九年级二次函数拔高培优及解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级二次函数拔高培优及解析
一、单选题
1.抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,与x轴的一个交点坐标为(4,0),抛物线的对称轴是x=1.下列结论中:
①abc>0;②2a+b=0;③方程ax2+bx+c=3有两个不相等的实数根;④抛物线与x轴的另一个交点坐标为(−2,0);⑤若点A(m,n)在该抛物线上,则am2+bm+c≤a+b+c.
其中正确的有()
A.5个B.4个C.3个D.2个
【答案】B
【解析】
【分析】
结合函数图象,根据二次函数的性质及二次函数与一元二次方程、一元二次不等式间的关系逐一判断即可.
【详解】
①∵对称轴是y轴的右侧,
∴ab<0,
∵抛物线与y轴交于正半轴,
∴c>0,
∴abc<0,故①错误;
②∵−b
=1,
2a
∴b=−2a,2a+b=0,故②正确;
③由图象得:y=3时,与抛物线有两个交点,
∴方程ax2+bx+c=3有两个不相等的实数根,故③正确;
④∵抛物线与x轴的一个交点坐标为(4,0),抛物线的对称轴是x=1,
∴抛物线与x轴的另一个交点坐标为(−2,0),故④正确;
⑤∵抛物线的对称轴是x=1,
∴y有最大值是a+b+c,
∵点A(m,n)在该抛物线上,
∴am2+bm+c≤a+b+c,故⑤正确,
本题正确的结论有:②③④⑤,4个,
故选B.
【点睛】
本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c 决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);也考查了抛物线与x轴的交点以及二次函数的性质.
2.如图,二次函数y=ax2+bx+c的图象经过点A(﹣1,0)、点B(3,0)、点C(4,y1),若点D(x2,y2)是抛物线上任意一点,有下列结论:
①二次函数y=ax2+bx+c的最小值为﹣4a;
②若﹣1≤x2≤4,则0≤y2≤5a;
③若y2>y1,则x2>4;
④一元二次方程cx2+bx+a=0的两个根为﹣1和1
3
其中正确结论的个数是()
A.1B.2C.3D.4
【答案】B
【解析】
【分析】利用交点式写出抛物线解析式为y=ax2﹣2ax﹣3a,配成顶点式得y=a(x﹣1)2﹣4a,则可对①进行判断;计算x=4时,y= a×5×1=5a,则根据二次函数
的性质可对②进行判断;利用对称性和二次函数的性质可对③进行判断;由于b=﹣2a ,c=﹣3a ,则方程cx 2+bx+a=0化为﹣3ax 2﹣2ax+a=0,然后解方程可对④进行判断.
【详解】由二次函数y=ax 2+bx+c 的图象经过点A (﹣1,0)、点B (3,0), 可得抛物线解析式为y=a (x+1)(x ﹣3),
即y=ax 2﹣2ax ﹣3a ,
∵y=a (x ﹣1)2﹣4a ,
∴当x=1时,二次函数有最小值﹣4a ,所以①正确;
当x=4时,y=a×5×1=5a ,
∴当﹣1≤x 2≤4,则﹣4a≤y 2≤5a ,所以②错误;
∵点C (1,5a )关于直线x=1的对称点为(﹣2,﹣5a ),
∴当y 2>y 1,则x 2>4或x <﹣2,所以③错误;
∵b=﹣2a ,c=﹣3a ,
∴方程cx 2+bx+a=0化为﹣3ax 2﹣2ax+a=0,
整理得3x 2+2x ﹣1=0,解得x 1=﹣1,x 2=13,所以④正确,
故选B .
【点睛】本题考查了二次函数的图象与性质,待定系数法、二次函数与一元二次方程等,综合性较强,熟练掌握待定系数法以及二次函数的相关知识是解题的关键.
3.已知二次函数y=﹣x 2+x+6及一次函数y=﹣x+m ,将该二次函数在x 轴上方的图象沿x 轴翻折到x 轴下方,图象的其余部分不变,得到一个新函数(如图所示),请你在图中画出这个新图象,当直线y=﹣x+m 与新图象有4个交点时,m 的取值范围是( )
A . ﹣254<m <3
B . ﹣254<m <2
C . ﹣2<m <3
D . ﹣6<m <﹣2
【答案】D
【解析】【分析】如图,解方程﹣x 2+x+6=0得A (﹣2,0),B (3,0),再利用折叠的性质求出折叠部分的解析式为y=(x+2)(x ﹣3),即y=x 2﹣x ﹣6(﹣2≤x≤3),然后求出直线•y=﹣x+m 经过点A (﹣2,0)时m 的值和当直线y=﹣x+m 与抛物线y=x 2﹣x ﹣6(﹣2≤x≤3)有唯一公共点时m 的值,从而得到当直线y=﹣x+m 与新图象有
4个交点时,m的取值范围.
【详解】如图,当y=0时,﹣x2+x+6=0,解得x1=﹣2,x2=3,则A(﹣2,0),B(3,0),
将该二次函数在x轴上方的图象沿x轴翻折到x轴下方的部分图象的解析式为
y=(x+2)(x﹣3),
即y=x2﹣x﹣6(﹣2≤x≤3),
当直线y=﹣x+m经过点A(﹣2,0)时,2+m=0,解得m=﹣2;
当直线y=﹣x+m与抛物线y=x2﹣x﹣6(﹣2≤x≤3)有唯一公共点时,方程
x2﹣x﹣6=﹣x+m有相等的实数解,解得m=﹣6,
所以当直线y=﹣x+m与新图象有4个交点时,m的取值范围为﹣6<m<﹣2,
故选D.
【点睛】本题考查了抛物线与几何变换,抛物线与x轴的交点等,把求二次函数
y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程是解决此类问题常用的方法.
4.若抛物线y=x2+ax+b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2个单位,再向下平移
3个单位,得到的抛物线过点( )
A.(−3,−6)B.(−3,0)C.(−3,−5)D.(−3,−1)
【答案】B
【解析】分析:根据定弦抛物线的定义结合其对称轴,即可找出该抛物线的解析式,利用平移的“左加右减,上加下减”找出平移后新抛物线的解析式,再利用二次函数图象上点的坐标特征即可找出结论.
详解:∵某定弦抛物线的对称轴为直线x=1,
∴该定弦抛物线过点(0,0)、(2,0),
∴该抛物线解析式为y=x(x-2)=x2-2x=(x-1)2-1.
将此抛物线向左平移2个单位,再向下平移3个单位,得到新抛物线的解析式为y=(x-1+2)