从梯子的倾斜程度谈1
课件二11从梯子的倾斜程度谈起.ppt
知识的升华
1. 如图,分别求∠α,∠β的正弦、余弦和正切.
α
36
9
2.在△ABC中,AB=5,BC=13,AD是BC边上的高,AD=4.5 求:CD,sinC.
┐
xβ
3.在Rt△ABC中,∠BCA=90°,CD是中线,BC=8,CD=5.
求sin∠ACD,cos∠ACD和tan∠ACD.
4.在Rt△ABC中,∠C=90°,sinA和cosB 有什么关系?
()()()
sin B .
()()() A
C
┌ DB
6.在上图中,若BD=6,CD=12.求cosA的值.
老师提示: 模型“双垂直三角形”的有关性质你可曾记得 .
随堂练习
八仙过海,尽显才能
7.如图,分别根据图(1) 和图(2)求∠A的三个三 角函数值.
B
B
3
43
4┌
┌
A
CA
C
(1)
(2)
8.在Rt△ABC中,∠C=90°, AC=3,AB=6, 求sinA和cosB
老师提示: 求锐角三角函数时,勾股定理的运用是很重要的.
随堂练习
八仙过海,尽显才能
9.在等腰△ABC中
A
,AB=AC=13,BC=10,
求sinB,cosB.
B
┌ D
C
老师提示: 过点A作AD垂直于BC,垂足为D. 求锐角三角函数时,勾股定理的运用是很重要的.
随堂练习
相信自己
A
10.在梯形ABCD中
如图,当Rt△ABC中的一个锐角A确定时,它的对边与邻 边的比便随之确定.此时,其它边之间的比值也确定吗?
结论: 在Rt△ABC中,如果锐角A确定, 那么∠A的对边与斜边的比、邻 边与斜边的比也随之确定.
从梯子的倾斜程度谈起
《从梯子的倾斜程度谈起》第一课时——教案设计武进区寨桥初级中学王小松一、教学目标1、经历探索直角三角形边角关系的过程,理解正切的意义。
2、能运用tanA表示直角三角形的两边比,并进行简单的计算及运用。
3、经历将实际问题转化成数学问题过程,培养学生自主探究的能力及数形结合的思想。
二、重点难点1、理解tanA的意义。
2、能运用tanA进行简单计算及解决一些实际问题。
三、教具准备例题投影片、实物展示台、数码投影仪四、教学过程Ⅰ课堂导入师:大家听到这样一个消息没有,常州红梅公园对外免费开放了。
红梅公园中现在有两座高塔,其中一座叫做文笔塔。
同学们,有谁能利用所学的知识来求得文笔塔的实际高度吗生:(可能会用相似的方法)我明白这位同学的意思,也就是用相似的方法来求塔高。
师:但利用影子的方法来求塔高的要求很高,比如高塔旁不能有建筑物和树,而实际上文笔塔旁既有建筑,也有树。
师:70年代位于南京西路的国际饭店还一直是上海最高的大厦,但经过多少年的发展,“上海最高大厦”的桂冠早已被其他高楼取代,你们知道目前上海最高的大厦叫什么名字吗生:。
师:这大厦名叫金茂大厦,它的高度要比文笔塔高得多。
大家能应用所学得的知识求出金茂大厦的实际高度吗生:。
师:通过本章的学习,相信大家一定能够解决以上这些问题。
今天这节课,我们就先从梯子的倾斜程度谈起,继续来研究直角三角形的相关知识。
(板书课题§1.1.1从梯子的倾斜程度谈起)。
Ⅱ讲授新课师:梯子是我们日常生活中常见的物体。
我们经常听人们说这个梯子放的“陡”,那个梯子放的“平缓”,他们是如何判断的呢“陡”或“平缓”是用来描述梯子的倾斜程度的。
现在我们也一起来研究一下梯子的倾斜程度。
请同学们拿出课前发给大家的材料。
师:在图中,梯子AB和EF哪个更陡你是怎样判断的你有几种判断方法(请同学们在讨论时,结合图中所反映的信息来寻找判断梯子陡的方法)(1)(2)(3)(4)(学生讨论5分钟)师:经过刚才的讨论,大家一定得出了判断哪个梯子陡的方法了。
备选:从梯子的倾斜程度谈起
梯子倾斜角度与使用者的舒适度
梯子倾斜角度过大或过小都可能影响 使用者的舒适度。角度过大会使使用 者感到不稳定,角度过小则可能使使 用者感到疲劳和不适。
使用者应根据实际需要调整梯子的倾 斜角度,以找到一个既安全又舒适的 平衡点。
梯子的防滑设计及其重要性
01
防滑材质
采用防滑材料制作踏板能够有效 增加使用者的安全性,降低滑倒 的风险。
防滑纹路
02
03
防滑把手
在踏板上设计防滑纹路可以增加 脚底与踏板的摩擦力,防止使用 者在上下梯子时滑倒。
在梯子的两端设置防滑把手有助 于增加使用者的稳定性,提供额 外的支撑力。
03 梯子的使用与维护
05 梯子安全事故案例分析
家用梯使用中的安全事故案例
案例一
某家庭主妇在使用家用梯子时不慎摔倒,导致腰部受伤。经调查发现,该梯子倾斜角度过大,稳定性不足。
案例二
一户人家在装修时,工人因梯子滑动而跌落,导致腿部骨折。事后发现,该梯子底部防滑垫损坏,未及时更换。
工业用梯的安全事故案例
案例一
某工厂在使用工业用梯时,一名工人失足从梯子上跌落,造成头部受伤。经调查,该梯子设计不合理 ,安全防护措施不足。
02 梯子的设计因素与安全性 能
梯子的材质与结构对稳定性的影响
材质
金属、木质、塑料等不同材质的梯子 在稳定性方面存在差异。金属梯子通 常最为稳固,木质梯子次之,而塑料 梯子较轻便但可能不太稳固。
结构
直梯、折叠梯、伸缩梯等不同结构的 梯子对稳定性也有影响。直梯通常较 为稳定,折叠梯和伸缩梯在打开或收 起过程中可能存在摇晃的风险。
北师大版九下《从梯子的倾斜程度谈起》微型课课件
A
C2
C1
由此可以得出什么结论?
当梯子的倾斜角确定时,它的竖直 高度和水平宽度的比值也随之确定。
讲一讲
B
正切的定义:
A ∠A的邻边
∠A的对边 ┌ C
在Rt△ABC中,如果锐角A确定,那么∠A 的对边与邻边的比便随之确定,这个比 叫做∠A的正切,记作tanA,即
tanA= A的对边 A的邻边
议一议
梯子的倾斜程度与tanA有关系吗?有什么关系?
B1 B2
A
C2
C1
tanA的值越大,梯子越陡.
典例精讲
例: 下图表示甲、乙两个自动扶梯,哪一个自动 扶梯比较陡?
13m 甲
5m
乙 6m
α
┌
┐ 8m β
巩固练习,形成技能
如图,△ABC是等腰三角形,你能根据图中所 给数据求出tanC吗?
B
1.5
A
D
C
4
通过这节课你有哪些 收获?请与同伴交流。
独立 作业
P6 习题1.1 1、2题
祝你成功!
驶向胜利 的彼岸
不管你是否愿意,数学将 无处不在。独立感悟,勇于思 考,才能真正做到“温故而知 新”,从而成为驾驭学习的主 人。望你乘上数学之舟,科学 之箭,勇闯未来的人生。
从梯子的倾斜程度开始
当梯子靠立墙面时,梯子、地面 与墙之间就形成一个直角三角形,梯 子的竖直高度及水平距离可以看做是 它的两条直角边,梯子可以看做是斜 边,梯子与地面的夹角就是倾斜角。
倾斜角
竖 直 高 度 水平距离
联系生活,导入新课
生活中,我们该如何刻画梯子的倾斜程 度呢?
倾斜角大,梯子就陡; 倾斜角小,梯子就缓。
A
《数学资源与评价》答案
1.B 2.作CD AC ⊥交AB 于D ,则28CAD = ∠,在Rt ACD △中,tan CD AC CAD =∠40.53 2.12=⨯=(米).所以,小敏不会有碰头危险. 3.(1)B 17A =米,CD 20=米;(2)有影响,至少35米 4.AD=2.4米 5.小船距港口A 约25海里1 二次函数所描述的关系1.略 2.2或-3 3.S=116c 2 4.11,4,2,844±± 5.y=16-x 2 6.y=-x 2+4x 7.B 8.D 9.D 10.C 11.y=2x 2;y=18;x=±2 12.y=-2x 2+260x-6500 13.(1)S=4x-32x 2;(2)1.2≤x<1.6 14.s=t 2-6t+72(0<t ≤6)2 结识抛物线1.抛物线;下;y 轴;原点;高;大;相反;相同;相同 2.减小 3.a=2;k=-2 4.a=-15.m=-1 6.(-2,4) 7 8.12 9.y=x 2+6x 10.(1)S=32y ;(2)S 是y 的一次函数,S 是x 的二次函数 11.(1)m=2或-3;(2)m=2.最低点是原点(0,0).x>0时,y 随x 的增大而增大;(3)m=-3,最大值为0.当x>0时;y 随x 的增大而减小 12.A(3,9);B(-1,1);y=x 2 13.抛物线经过M 点,但不经过N 点. 14.(1)A(1,1);(2)存在.这样的点P有四个,即P 10), P 20), P 3(2,0), P 4(1,0)3 刹车距离与二次函数1.下;y 轴;(0,5);高;大;5 2.(0,-1) 1,02⎛⎫- ⎪⎝⎭和1,02⎛⎫ ⎪⎝⎭3.y=x 2+3 4.下;3 5.14- 6.k=9,122b = 7.22y x =- 8.C 9.A 10.C 11.C 12.C 13.(1)2212(2)2y x y x ==-;(3)2y x = 14.(1)3;(2)3 15.y=mx 2+n 向下平移2个单位,得到y=mx 2+n-2,故由已知可得m=3,n-2=-1,从而m=3,n=1 16.以AB 为x 轴,对称轴为y 轴建立直角坐标系,设抛物线的代数表达式为y=ax 2+ c .则B 点坐标为0),N 点坐标为3),故0=24a+c ,3=12a+c ,解得a=-14,c=6,即y= -14x 2+6.其顶点为(0,6),(6-3)÷0.25=12小时. 17.以MN 为x 轴、对称轴为y 轴,建立直角坐标系,则N 点坐标为(2,0), 顶点坐标为(0,4).设y=ax 2+c ,则c=4,0=4a+4,a=-1,故y=-x 2+4.设B 点坐标为(x ,0),c 点坐标为( -x ,0),则A 点坐标为(x ,-x 2+4),D 点坐标为(-x ,-x 2+4).故BC=AD=2x ,AB=CD=-x 2+4.周长为4x+2(-x 2+4).从而有-2x 2+8+4x=8,-x 2+2x=0,得x 1=0,x 2=2.当x=0时,BC=0;当x=2时,AB=-x 2+4=0.故铁皮的周长不可能等于8分米. 18.(1)6,10;(2)55;(3)略;(4)S=12n 2+12n . 聚沙成塔 由y=0,得-x 2+0.25=0,得x=0.5(舍负),故OD=0.5(米).在Rt △AOD 中,AO=OD· tan ∠ADO=0.5tanβ=0.5×tan73°30′≈1.69.又AB=1.46,故OB≈0.23米.在Rt △BOD 中,tan ∠BDO=0.230.5BO OD ==0.46,故∠BDO≈24°42′.即α=24°42′.令x=0,得y=0.25, 故OC= 0.25,从而BC=0.25+0.23=0.48米.2.1~2.3 二次函数所描述的关系、结识抛物线、刹车距离与二次函数测试一、1.πr 2、S 、r 2.(6-x )(8-x )、x 、y 3.①④ 4.4、-2 5.y =-2x 2(不唯一) 6.y =-3x 2 7.y 轴 (0,0) 8.(2,4),(-1,1)二、9.A 10.D 11.B 12.C 13.D 14.C 15.B 16.D三、17.解:(1)∵m 2-m =0,∴m =0或m =1.∵m -1≠0,∴当m =0时,这个函数是一次函数.(2)∵m 2-m ≠0,∴m 1=0,m 2=1.则当m 1≠0,m 2≠1时,这个函数是二次函数.18.解:图象略.(1)0;(2)0;(3)当a >0时,y =ax 2有最小值,当a <0时,y =ax 2有最大值. 四、19.解:y =(80-x )(60-x )=x 2-140x +4800(0≤x <60).20.如:某些树的树冠、叶片等;动物中鸡的腹部、背部等.五、21.解:两个图象关于x 轴对称;整个图象是个轴对称图形.(图略) y =-2x 2 (0,0)y ⎧⎪⎨⎪⎩开口方向向下对称轴轴顶点坐标 y =2x 2 (0,0)y ⎧⎪⎨⎪⎩开口方向向上对称轴轴顶点坐标 22.解:(1)设A 点坐标为(3,m );B 点坐标为(-1,n ).∵A 、B 两点在y =13x 2的图象上,∴m =13×9=3,n =13×1=13.∴A (3,3),B (-1,13).∵A 、B 两点又在y =ax +b 的图象上,∴33,1.3a b a b =+⎧⎪⎨=-+⎪⎩解得231a b ⎧=⎪⎨⎪=⎩,∴一次函数的表达式是y =23x +1. (2)如下图,设直线AB 与x 轴的交点为D ,则D 点坐标为(-32,0).∴|DC |=32.S △ABC =S △ADC -S △BDC =12×2×3-2×2×3=4-14=2. 4 二次函数y=ax 2+bx+c 的图像1.上,12,33⎛⎫ ⎪⎝⎭,13x = 2.-4 0 3.四 4.0 5.左 3 下 2 6.1 7.-1或3 8.< > > > < 9.12x =,19,24⎛⎫- ⎪⎝⎭10.①②④ 11.D 12.D 13.A 14.D 15.∵2215044(5)1015015,113522(5)44(5)b ac b a a -⨯-⨯--=-===⨯-⨯-.故经过15秒时,火箭到达它的最高点,最高点的高度是1135米 16.由已知得2444a a -=2.即a 2-a-2=0,得a 1=-1,a 2=2,又a≥0,故a=2. 17.以地面上任一条直线为x 轴,OA 为y 轴建立直角坐标系,设y=a(x-1)2+2.25, 则当x=0时,y=1.25,故a+2.25=1,a=-1.由y=0,得-(x-1)2+2.25=0,得(x-1)2=2.25,x 1=2.5,x 2=-0.5(舍去),故水池的半径至少要2.5米. 18.如:7月份售价最低,每千克售0.5元;1-7月份, 该蔬菜的销售价随着月份的增加而降低,7-12月份的销售价随月份的增加而上升;2月份的销售价为每千克3.5元;3月份与11月份的销售价相同等.5 用三种方式表示二次函数1.y=-x 2+144 2.y 3.(1) y=x 2+-2x ;(2)3或-1 ;(3) x<0或x>2 4.k>35. y=x 2+8x 6.y=x 2+3x ,小,33,24- 7.(2,4) 8.14- 9.C 10.D 11.C 12.C 13.(1)略;(2)y=x 2-1;(3)略 14.设底边长为x ,则底边上的高为10-x ,设面积为y ,则y=12x(10-x)=-12(x 2-10x)=-12(x 2-10x+25-25)=-12(x-5)2+12.5.故这个三角形的面积最大可达12.5 15.2116S l = 16.(1)对称轴是直线x=1,顶点坐标为(1,3),开口向下;(2)当x<1时,y 随x 的增大而增大;(3)y=-2(x-1)2+3 17.由已知得△BPD ∽△BCA .故22416BPD ABC S x x S ∆∆⎛⎫== ⎪⎝⎭,224(4)416PCE ABC S x x S ∆∆--⎛⎫== ⎪⎝⎭,过A 作AD ⊥BC ,则由∠B=60°,AB=4,得 AD=AB·sin60°4=,故142ABC S ∆=⨯⨯∴222(4)1616BPD PCE x x S S ∆∆-+=⨯⨯-+∴22y =-+=+⎝.18.(1) s=12t 2-2t ; (2)将s=30代入s=12t 2-2t ,得30=12t 2-2t ,解得t 1=10,t 2=-6(舍去).即第10个月末公司累积利润达30万元;(3)当t=7时,s=12×72-2×7=10.5,即第7个月末公司累积利润为10.5万元;当t=8时,s=12×82-2×8 =16, 即第8个月末公司累积利润为16万元.16-10.5=5.5万元.故第8个月公司所获利润为5.5万元.19.(1)略;(2)(1)2n n S -=;(3)n=56时,S=1540 20.略 6 何时获得最大利润1.A 2.D 3.A 4.A 5.C 6.B7. (1)设y=kx+b ,则∵当x=20时,y=360;x=25时,y=210.∴3602021025k b k b =+⎧⎨=+⎩, 解得30960k b =-⎧⎨=⎩∴y=-30x+960(16≤x≤32); (2)设每月所得总利润为w 元,则 w=(x-16)y=(x-16)(-30x+960)=-30(x-24)2+ 1920.∵-30<0,∴当x=24时,w 有最大值.即销售价格定为24元/件时,才能使每月所获利润最大, 每月的最大利润为1920元.8. 设每间客房的日租金提高x 个5元(即5x 元),则每天客房出租数会减少6x 间,客房日租金总收入为y=(50+5x)(120-6x)=-30(x-5)2+6750.当x=5时,y 有最大值6750,这时每间客房的日租金为50+5×5=75元. 客房总收入最高为6750元.9.商场购这1000件西服的总成本为80×1000=8000元.设定价提高x%, 则销售量下降0.5x%,即当定价为100(1+x%)元时,销售量为1000(1-0.5x%)件.故y=100(1+x%)·1000(1-0.5x%)-8000 =-5x 2+500x+20000=-5(x-50)2+32500.当x=50时, y 有最大值32500.即定价为150元/件时获利最大,为32500元.10.(1)s=10×277101010x x ⎛⎫-++ ⎪⎝⎭×(4-3)-x=-x 2+6x+7.当x=62(1)-⨯-=3 时,S 最大=24(1)764(1)⨯-⨯-⨯-=16. ∴当广告费是3万元时,公司获得的最大年利润是16万元.(2)用于再投资的资金有16-3=13万元.有下列两种投资方式符合要求:①取A 、B 、E 各一股,投入资金为5+2+6=13万元,收益为0.55+0.4+0.9=1.85万元>1.6万元. ②取B 、D 、E 各一股,投入资金为2+4+6=12万元<13万元,收益为0.4+0.5+0.9=1.8万元>1.6万元.11.(1)60吨;(2) 226033(7.545)(10)(320)(100)315240001044x y x x x x x -=⨯+-=--=-+-;(3)210元/吨;(4) 不对,设月销售额为w 元.22603(7.545)240104x w x x x -=⨯+=-+,x=160时,w 最大.12.(1)21425y x =-+;(2)货车到桥需280406(40-=小时) ,0.256 1.5(⨯=米)而O(0,4),4-3=1(米)<1.5米,所以,货车不能通过. 安全通过时间434(0.25-=小时),2804060(/4-=千米时),货车安全通过速度应超过60千米/时.7 最大面积是多少1.y=-x 2+600,020x ≤≤,600m 2 ,200m 2 2.20cm 2 3.圆 4.16cm 2 ,正方形 5. 5±6.10 7.21822333y x x =-+- 8. 9.-2 10. C 11. D 12.C 13.A 14.D 15.过A 作AM ⊥BC 于M ,交DG 于N ,则.设DE=xcm ,S矩形=ycm 2,则由△ADG ∽△ABC ,故AN DG AM BC =,即161624x DG -=,故DG=32(16-x).∴y=DG·DE=32(16-x)x=-32(x 2-16x)=-32(x-8)2+96,从而当x=8时,y 有最大值96.即矩形DEFG 的最大面积是96cm 2.16.(1)y= 238x -+3x .自变量x 的取值范围是0<x<8. (2)x=3328-⎛⎫⨯- ⎪⎝⎭=4时,y 最大=234038348⎛⎫⨯-⨯- ⎪⎝⎭⎛⎫⨯- ⎪⎝⎭=6.即当x=4时,△ADE 的面积最大,为6. 17.设第t 秒时,△PBQ 的面积为ycm 2.则∵AP=tcm ,∴PB=(6-t)cm ;又BQ=2t .∴y=12PB·BQ=12(6-t)·2t=(6-t)t=-t 2+6t=-(t-3)2+9,当t=3时,y 有最大值9.故第3秒钟时△PBQ 的面积最大,最大值是9cm 2.18.(1)可以通过,根据对称性,当x=12×4=2时,y=132-×4+8=778>7.故汽车可以安全通过此隧道;(2)可以安全通过,因为当x=4时,y=132-×16+8=172>7.故汽车可以安全通过此隧道;(3)答案不惟一,如可限高7m .19.不能,y=-x 2+4x ,设BC=a ,则AB=4-a ,(2,4)2a A a ∴+-代入解析式 24(22)404,2a a a -=-+-+=得或 A(2,4)或(4,0) 所以,不能. 20.(1)125h =;(2)12,125x S ==最大;(3)BE=1.8,在 21.(1)第t 秒钟时,AP=t ,故PB=(6-t)cm ;BQ=2tcm .故S △PBQ =12·(6-t)·2t=-t 2+ 6t .∵S 矩形ABCD =6×12=72.∴S=72-S △PBQ =t 2-6t+72(0<t<6);(2)S=(t-3)2+63.故当t=3时,S 有最小值63. 22. (1)过A 作AD ⊥BC 于D 交PQ 于E ,则AD=4.由△APQ ∽△ABC ,得446x x -=,故x=125;(2)当RS 落在△ABC 外部时,不难求得AE=23x ,故22212446335y x x x x x ⎛⎫⎛⎫=-=-+<< ⎪ ⎪⎝⎭⎝⎭.当RS 落在△ABC 内部时,y=x 2(0<x<125);(3)当RS 落在△ABC 外部时,2222124(3)66335y x x x x ⎛⎫=-+=--+<< ⎪⎝⎭.∴当x=3时,y 有最大值6.当RS 落在BC 边上时,由x=125可知,y= 14425.当RS 落在△ABC 内部时,y=x 2(0<x<125),故比较以上三种情况可知:公共部分面积最大为6.23.(1)由对称性,当x=4时,y=211642525-⨯=-.当x=10时,y=2110425-⨯=-.故正常水位时,AB 距桥面4米,由16943 2.52525-=>,故小船能通过; (2)水位由CD 处涨到点O 的时间为1÷0.25=4小时.货车按原来的速度行驶的路程为40×1+40×4=200<280.∴货车按原来的速度行驶不能安全通过此桥.8 二次函数与一元二次方程1.(-3,0),(1,0) 2.y=2x 2+4x-6 3.一、二、三 4.(1,2) 5.m=-7 6.m=87.(-1,0) 8.9016k k >-≠且 9.a=2 10.B 11.A 12.C 13.y=x 2+x+9图象与y=1的两个交点横坐标是x 2+x+9=0两根 14.224(2)(2)40m m m ∆=--=-+>15.C △ABC =AB+BC+AC=2.S △ABC =12AC·OB=12×2×3=3 16.(1)k=-2,1 (2)0<k<2 17.(1) 904m m <≠且(2)在(3) 15(,),(2,1)24Q P --- 18.(1)25s ,125m ;(2)50s 19.(1)m=2或0;(2) m<0;(3)m=1,S = 20.(1) y=112-(x-6)2+5;(2) (2)由112-(x-6)2+5=0,得x 1=266x +=-:C 点坐标为(6+0) 故OC=6+.75(米),即该男生把铅球推出约13.75米.21.(1) y=-x 2+4x-3;(2) ∴直线BC 的代数表达式为y=x-3 (3) 由于AB=3-1=2,OC=│-3│=3.故S △ABC =12AB·OC=12×2×3=3 22.(1) k=1;(2)k=-1 2.6—2.8A 参考答案一、1. 2.14,大,-38,没有 3.①x 2-2x ;②3或-1;③<0或>2 4.y =x 2-3x -10 5.m >92,无解 6.y =-x 2+x -1,最大 7.S =π(r +m )2 8.y =-18x 2+2x +1, 16.5二、9.B 10.C 11.C 12.B 13.D 14.B 15.D 16.B三、17.解:(1)y =-2x 2+180x -2800;(2)y =-2x 2+180x -2800=-2(x 2-90x )-2800=-2(x -45)2+1250.当x =45时,y 最大=1250.∴每件商品售价定为45元最合适,此销售利润最大,为1250元. 18.解:∵二次函数的对称轴x =2,此图象顶点的横坐标为2,此点在直线y =12x +1上.∴y =12×2+1=2.∴y =(m 2-2)x 2-4mx +n 的图象顶点坐标为(2,2).∴-2b a=2.∴-242(2)m m --=2.解得m =-1或m =2.∵最高点在直线上,∴a <0,∴m =-1.∴y =-x 2+4x +n 顶点为(2,2).∴2=-4+8+n .∴n =-2.则y =-x 2+4x +2.四、19.解:(1)依题意得:鸡场面积y =-2150.33x x -+∵y =-13x 2+503x =13-(x 2-50x )=-13(x -25)2+6253,∴当x =25时,y 最大=6253, 2.6—2.8B 参考答案一、1.3 2.2 3.b 2-4ac>0(不唯一) 4.15 cmcm 2 5.(1)A ;(2)D ;(3)C ;(4)B 6.5,625二、7.B 8.B 9.A 10.C 11.D 12.B三、13.解:(1)信息:①1、2月份亏损最多达2万元;②前4月份亏盈吃平;③前5月份盈利2.5万元;④1~2月份呈亏损增加趋势;⑤2月份以后开始回升.(盈利);⑥4月份以后纯获利……(2)问题:6月份利润总和是多少万元?由图可知,抛物线的表达式为y=12(x -2)2-2,当x=6时,y=6(万元)(问题不唯一). 14.解:设m=a+b y=a·b ,∴y=a(m -a)=-a 2+ma=-(a -2m )2+24a ,当a=2m 时,y 最大值为24a .结论:当两个数的和一定,这两个数为它们和的一半时,两个数的积最大.四、15.(1)由题意知:p=30+x ;(2)由题意知:活蟹的销售额为(1000-10x)(30+x)元,死蟹的销售额为200x 元.∴Q=(1000-10x)(30+x)+200x=-10x 2+900x+30000;(3)设总利润为L=Q -30000-400x=-10x 2+500x=-10(x 2-50x) =-10(x -25)2+6250.当x=25时总利润最大,为6250元. 五、16.解:∵∠APQ=90°,∴∠APB+∠QPC=90°.∵∠APB+∠BAP=90°,∴∠QPC=∠BAP ,∠B=∠C=90°.∴△ABP ∽△PCQ .6,,8AB BP x PC CQ x y ==-∴y=-16x 2+43x . 17.解:(1)10;(2)55;(3)略;(4)经猜想,所描各点均在某二次函数的图象上.设函数的解析式为S=an 2+bn+c .由题意知:1a ,21,1423,b ,2936,c 0.a b c a b c a b c ⎧=⎪++=⎧⎪⎪⎪++==⎨⎨⎪⎪++=⎩=⎪⎪⎩解得∴S=211.22n n + 单元综合评价一、选择题:1~12:CBDAA ,CDBDB ,AB二、填空题:13.2 14.591415. 16.-7 17.2 18.y=0.04x 2+1.6x 19.<、<、> 20.略 21.只要写出一个可能的解析式 22.1125m 23.-9.三、解答题:24.y=x 2+3x+2 (-3/2,- 1/4) 25.y=-1200x 2+400x+4000;11400,10600 26.2125y x =-; 5小时 27.(1)5;(2) 2003 28.(1) 2y -x x =+;(2) y=-x 2+1/3x+4/9,y=-x 2-x 29.略.第三章 圆1 车轮为什么做成圆形1.=5cm <5cm >5cm 2.⊙O 内 ⊙O 上 ⊙O 外 3.9π cm 2 4.内部 5.5cm6.C 7.D 8.B 9.A 10.由已知得OA=8cm ,=10,,故OA<10,OB<10,OD=10,OC>10.从而点A , 点B 在⊙O 内;点C 在⊙O 外;点D 在⊙O 上 11.如图所示,所组成的图形是阴影部分(不包括阴影的边界) 12.如图所示,所组成的图形是阴影部分(不包括阴影的边界).(11题) (12题)13.由已知得PO=4,PA=5,PB=5,故OA=1,OB=9,从而A点坐标为A(-1,10),B点坐标为(9,0);连结PC、PD,则PC=PD=5,又PO⊥CD,PO=4,故OC==3,.从而C点坐标为(0,3) ,D点坐标为(0,-3) 14.存在,以O为圆心,OA为半径的圆15.2≤AC≤8聚沙成塔∵PO<2.5,故点P在⊙O内部;∵Q点在以P为圆心,1为半径的⊙P上,∴1≤OQ≤3.当Q在Q1点或Q2点处,OQ=2.5,此时Q在⊙O上;当点Q在弧线Q1mQ2上(不包括端点Q1,Q2),则OQ>2.5,这时点Q 在⊙O外;当点Q在弧线Q1nQ2上(不包括端点Q1,Q2),则OQ<2.5,这时点Q在⊙O内.2 圆的对称性1.中心,过圆心的任一条直线,圆心2.60°3.2cm 4.5 5.3≤OP≤56.10 7.相等89.C 10.B 11.A 12.过O作OM⊥AB于M,则AM=BM.又AC=BD,故AM-AC=BM-BD,即CM=DM,又OM⊥CD,故△OCD是等腰三角形.即OC=OD.(还可连接OA、OB.证明△AOC≌△BOD) 13.过O作OC⊥AB于C,则BC=152cm.由BM:AM=1:4,得BM=15×5=3 ,故CM=152-3=92.在Rt△OCM中,OC2=229175824⎛⎫-=⎪⎝⎭.连接OA,则10=,即工件的半径长为10cm 14.是菱形,理由如下:由 BC= AC,得∠BOC=∠AOC.故OM⊥AB,从而AM=BM.在Rt △AOM中,sin∠AOM=AMOA=,故∠AOM=60°,所以∠BOM=60°.由于OA=OB=OC,故△BOC 与△AOC 都是等边三角形,故OA=AC=BC=BO=OC,所以四边形OACB是菱形.15.PC=PD.连接OC、OD,则∵ DB= BC,∴∠BOC=∠BOD,又OP=OP,∴△OPC≌△OPD,∴PC=PD.16.可求出长为6cm的弦的弦心距为4cm,长为8cm的弦的弦心距为3cm.若点O 在两平行弦之间,则它们的距离为4+3=7cm,若点O在两平行弦的外部,则它们的距离为4- 3=1cm,即这两条弦之间的距离为7cm或1cm.17.可求得OC=4cm,故点C在以O为圆心,4cm长为半径的圆上,即点C 经过的路线是O为圆心,4cm长为半径的圆.聚沙成塔作点B关于直线MN的对称点B′,则B′必在⊙O上,且 B N'= NB.由已知得∠AON=60°,故∠B′ON=∠BON= 12∠AON=30°,∠AOB′=90°.连接AB′交MN于点P′,则P′即为所求的点.此时AP+BP3 圆周角与圆心角1.120°2.3 1 3.160°4.44°5.50°67.A 8.C 9.B 10.C 11.B 12.C 13.连接OC、OD,则OC=OD=4cm,∠COD=60°,故△COD是等边三角形,从而CD= 4cm 14.连接DC,则∠ADC=∠ABC=∠CAD,故AC=CD.∵AD是直径,∴∠ACD=90°,∴AC2+CD2=AD2,即2AC2=36,AC2=18,15.连接BD,则∴AB 是直径,∴∠ADB=90°.∵∠C=∠A,∠D=∠B,∴△PCD ∽△PAB,∴PD CDPB AB=.在Rt△PBD 中,cos∠BPD=PD CDPB AB==34,设PD=3x,PB=4x,则==,∴tan ∠BPD=BD PD == 16.(1)相等.理由如下:连接OD ,∵AB ⊥CD ,AB 是直径,∴ BC= BD ,∴∠COB= ∠DOB .∵∠COD=2∠P ,∴∠COB=∠P ,即∠COB=∠CPD ;(2)∠CP′D+∠COB=180°.理由如下:连接P′P ,则∠P′CD=∠P′PD ,∠P′PC=∠P′DC .∴∠P′CD+∠P′DC=∠P′PD+∠P′PC=∠CPD .∴∠CP′D=180°-(∠P′CD+∠P′DC)=180°-∠CPD=180°-∠COB ,从而∠CP′D+∠COB=180° 17. 聚沙成塔 迅速回传乙,让乙射门较好,在不考虑其他因素的情况下, 如果两个点到球门的距离相差不大,要确定较好的射门位置,关键看这两个点各自对球门MN 的张角的大小,当张角越大时,射中的机会就越大,如图所示,则∠A<MCN=∠B ,即∠B>∠A , 从而B 处对MN 的张角较大,在B 处射门射中的机会大些.4 确定圆的条件1.三角形内部,直角三角形,钝角三角形 2. 3 4.其外接圆,三角形三条边的垂直平分线,三角形三个顶点 5 6.两 7.C 8.B 9.A 10.C11.B 12.C 13.略 14.略 15.(1)△FBC 是等边三角形,由已知得:∠BAF=∠MAD=∠DAC=60°=180°-120°=∠BAC ,∴∠BFC=∠BAC=60°,∠BCF=∠BAF=60°,∴△FBC 是等边三角形;(2)AB=AC+FA .在AB 上取一点G ,使AG=AC ,则由于∠BAC=60°,故△AGC 是等边三角形,从而∠BGC=∠FAC=120°,又∠CBG=∠CFA ,BC=FC ,故△BCG ≌△FCA ,从而BG=FA ,又AG=AC ,∴AC+FA=AG+BG=AB 16.(1)在残圆上任取三点A 、B 、C ; (2)分别作弦AB 、AC 的垂直平分线, 则这两垂直平分线的交点即是所求的圆心;(3)连接OA ,则OA 的长即是残圆的半径 17.存在.∵AB 不是直径(否则∠APB=90°,而由cos ∠APB=13知∠APB<90°,矛盾)∴取优弧AB 的中点为P 点,过P 作PD ⊥AB 于D ,则PD 是圆上所有的点中到AB 距离最大的点.∵AB 的长为定值,∴当P 为优弧AB 的中点时,△APB的面积最大,连接PA 、PB , 则等腰三角形APB 即为所求.S △APB= 12AB· 聚沙成塔 过O 作OE ⊥AB 于E ,连接OB ,则∠AOE=12∠AOB ,AE=12AB ,∴∠C=1∠AOB=∠AOE . 解方程x 2-7x+12=0可得DC=4,AD=3,故,可证Rt △ADC ∽Rt △AEO ,故AE AO AD AC=,又, AD=3,,故,从而S ⊙O=21254ππ⨯=⎝⎭. 5 直线与圆的位置关系1.相交 2.60 3.如OA ⊥PA ,OB ⊥PB ,AB ⊥OP 等 4.0≤d<4 5.65° 6.146°,60°,86° 7.A 8.B 9.C 10.C 11.D 12.B 13.(1)AD ⊥CD .理由:连接OC ,则OC ⊥CD .∵OA=OC ,∴∠OAC=∠OCA ,又∠OAC= ∠DAC ,∴∠DAC=∠OCA ,∴AD ∥OC ,∴AD ⊥CD ;(2)连接BC ,则∠ACB=90°由(1)得∠ADC=∠ACB ,又∠DAC=∠CAB .∴△ACD ∽△ABC ,∴AC AD AB AC=,即AC 2=AD·AB=80,故 14.(1)相等.理由:连接OA ,则∠PAO=90°.∵OA=OB ,∴∠OAB=∠B=30°, ∴∠AOP=60°,∠P=90°-60°=30°,∴∠P=∠B ,∴AB=AP ;(2)∵tan ∠APO=OA PA,∴OA=PA ,tan ∠0301tan ==,∴BC=2OA=2,即半圆O 的直径为2 15.(1)平分.证明:连接OT ,∵PT 切⊙O 于T ,∴OT ⊥PT ,故∠OTA=90°, 从而∠OBT=∠OTB=90°-∠ATB=∠ABT .即BT 平分∠OBA ; (2)过O 作OM ⊥BC 于M ,则四边形OTAM 是矩形,故OM=A T=4,AM=OT=5.在Rt △OBM 中,OB=5,OM=4,故=3,从而AB=AM-BM=5-3=2 16.作出△ABC 的内切圆⊙O ,沿⊙O 的圆周剪出一个圆,其面积最大 17.由已知得:OA=OE ,∠OAC=∠OEC ,又OC 公共,故△OAC ≌OEC ,同理,△OBD ≌△OED ,由此可得∠AOC=∠EOC ,∠BOD=∠EOD ,从而∠COD=90°,∠AOC=∠BDO . 根据这些写如下结论:①角相等:∠AOC=∠COE=∠BDO=∠EDO ,∠ACO=∠ECO=∠DOE=∠DOB ,∠A=∠B=∠OEC=∠OED ;②边相等:AC=CE ,DE=DB ,OA=OB=OE ;③全等三角形:△OAC ≌△OEC ,△OBD ≌△OED ;④相似三角形:△AOC ∽△EOC ∽△EDO ∽△BDO ∽△ODC .聚沙成塔 (1)PC 与⊙D 相切,理由:令x=0,得y=-8,故P(0,-8);令y=0,得故0),故OP=8,OC=2,CD=1,∴CD==3,又PC=,∴PC 2+CD 2=9+72=81=PD 2.从而∠PCD=90°,故PC 与⊙D 相切; (2)存在.点-12)或-4),使S △EOP =4S △CDO .设E 点坐标为(x ,y),过E 作EF ⊥y 轴于F ,则EF=│x│.∴S △POE =12PO·EF=4│x│.∵S △CDO =12CO·∴当时,;当时,.故E 点坐标为-4)或-12).6 圆与圆的位置关系1.2 14 2.外切 3.内切 4.45°或135° 5.1<r<8 6.外切或内切 7.A 8.B9.C 10.D 11.C 12.A 13.C 14.外切或内切,由│d -4│=3,得d=7或1,解方程得x 1=3,x 2=4,故当d=7时,x 1+ x 2=d ;当d=1时,x 2-x 1=d ,从而两圆外切或内切 15.过O 1作O 1E ⊥AD 于E ,过O 2作O 2F ⊥AD 于F ,过O 2作O 2G ⊥O 1E 于G ,则AE=DF=5cm ,O 1G=16-5-5=6cm ,O 2O 1=5+5=10cm ,故O 2,所以EF=8cm ,从而AD=5+5+8=18cm .16.如图所示.17.如:AC=BC ,O 1A 2+AF 2=O 1F 2,AC 2+CF 2=AF 2等 聚沙成塔 有无数种分法.如:过⊙O 2与⊙O 5的切点和点O 3画一条直线即满足要求.7 弧长及扇形的积1.240°3πcm 2.389mm 3.16π 4.50 5 6.2πcm 2 7.B 8.C9.C 10.B 11.A 12.A 13.设其半径为R ,则120180R π⨯=,R =cm ,过圆心作弦的垂线,则可求弦长为9cm 14.由已知得,S 扇形DOC=2150500203603ππ⨯=,S 扇形AOB=2150125103603ππ⨯=,故绸布部分的面积为S 扇形DOC- S 扇形AOB=125π 15.由已知得,2081809n ππ⨯=,得n=50,即∠AOC=50°.又AC 切⊙O 于点C ,故∠ACO=90 °,从而OA=812.446cos50cos50OC =≈︒︒,故AB=AO-OB=12.446-8≈4.45cm 16.设切点为C ,圆心为O ,连接OC ,则OC ⊥AB ,故AC=BC=15,连接OA ,则OA 2-OC 2=AC 2=152=225,故S 阴影=2222()225AO CO AO CO ππππ⨯-⨯=-=cm 2 17.如图所示r=22C B A r=4C A r=42-4r=2OB A聚沙成塔 (1)依次填2468,,,3333ππππ;(2)根据表可发现:23n l n π=⨯,考虑2264001000003n ππ⨯≥⨯⨯,得n≥1.92×109,∴n 至少应为1.92×109. 8 圆锥的侧面积1.6 2.10π 3.2000π 4.2cm 5.15π 6.18 7.D 8.D 9.B 10.B11.A 12.B 13.侧面展开图的弧长为2816ππ⨯=,设其圆心角为n°,则1516180n ππ⨯=,故n=192, 即这个圆锥的侧面展开图的圆心角是192° 14.可得△SAO ≌△SBO ,故∠ASO=∠BSO=60°,∠SBO=30°,由BO=27, tan ∠SBO=tan 30°=27SO SO BO =,得SO=27=≈15.6m ,即光源离地面的垂直高度约为15.6m 时才符合要求 15.过A 作AD ⊥BC ,则由∠C=45°,得AD=DC=12cn ,AB=2AD=24cm ,=BC=12,以A 为圆心的扇形面积为21051242360ππ⨯=cm 2,以B 为圆心的扇形面积为22302448360cm ππ⨯=,以C为圆心的扇形面积为224536360cm ππ⨯=, 故以B 为圆心取扇形作圆锥侧面时,圆锥的侧面积最大,设此时圆锥的底面半径为r ,则30224180r ππ=⨯, r=2cm ,直径为4cm 聚沙成塔 设圆的半径为r ,扇形的半径为R ,则1224R r ππ⨯⨯=⨯,故R=4r ,又,将R=4r 代入,可求得≈0.22a . 正多边形与圆1.正方形 2.十八 提示:正多边形的中心角等于外角,外角和为360°,360÷20=18 3.36° 提示:可求出外角的度数 4.正三角形 5.C 提示:其中正确的有②④⑤⑥⑦ 6.C7.D 提示:按正多边形的定义 8.C 9.3 提示:利用直角三角形中,30°角所对直角边等于斜边的一半 10.100cm 211:2 提示:设此圆的半径为R ,则它的内接正方R,内接正方形和外切正六边形的边长比为2 12.4πa 2 提示:如图所示,AB 为正n 边形的一边,正n 边形的中心为O ,AB •与小圆切于点C ,连接OA ,OC ,则OC ⊥AB ,12AC=12AB=a ,所以AC 2=14a 2=OA 2-OC 2,S 圆环=S 大圆-S 小圆=πOA 2-OC 2=π(OA 2-OC 2)=4πa 2 13.C 14.C 15.方法一:(1)用量角器画圆心角∠AOB=120°,∠BOC=120°;(2)连接AB ,BC ,CA ,则△ABC 为圆内接正三角形.方法二:(1)用量角器画圆心角∠BOC=120°;(2)在⊙O 上用圆规截取;(3)连接AC ,BC ,AB ,则△ABC 为圆内接正三角形.方法三:(1)作直径AD ;(2)以O 为圆心,以OA 长为半径画弧,交⊙O 于B ,C ;(3)连接AB ,BC ,CA ,则△ABC 为圆内接正三角形.方法四:(1)作直径AE ;(2)分别以A ,E 为圆心,OA 长为半径画弧与⊙O 分别交于点D ,F ,B ,C ;(3)连接AB ,BC ,CA (或连接EF ,ED ,DF ),则△ABC (或△EFD )为圆内接正三角形.16.解:相同点:都有相等的边;都有相等的角,都有外接圆和内切圆等.不同点:边数不同;内角的度数不同;内角和不同;对角线条数不同等 17.解:方法一:如题图①中,连接OB ,OC .∵正三角形ABC 内接于⊙O ,∴∠OBM=∠OCN=30°,∠BOC=120°.又∠OCN=30°,∠BOC=120°,而BM=CN ,OB=OC ,∴△OBM ≌△OCN ,∴∠BOM=∠CON ,∴∠MON=∠BOC=120°.方法二:如题图①中,连接OA ,OB .∵正三角形ABC 内接于⊙O ,∴AB=BC ,∠OAM=∠OBN=30°,∠AOB=120°,∴∠AOM=∠BON .∴∠MON=∠AOB=120°;(2)90° 72°;(3)∠MON=360n︒ 单元综合评价(一)一、1~5 AABDB 6~10 DDABD二、11.8 12.π213.9cm 14.120° 15.13 16.18πcm 2 17.60° 18.180° 19.7或1 20.(1)2;(2)3n +1三、21.10cm ,6cm 22.432m 2 23.2π6R (提示:连接CO ,DO ,S 阴影=S 扇形COD ) 24.(1)A (4,0),33y x =+;(2)3>m时相离,m =时相切,0m <<时相交 25.解:(1)42πr r +,82πr r +;(2)62πr r +,82πr r +,102πr r +,122πr r +;(3)162πr r +,图略单元综合评价(二)1.以点A 为圆心,2cm 长为半径的圆 2.点P 在⊙O 内 3.10 4.90° 5.2 6. 120°7.3 8.2cm 或8cm 9.(12+5π)cm 10.30π 11.B 12.D 13.D 14.C15.D 16.B 17.B 18.C 19.C 20.C 21.如图,所有点组成的图形是如图所示的阴影部分. 22.(1)连接CD ,=5,由CD=CA ,得∠CDA=∠A ,故tan ∠CDA=tanA=43BC AC =;(2)过C 作CF ⊥AD 于F ,则AD=2AF ,由cosA=AC AF AB AC=,得AC 2=AB·AF .故32=5·AF ,AF=95,所以AD=185. 23.(1)相切.理由:连接OC ,OB ,则OC ⊥AB ,由已知得BC=12AB=4,OB=5,故=3,从而圆心O 到直线AB 的距离等于小圆的半径,故AB 与小圆相切;(2) 22222(53)16OB OC cm ππππ-=-=. 24.(1)连接AB ,AM ,则由∠AOB=90°,故AB 是直径,由∠BAM+∠OAM=∠BOM+ ∠OBM=180°-120°=60°,得∠BAO=60°,又AO=4,故cos ∠BAO=AO AB,AB=048cos60=,从而⊙C 的半径为4;(2)由(1)得,=C 作CE ⊥OA 于E ,CF ⊥OB 于F ,则EC=OF=12BO=12⨯,CF=OE=12OA=2, 故C 点坐标为(-,2) 25.连接AC ,BC ,分别作AC ,BC 的垂直平 AC AB =分线,相交于点M ,则点M 即满足条件(图略) 26.(1)设扇形半径为Rcm ,则2120300360R ππ=,故R=30cm ,设扇形弧长为Lcm ,则113030022Rl l π=⨯=,故L=20π;(2)设圆锥的底面半径为rcm ,则220r ππ=,r=10cm = 27.如:∠D=30°,DC 是⊙O 的切线,△CBD 是等腰三角形,△ACD 是等腰三角形,AC=CD ,BD=BC ,△DCB ∽△DAC ,DC 2=DB·DA ,,等 28.略.只要符合题意即可得分.第四章 统计与概率1 50年的变化(1)1.条形,折线,扇形 2.条形,0 3.折线,同一单位长度 4.不能 5.(1)1:3;(2)从0开始 6.B 7.C 8.D 9.D 10.C 11.B 12.解:(1)左图给人的感觉是小明通过努力,数学成绩提高迅速,进步很大;而右图给你的感觉则是小明的学习成绩比较稳定,进小不是很大;(2)如果小明想向他的父母说明他数学成绩的提高情况,那么他应选择左图,理由是:左图看上去折线上升速度转快,表明小明的成绩提高迅速 13.解:(1)A 村的苹果产量占本村两种水果总产量的35%,梨占65%;B 村的苹果产量在本村两种水果总产量中占80%,梨占20%。
北师大版九年级数学下册1.1从梯子的倾斜程度谈起(第一课时)导学案
1、 勾股定理: _____________________________________________________; 应用勾股定理的前提是_________________________. 2、 相似三角形的对应边________ _______.
3、 如图,在 Rt△ABC 中,∠C=90°,________是斜边,∠A 的对 边是________,AC 是∠A 的_________. 自主 学习:
A B
C
自我评价:
小组长评价:
情境导入:
下图中,梯子 AB 和 EF 那个更陡?你是怎样判断的?
合作 探究:
合作探究一:
如图 1,BC、DE、FG、HI 都与 AC 垂直,容易证明
ABC ______ADE ;从而可得:
BC AC .所以, _____ DE AE
BC DE BC DE .进而可得: ____ ______ _____ AC AE AC AE
(图 4)
.
即学即用: 例 1 图 4 表示甲、乙两个自动扶梯,哪一个自动扶梯
比较陡? 解:甲梯中, tan __________. 乙梯中, tan __________ . 因为 tan _____tan ,所以 梯更陡.
知识拓展:
正切也经常用来描述山坡的坡度 (即坡面铅直高度与水 平宽度的比) .那么, 如果有一山坡在水平方向上每前进 100m 就升高 60m,则山坡的坡度,路基高是 4 米,则路基的 下底宽为 米.
5、 (40 分)如图, 是 Rt△ABC 斜边 AB 上的高, BD=2, CD 若 tan∠BCD=
1 ,求 AB 的长. 2
课后作业:
课本第 6 页,习题 1.1,知识技能,1、2.
九年级数学从梯子的倾斜程度谈起
相信自己:(必做题) 1、在Rt△ABC中,∠C=90°, (1)AC=25,AB=27,求tanA和tanB (2)BC=3,tanA=0.6,求AC 和AB。 (3)AC=4,tanA=0.8,求BC。 2、在梯形ABCD中,AD//BC, AB=DC=13,AD=8, BC=18,求tanB。
挑战自己:(选做题) 1、在△ABC中,D是AB的中 点,DC⊥AC, tan∠BCD=0.5,AB=4 , 求AC。 2
试一试: 如图表示两个自动 扶梯,哪一个自动扶梯比较陡?
甲
乙
想一想:如图,小明想通过测量B1C1 及 AC1 ,算出 他们的比,来说明梯子的倾斜程度;而小亮则认 为,通过测量B 2 C 2及 AC2,算出他们的比,也能 说明梯子的倾斜程度你同意小亮的看法吗?
例1:在Rt△ABC中,∠C=90°, (1)AC=3,AB=6,求tanA和tanB
5 (2)BC=3,tanA= ,求AC 和AB。 12
练习(二) 在Rt△ABC中,∠C=90°,
1、
3 AB=15,tanA= 4
,求AC和BC。
2、在等腰△ABC中, AB=AC=13, BC=10,求tanB。
BrightSpark Education says the online tutoring is used only as an addition to supplement regular teaching. According to the existing problems, this dissertation explores the online tutoring strategies from both macro and micro perspectives.
直角三角形的边角关系学案(定)
1.1 从梯子的倾斜程度谈起(1)学号______姓名_________1、问题探索:函数的定义(1)AB 、EF 表示梯子,AC 、ED 表示支撑梯子的物体,BC 、FD 在地面上.①如图1,你能比较两个梯子AB 和EF 哪个更陡?你是怎样判断的?你有几种判断方法?②你能再判断下图中哪个梯子更陡吗?(2)合作交流:如图,小明想通过测量B 1C 1及AC 1,算出它们的比,来说明梯子AB 1的倾斜程度;而小亮则认为,通过测量B 2C 2及AC 2,算出它们的比,也能说明梯子AB 1的倾斜程度.你同意小亮的看法吗? ①111AC C B 和222AC C B 有什么关系? ②如果改变B 2在梯子上的位置呢? ①中关系是否还成立? ③若∠A 的大小改变,111AC C B 怎样变化?①中关系是否还成立? 由此你能得到什么结论?2、知识技能在Rt △ABC 中,如果锐角A 确定,那么锐角A ___________________的比叫做∠A 的正切,记作tan A ,即tan A =___________.即tanA =∠A 的对边∠A 的邻边.明辨是非:(1)如图6,tan ACB BC =( ) (2)如图7,tan BCB AC= ( )例1 (1)填空:如图8,①( )( )( )tan ( )( )( )A === 图1图2 图3 图4 C 2B 2C 1B 1A图5A BC图6A BC图7A CBD图8②tan______= tan_______=BD CD(2)如图9,在△ABC中,∠C=90°,BC=6,AB=10,求tan B, tan A, tan B与tan A有什么关系?函数公式:∠A+∠B =90°tan B. tan A=13、数学理解思考:你能根据所学知识判断梯子的倾斜程度与倾斜角的正切值有什么关系吗?4,理解函数增减性,几何画板画出函数图像,理解角的定义域,初中定义在锐角,0°<A<90°思维延伸已知:如图10,△ABC是等腰三角形,AC=24,tan C=5 12,求BC.4、联系拓广请阅读下列材料,并回答相关问题:在筑坝、开渠、挖河和修路时,设计图纸上都要注明斜坡的倾斜程度.如图11,我们通常把坡面的铅直高度h与水平宽度l的比称为坡度(或坡比),用字母i表示,即h i=l.(1)如果把坡面与水平面的夹角α叫做坡角,坡度与坡角有什么关系?(2)若i=1:3,则tanα=_____.例2(1)如图12,AB、ED甲、乙两个斜坡,_______个斜坡比较陡.(2)若某人沿坡度i=3:4的斜坡前进10米,则他所在的位置比原来的位置升高________米.AB C图9ABC图10图11i=3:4图125、理解斜率tan∠ABC=K例题:四种习题:类型一,已知边,求角函数值1.在Rt△ABC中,∠C=90°,AC=3,BC=4,tan B=()A.B.C.D.2.如图,将△ABC放在每个小正方形的边长为1的网格中,点A,B,C均在格点上,则tan C的值是()A.2B.C.1D.3.如图,在平面直角坐标系中,直线OA过点(2,1),则tanα的值是.类型二已知边,角函数值,求角函数值及边1.在Rt△ABC中,∠ACB=90°,AB=,tan∠B=2,则AC的长为()A.1B.2C.D.2.如图,已知Rt△ABC中,∠C=90°,AC=6,tan A=,则AB的长是()A.3B.6C.12D.6类型三已知边比,求角函数值1.如图,过∠MAN的边AM上的一点B(不与点A重合)作BC⊥AN于点C,过点C作CD⊥AM于点D,则下列线段的比等于tan A的是()A.B.C.D.2.如图,Rt△AOB中,∠AOB=90°,顶点A,B分别在反比例函数y=(x>0)与y=(x<0)的图象上,则tan∠BAO的值为.类型四已知角函数值,求角函数值从梯子的倾斜程度谈起(1)随堂测试1、在△ABC中,∠C=90°,AC=BC,则tanA=______.2、如图,△ABC中,∠ACB=90°,BC=3,AC=4,CD⊥AB,垂足为D,求tan∠BCD.3、已知等腰三角形的一条腰长为20 cm,底边长为30 cm,求底角的正切值.4、如图,山坡AB的坡度为5∶12,一辆汽车从山脚下A处出发,把货物运送到距山脚500 m高的B处,求汽车从A到B所行驶的路程.正切练习题1.在Rt△ABC中,∠C=90°.若3AB=5AC,则tan A=.2.如图,锐角△ABC中,AB=10cm,BC=9cm,△ABC的面积为27cm2.求tan B 的值.3.如图,在8×4的矩形网格中,每个小正方形的边长都是1,若△ABC的三个顶点在图中相应的格点上,则tan∠ACB的值为.4.如图,在平面直角坐标系中放置三个长为3,宽为1的矩形,则tan∠BAC=()A.2 B.C.3 D.6.我国魏晋时期的数学家赵爽在为天文学著作《周髀算经》作注解时,用4个全等的直角三角形和中间的小正方形拼成一个大正方形,这个图被称为“弦图”,它体现了中国古代数学的成就.如图,已知大正方形ABCD的面积是100,小正方形EFGH的面积是4,那么tan∠ADF=.12.如图,在正方形ABCD中,M是AD的中点,BE=3AE,试求sin∠ECM的值.5.如图,在矩形ABCD中,AB=3,AD=4,E是边AD的中点.将△ABE沿直线BE翻折,点A落在点F处,连接DF,那么∠EDF的正切值是.13.矩形ABCD中AB=10,BC=8,E为AD边上一点,沿CE将△CDE对折,使点D正好落在AB边上,求tan∠AFE.9.如图所示,在4×4的网格中,每个小正方形的边长为1,线段AB、CD的端点均为格点.若AB与CD所夹锐角为α,则tanα=.10.如图,5×6的正方形网格中,A、B、C、D为格点,连接AB、CD相交于点E,则tan∠AEC的值是.1.如图,在平面直角坐标系中,菱形ABCD的顶点A,B,C在坐标轴上,若点A的坐标为(0,3),tan∠ABO=,则菱形ABCD的周长为()A.6 B.6C.12D.82.如图,△ABC中,∠ABC=45°,BC=8,tan∠ACB=3,AD⊥BC于D,若将△ADC绕点D逆时针方向旋转得到△FDE,当点E恰好落在AC上,连接AF.则AF的长为()A .B .C .2D .415.如图,矩形OABC 的两边OA 和OC 所在直线分别为l 1、l 2,l 1和l 2的交点为O ,OA =3,AB =4.将矩形OABC 绕O 点逆时针旋转,使B 点落在射线OC 上,旋转后的矩形为AO 1B 1C 1,BC 、A 1B 1相交于点M . (1)求tan ∠OB 1A 1的值;(2)将图1中的矩形OA 1B 1C 1沿射线OC 向上平移,如图2,矩形P A 2B 2C 2是平移过程中的某一位置,BC 、A 2B 2相交于点M 1,点P 运动到C 点停止.设点P 运动的距离为x ,CM 1=y ,求y 关于x 的函数关系式,并写出x 的取值范围;§1.1 从梯子的倾斜程度谈起(2)学号______姓名_________【预习导航】一、正弦、余弦的定义1、1.在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ;∠A 的对边与斜边的比叫做∠A 的正弦,即sinA =ac .∠A 的邻边与斜边的比叫做∠A 的余弦,即cosA =bc .锐角三角函数的定义:BAC2、讨论梯子的倾斜程度与sin A 和cos A 的关系:二、正弦、余弦的应用 1、典型例题:例1、如图,在Rt △ABC 中,∠B =90°,AC =200,sin A =0.6,求(1)BC 的长;(2)△ABC 的周长和面积.变式:在Rt △ABC 中,∠B =90°,sin A =0.6,求cosA.反思:你用到了什么数学方法? 例2、做一做:如图,在Rt △ABC 中,∠C =90°,cos A =1312,AC =10,求 sin A 、cos B 、sin B .反思:你发现了什么结论?在Rt △ABC 中,∠C =90°, cosA =sinB. cosA 2+sinA 2=1. s=12absinA例题:四种习题:类型一,已知边,求角函数值1、在△ABC 中,已知AC =3,BC =4,AB =5,那么下列结论正确的是( )A.sin A =34 B.cos A =35 C.tan A =34 D.cos B =352、如图,在△ABC 中,∠C =90°,sin A =35,则BC AC等于( )A.34B.43C.35D.453.如图,A ,B ,C 是正方形网格中的格点(小正方形的顶点),则sin ∠ACB 的值为( )DBA CA .B .C .D .4.如图所示,△ABC 的顶点是正方形网格的格点,则sin A 的值为( )A .B .C .D .类型二 已知边,角函数值,求角函数值及边1、在△ABC 中,AB =AC =10,sin C =45,则BC =_____. 2、在Rt △ABC 中,∠C =90°,AB =41,sin A =941,则AC =______,BC =_______.类型三 已知边比,求角函数值1、如图,在Rt △ABC 中,CD 是斜边AB 上的高,则下列线段的比中不等于sin A 的是( )A.CD ACB.DB CBC.CB ABD.CDCB类型四 已知角函数值,求角函数值1、Rt △ABC 中,∠C =90°,已知cos A =35,那么tan A 等于( )A.43B.34C.45D.542、在Rt △ABC 中,∠ C =90°,tan A =34,则sin A = ,sin B =_____,tan B =_____,cosB=______.3.如图,面积为24的▱ABCD中,对角线BD平分∠ABC,过点D作DE⊥BD交BC的延长线于点E,DE=6,则sin∠DCE的值为()A.B.C.D.探索例题的多种做法例题.1.如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么sin∠EFC的值为.方法1:勾股定理-求线段长,求三角函数值方法2:相似得线段比,求三角函数值方法3:角的等量转化,求三角函数值2.如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则∠BAC的余弦值是.正弦余弦练习题1.在Rt△ABC中,∠ABC=90°,AB=2,AC=3,则∠C的余弦值为()A.B.C.D.2.在直角三角形ABC中,若3AB=AC,则sin C=.3.如图,△ABC的顶点都是正方形网格中的格点,则cos∠ABC= sin B=。
从梯子的倾斜程度谈起说课稿
《从梯子的倾斜程度谈起》说课稿尊敬的各位老师:你们好!我是八中的数学教师肖婧,这次我说课的内容是北师大版九年级数学下册第一章第一节《从梯子的倾斜程度谈起》。
下面根据我编写的教案,把我对本节课的教学设计进行说明,请各位评委、老师多提宝贵意见。
一、教材分析(一)地位和作用:《从梯子的倾斜程度谈起》是北师大版九年级数学下册第一章第一节,本节内容分二课时完成,本次课设计是第一课时的教学。
本章中介绍的直角三角形中边角之间的关系是现实世界中应用广泛的关系之一。
锐角三角函数是在解决现实问题中有着重要的的作用。
如在测量、建筑、工程技术和物理学中,人们常常遇到距离、高度、角度的计算问题,一般来说,这些实际问题的数量关系往往归结为直角三角形中的边角关系问题。
本节从梯子的倾斜程度谈起,引入了第一个锐角三角函数一一正切。
因为相比之下,正切是生活中用的最多的三角函数概念,如物体的倾斜程度,山的坡度等都往往用正切,而正弦、余弦的概念是由正切类比出来的。
因此,本节内容在教材中处于非常重要的位置。
(二)目标分析依据《数学课程标准》,结合教材分析,确定本节课的教学目标为以下三个方面:生活的联系。
能够用tanA表示直角三角形中两边的比,表示生活中物体的倾斜程度、坡度等,并能够用正切进行简单的计算2•过程与方法目标:经历观察、猜想等数学活动过程,发展合情推理能力,能有条理地、清晰地阐述自己的观点。
体验数形之间的联系,逐步学习利用数形结合的思想分析问题和解决问题,提高解决实际问题的能力。
体会解决问题的策略的多样性,发展实践能力和创新精神。
3•情感与态度目标:学生在学习中能积极参与数学活动,对数学产生好奇心和求知欲,形成实事求是的态度以及独立思考的习惯。
(三)教学重点与难点1. 教学重点:①理解正切、倾斜程度、坡度的数学意义,密切数学与生活的联系;②会根据正切的定义进行计算求值。
依据《数学课程标准》的要求,本节课需要达到的知识与技能目标就是学习运用理解正切的意义和与现实生活的联系。
直角三角形的边角关系第一节从梯子的倾斜程度谈起
A
D
B
C
a
7
思考:在Rt△ABC中, ∠C=900, tan A和 tan B 有什么关系?
C
A
B
D
(1)tanA= ___=_____=______
(2)tanA=
3 4
,则tan∠ACD=__
(3)若tanA=
3 4
,AC=12,求AB,CD
a
8
作业: 1 习题1 . 1、(1)、(2)题 2 预习第2课时
a
9
第一章 直角三角形的边角关系
第一节 从梯子的倾斜程度谈起
a
1
哪个更陡?
(1)
a
画 板
(2)2
∠A的正切
在Rt△ABC中, 如果 锐角A确定,
B 那么∠A的对边与邻边的比便
随之确定, 这个比叫做
斜
∠A的正切. 记作:tanA 读?
边
∠A的对边
∠A的对边
A ∠A的邻边
C tanA ∠A的邻边
BC AC
甲A
D
乙
B
C
E
F
a
5
试一试
12m
在“红顶”工程
中,要求许多楼顶
挂红瓦装饰,现知
10m
道楼顶的坡度超过
1.3时瓦片挂不住。 下图是某一建筑楼
顶的初步设计方案。
(楼顶的截面是等腰 三角形) 请你根据
图 中数据说明这一
建筑的楼顶是否能
挂住红瓦?
a6Leabharlann 在梯形ABCD中,AD//BC,AB=DC,AD=6, BC=14,s梯形ABCD=40,求tanB的值
a
3
正切也经常用来描 述山坡的坡度.
表格式教学设计方案模板
;第二环节:探求新知;(1)摆一摆
梯子越陡,倾斜角的对边
与邻边的比值越大。
(2)想一想:
在小明家的墙角处放有
一架较长的梯子,墙很高,又
没有足够长的尺来测量,你有
什么巧妙的方法得到梯子的
倾斜程度呢?
如图1-3,小明想通过测量
B1C1及AC1,算出它们的比,来
说明梯子的倾斜程度;而小亮
则认为通过测量B2C2及AC2,
算出它们的比,也能说明梯子
的倾斜程度。
你同意小亮的看
法吗?
(1)Rt△AB1C1和Rt△AB2C2
有什么关系?
(2)
2
2
2
AC
C
B
和
1
1
1
AC
C
B
有什么
关系?
(3)如果改变梯子的位置
呢?由此你得出什么结论?
师生讨论交流,
得出分类情况。
问题是数学的心
脏,提出问题,激发
学生探求新知的欲
望,开启思维的大门,
变被动学习为主动探
究,培养学生探索问
题的能力、推理能力。
同时,让学生充分经
历探索过程的学习,
使学生在过程中学会
学习,学会合作。
11从梯子的倾斜程度谈起(1)锐角三角函数——正切与余切
A
C2
C1
A
E
E A
5m
5m
5m
6m
B 2.5mC F 2m D B 2m C F 2m D
与tanA有关:tanA的值越大,梯子越陡. 与∠A有关:∠A越大,梯子越陡.
例题欣赏P412
行家看“门道”
例1 下图表示两个自动扶梯,那一个自动扶梯比
较陡?
甲
13m α
5m ┌
乙 6m ┐ 8m β
AB
(4)如图 (2) tan B 10 √( ).
7
(5)如图 (2) tan A 0.7 √( ).
B
C (1)
驶向胜利 的彼岸
B
7┍m A 10m C
(2)
随堂练习 17
八仙过海,尽显才能
3.如图, ∠C=90°CD⊥AB.
(CD) (AC) (AD)
tan B .
(BD) (BC) (CD) A
做一做P3 8
知道就做,别客气
小明和小亮这样想,如图:
如图,小明想通过测量B1C1及AC1, 算出它们的比,来说明梯子AB1的 倾斜程度;
而小亮则认为,通过测量B2C2及 AC2,算出它们的比,也能说明梯 子AB1的倾斜程度.
你同意小亮的看法吗?
A
B1 B2
C2
C1
议一议P4 9
由感性到理性
直角三角形的边与角的关系
解:甲梯中, tan 5 5 . 老师提示: 132 52 12 生活中,常用
乙梯中, tan 6 3 .
一个锐角的正
84
∵tanβ>tanα,
切表示梯子的
∴乙梯更陡.
倾斜程度.
九年级数学下册第一章直角三角形的边角关系1从梯子的倾斜程度谈起 习题课件
3
4
3
2
【解析】选C.如图,作AM⊥l4于点M,作CN⊥l4于点N, 则AM=h,CN=2h,∠ABM+∠BAM=90°, ∵四边形ABCD是矩形,∴∠ABC=90°, ∴∠ABM+∠α=90°,∴∠BAM=∠α, ∴△ABM∽△BCN, ∴BM=AM·tan α=htan α, ∴
BM CN . AB BC
题组一:求锐角的正切值 1.如图,在8×4的矩形网格中,每个小正方形的边长都是1, 若△ABC的三个顶点在图中相应的格点上,则tan ∠ACB的值 为( )
A.1B.1C. 2 D.3
3
2
2
【解析】选A.如图,在网格中构造含有∠ACB的Rt△ACD, 在该三角形中
AD 2,DC 6,tan ACB AD 2 1. DC 6 3
【自主解答】过点A,D分别作AH⊥BC,DF⊥BC,垂足分别为 点H,F. ∵AB=AC,AH⊥BC,
在Rt△ABH中,
∵AH∥DF,且BD是AC边上的中线,
BH 1 BC 1 10 5.
2
2
∴在Rt△DBF中A,H AB2-BH2 132-52 12.
DF 1 AH 6,CF FH, 2
htan 4 2h,tan 4 .
6
3
4.在△ABC中,∠C=90°,AB=5,BC=4,则tan A=______.
【解析】由勾股定理,得
AC AB2 BC2 52 42 3,
答 t案an:A
BC AC
4 3
.
4
3
5.如图,在△ABC中,AC=4,BC=3,CD⊥AB于点D,BD=2, 求tan A,tan B的值.
如果梯子与地面的夹角为∠A,那么sin A的值_____,梯子
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
从梯子的倾斜程度谈起(二)
教学目标
(一)知识与技能
1.经历探索直角三角形中边角关系的过程,理解正弦和余弦的意义.
2.能够运用sinA 、cosA 表示直角三角形两边的比.
3.能根据直角三角形中的边角关系,进行简单的计算.
4.理解锐角三角函数的意义.
(二)过程与方法
1.经历类比、猜想等过程.发展合情推理能力,能有条理地、清晰地阐述自己的观点.
2.体会数形结合的思想,并利用它分析、解决问题,提高解决问题的能力.
(三)情感与价值观要求
1.积极参与数学活动,对数学产生好奇心和求知欲.
2.形成合作交流的意识以及独立思考的习惯.
教学重点
1.理解锐角三角函数正弦、余弦的意义,并能举例说明.
2.能用sinA 、cosA 表示直角三角形两边的比.
3.能根据直角三角形的边角关系,进行简单的计算.
教学难点
用函数的观点理解正弦、余弦和正切.
教学方法
探索——交流法.
教具准备
多媒体演示.
教学过程
Ⅰ.创设情境,提出问题,引入新课
[师]我们在上一节课曾讨论过用倾斜角的对边与邻边之比来刻画梯子的倾斜程度,并且得出了当倾斜角确定时,其对边与斜边之比随之确定.也就是说这一比值只与倾斜角有关,与直角三角形的大小无关.并在此基础上用直角三角形中锐角的对边与邻边之比定义了正切.
现在我们提出两个问题:
[问题1]当直角三角形中的锐角确定之后,其他边之间的比也确定吗?
[问题2]梯子的倾斜程度与这些比有关吗?如果有,是怎样的关系? Ⅱ.讲授新课
1.正弦、余弦及三角函数的定义
多媒体演示如下内容:
想一想:如图
(1)直角三角形AB 1C 1
和直角三角形AB 2C 2有什么关系? (2) 211122BA C A BA C A 和有什么什么关系? 2
112BA BC BA BC 和呢? (3)如果改变A 2在梯子A 1B 上的位置呢?你由此可得出什么结论?
(4)如果改变梯子A1B 的倾斜角的大小呢?你由此又可得出什么结论?
请同学们讨论后回答.
∵A 1C 1⊥BC 1,A 2C 2⊥BC 2,
∴A 1C 1//A 2C 2.
∴Rt △BA 1C 1∽Rt △BA 2C 2.
2
11122BA C A BA C A 和 2
112BA BC BA BC 和 (相似三角形对应边成比例). 由于A 2是梯子A 1B 上的任意—点,所以,如果改变A 2在梯子A 1B 上的位置,
上述
结论仍成立.
由此我们可得出结论:只要梯子的倾斜角确定,倾斜角的对边.与斜边的比值,倾斜角
的邻边与斜边的比值随之确定.也就是说,这一比值只与倾斜角有关,而与直角三角形大
小无关.
如果改变梯子A 1B 的倾斜角的大小,如虚线的位置,倾斜角的对边与斜边的
比
值,邻边与斜边的比值随之改变.
[师]我们会发现这是一个变化的过程.对边与斜边的比值、邻边与斜边的比值都随着倾斜角的改变而改变,同时,如果给定一个倾斜角的值,它的对边与斜边的比值,邻边与斜边的比值是唯一确定的.这是一种什么函数关系.
[师]上面我们有了和定义正切相同的基础,接着我们类比正切还可以有如下定义:(用多媒体演示)
在Rt △ABC 中,如果锐角A 确定,那么∠A 的对边与斜边的比、邻边与斜边的比也随之确定.如图,∠A 的对边与邻边的比叫做∠A 的正弦(sine),记作sinA ,即
sinA =斜边
的对边A ∠ ∠A 的邻边与斜边的比叫做∠A 的余弦(cosine),记作cosA ,即 cosA=斜边
的邻边A ∠
锐角A 的正弦、余弦和正切都是∠A 的三角函数(trigonometricfunction).
[师]你能用自己的语言解释一下你是如何理解“sinA 、cosA 、tanA 都是之A 的三角函数”呢?
2.梯子的倾斜程度与sinA 和cosA 的关系
[师]我们上一节知道了梯子的倾斜程度与tanA 有关系:tanA 的值越大,梯子越陡.由此我们想到梯子的倾斜程度是否也和sinA 、cosA 有关系呢?如果有关系,是怎样的关系?
如图所示,AB =A 1B 1,
在Rt △ABC 中,sinA=AB
BC ,在 Rt △A 1B 1C 中,sinA 1=1
11B A C B . ∵ AB BC <1
11B A C B , 即sinA<sinA 1,而梯子A 1B 1比梯子AB 陡,
所以梯子的倾斜程度与sinA 有关系.sinA 的值越大,梯子越陡.正弦值也能反映梯子的倾斜程度.
同样道理cosA=AB AC cosA 1=1
11B A C A , ∵AB=A 1B 1 AB AC >1
11B A C A 即cosA>cosA 1, 所以梯子的倾斜程度与cosA 也有关系.cosA 的值越小,梯子越陡.
[师从理论上讲正弦和余弦都可以刻画梯子的倾斜程度,但实际中通常使用正切.
3.例题讲解
多媒体演示.
[例1]如图,在Rt △ABC
中,∠B=90°,AC =
200.sinA =0.6,求BC
的长.
分析:sinA 不是“sin ”与“A ”的乘积,sinA 表示∠A 所在直角三角形它
的对边与斜边的比值,已知sinA =0.6,AC
BC =0.6. 解:在Rt △ABC 中,∠B =90°,AC =200.
sinA =0.6,即=AC
BC 0.6,BC =AC ×0.6=200×0.6=120. [例2]做一做:
如图,在Rt △ABC 中,∠C=90°,cosA =13
12,AC =10,AB 等于多少?sinB 呢?cosB 、sinA 呢?你还能得出类似例1的结论吗?请用一般式表达.
分析:这是正弦、余弦定义的进一步应用,同时进一步渗透sin(90°-A)=cosA ,cos
(90°-A)=sinA.
解:在Rt △ABC 中,∠C =90°,AC=10,cosA =1312,cosA =AB
AC , ∴AB=6
651213101312
10cos =⨯==A Ac ,
sinB =13
12cos ==A AB Ac 根据勾股定理,得
BC 2=AB 2-AC 2
=(665)2-102=2222625366065=- ∴BC =6
25. ∴cosB =13
565256
65625
===AB BC ,
sinA =13
5=AB BC 可以得出同例1一样的结论.
∵∠A+∠B=90°,
∴sinA :cosB=cos(90-A),即sinA =cos(90°-A);
cosA =sinB =sin(90°-A),即cosA =sin(90°-A).
Ⅲ.随堂练习
多媒体演示
1.在等腰三角形ABC 中,AB=AC =5,BC=6,求sinB ,cosB ,tanB.
2.在△ABC 中,∠C =90°,sinA =5
4,BC=20,求△ABC 的周长和面积. Ⅳ.课时小结
本节课我们类比正切得出了正弦和余弦的概念,用函数的观念认识了三种三角函数;三个比值是因变量.当∠A 确定时,三个比值分别唯一确定;当∠A 变化时,三个比值也分别有唯一确定的值与之对应.类比前一节课的内容,我们又进一步思考了正弦和余弦的值与梯子倾斜程度之间的关系以及用正弦和余弦的定义来解决实际问题.
Ⅴ.课后作业
习题1.2第1、2、题
板书设计
§1.1.2 从梯子倾斜程度谈起(二)
1.正弦、余弦的定义在Kt △ABC 中,如果锐角A 确定.
sinA =斜边
的对边A ∠ cosA =斜边的对边A ∠
2.梯子的倾斜程度与sinA 和cosA 有关吗?
sinA 的值越大,梯子越陡
cosA 的值越小,梯子越陡
3.例题讲解
4.随堂练习
教学反思:。