立方结构(BCC),-Fe为面心立方
结构(FCC)。都是铁的同素异构体。
-Fe
-Fe
1)自发形核:又称均质形核,是熔融金属内仅因 过冷而产生晶核的过程。在一定过冷度下,金属 液中的一些原子自发聚集在一 起,按晶体的固 有规律排列起来形成晶核。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、 魏格纳和赛兹提出的魏格纳-赛兹元胞(W-S元胞),既是一 个初基元胞,又具有空间格子的对称性。 作法:以任意一个格点为原点,作原点到最近邻格点、次近邻格 点甚至第三近邻格点的格矢,再作这些格矢的垂直平分面。 2、举例 二维
图1-14二维格子的W-S元胞
三维 (1)简单立方:W-S元胞是立方体
3、面心立方
每个惯用元胞含有4个格点(8×1/8+6×½)。 从原点出发,到三个最近邻面心为基矢,构成的平行六面体就是 初基元胞,基矢为 a1 = a /2( j + k) a2 = a / 2(i + k) a3 = a / 2(i + j) 惯用元胞体积a3,初基元胞体积¼a3。
五、 W-S元胞
2、体心立方
每个惯用元胞含有2个格点(1+8×1/8)。 从原点出发,到三个最近邻体心为基矢,构成的平行六面体就是 初基元胞。 a1 = (- i + j + k)a/2 a2 = ( i - j + k)a/2 a3 = ( i + j - k)a/2 惯用元胞体积a3,初基元胞体积½a3.
2、举例

二维
图1-7 二维六角蜂房 形点阵不是布喇菲点阵
图1-10 二维六角蜂 房形晶体的布喇菲格子

三维
图1-9 基矢、初基元胞与空间格子 任一格点的位置矢量 Rl=l1a1+l2a2+l3a3 初基元胞的体积 Ω=a1• (a2×a3) 周期性 V(r)=V(r+Rl)
三、惯用元胞
1、 惯用元胞(结晶学元胞):能同时反映晶体周期性和对称 性特征的元胞。
四、初基元胞和惯用元胞的关系
对于简单型布喇菲格子,惯用元胞是初基元胞;对于其它 类型的布喇菲格子,惯用元胞体积是初基元胞体积的整数倍。
图1-12 立方晶系的布喇菲格子
1、简单立方
基矢与轴矢相同。 a1=ai、 a2=aj、 a3=ak 。 两种元胞体积都是a3 。
每个惯用元胞只包含一个格点(8χ1/8 )。惯用元胞就是初基元胞。
图1-19 金刚石的晶体结构
3、阵点(格点)
阵点:代表基元的几何点。
选择原则:各基元的相同位置上。 可以是重心,也可以是各基元的相同原子中心。 空间点阵中所有阵点是严格的等同点,各阵点的周围环境完全相 同。
图1-7 二维六角蜂房形点阵不是布喇菲点阵
4、空间点阵


空间点阵或布喇菲点阵:阵点排列的整体.
4、 (习题2)画出下列晶体的惯用元胞和布喇菲格子,写出它们 的初基元胞基矢表达式,指明各晶体基元的结构及两种元胞中的 原子个数和配位数:1)KCl , 2)TiCl , 3)Si, 4)砷化镓 , 5) 碳化硅,6)钽酸锂,7) 铍,8)钼,9)铂。
图1-8初基元胞的选取

惯用元胞的体积是初基元胞的整数倍 惯用元胞可能不止包含一个格点

三维的惯用元胞一般是平行六面体。
a,b,c称为晶格常数,其常用单位为纳米(nm)和埃(Ǻ) 1nm=10 Ǻ=10-9m 2、惯用元胞的种类 十四种惯用元胞 七大晶系。表1-1
表 1-1 十 四 种 布 喇 菲 格 子
第二节、晶体的微观结构
一、空间点阵与基元 1、布喇菲(A. Bravais)提出空间点阵理论。
理想晶体可以看成由全同的基本结构单元按一定方式在 空间作周期性无限排列而成。
图1-6 晶体 基元与空间点阵示意图
表 1-1 十 四 种 布 喇 菲 格 子
2、基元


基元:晶体的基本结构单元。 基元可以是单个原子,也可能是原子团。 每个基元内所含的原子数等于晶体中原子的种类数。 化学成分不同的原子或化学成分虽然相同但周围环境不同的原子 都应视作不同种类的原子。

图1-12(a) 简单立方

(2)体心立方:W-S元胞是一个截角八面体(十四面体)
图1-15 体心立方的W-S元胞
图1-12b 体心立方
(3)面心立方:W-S元胞是一个菱形十二面体
图1-16 面心立方的W-S元胞
图1-12c
面心立方
作业
1、布喇菲格子有多少种? 2、简单立方、体心立方、面心立方的惯用元胞含有的格点数分别 为多少? 3、(习题1)题图1-1表示了一个由两种元素原子构成的二 维晶体,请分析并找出其基元,画出其布喇菲格 子、初基元胞和W-S元胞,写出元胞基矢表达式。
布喇菲格子:用直线将阵点连结起来而构成的空间格子.表1-1
5、晶体结构是由组成晶体的基元加上空间点阵来决定的.
晶体结构=基元+空间点阵(布喇菲点阵)
二、初基元胞
1、初基元胞(固体物理学元胞):晶体及其空间点阵中最小的周期性 重复单元。


图1-8 初基元胞的选取 初基元胞的选取不是唯一的。 每个初基元胞平均只含一个格点(阵点) 。 初基元胞是周期性重复单元 。
相关文档
最新文档