初升高衔接抢跑宝典(数学)解析

合集下载

高中数学初升高衔接教材 专题13 一次函数、正比例函数、反比例函数的图像和性质(解析版)

高中数学初升高衔接教材 专题13 一次函数、正比例函数、反比例函数的图像和性质(解析版)

专题13 一次函数、正比例函数、反比例函数的图像和性质一、知识点精讲(一)平面直角坐标系在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。

水平的数轴叫做x 轴或横轴,铅直的数轴叫做y 轴或纵轴,x 轴与y 轴统称坐标轴,他们的公共原点O 称为直角坐标系的原点。

(二) 图形的对称(1)轴对称图形:①如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。

②轴对称图形上关于对称轴对称的两点确定的线段被对称轴垂直平分。

(2)中心对称图形:①在平面内,一个图形绕某个点旋转180度,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做他的对称中心。

②中心对称图形上的每一对对应点所连成的线段都被对称中心平分。

(3)平面直角坐标系内的对称点:设11(,)M x y ,22(,)M x y '是直角坐标系内的两点,①若M 和'M 关于y 轴对称,则有1212x x y y =-⎧⎨=⎩。

②若M 和'M 关于x 轴对称,则有1212x x y y =⎧⎨=-⎩。

③若M 和'M 关于原点对称,则有1212x x y y =-⎧⎨=-⎩。

④若M 和'M 关于直线y x =对称,则有1212x y y x =⎧⎨=⎩。

⑤若M 和'M 关于直线y x =-对称,则有1212x y y x =-⎧⎨=-⎩。

⑥若M 和'M 关于直线x a =对称,则有12122x a x y y =-⎧⎨=⎩或21122x a x y y =-⎧⎨=⎩ (三)函数的图像和性质(1)变量:因变量,自变量。

在用图象表示变量之间的关系时,通常用水平方向的数轴上的点表示自变量,用竖直方向的数轴上的点表示因变量。

(2)一次函数:①若两个变量y ,x 间的关系式可以表示成y kx b =+(b 为常数,k 不等于0)的形式,则称y 是x 的一次函数。

初升高衔接讲义数学答案

初升高衔接讲义数学答案

初升高衔接讲义数学答案一、选择题1. A2. B3. C4. D5. E二、填空题1. 根据题目所给条件,答案为 \( x = 3 \)。

2. 经过计算,\( y = -2 \)。

3. 根据几何图形的性质,周长为 \( 20cm \)。

4. 代入公式计算,面积为 \( 12cm^2 \)。

5. 根据题目要求,答案为 \( \frac{1}{2} \)。

三、计算题1. 根据代数运算法则,计算结果为 \( 7x^2 - 5x + 2 \)。

2. 经过化简,得到 \( (x - 3)^2 + 4 \)。

3. 利用三角函数关系,解得 \( \sin \theta = \frac{3}{5} \)。

四、解答题1. 通过解方程 \( ax^2 + bx + c = 0 \),我们可以得到 \( x =\frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)。

2. 对于几何问题,我们首先画出辅助线,然后利用相似三角形的性质,得出结论。

3. 在函数问题中,我们分析函数的性质,如单调性、奇偶性,并根据这些性质解答问题。

五、应用题1. 根据题目所给的实际问题,我们设变量 \( x \) 代表相关量,然后建立方程 \( ax + b = c \),求解 \( x \) 得到答案。

2. 在解决经济问题时,我们利用成本、利润和销售量之间的关系,建立方程并求解。

3. 物理问题中,我们根据牛顿第二定律 \( F = ma \),结合题目条件,建立方程并求解。

六、证明题1. 利用勾股定理证明直角三角形的斜边最长。

2. 通过相似三角形的性质证明两个三角形相似。

3. 利用三角恒等变换证明 \( \sin^2 \theta + \cos^2 \theta = 1 \)。

七、综合题1. 结合代数和几何知识,我们首先建立方程,然后利用几何图形的性质求解。

2. 在解决函数与方程的综合问题时,我们首先分析函数的图像,然后结合方程求解。

2020年初升高数学衔接专题08 相似形(解析版)

2020年初升高数学衔接专题08 相似形(解析版)

初高中天衣无缝衔接教程(2020版)专题08相似形 本专题在初中、高中扮演的角色利用三角形一边平行线的判定定理证明两直线平行的一般步骤为:(1)首先观察欲证平行线截哪个三角形;(2)再观察它们截这个三角形的哪两边;(3)最后只须证明这两条边上对应线段成比例即可,当已知中有相等线段时,常利用它们和同一条线段(或其他相等线段)的比作为中间比.常用的有用结论包括:1.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.2.推论(1)平行于三角形的一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.(2)平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.(3)三角形的两腰被一条直线所截的对应边成比例.那么这条直线平行于底边.3.三角形的内角平分线性质定理:三角形的内角平分线分对边的长度比等于对应夹角两边的长度比. 高中必备知识点1:平行线分线段成比例定理在解决几何问题时,我们常涉及到一些线段的长度、长度比的问题.在数学学习与研究中,我们发现平行线常能产生一些重要的长度比.在一张方格纸上,我们作平行线123,,l l l (如图 3.1-1),直线a 交123,,l l l 于点,,A B C ,2,3AB BC ==,另作直线b 交123,,l l l 于点',','A B C ,不难发现''2.''3A B AB B C BC == 我们将这个结论一般化,归纳出平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.如图,123////l l l ,有AB DE BC EF.当然,也可以得出AB DE AC DF .在运用该定理解决问题的过程中,我们一定要注意线段之间的对应关系,是“对应”线段成比例.典型考题【典型例题】已知:∠1=∠2,EG 平分∠AEC .(1)如图①,∠MAE =45°,∠FEG =15°,∠NCE =75°.求证:AB ∥CD ;(2)如图②,∠MAE =140°,∠FEG =30°,当∠NCE = °时,AB ∥CD ;(3)如图②,请你直接写出∠MAE 、∠FEG 、∠NCE 之间满足什么关系时,AB ∥CD ;(4)如图③,请你直接写出∠MAE 、∠FEG 、∠NCE 之间满足什么关系时,AB ∥CD .【答案】(1)见解析;(2)当∠NCE =80°时,AB ∥CD ;(3)当2∠FEG +∠NCE =∠MAE 时AB ∥CD ;(4)当∠MAE +2∠FEG +∠NCE =360°时,AB ∥CD .【解析】(1)∵∠1=∠2∴AB∥EF∴∠MAE=∠AEF=45°,且∠FEG=15°∴∠AEG=60°∵EG平分∠AEC∴∠AEG=∠CEG=60°∴∠CEF=75°∵∠ECN=75°∴∠FEC=∠ECN∴EF∥CD且AB∥EF∴AB∥CD(2)∵∠1=∠2∴AB∥EF∴∠MAE+∠FEA=180°且∠MAE=140°∴∠AEF=40°∵∠FEG=30°∴∠AEG=70°∵EG平分∠AEC∴∠GEC=∠AEG=70°∴∠FEC=100°∵AB∥CD,AB∥EF∴EF∥CD∴∠NCE+∠FEC=180°∴∠NCE=80°∴当∠NCE=80°时,AB∥CD(3)∵∠1=∠2∴AB∥EF∴∠MAE+∠FEA=180°∴∠FEA=180°﹣∠MAE,∴∠AEG=∠FEA+∠FEG=180°﹣∠MAE+∠FEG∵EG平分∠AEC∴∠GEC=∠AEG∴∠FEC=∠GEC+∠FEG=180°﹣∠MAE+∠FEG+∠FEG=180°﹣∠MAE+2∠FEG∵AB∥CD,AB∥EF∴EF∥CD∴∠FEC+∠NCE=180°∴180°﹣∠MAE+2∠FEG+∠NCE=180°∴2∠FEG+∠NCE=∠MAE∴当2∠FEG+∠NCE=∠MAE时AB∥CD(4)∠1=∠2∴AB∥EF∴∠MAE+∠FEA=180°∴∠FEA=180°﹣∠MAE,∴∠AEG=∠FEG﹣∠FEA=∠FEG﹣180°+∠MAE∵EG平分∠AEC∴∠GEC=∠AEG∴∠FEC=∠FEA+2∠AEG=180°﹣∠MAE+2∠FEG﹣360°+2∠MAE=∠MAE+2∠FEG﹣180°∵AB∥CD,AB∥EF∴EF∥CD∴∠FEC+∠NCE=180°∴∠MAE+2∠FEG﹣180°+∠NCE=180°∴∠MAE+2∠FEG+∠NCE=360°∴当∠MAE+2∠FEG+∠NCE=360°时,AB∥CD【变式训练】已知,如图,∠1=∠2,DC∥FE,DE∥AC,求证:FE平分∠BED.【答案】详见解析【解析】∵DC∥FE,∴∠1=∠3,∠CDE=∠4,∵DE∥AC,∴∠2=∠CDE,∴∠2=∠4,∵∠1=∠2,∴∠3=∠4,∴EF是∠BED的平分线【能力提升】如图,已知AD⊥BC,FG⊥BC,垂足分别为D,G.且∠1=∠2,猜想:DE与AC有怎样的关系?说明理由.【答案】DE∥AC.理由见解析.【解析】DE∥AC.理由如下:∵AD⊥BC,FG⊥BC,∴∠ADG=∠FGC=90°,∴AD∥FG,∴∠1=∠CAD,∵∠1=∠2,∴∠CAD=∠2,∴DE∥AC.高中必备知识点2:平行线分线段成比例定理的推论推论1:平行于三角形的一边的直线截其它两边(或两边的延长线),所得的对应线段成比例. 推论2:平行于三角形的一边,并且和其它两边相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.在ABC 中,AD 为BAC 的平分线,求证:AB BD AC DC.证明 过C 作CE //AD ,交BA 延长线于E ,//,.BA BD AD CE AE DC AD 平分,,BAC BAD DAC 由//AD CE 知,,BADE DAC ACE ,,E ACE AE AC 即AB BD AC DC. 上述试题的结论也称为角平分线性质定理,可叙述为角平分线分对边成比例(等于该角的两边之比).典型考题【典型例题】请阅读下面材料,并回答所提出的问题.三角形内角平分线定理:三角形的内角平分线分对边所得的两条线段和这个角的两边对应成比例.已知:如图,△ABC 中, AD 是角平分线.求证:DCBD AC AB .证明:过C 作CE ∥DA ,交BA 的延长线于E .∴Ð1=ÐE ,Ð2=Ð3. ①AD 是角平分线,∴ Ð1=Ð2.∴E ∠=∠3.AE AC =∴. ②又CE AD // ,DCBD AE AB =∴. ③ ∴DC BD AC AB =. (1)上述证明过程中,步骤①②③处的理由是什么?(写出两条即可)(2)用三角形内角平分线定理解答:已知,△ABC 中,AD 是角平分线,AB=7cm ,AC=4cm ,BC=6cm ,求BD 的长; D(3)我们知道如果两个三角形的高相等,那么它们面积的比就等于底的比.请你通过研究△ABD 和△ACD 面积的比来证明三角形内角平分线定理.【答案】(1)①平行线的性质定理;②等腰三角形的判定定理;③平行线分线段成比例定理;(2)4211cm .(3)证明见解析.【解析】(1)证明过程中用到的定理有:①平行线的性质定理;②等腰三角形的判定定理;③平行线分线段成比例定理;(2)∵AD是角平分线,∴BD AB DC AC=,又∵AB=7cm,AC=4cm,BC=6cm,∴764BDBD=-,∴BD=4211(cm).(3)∵△ABD和△ACD的高相等,可得:△ABD和△ACD面积的比=11221122BD h AB hBD ABDC ACDC h AC h⨯⨯===⨯⨯,可得:BD ABDC AC=.【变式训练】如图,PB和PC是△ABC的两条外角平分线。

初升高衔接数学题详解及答案

初升高衔接数学题详解及答案

初升高衔接数学题详解及答案一、选择题1. 已知函数f(x) = 2x + 3,求f(-1)的值。

A. -1B. 1C. -5D. 5答案:C解析:将-1代入函数f(x)中,得到f(-1) = 2*(-1) + 3 = -2 + 3 = 1,但选项中没有1,因此正确答案应为C。

2. 如果一个数的平方等于该数本身,那么这个数可能是:A. 0B. 1C. -1D. 所有选项答案:D解析:一个数的平方等于该数本身的情况有两种:0的平方是0,1的平方是1。

因此,选项A和B都是正确的。

同时,-1的平方也是1,所以选项C也是正确的。

因此,正确答案是D。

二、填空题1. 若a + b = 5,a - b = 3,求a和b的值。

答案:a = 4,b = 1解析:将两个方程相加得到2a = 8,解得a = 4。

将a的值代入其中一个方程,例如a + b = 5,得到4 + b = 5,解得b = 1。

2. 一个直角三角形的两条直角边分别为3和4,求斜边的长度。

答案:5解析:根据勾股定理,直角三角形的斜边长度等于两条直角边的平方和的平方根,即c = √(3^2 + 4^2) = √(9 + 16) = √25 = 5。

三、解答题1. 某工厂生产一批产品,原计划每天生产100件,实际每天生产120件。

如果原计划生产20天,实际生产了多少天?答案:实际生产了15天。

解析:原计划生产的总件数为100件/天 * 20天 = 2000件。

实际每天生产120件,所以实际生产天数为2000件 / 120件/天 = 16.67天。

由于生产天数必须是整数,所以实际生产了15天。

2. 一个水池,如果同时打开A、B两个水龙头,注满水池需要2小时。

如果只打开A水龙头,注满水池需要3小时。

现在先打开B水龙头,1小时后关闭B水龙头,然后打开A水龙头,问还需要多少时间才能注满水池?答案:还需要2小时。

解析:设水池的总容量为C。

A水龙头1小时注水量为C/3,B水龙头1小时注水量为C/2 - C/3 = C/6。

初升高衔接宝典数学答案

初升高衔接宝典数学答案

初升高衔接宝典数学答案一、选择题1. 若a,b,c是三角形的三边长,且满足a^2 + b^2 = c^2,那么这个三角形是直角三角形。

(正确)2. 函数y = 2x + 3的斜率是2。

(正确)3. 一个数的相反数是它本身,那么这个数是0。

(正确)4. 根据勾股定理,如果三角形的两边长分别是3和4,那么第三边长可以是5。

(正确)5. 圆的面积公式是πr^2,其中r是圆的半径。

(正确)二、填空题1. 一个数的绝对值是它与0的距离,____。

(答案:正数的绝对值是它本身,负数的绝对值是它的相反数)2. 一个数的平方根是它本身的数是____。

(答案:0和1)3. 一个数的立方根是它本身的数是____。

(答案:-1, 0, 1)4. 一个数的倒数是1/x,如果x是____。

(答案:非零实数)5. 一个数的平方是它本身的数是____。

(答案:0和1)三、解答题1. 已知a,b,c是三角形的三边长,且a + b = 10,a - b = 2,求c的取值范围。

解:由a + b = 10,a - b = 2,解得a = 6,b = 4。

根据三角形不等式定理,c的取值范围为2 < c < 10。

2. 已知函数f(x) = x^2 - 4x + 3,求f(5)的值。

解:将x = 5代入函数f(x)中,得到f(5) = 5^2 - 4*5 + 3 = 25 - 20 + 3 = 8。

3. 已知一个圆的半径为5,求圆的面积。

解:根据圆的面积公式A = πr^2,代入r = 5,得到A = π * 5^2 = 25π。

四、证明题1. 证明勾股定理:在一个直角三角形中,直角边的平方和等于斜边的平方。

证明:设直角三角形的直角边长分别为a和b,斜边长为c。

根据勾股定理,a^2 + b^2 = c^2。

可以通过构造一个边长为a和b的正方形,并在其内部构造一个边长为c的正方形来证明这一点。

a和b的正方形面积之和等于c的正方形面积,即a^2 + b^2 = c^2。

2021年初升高数学无忧衔接(沪教版2020)专题01 数与式(详解版)

2021年初升高数学无忧衔接(沪教版2020)专题01 数与式(详解版)

专题01 数与式《初中课程要求》在初中,我们已经学习了实数,知道字母可以表示数,用代数式也可以表示数,我们把实数和代数式简称为数与式.代数式中有整式、分式、根式,它们具体细分又会包含单项式、多项式、绝对值、数幂等不同的小的类型,它们都具有实数的属性,可以进行运算.《高中课程要求》由于在高中学习中我们会经常遇到由代数式组成的各种混合运算,因此也需要较为复杂的公式结构和几何意义来进行辅助,比如:绝对值的几何意义、立方和差公式、杨辉三角公式、三种常见非负数形式等.一、单选题1.(2020·上海高一开学考试)下列分解因式错误的是()A.a2-5a+6=(a-2)(a-3)B.1-4m2+4m=(1-2m)2C.-4x2+y2=-(2x+y)(2x-y)D.3ab+14a2b2+9=(3+12ab)22.(2020·上海高一开学考试)实数a、b在数轴上的对应点的位置如图所示,下列关系式不成立的是()A.55a b->-B.66a b>C.a b->-D.0a b->3.(2020·上海交大附中高一开学考试)已知,,,,a b c d e均为正整数,且满足15.18111abcde=++++,则a b c d e++++=()A.13B.14C.15D.16课程要求热身练习二、填空题4.(2020·上海高一开学考试)分解因式:2441x x -+__________.5.(2020·上海高一开学考试)分解因式: 223224x xy y x y ++++=_________. 6.(2020·上海高一开学考试)已知210x x ++=,求20072006x x +++321x x x +++=_______.三、解答题7.(2020·上海高一开学考试)已知2310x x -+=,求3313x x ++的值.一、绝对值1、绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩2、绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离.3、两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离.二、乘法公式(1)平方差公式 22()()a b a b a b +-=-; (2)完全平方公式 222()2a b a ab b ±=±+; (3)立方和公式 2233()()a b a ab b a b +-+=+; (4)立方差公式 2233()()a b a ab b a b -++=-;(5)三数和平方公式 2222()2()a b c a b c ab bc ac ++=+++++; (6)两数和立方公式 33223()33a b a a b ab b +=+++; (7)两数差立方公式 33223()33a b a a b ab b -=-+-.引申:n 次方差公式;()()()()()()???322344223322=-+++-=-++-=-+-=-n n b a b ab b a ab a b a b ab a b a b a b a b a b a根据以上规律,可以归纳出乘法公式:()()n n n n n n b a b ab b a a b a -=++++-----1221 (n 为非零自然数)知识精讲将等号左右两边倒一下得:()()1221----++++-=-n n n n n n b ab b a a b a b a (n 为非零自然数)这个公式称为n 次方差公式;由这个公式易得())(nn b a b a --;定理:若n 为正偶数,则())(n n b a b a --与())(n n b a b a -+同时成立;三、二次根式 1、分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分子的有理化因式,化去分子中的根号的过程. 2a ==,0,,0.a a a a ≥⎧⎨-<⎩四、分式 1、分式的意义形如A B 的式子,若B 中含有字母,且0B ≠,则称A B 为分式.当M ≠0时,分式AB具有下列性质:A A M B B M ⨯=⨯;A A M B B M÷=÷.上述性质被称为分式的基本性质. 2、繁分式像ab c d+,2m n pm n p+++这样,分子或分母中又含有分式的分式叫做繁分式.五、幂的运算 1、幂的运算法则①n m n m a a a +=⋅ ②n m n m a a a -=÷ ③()n m nma a ⋅= ④()n n nb a ab ⋅=2、当指数由正整数扩充到有理数时,有如下规定:①()010a a =≠ ②();为正整数m a a amm,01≠=- ③();为正整数n m a a anmnm ,,0≥= ④().,,011为正整数n m a aaa nmnmnm >==-六、不定方程或方程组我们知道,如果未知数的个数多于方程的个数,那么,一般来说,它的解往往是不确定的,例如方程32=-y x ,方程组⎩⎨⎧=++=++18023100z y x z y x 等,它们的解是不确定的.像这类方程或方程组就称为不定方程或不定方程组.定理:如果a 、b 是互质的正整数,c 是整数,且方程c by ax =+ ①有一组整数解0x 、0y ,则此方程的一切整数解可以表示为⎩⎨⎧+=-=aty y btx x 00(t 为任意正整数)证:因为0x 、0y 是方程①的整数解,当然满足c by ax =+00②因此()()c by ax at y b bt x a =+=++-0000.这表明bt x x -=0,at y y +=0也是方程①的解.设x '、y '是方程①的任一整数解,则有c y b x a ='+'③③-②得()()00y y b x x a -'-=-'④由于()1,=b a (互质),所以a |0y y -',即at y y +='0,其中t 是整数.将at y y +='0代入④,即得bt x x -='0.因此x '、y '可以表示成bt x x -=0,at y y +=0的形式,所以bt x x -=0,at y y +=0表示方程①的一切整数解,命题得证.有了上述定理,求解二元一次不定方程的关键是求它的一组特殊解.【例1】解不等式:13x x -+->4.【例2】(1)当x 取何值时,3-x 有最小值?这个最小值是多少? (2)当x 取何值时,25+-x 有最大值?这个最大值是多少? (3)求54-+-x x 的最小值.(4)求987-+-+-x x x 的最小值.典例剖析【例3】(1)阅读下面材料:点A 、B 在数轴上分别表示实数b a ,,A 、B 两点这间的距离表示为AB ,当A 、B 两点中一点在原点时,不妨设点A 在原点,如图1,b a b OB AB -===;当A 、B 两点都不在原点时,①如图2,点A 、B 都在原点的右边b a a b a b OA OB AB -=-=-=-=; ②如图3,点A 、B 都在原点的左边()b a a b a b OA OB AB -=---=-=-=; ③如图4,点A 、B 在原点的两边()b a b a b a OB OA AB -=-+=+=+=. 综上,数轴上A 、B 两点之间的距离b a AB -=.图1图2 图3 图4 (2)回答下列问题:①数轴上表示2和5两点之间的距离是 ,数轴上表示-2和-5的两点之间的距离是 ,数轴上表示1和-3的两点之间的距离是 ;②数轴上表示x 和-1的两点A 和B 之间的距离是 ,如果2=AB ,那么x 为 ; ③当代数式21-++x x 取最小值时,相应的x 的取值范围是 ; ④求1997321-+⋅⋅⋅+-+-+-x x x x 的最小值.B AO B(A)O A O o【例4】计算:(1)22(1)(1)(1)(1)x x x x x x +--+++; (2)22222))(2(y xy x y xy x +-++;(3)22)312(+-x x ; (4)()()()()1111842++++a a a a .【例5】已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值.【例6】分解因式:(1)2222(48)3(48)2x x x x x x ++++++; (2)432673676x x x x +--+.【例7】试比较下列各组数的大小:(1 (2【例8】化简:(1; (21)x <<.【例9】化简22)1(111+++n n ,所得的结果为( ) A .1111+++n nB .1111++-n nC .1111+-+n n D .1111+--n n 【例10】若54(2)2x A Bx x x x +=+++,求常数,A B 的值.【例11】设ce a=,且e >1,2c 2-5ac +2a 2=0,求e 的值.【例12】计算2312212422a a a a ⎛⎛⎫⎫+÷-⎪⎪ ---+⎭⎭⎝⎝.【例13】设a 、b 、c 、d 都是自然数,且17,,2345=-==c a d c b a ,求d -b 的值.【例14】求71511=+y x 的整数解.【例15】求方程6x+22y=90的非负整数解.1.解绝对值方程:321-=---x x x .2.已知335252-++=x ,求533-+x x 的值.3.已知96333=-+z y x ,4=xyz ,12222=++-++xz yz xy z y x ,求z y x -+的值.4.分解因式:2(1)(2)(2)xy x y x y xy -++-+-.对点精练5.化简下列各式:(1(21)x ≥6.计算(没有特殊说明,本节中出现的字母均为正数):(1)83(2 (3 (4)7.计算:(1)21)(1++-- (2+8.设x y =,求33x y +的值.9.已知345,x y y z z x ==+++求()()()xyzx y y z x z +++的值.10.请先将下列代数式化简,再选择一个你喜欢又使原式有意义和数代入求值.21111121a a a a a -⎛⎫-÷ ⎪---+⎝⎭.11.求方程7x+19y=213的所有正整数解.这些知识点既是初中的基础,也是高中的敲门砖,我们将其深入拓展,以适应高中的难度,同学们一定要将这些知识点了解掌握,为高中的数学学习打下一个良好的基础.反思总结一、单选题1.(2020·山东省淄博第一中学高一开学考试)把多项式2221a a b --+分解因式,结果是( ) A .(1)(1)a b a b +-++ B .(1)(1)a b a b --+- C .(1)(1)a b a b --++D .(1)(1)a b a b ---+2.(2020·山东省淄博第一中学高一开学考试)若多项式2317x x b +-分解因式的结果中有一个因式为4x +,则b 的值为( ) A .20B .-20C .13D .-133.(2020·重庆复旦中学高一开学考试)在2-,(3)--,5,6-这四个数中,最大的数是( ) A .2-B .(3)--C .5D .6-4.(2020·河北邯郸市·高一开学考试)广州亚运会的某纪念品原价188元,连续两次降价%a ,后售价为118元,下列所列方程中正确的是( ) A .2188(1%)118a += B .2188(1%)118a -=C .188(12%)118a -=D .()21881%118a -=5.(2020·河北邯郸市·高一开学考试)据报道,今年我市高考报名人数约为76500人,用科学记数法表示的近似数为47.710⨯,则精确到( ) A .万位B .千位C .个位D .十分位6.(2020·云南昆明市·昆明一中高一开学考试)求值:111111114916225⎛⎫⎛⎫⎛⎫⎛⎫---⋅⋅⋅- ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭为( ) A .815B .1115C .1315 D .14157.(2020·云南昆明市·昆明一中高一开学考试)因式分解22a a b b --+=( ) A .()()1a b a b -+- B .()()1a b a b -++ C .()()1a b a b ++-D .()()1a b a b +--8.(2020·云南昆明市·昆明一中高一开学考试)若23a b =,则a ba b +=-( ) A .6- B .5-C .6D .5课后练习二、填空题9.(2020·山东省淄博第一中学高一开学考试)如果2a b cx y z===,则456456a b c x y z ++++=___________;10.(2020·天津南开中学高一开学考试)已知2514x x -=,则()()()212111x x x ---++=________.11.(2020·河北邯郸市·高一开学考试)计算22tan 602--︒+=___________. 12.(2020·云南昆明市·昆明一中高一开学考试)计算+=2019___________13.(2020·上海交大附中高一开学考试)若,x y 为非零实数,且2220x xy y +-=,则22223x xy yx y ++=+____________.14.(2020·上海交大附中高一开学考试)已知4,2a b ab +==,则22a b +=____________. 15.(2020·东莞市光明中学高一开学考试)分解因式:22a ab +=______.16.(2020·黑龙江哈尔滨市·哈尔滨三中高一开学考试)已知0x y z ++=,0xyz ≠,则111111x y z y z x z x y ⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭______.17.(2020·四川眉山市·=________.18.(2020·四川省武胜烈面中学校高一开学考试)把2712x x -+分解因式的结果是______. 三、解答题19.(2020·重庆复旦中学高一开学考试)先化简,再求值:22224431a ab b b a b a ab a b a ⎡⎤++÷---⎢⎥--⎣⎦,其中a ,b 满足42a b a b +=⎧⎨-=-⎩20.(2020·220201413(2)(1)|3|4π-⎛⎫⨯-----+- ⎪⎝⎭.21.(2020·河北邯郸市·高一开学考试)先化简,再求值:已知1x =,求221121x x x x x x x+⎛⎫-÷⎪--+⎝⎭的值.22.(2020·江苏徐州市·高一月考)(1)分解因式:424139x x -+; (2)已知方程2310x x --=的两根为1x 和2x ,求()()1233x x --的值.23.(2020·东莞市光明中学高一开学考试)已知()()224a b abA ab a b +-=- (a ,0b ≠且a b )(1)化简A ;(2)若点(),P a b 在反比例函数5y x=-的图象上,求A 的值.24.(2020·江苏南通市·启东中学高一开学考试)把下列各式分解因式: (1)a 7-ab 6 ;(2)(x 2+x )2-5(x 2+x )+6 ;(3)x 3+19x -20 .25.(2020·安徽省舒城中学)(1(2)先化简再求值:2225241244a a a a a a ⎛⎫-+-+÷ ⎪+++⎝⎭,其中2a =专题01 数与式《初中课程要求》在初中,我们已经学习了实数,知道字母可以表示数,用代数式也可以表示数,我们把实数和代数式简称为数与式.代数式中有整式、分式、根式,它们具体细分又会包含单项式、多项式、绝对值、数幂等不同的小的类型,它们都具有实数的属性,可以进行运算.《高中课程要求》由于在高中学习中我们会经常遇到由代数式组成的各种混合运算,因此也需要较为复杂的公式结构和几何意义来进行辅助,比如:绝对值的几何意义、立方和差公式、杨辉三角公式、三种常见非负数形式等.一、单选题1.(2020·上海高一开学考试)下列分解因式错误的是( ) A .a 2-5a +6=(a -2)(a -3) B .1-4m 2+4m =(1-2m )2 C .-4x 2+y 2=-(2x +y )(2x -y ) D .3ab +14a 2b 2+9=(3+12ab )2【答案】B【分析】根据等式左右两边是否相等及右边是否为因式相乘即可判断选项的正误. 【详解】A 选项根据十字相乘分解因式可知正确;B 选项中的1+4m 2-4m =(1-2m )2,左右两边不相等,所以B 是错的;C 选项根据平方差公式可知正确;D 选项根据完全平方公式可知正确. 故选:B【点睛】本题主要考查了因式分解及因式分解的常用方法,属于容易题.2.(2020·上海高一开学考试)实数a 、b 在数轴上的对应点的位置如图所示,下列关系式不成立的是( )课程要求热身练习A .55a b ->-B .66a b >C .a b ->-D .0a b ->【答案】C【分析】根据数轴判断出,a b 对的正负关系以及绝对值的大小,即可求解,得到答案. 【详解】由图可知,实数0b a <<,且b a <, 所以55a b ->-,66a b >,a b -<-,0a b ->, 故关系式不成立的是选项C . 故选:C.【点睛】本题主要考查了实数与数轴,实数的大小比较,以及绝对值的大小比较,着重考查分析问题和解答问题的能力.3.(2020·上海交大附中高一开学考试)已知,,,,a b c d e 均为正整数,且满足15.18111a b c d e=++++,则a b c d e ++++=( )A .13B .14C .15D .16【答案】D【分析】根据表达式进行转化. 【详解】9111115.1850.185555555051115055559119911515144=+=+=+=+=+=+=++++++++, ∴5,5,1,1,4a b c d e =====,∴16a b c d e ++++=. 故选:D .【点睛】本题考查小数与分数的转化,掌握分数的变形是解题基础. 二、填空题4.(2020·上海高一开学考试)分解因式:2441x x -+__________. 【答案】()221x -【分析】利用完全平方公式()2222a b a ab b ±=±+分解因式【详解】解:2441x x -+=()221x - 故答案为:()221x -【点睛】此题考查公式法分解因式,属于基础题.5.(2020·上海高一开学考试)分解因式: 223224x xy y x y ++++=_________. 【答案】()()22x y x y +++【分析】前三项用十字相乘法分解因式()()22322x xy y x y x y =++++,后两项提公因数()2422x y x y +=+,在对其提公因式()2x y +得答案.【详解】利用分组分解法(前三项与后两组)()()()()()22322422222x xy y x y x y x y x y x y x y ++++=++++=+++故答案为:()()22x y x y +++【点睛】本题主要考查十字相乘法的应用,属于中档题.6.(2020·上海高一开学考试)已知210x x ++=,求20072006x x +++321x x x +++=_______.【答案】1【分析】将式子三个一分组,每组都有因式x 2+x +1,求得答案. 【详解】由210x x ++=,则20072006x x +++321x x x +++20052200222(1)(1)(1)11x x x x x x x x x =++++++++++=.故答案为:1.【点睛】本题考查了多项式化简求值,整体代入法,属于基础题. 三、解答题7.(2020·上海高一开学考试)已知2310x x -+=,求3313x x ++的值. 【答案】21. 【分析】先求出13x x +=,再化简原式为211[()3]3x x x x ⎛⎫++-+ ⎪⎝⎭,即得解. 【详解】2131003x x x x x-+=∴≠∴+=.由题得原式=222111113[()3]3x x x x x x x x ⎛⎫⎛⎫⎛⎫+-++=++-+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ ()2333321=-+=.故答案为:21【点睛】本题主要考查因式分解、配方和求代数式的值,意在考查学生对该知识的理解掌握水平.一、绝对值1、绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩2、绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离.3、两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离.二、乘法公式(1)平方差公式 22()()a b a b a b +-=-; (2)完全平方公式 222()2a b a ab b ±=±+; (3)立方和公式 2233()()a b a ab b a b +-+=+; (4)立方差公式 2233()()a b a ab b a b -++=-;(5)三数和平方公式 2222()2()a b c a b c ab bc ac ++=+++++; (6)两数和立方公式 33223()33a b a a b ab b +=+++; (7)两数差立方公式 33223()33a b a a b ab b -=-+-.引申:n 次方差公式;()()()()()()???322344223322=-+++-=-++-=-+-=-n n b a b ab b a ab a b a b ab a b a b a b a b a b a根据以上规律,可以归纳出乘法公式:()()n n n n n n b a b ab b a a b a -=++++-----1221 (n 为非零自然数)将等号左右两边倒一下得:知识精讲()()1221----++++-=-n n n n n n b ab b a a b a b a (n 为非零自然数)这个公式称为n 次方差公式;由这个公式易得())(nn b a b a --;定理:若n 为正偶数,则())(n n b a b a --与())(n n b a b a -+同时成立;三、二次根式 1、分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分子的有理化因式,化去分子中的根号的过程. 2a ==,0,,0.a a a a ≥⎧⎨-<⎩四、分式 1、分式的意义形如A B 的式子,若B 中含有字母,且0B ≠,则称A B 为分式.当M ≠0时,分式AB具有下列性质:A A M B B M ⨯=⨯;A A M B B M÷=÷.上述性质被称为分式的基本性质. 2、繁分式像ab c d+,2m n pm n p+++这样,分子或分母中又含有分式的分式叫做繁分式.五、幂的运算 1、幂的运算法则①n m n m a a a +=⋅ ②n m n m a a a -=÷ ③()n m nma a ⋅= ④()n n nb a ab ⋅=2、当指数由正整数扩充到有理数时,有如下规定:①()010a a =≠ ②();为正整数m a a amm,01≠=- ③();为正整数n m a a anmnm ,,0≥= ④().,,011为正整数n m a aaa nmnmnm >==-六、不定方程或方程组我们知道,如果未知数的个数多于方程的个数,那么,一般来说,它的解往往是不确定的,例如方程32=-y x ,方程组⎩⎨⎧=++=++18023100z y x z y x 等,它们的解是不确定的.像这类方程或方程组就称为不定方程或不定方程组.定理:如果a 、b 是互质的正整数,c 是整数,且方程c by ax =+ ①有一组整数解0x 、0y ,则此方程的一切整数解可以表示为⎩⎨⎧+=-=aty y btx x 00(t 为任意正整数)证:因为0x 、0y 是方程①的整数解,当然满足c by ax =+00②因此()()c by ax at y b bt x a =+=++-0000.这表明bt x x -=0,at y y +=0也是方程①的解.设x '、y '是方程①的任一整数解,则有c y b x a ='+'③③-②得()()00y y b x x a -'-=-'④由于()1,=b a (互质),所以a |0y y -',即at y y +='0,其中t 是整数.将at y y +='0代入④,即得bt x x -='0.因此x '、y '可以表示成bt x x -=0,at y y +=0的形式,所以bt x x -=0,at y y +=0表示方程①的一切整数解,命题得证.有了上述定理,求解二元一次不定方程的关键是求它的一组特殊解.【例1】解不等式:13x x -+->4.典例剖析【答案】0<x 或4>x 【解析】解法一:由01=-x ,得1=x ;由30x -=,得3x =;①若1<x ,不等式可变为(1)(3)4x x ---->, 即24x -+>4,解得x <0, 又x <1, ∴x <0;②若12x ≤<,不等式可变为(1)(3)4x x --->, 即1>4,∴不存在满足条件的x ;③若3x ≥,不等式可变为(1)(3)4x x -+->, 即24x ->4, 解得x >4. 又x ≥3,∴x >4.综上所述,原不等式的解为x <0,或x >4.解法二:如图1.1-1,1-x 表示x 轴上坐标为x 的点P 到坐标为1的点A 之间的距离|P A |,即|P A |=|x -1|;|x -3|表示x 轴上点P 到坐标为2的点B 之间的距离|PB |,即|PB |=|x -3|. 所以,不等式13x x -+->4的几何意义即为 |P A |+|PB |>4. 由|AB |=2,可知点P 在点C (坐标为0)的左侧、或点P 在点D (坐标为4)的右侧. x <0,或x >4. 【例2】(1)当x 取何值时,3-x 有最小值?这个最小值是多少? (2)当x 取何值时,25+-x 有最大值?这个最大值是多少? (3)求54-+-x x 的最小值.(4)求987-+-+-x x x 的最小值.13A B x4C D xP |x -1||x -3|图1.1-1【答案】(1)当x=3时,3-x =0为最小值;(2)当x=-2时,25+-x =5为最大值;(3)当54≤≤x 时取最小,则54-+-x x =1为最小值; (4)当x=8时取最小,则987-+-+-x x x =2为最小值.【例3】(1)阅读下面材料:点A 、B 在数轴上分别表示实数b a ,,A 、B 两点这间的距离表示为AB ,当A 、B 两点中一点在原点时,不妨设点A 在原点,如图1,b a b OB AB -===;当A 、B 两点都不在原点时,①如图2,点A 、B 都在原点的右边b a a b a b OA OB AB -=-=-=-=; ②如图3,点A 、B 都在原点的左边()b a a b a b OA OB AB -=---=-=-=; ③如图4,点A 、B 在原点的两边()b a b a b a OB OA AB -=-+=+=+=. 综上,数轴上A 、B 两点之间的距离b a AB -=.图1 图2 图3 图4 (2)回答下列问题:①数轴上表示2和5两点之间的距离是 ,数轴上表示-2和-5的两点之间的距离是 ,数轴上表示1和-3的两点之间的距离是 ;②数轴上表示x 和-1的两点A 和B 之间的距离是 ,如果2=AB ,那么x 为 ; ③当代数式21-++x x 取最小值时,相应的x 的取值范围是 ; ④求1997321-+⋅⋅⋅+-+-+-x x x x 的最小值. 【难度】★★★【答案】①3,3,4;②|x+1|,1或-3;③21≤≤-x ;④找到1~1997的中间数999,当x=999时取得最小值,B(A)O BAOoA O o.【例4】计算:(1)22(1)(1)(1)(1)x x x x x x +--+++; (2)22222))(2(y xy x y xy x +-++;(3)22)312(+-x x ;(4)()()()()1111842++++a a a a . 【难度】★★【答案】(1)解法一:原式=2222(1)(1)x x x ⎡⎤-+-⎣⎦ =242(1)(1)x x x -++=61x -.解法二:原式=22(1)(1)(1)(1)x x x x x x +-+-++ =33(1)(1)x x +- =61x -.(2)原式=2222222)])([()()(y xy x y x y xy x y x +-+=+-+63362332)(y y x x y x ++=+=.(3)原式22]31)2([+-+=x x222222111()()()2(22()333x x x x =++++⨯+⨯⨯4328139x x x =-++.(4)1116--=a a 原式.【例5】已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值.【难度】★★【答案】2222()2()8a b c a b c ab bc ac ++=++-++=. 【例6】分解因式:(1)2222(48)3(48)2x x x x x x ++++++; (2)432673676x x x x +--+.【难度】★★【答案】(1)原式=22[(48)2][(48)]x x x x x x ++++++ =22(68)(58)x x x x ++++ =2(2)(4)(58)x x x x ++++ (2)原式=4226(1)7(1)36x x x x ++--=422226[(21)2]7(1)36x x x x x x -+++-- =22226(1)7(1)36x x x x -+-- =22[2(1)3][3(1)8]x x x x ---+ =22(232)(383)x x x x --+- =(21)(2)(31)(3)x x x x +--+. 【例7】试比较下列各组数的大小:(1 (2【难度】★★【解析】(11===,1===,>,(2)∵1=== 又 4>22,∴6+4>6+22,【例8】化简:(1; (21)x <<. 【难度】★★【解析】(1)原式===2=2=.(2)原式1x x=-, ∵01x <<, ∴11x x>>, 所以,原式=1x x-. 【例9】化简22)1(111+++n n ,所得的结果为( ) A .1111+++n nB .1111++-n nC .1111+-+n n D .1111+--n n 【难度】★★ 【答案】C 【解析】方法一:通过通分,然后整理配平方来解题1111)()1()1(1)(2)1()1()1()1()1(111222222222222222222+-+=+++=+++++=+++++=+++n n n n n n n n n n n n n n n n n n n n 方法二:可利用特值法将A 、B 、D 一一排除。

初升高衔接数学课程终极精编版含答案解析(下)

初升高衔接数学课程终极精编版含答案解析(下)

十二、一元二次函数(二)知识归纳:1、一元二次函数)0(2≠++=a c bx ax y044,02min<-=>••a a b ac y a 时,ab ac y 442max -=2、一元二次函数)0()(2>++==a c bx ax x f y 在区间[m,n]上的最值。

1°当m a b<-2)((m f2°当22n m a b m +≤-≤3°当n a b n m ≤-<+22 a b ac x f m f x f 44)(),()(2min max -== 4°n a b>-2时 )()(),()(min max n f x f m f x f ==3、一元二次函数)0()(2<++==a c bx ax x f y 在区间[m,n]上的最值类比2可求得。

举例:例1、函数242-+-=x x y 在区间]4,1[上的最小值是( )x xA 、-7B 、-4C 、-2D 、2例2、已知函数322+-=x x y 在闭区间[0,m]上有最大值3,最小值2,则m 的取值范围是( )A 、),1[+∞B 、[0,2]C 、[1,2]D 、]2,(-∞例3、如果函数c bx x x f ++=2)(对任意实数都有)2()2(t f t f -=+,那么( ) A 、)4()1()2(f f f << B 、)4()2()1(f f f << C 、)1()4()2(f f f << D 、)1()2()4(f f f <<例4、若0,0≥≥y x ,且12=+y x ,那么232y x z +=的最小值为( ) A 、2 B 、43 C 、32 D 、0例5、设21,,x x R m ∈是方程01222=-+-m mx x 的两个实数根,则2221x x +的最小值是。

2024年新高一数学初升高衔接《二次函数与一元二次方程、不等式》含答案解析

2024年新高一数学初升高衔接《二次函数与一元二次方程、不等式》含答案解析

第08讲二次函数与一元二次方程、不等式模块一思维导图串知识模块二基础知识全梳理(吃透教材)模块三核心考点举一反三模块四小试牛刀过关测1.能借助一元二次函数求解一元二次不等式,并能用集合表示一元二次不等式的解集;2.借助一元二次函数的图象,了解一元二次不等式与相应函数、方程的联系3.掌握一元二次不等式的实际应用;4.会解一元二次不等式中的恒成立问题.知识点1一元二次不等式1、定义:一般地,只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.2、一般形式:ax2+bx+c>0(≥0),ax2+bx+c<0(≤0),(其中a≠0,a,b,c均为常数).3、一元二次不等式的解与解集使某一个一元二次不等式成立的x的值,叫做这个一元二次不等式的解;一元二次不等式的所有的解组成的集合,叫做这个一元二次不等式的解集;将一个不等式转化为另一个与它解集相同的不等式,叫做不等式的同解变形.知识点2二次函数与一元二次方程、不等式的关系1、二次函数的零点一般地,对于二次函数y=ax2+bx+c,我们把使ax2+bx+c=0的实数x叫做二次函数的零点.2、三个“二次”之间的关系对于一元二次方程20(0)ax bx c a ++=>的两根为12x x 、且12x x ≤,设ac b 42-=∆,它的解按照0>∆,0=∆,0<∆可分三种情况,相应地,二次函数2y ax bx c =++(0)a >的图像与x 轴的位置关系也分为三种情况.因此我们分三种情况来讨论一元二次不等式20ax bx c ++>(0)a >或20ax bx c ++<(0)a >的解集.知识点3一元二次不等式的解法1、解一元二次不等式的一般步骤(1)判号:检查二次项的系数是否为正值,若是负值,则利用不等式的性质将二次项系数化为正值;(2)求根:计算判别式∆,求出相应方程的实数根;①0∆>时,求出两根12x x 、,且12x x <(注意灵活运用因式分解和配方法);②0∆=时,求根abx x 221-==;③0∆<时,方程无解.(3)标根:将所求得的实数根标在数轴上(注意两实数根的大小顺序,尤其是当实数根中含有字母时),并画出开口向上的抛物线示意图;(4)写解集:根据示意图以及一元二次不等式解集的几何意义,写出解集.口诀:大于零取(根)两边,小于零取(根)中间2、含参一元二次不等式的讨论依据(1)对二次项系数进行大于0,小于0,等于0分类讨论;(2)当二次项系数不等于0时,再对判别式进行大于0,小于0,等于0的分类讨论;(3)当判别式大于0时,再对两根的大小进行讨论,最后确定出解集.考点一:解不含参的一元二次不等式例1.(23-24高一上·北京·期中)不等式2230x x --<的解集为()A .()1,3-B .()3,1-C .(1)(3)∞∞--⋃+,,D .(3)(1)∞∞--⋃+,,【变式1-1】(23-24高一上·吉林延边·月考)不等式29124x x -≤-的解集为()A .RB .∅C .3|2x x ⎧⎫=⎨⎬⎩⎭D .3|2x x ⎧⎫≠⎨⎬⎩⎭【变式1-2】(23-24高一上·江苏徐州·期中)不等式()()231x x x x +<-+的解集为()A .1,12⎛⎫- ⎪⎝⎭B .11,2⎛⎫- ⎪⎝⎭C .()1,1,2∞∞⎛⎫--⋃+ ⎪⎝⎭D .()1,1,2∞∞⎛⎫--⋃+ ⎪⎝⎭【变式1-3】(23-24高一上·广东广州·期中)下列不等式解集为R 的是()A .23710x x -≤B .21122x x -+-≤C .()()230x x +->D .223x x -+<-考点二:解含参一元二次不等式例2.(22-23高一上·江苏宿迁·月考)若01a <<,则不等式1(0)(x a x a --<的解集是()A .1}|{x a x a<<B .1{|}x x x a a><或C .1{|}x x a a <<D .1{|}x x a x a><或【变式2-1】(23-24高一下·广东潮州·开学考试)(多选)对于给定的实数a ,关于实数x 的一元二次不等式()(2)0x a x --<的解集可能为()A .(2)()a -∞+∞ ,,B .()(2)a -∞+∞ ,,C .(),2a D .∅【变式2-2】(23-24高一上·安徽马鞍山·月考)解关于x 的不等式:()2330x m x m --->.【变式2-3】(23-24高一上·湖南长沙·期末)当1a <时,解关于x 的不等式(1)(1)0ax x --<.考点三:由一元二次不等式解集求参例3.(23-24高一下·广东湛江·开学考试)关于x 的不等式2102x mx n -++>的解集为{}|12x x -<<,则m n +的值为()A .12-B .32-C .32D .12【变式3-1】(23-24高一上·云南昭通·期末)不等式230ax bx +-<的解集是()(),13,-∞⋃+∞,则b a -的值是()A .3-B .3C .5-D .5【变式3-2】(23-24高一上·吉林延边·月考)已知不等式20ax bx c ++<的解集为{|13}x x x <->或,则下列结论错误的是()A .0a <B .20a b c ++>C .0a b c ++>D .20cx bx a -+<的解集为1{|1}3x x x <->或【变式3-3】(23-24高一下·云南·月考)若关于x 的不等式()210x m x m -++<的解集中恰有三个整数,则实数m 的取值范围为()A .[)(]3,24,5--⋃B .[)(]2,14,5--⋃C .()()3,14,5-⋃D .[]3,5-考点四:三个“二次”关系的应用例4.(23-24高一上·湖南长沙·月考)不等式20ax bx c -+>的解集为{}21x x -<<,则函数2y ax bx c =-+的图象大致为()A .B .C.D.【变式4-1】(23-24高一上·江苏苏州·月考)(多选)关于x 的不等式20ax bx c ++>,下列说法不正确的是()A .若关于x 的不等式20ax bx c ++>解集为{1x x >或}3x <-,则二次函数2y ax bx c =++的零点为()30A -,,()10B ,B .若关于x 的不等式20ax bx c ++<解集为{3x x >或}1x <-,则20cx bx a ++>的解集为113x x ⎧⎫-<<⎨⎬⎩⎭C .若关于x 的一元二次不等式20ax bx c ++>解集为R ,则0a >且240b ac -<D .若关于x 的不等式()200ax bx c abc ++>≠的解集与关于x 的二次不等式()211111100a x b x c a b c ++>≠的解集相同都是R ,则111a b c a b c ==【变式4-2】(22-23高一上·宁夏石嘴山·期中)关于x 的不等式22280x ax a --<的解集为()12,x x ,且221215x x -=,则实数=a .【变式4-3】(23-24高一上·山西临汾·月考)已知二次函数()211y x a x a =----的图象与x 轴交于()1,0A x ,()2,0B x 两点.(1)当3a =时,求2212x x +的值;(2)求关于x 的不等式10y +≥的解集.考点五:一元二次不等式恒成立与有解例5.(23-24高一下·黑龙江绥化·开学考试)(多选)若对于R x ∀∈,都有220x mx m -+≥,则m 的值可以是()A .0B .1C .2D .3【变式5-1】(23-24高一下·贵州贵阳·期中)对任意的()0,x ∈+∞,2210x mx -+>恒成立,则m 的取值范围为()A .[)1,+∞B .()1,1-C .(],1-∞D .(),1-∞【变式5-2】(23-24高一下·河北保定·开学考试)(多选)若关于x 的不等式2420ax x -+<有实数解,则a 的值可能为()A .0B .3C .1D .2-【变式5-3】(23-24高一上·陕西商洛·期中)若关于x 的不等式240x mx +->在区间[]2,4上有解,则实数m 的取值范围为()A .()3,-+∞B .()0,∞+C .(),0∞-D .(),3-∞-考点六:一元二次不等式的实际应用例6.(23-24高一下·河南·开学考试)河南是华夏文明的主要发祥地之一,众多的文物古迹和著名的黄河等自然风光构成了河南丰富的旅游资源,在旅游业蓬勃发展的带动下,餐饮、酒店、工艺品等行业持续发展.某连锁酒店共有500间客房,若每间客房每天的定价是200元,则均可被租出;若每间客房每天的定价在200元的基础上提高10x 元(110x ≤≤,x ∈Z ),则被租出的客房会减少15x 套.若要使该连锁酒店每天租赁客房的收入超过106600元,则该连锁酒店每间客房每天的定价应为()A .250元B .260元C .270元D .280元【变式6-1】(23-24高一上·陕西·月考)某礼服租赁公司共有300套礼服供租赁,若每套礼服每天的租价为200元,则所有礼服均被租出;若将每套礼服每天的租价在200元的基础上提高10x 元(120x ≤≤,x ∈Z ),则被租出的礼服会减少10x 套.若要使该礼服租赁公司每天租赁礼服的收入超过6.24万元,则该礼服租赁公司每套礼服每天的租价应定为()A .220元B .240元C .250元D .280元【变式6-2】(23-24高一上·北京·月考)某市有块三角形荒地,如图ABC 所示,90,200A AB AC ∠=== (单位:米),现市政府要在荒地中开辟一块矩形绿地ADEF ,其中,,D E F点分别在线段,,AB BC CA 上,若要求绿地的面积不少于7500平方米,则AD 的长度(单位:米)范围是()A .[]40,160B .[]50,150C .[]55,145D .[]60,140【变式6-3】(23-24高一上·陕西宝鸡·月考)如图,在长为8m ,宽为6m 的矩形地面的四周种植花卉,中间种植草坪,如果要求草坪外侧四周的花卉带的宽度都相同,且草坪的面积不超过总面积的一半,则花卉带的宽度至少应为多少米?一、单选题1.(23-24高一下·湖南株洲·开学考试)不等式2450x x --+<的解集是()A .(5,1)-B .(1,5)-C .(,5)(1,)-∞-+∞ D .(,1)(5,)-∞-+∞ 2.(23-24高一上·河南商丘·期中)不等式2230x x --<的解集是()A .{|1x x <-或3}2x >B .3|2x x ⎧⎫>⎨⎬⎩⎭C .3|12x x ⎧⎫-<<⎨⎬⎩⎭D .{}|1x x <-3.(23-24高一上·河南濮阳·月考)已知关于x 的一元二次不等式20ax bx c +-<的解集为{}|35x x <<,则不等式20cx bx a +->的解集为()A .15x x ⎧<⎨⎩或13x ⎫>⎬⎭B .13x x ⎧<-⎨⎩或15x ⎫>-⎬⎭C .1153x x ⎧⎫<<⎨⎬⎩⎭D .1135x x ⎧⎫-<<-⎨⎬⎩⎭4.(23-24高一上·甘肃·期末)若关于x 的不等式()222800x ax a a --<>的解集为()12,x x ,且221220x x +=,则=a ()A .2B .1C .D5.(23-24高一上·安徽马鞍山·月考)若关于x 的不等式()2220x a x a ---<的解集中,恰有3个整数,则实数a 的取值集合是()A .{56}aa <≤∣B .{65}aa -≤<-∣C .{21aa -<≤-∣或56}a ≤<D .{65aa -≤<-∣或12}a <≤6.(23-24高一上·江苏南京·期末)设a 为实数,则关于x 的不等式(2)(24)0ax x --<的解集不可能是()A .2,2a ⎛⎫ ⎪⎝⎭B .2(,2)a ⎛⎫-∞⋃+∞ ⎪⎝⎭C .(2,)+∞D .22,a ⎛⎫⎪⎝⎭二、多选题7.(23-24高一上·吉林延边·期中)下列不等式的解集不是R 的是()A .210x x -++≥B .20x ->C .26100x x ++>D .22340x x -+<8.(23-24高一上·湖北·月考)若不等式20ax bx c -+<的解集是{21}xx -<<∣,则下列说法正确的是()A .0b <且0c <B .<0a b c -+C .0a b c ++<D .不等式20ax bx c ++<的解集是()1,2-三、填空题9.(23-24高一上·河北石家庄·月考)已知二次方程20(0)ax bx c a ++=>的两根分别为2和4,则不等式20ax bx c ++<的解集为.10.(23-24高一上·安徽亳州·期末)若关于x 的不等式210mx x ++>的解集为R ,则实数m 的取值范围为.11.(23-24高一上·安徽蚌埠·期末)已知正数x y ,满足2x y +=,若211m m x y+>-恒成立,则实数m 的取值范围为.四、解答题12.(23-24高一上·河南濮阳·月考)解下列一元二次不等式:(1)23710x x -≤;(2)2104x x -+<.13.(23-24高一上·江苏镇江·期中)(1)解关于x 的不等式()210x m x m -++<.(2)若对任意的[]()21,2,10x x m x m ∈-++≤恒成立,求实数m 的取值范围.第08讲二次函数与一元二次方程、不等式模块一思维导图串知识模块二基础知识全梳理(吃透教材)模块三核心考点举一反三模块四小试牛刀过关测1.能借助一元二次函数求解一元二次不等式,并能用集合表示一元二次不等式的解集;2.借助一元二次函数的图象,了解一元二次不等式与相应函数、方程的联系3.掌握一元二次不等式的实际应用;4.会解一元二次不等式中的恒成立问题.知识点1一元二次不等式1、定义:一般地,只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.2、一般形式:ax2+bx+c>0(≥0),ax2+bx+c<0(≤0),(其中a≠0,a,b,c均为常数).3、一元二次不等式的解与解集使某一个一元二次不等式成立的x的值,叫做这个一元二次不等式的解;一元二次不等式的所有的解组成的集合,叫做这个一元二次不等式的解集;将一个不等式转化为另一个与它解集相同的不等式,叫做不等式的同解变形.知识点2二次函数与一元二次方程、不等式的关系1、二次函数的零点一般地,对于二次函数y=ax2+bx+c,我们把使ax2+bx+c=0的实数x叫做二次函数的零点.2、三个“二次”之间的关系对于一元二次方程20(0)ax bx c a ++=>的两根为12x x 、且12x x ≤,设ac b 42-=∆,它的解按照0>∆,0=∆,0<∆可分三种情况,相应地,二次函数2y ax bx c =++(0)a >的图像与x 轴的位置关系也分为三种情况.因此我们分三种情况来讨论一元二次不等式20ax bx c ++>(0)a >或20ax bx c ++<(0)a >的解集.知识点3一元二次不等式的解法1、解一元二次不等式的一般步骤(1)判号:检查二次项的系数是否为正值,若是负值,则利用不等式的性质将二次项系数化为正值;(2)求根:计算判别式∆,求出相应方程的实数根;①0∆>时,求出两根12x x 、,且12x x <(注意灵活运用因式分解和配方法);②0∆=时,求根abx x 221-==;③0∆<时,方程无解.(3)标根:将所求得的实数根标在数轴上(注意两实数根的大小顺序,尤其是当实数根中含有字母时),并画出开口向上的抛物线示意图;(4)写解集:根据示意图以及一元二次不等式解集的几何意义,写出解集.口诀:大于零取(根)两边,小于零取(根)中间2、含参一元二次不等式的讨论依据(1)对二次项系数进行大于0,小于0,等于0分类讨论;(2)当二次项系数不等于0时,再对判别式进行大于0,小于0,等于0的分类讨论;(3)当判别式大于0时,再对两根的大小进行讨论,最后确定出解集.考点一:解不含参的一元二次不等式例1.(23-24高一上·北京·期中)不等式2230x x --<的解集为()A .()1,3-B .()3,1-C .(1)(3)∞∞--⋃+,,D .(3)(1)∞∞--⋃+,,【答案】A【解析】不等式2230x x --<,即()()130x x +-<,解得13x -<<,所以不等式2230x x --<的解集为()1,3-.故选:A【变式1-1】(23-24高一上·吉林延边·月考)不等式29124x x -≤-的解集为()A .RB .∅C .3|2x x ⎧⎫=⎨⎬⎩⎭D .3|2x x ⎧⎫≠⎨⎬⎩⎭【答案】C【解析】由29124x x -≤-,得241290x x -+≤,得2(23)0x -≤,解得32x =,所以不等式的解集为3|2x x ⎧⎫=⎨⎬⎩⎭,故选:C【变式1-2】(23-24高一上·江苏徐州·期中)不等式()()231x x x x +<-+的解集为()A .1,12⎛⎫- ⎪⎝⎭B .11,2⎛⎫- ⎪⎝⎭C .()1,1,2∞∞⎛⎫--⋃+ ⎪⎝⎭D .()1,1,2∞∞⎛⎫--⋃+ ⎪⎝⎭【答案】A【解析】不等式()()231x x x x +<-+,化为2210x x --<,即(21)(1)0x x +-<,解得112x -<<,所以不等式()()231x x x x +<-+的解集为1,12⎛⎫- ⎪⎝⎭.故选:A【变式1-3】(23-24高一上·广东广州·期中)下列不等式解集为R 的是()A .23710x x -≤B .211022x x -+-≤C .()()230x x +->D .223x x -+<-【答案】B【解析】对于A ,()()23710,13100x x x x -≤+-≤,解得1013x -≤≤,A 错;对于B ,211022x x -+-≤,()210x -≥,解集为R ,B 对;对于C ,()()230x x +->,解得<2x -或3x >,C 错;对于D ,223x x -+<-,()()1230x x +->,解得1x <-或32x >,D 错.故选:B.考点二:解含参一元二次不等式例2.(22-23高一上·江苏宿迁·月考)若01a <<,则不等式1(0)(x a x a --<的解集是()A .1}|{x a x a<<B .1{|}x x x a a><或C .1{|}x x a a <<D .1{|}x x a x a><或【答案】A【解析】由01a <<,得110a a>>>,解不等式1(0)(x a x a --<,得1a x a <<,所以不等式1(0)()x a x a --<的解集是1}|{x a x a<<.故选:A【变式2-1】(23-24高一下·广东潮州·开学考试)(多选)对于给定的实数a ,关于实数x 的一元二次不等式()(2)0x a x --<的解集可能为()A .(2)()a -∞+∞ ,,B .()(2)a -∞+∞ ,,C .(),2a D .∅【答案】CD【解析】当2a <时,此时解集为(),2a ;当2a =时,此时解集为∅;当2a >时,此时解集为()2,a ;故选:CD.【变式2-2】(23-24高一上·安徽马鞍山·月考)解关于x 的不等式:()2330x m x m --->.【答案】答案见解析【解析】不等式()2330x m x m --->,即()()30x x m +->,当3m =-时,原不等式即()230x +>,解得3x ≠-,即不等式的解集为{}|3x x ≠-;当3m >-时,解得x >m 或3x <-,即不等式的解集为{|x x m >或3}x <-;当3m <-时,解得3x >-或x m <,即不等式的解集为{|3x x >-或}x m <;综上可得:当3m =-时不等式的解集为{}|3x x ≠-,当3m >-时不等式的解集为{|x x m >或3}x <-,当3m <-时不等式的解集为{|3x x >-或}x m <.【变式2-3】(23-24高一上·湖南长沙·期末)当1a <时,解关于x 的不等式(1)(1)0ax x --<.【答案】答案见解析【解析】当0a =时,代入不等式可得10x -+<,解得1x >;当01a <<时,化简不等式可得1(1)0a x x a ⎛⎫--< ⎪⎝⎭即1(1)0x x a ⎛⎫--< ⎪⎝⎭,由11a>得不等式的解为11x a <<,当a<0时,化简不等式可得1(1)0a x x a ⎛⎫--< ⎪⎝⎭即1(1)0x x a ⎛⎫--> ⎪⎝⎭,由11a <得不等式的解为1x >或1x a<,综上可知,当0a =时,不等式(1)(1)0ax x --<的解集为{|1}x x >;当01a <<时,不等式(1)(1)0ax x --<的解集为11x x a ⎧⎫<<⎨⎬⎩⎭;当a<0时,不等式(1)(1)0ax x --<的解集为1x x a ⎧<⎨⎩或}1x >.考点三:由一元二次不等式解集求参例3.(23-24高一下·广东湛江·开学考试)关于x 的不等式2102x mx n -++>的解集为{}|12x x -<<,则m n +的值为()A .12-B .32-C .32D .12【答案】C【解析】因为不等式2102x mx n -++>的解集为{}|12x x -<<,所以1,2-是方程2102x mx n -++=的两个实根,所以()()221110212202m n m n ⎧-⨯-+⨯-+=⎪⎪⎨⎪-⨯++=⎪⎩,解得121m n ⎧=⎪⎨⎪=⎩,所以32m n +=.故选:C.【变式3-1】(23-24高一上·云南昭通·期末)不等式230ax bx +-<的解集是()(),13,-∞⋃+∞,则b a -的值是()A .3-B .3C .5-D .5【答案】D【解析】因为不等式230ax bx +-<的解集是()(),13,-∞⋃+∞,所以a<0,1x =和3x =是方程230ax bx +-=的根,所以13313b a a ⎧+=-⎪⎪⎨⎪⨯=-⎪⎩,即1a =-,4b =,则5b a -=.故选:D .【变式3-2】(23-24高一上·吉林延边·月考)已知不等式20ax bx c ++<的解集为{|13}x x x <->或,则下列结论错误的是()A .0a <B .20a b c ++>C .0a b c ++>D .20cx bx a -+<的解集为1{|1}3x x x <->或【答案】D【解析】根据题意,可以知道,20ax bx c ++=的两根为1,3-.由根与系数的关系得到:2233b b a ac c a a ⎧=-⎪=-⎧⎪⇒⎨⎨=-⎩⎪-=⎪⎩.因为2()f x ax bx c =++开口向下,则a<0,故A 正确.22(2)(3)30a b c a a a a ++=+-+-=->,故B 正确.且(1)(3)0f f -==,对称轴为1x =,(1)40f a b c a =++=->,故C 正确.22320cx bx a ax ax a -+=-++<,两边同时除以a -,得到23210x x --<,解得1|13{}x x -<<,故D 错误.故选:D.【变式3-3】(23-24高一下·云南·月考)若关于x 的不等式()210x m x m -++<的解集中恰有三个整数,则实数m 的取值范围为()A .[)(]3,24,5--⋃B .[)(]2,14,5--⋃C .()()3,14,5-⋃D .[]3,5-【答案】A【解析】原不等式可化为(1)()0x x m --<,当1m >时,得1x m <<,此时解集中的整数为2,3,4,则45m <≤;当1m <时,得1m x <<,此时解集中的整数为2-,1-,0,则32m -≤<-,综上所述,m 的取值范围是[)(]3,24,5--⋃.故选:A考点四:三个“二次”关系的应用例4.(23-24高一上·湖南长沙·月考)不等式20ax bx c -+>的解集为{}21x x -<<,则函数2y ax bx c =-+的图象大致为()A .B .C.D.【答案】A【解析】因为20ax bx c -+>的解集为{}21x x -<<,所以方程20ax bx c -+=的两根分别为2-和1,且a<0,则()21,21,b ac a ⎧-+=⎪⎪⎨⎪-⨯=⎪⎩变形可得,2,b a c a =-⎧⎨=-⎩故函数()()22221y ax bx c ax ax a a x x =-+=+-=+-的图象开口向下,且与x 轴的交点坐标为()1,0和()2,0-,故A 选项的图象符合.故选:A【变式4-1】(23-24高一上·江苏苏州·月考)(多选)关于x 的不等式20ax bx c ++>,下列说法不正确的是()A .若关于x 的不等式20ax bx c ++>解集为{1x x >或}3x <-,则二次函数2y ax bx c =++的零点为()30A -,,()10B ,B .若关于x 的不等式20ax bx c ++<解集为{3x x >或}1x <-,则20cx bx a ++>的解集为113x x ⎧⎫-<<⎨⎬⎩⎭C .若关于x 的一元二次不等式20ax bx c ++>解集为R ,则0a >且240b ac -<D .若关于x 的不等式()200ax bx c abc ++>≠的解集与关于x 的二次不等式()211111100a x b x c a b c ++>≠的解集相同都是R ,则111a b c a b c ==【答案】BC【解析】A 选项:若关于x 的不等式20ax bx c ++>解集为{1x x >或}3x <-,则0a >,且其对应方程20ax bx c ++=有两个解11x =,23x =-,所以对应函数2y ax bx c =++的两个零点为1和3-,A 选项错误;B 选项:若关于x 的不等式20ax bx c ++<解集为{3x x >或}1x <-,则a<0,且其对应方程20ax bx c ++=有两个解13x =,21x =-,且122b x x a=-+=,123cx x a=-=,即2b a =-,3c a =-,所以22320cx bx a ax ax a ++=--+>,即()()23213110x x x x +-=-+<,解得113x -<<,所以不等式的解集为113x x ⎧⎫-<<⎨⎬⎩⎭,B 选项正确;C 选项:若关于x 的一元二次不等式20ax bx c ++>解集为R ,则0a >且其对应方程20ax bx c ++=无解,即240b ac -<,C 选项正确;D 选项:若关于x 的不等式()200ax bx c abc ++>≠的解集为R ,则0a >,且240b ac -<,关于x 的二次不等式()211111100a x b x c a b c ++>≠的解集是R ,则10a >,且211140b a c -<,无法确定其比例关系,D 选项错误;故选:BC.【变式4-2】(22-23高一上·宁夏石嘴山·期中)关于x 的不等式22280x ax a --<的解集为()12,x x ,且221215x x -=,则实数=a .【答案】/【解析】由题意,22280x ax a --=的两根为12,x x ,所以212122,8x x a x x a +=⋅=-,解得124,2x a x a ==-,或122,4x a x a =-=,当124,2x a x a ==-时,故222121215x x a -==,由12x x <知a<0,所以解得2a =,当122,4x a x a =-=时,222121215x x a -=-=不合题意.故答案为:2-【变式4-3】(23-24高一上·山西临汾·月考)已知二次函数()211y x a x a =----的图象与x 轴交于()1,0A x ,()2,0B x 两点.(1)当3a =时,求2212x x +的值;(2)求关于x 的不等式10y +≥的解集.【答案】(1)12;(2)答案见解析【解析】(1)当3a =时,224y x x =--.由题意可知12,x x 是方程2240x x --=的两个不同实根,则122x x +=,124x x =-,故()()2222121212222412x x x x x x +=+-=-⨯-=.(2)不等式10y +≥可转化为()()10x a x -+≥.当1a >-时,不等式1y ≥的解集是{}1x x x a ≤-≥或;当1a =-时,不等式1y ≥的解集是{}R x x ∈;当1a <-时,不等式1y ≥的解集是{}1x x a x ≤≥-或.考点五:一元二次不等式恒成立与有解例5.(23-24高一下·黑龙江绥化·开学考试)(多选)若对于R x ∀∈,都有220x mx m -+≥,则m 的值可以是()A .0B .1C .2D .3【答案】AB【解析】依题意,命题等价于220x mx m -+≥恒成立,所以2440m m ∆=-≤,解得01m ≤≤,即[]0,1m ∈,故AB 正确,CD 错误.故选:AB.【变式5-1】(23-24高一下·贵州贵阳·期中)对任意的()0,x ∈+∞,2210x mx -+>恒成立,则m 的取值范围为()A .[)1,+∞B .()1,1-C .(],1-∞D .(),1-∞【答案】D【解析】因为对任意的()0,x ∈+∞,2210x mx -+>恒成立,所以对任意的()0,x ∈+∞,2112x m x x x+<=+恒成立,又12x x +≥=,当且仅当1x x =,即1x =时取等号,所以22m <,解得1m <,即m 的取值范围为(),1-∞.故选:D【变式5-2】(23-24高一下·河北保定·开学考试)(多选)若关于x 的不等式2420ax x -+<有实数解,则a 的值可能为()A .0B .3C .1D .2-【答案】ACD【解析】当0a =时,不等式420x -+<有解,符合题意;当a<0时,得Δ1680a =->,则不等式2420ax x -+<有解;当0a >时,由Δ1680a =->,解得02a <<.综上,a 的取值范围为(),2∞-,对照选项,选项ACD 中a 的值符合题意.故选:ACD【变式5-3】(23-24高一上·陕西商洛·期中)若关于x 的不等式240x mx +->在区间[]2,4上有解,则实数m 的取值范围为()A .()3,-+∞B .()0,∞+C .(),0∞-D .(),3-∞-【答案】A【解析】易知2160m ∆=+>恒成立,即240x mx +-=有两个不等实数根12,x x ,又1240x x =-<,即二次函数24y x mx =+-有两个异号零点,所以要满足不等式240x mx +->在区间[]2,4上有解,所以只需24440m +->,解得3m >-,所以实数m 的取值范围是()3,-+∞.故选A .考点六:一元二次不等式的实际应用例6.(23-24高一下·河南·开学考试)河南是华夏文明的主要发祥地之一,众多的文物古迹和著名的黄河等自然风光构成了河南丰富的旅游资源,在旅游业蓬勃发展的带动下,餐饮、酒店、工艺品等行业持续发展.某连锁酒店共有500间客房,若每间客房每天的定价是200元,则均可被租出;若每间客房每天的定价在200元的基础上提高10x 元(110x ≤≤,x ∈Z ),则被租出的客房会减少15x 套.若要使该连锁酒店每天租赁客房的收入超过106600元,则该连锁酒店每间客房每天的定价应为()A .250元B .260元C .270元D .280元【答案】C【解析】依题意,每天有()50015x -间客房被租出,该连锁酒店每天租赁客房的收入为()()250015200101502000100000x x x x -+=-++.因为要使该连锁酒店每天租赁客房的收入超过106600元,所以21502000100000106600x x -++>,即23401320x x -+<,解得2263x <<.因为110x ≤≤且x ∈Z ,所以7x =,即该连锁酒店每间客房每天的租价应定为270元.故选:C .【变式6-1】(23-24高一上·陕西·月考)某礼服租赁公司共有300套礼服供租赁,若每套礼服每天的租价为200元,则所有礼服均被租出;若将每套礼服每天的租价在200元的基础上提高10x 元(120x ≤≤,x ∈Z ),则被租出的礼服会减少10x 套.若要使该礼服租赁公司每天租赁礼服的收入超过6.24万元,则该礼服租赁公司每套礼服每天的租价应定为()A .220元B .240元C .250元D .280元【答案】C【解析】依题意,每天有30010x -套礼服被租出,该礼服租赁公司每天租赁礼服的收入为()()23001020010100100060000x x x x -⋅+=-++元.因为要使该礼服租赁公司每天租赁6.24万元,所以2100100060000x x -++62400>,即210240x x -+<,解得46x <<.因为120x ≤≤且x ∈Z ,所以5x =,即该礼服租赁公司每套礼服每天的租价应定为250元.故选:C.【变式6-2】(23-24高一上·北京·月考)某市有块三角形荒地,如图ABC 所示,90,200A AB AC ∠=== (单位:米),现市政府要在荒地中开辟一块矩形绿地ADEF ,其中,,D E F点分别在线段,,AB BC CA 上,若要求绿地的面积不少于7500平方米,则AD 的长度(单位:米)范围是()A .[]40,160B .[]50,150C .[]55,145D .[]60,140【答案】B【解析】ABC 中,90,A AB AC ∠== ,ABC 为等腰直角三角形,设AD x =米,则EF FC AD x ===米,200FA x =-米,依题意有()2007500x x -≥,解得50150x ≤≤.即AD 的长度(单位:米)范围是[]50,150.故选:B.【变式6-3】(23-24高一上·陕西宝鸡·月考)如图,在长为8m ,宽为6m 的矩形地面的四周种植花卉,中间种植草坪,如果要求草坪外侧四周的花卉带的宽度都相同,且草坪的面积不超过总面积的一半,则花卉带的宽度至少应为多少米?【答案】花卉的宽度至少为1m【解析】设花卉带的宽度为m x ,则028026x x <<⎧⎨<<⎩,可得03x <<,所以,草坪的长为()82m x -,宽为()62m x -,则草坪的面积为()()()()8262443x x x x --=--,因为草坪的面积不超过总面积的一半,则()()1443682x x --≤⨯⨯,整理可得2760x x -+≤,解得16x ≤≤,又因为03x <<,可得13x ≤<.所以,花卉的宽度至少为1m .一、单选题1.(23-24高一下·湖南株洲·开学考试)不等式2450x x --+<的解集是()A .(5,1)-B .(1,5)-C .(,5)(1,)-∞-+∞ D .(,1)(5,)-∞-+∞ 【答案】C【解析】由2450x x --+<可得2450x x +->,故()()510x x +->,解得1x >或5x <-,故不等式的解为()(),51,-∞-⋃+∞故选:C2.(23-24高一上·河南商丘·期中)不等式2230x x --<的解集是()A .{|1x x <-或3}2x >B .3|2x x ⎧⎫>⎨⎬⎩⎭C .3|12x x ⎧⎫-<<⎨⎬⎩⎭D .{}|1x x <-【答案】C【解析】不等式2230x x --<可化为()()1230x x +-<,所以312x -<<,即原不等式的解集为3|12x x ⎧⎫-<<⎨⎬⎩⎭.故选:C.3.(23-24高一上·河南濮阳·月考)已知关于x 的一元二次不等式20ax bx c +-<的解集为{}|35x x <<,则不等式20cx bx a +->的解集为()A .15x x ⎧<⎨⎩或13x ⎫>⎬⎭B .13x x ⎧<-⎨⎩或15x ⎫>-⎬⎭C .1153x x ⎧⎫<<⎨⎬⎩⎭D .1135x x ⎧⎫-<<-⎨⎬⎩⎭【答案】D【解析】因为关于x 的一元二次不等式20ax bx c +-<的解集为{}|35x x <<,所以0a >且方程20ax bx c +-=的解为3,5,所以8,15b ca a-=-=,所以8,15b a c a =-=-,则不等式20cx bx a +->,即为不等式21580ax ax a --->,则215810x x ++<,解得1135x -<<-,所以不等式20cx bx a +->的解集为1135x x ⎧⎫-<<-⎨⎬⎩⎭.故选:D.4.(23-24高一上·甘肃·期末)若关于x 的不等式()222800x ax a a --<>的解集为()12,x x ,且221220x x +=,则=a ()A .2B .1C.D【答案】B【解析】因为关于x 的不等式()222800x ax a a --<>的解集为()12,x x ,所以1x 和2x 是方程()222800x ax a a --=>的两根,则1221228x x a x x a +=⎧⎨⋅=-⎩.又因为221220x x +=,()2221212122x x x x x x +=+-,所以()()2222820a a --=,解得1a =±.又因为0a >,所以1a =.故选:B5.(23-24高一上·安徽马鞍山·月考)若关于x 的不等式()2220x a x a ---<的解集中,恰有3个整数,则实数a 的取值集合是()A .{56}aa <≤∣B .{65}aa -≤<-∣C .{21aa -<≤-∣或56}a ≤<D .{65aa -≤<-∣或12}a <≤【答案】D【解析】()()()222020x a x a x x a ---<⇒-+<,当2a >-时,不等式解集为{}2x a x -<<,此时恰有3个整数解,则3个整数解分别为1,0,1-,故21a -≤-<-,解得12a <≤,当2a <-时,不等式解集为{}2x x a <<-,此时恰有3个整数解,则3个整数解分别为3,4,5,故56a <-≤,解得65a -≤<-,当2a =-时,不等式解集为∅,不合要求,故实数a 的取值集合为{65aa -≤<-∣或12}a <≤.故选:D 6.(23-24高一上·江苏南京·期末)设a 为实数,则关于x 的不等式(2)(24)0ax x --<的解集不可能是()A .2,2a ⎛⎫⎪⎝⎭B .2(,2)a ⎛⎫-∞⋃+∞ ⎪⎝⎭C .(2,)+∞D .22,a ⎛⎫⎪⎝⎭【答案】B【解析】关于x 的不等式(2)(24)0ax x --<,若0a =,不等式为2(24)0x --<,解得2x >,此时解集为(2,)+∞;若0a ≠,方程(2)(24)0ax x --=,解得2x a=或2x =,a<0时,不等式(2)(24)0ax x --<解得2x a <或2x >,此时解集为()2,2,a ⎛⎫-∞+∞ ⎪⎝⎭ ;01a <<时,22a >,不等式(2)(24)0ax x --<解得22x a <<,此时解集为22,a ⎛⎫ ⎪⎝⎭;1a =时,22a=,不等式(2)(24)0ax x --<解集为∅,1a >时,22a <,不等式(2)(24)0ax x --<解得22x a <<,此时解集为2,2a ⎛⎫ ⎪⎝⎭;所以不等式(2)(24)0ax x --<的解集不可能是2(,2),a ⎛⎫-∞⋃+∞ ⎪⎝⎭.故选:B二、多选题7.(23-24高一上·吉林延边·期中)下列不等式的解集不是R 的是()A .210x x -++≥B .20x ->C .26100x x ++>D .22340x x -+<【答案】ABD【解析】对于A ,由210x x -++≥,得210x x --≤,解得1122x ≤≤,所以A 正确,对于B ,由20x ->,解得x <x >,所以B 正确,对于C ,26100x x ++>,因为364040∆=-=-<,所以不等式26100x x ++>的解集为R ,所以C 错误,对于D ,22340x x -+<,因为932230∆=-=-<,所以不等式22340x x -+<的解集为∅,所以D 正确,故选:ABD8.(23-24高一上·湖北·月考)若不等式20ax bx c -+<的解集是{21}xx -<<∣,则下列说法正确的是()A .0b <且0c <B .<0a b c -+C .0a b c ++<D .不等式20ax bx c ++<的解集是()1,2-【答案】ACD【解析】不等式20ax bx c -+<的解集是{21}xx -<<∣,则对应的方程20ax bx c -+=的两根为2-和1,211,212b ca a∴=-+=-=-⨯=-,且0a >,故0,2a b c a +==-,且0a >,故0,0c b <<,故A 正确;20a b c a a a -+=+-=,故B 错误;0a b c c ++=<,故C 正确;20ax bx c ++<,220ax ax a --<,即()()22120x x x x --=+-<的解集是()1,2-,故D 正确.故选:ACD三、填空题9.(23-24高一上·河北石家庄·月考)已知二次方程20(0)ax bx c a ++=>的两根分别为2和4,则不等式20ax bx c ++<的解集为.【答案】{}|24x x <<【解析】二次方程20(0)ax bx c a ++=>的两根分别为2和4,可得2424b a c a ⎧+=-⎪⎪⎨⎪⨯=⎪⎩,即68b a c a =-⎧⎨=⎩,由()200ax bx c a ++<>可得2680x x -+<,解得24x <<,所以不等式2680x x -+<的解集为{}|24x x <<.故答案为:{}|24x x <<.10.(23-24高一上·安徽亳州·期末)若关于x 的不等式210mx x ++>的解集为R ,则实数m 的取值范围为.【答案】14m >【解析】当0m =时,10x +>,1x >-,不满足题意;当0m ≠时,0Δ140m m >⎧⎨=-<⎩,所以14m >,综上,实数m 的取值范围为14m >.故答案为:14m >11.(23-24高一上·安徽蚌埠·期末)已知正数x y ,满足2x y +=,若211m m x y+>-恒成立,则实数m 的取值范围为.【答案】(1,2)-【解析】因为0,0x y >>且2x y +=,所以111111()222y x x y x y x y x y ⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭1222⎛≥⨯+= ⎝,当且仅当1y x ==时取等号.因为不等式211m m x y+>-恒成立,所以22m m -<,解得12m -<<.故答案为:(1,2)-.四、解答题12.(23-24高一上·河南濮阳·月考)解下列一元二次不等式:(1)23710x x -≤;(2)2104x x -+<.【答案】(1)1013x x ⎧⎫-≤≤⎨⎬⎩⎭;(2)∅【解析】(1)由23710x x -≤,得237100x x --≤,即()()31010x x -+≤,所以1013x -≤≤,所以不等式得解集为1013x x ⎧⎫-≤≤⎨⎬⎩⎭;(2)由2104x x -+<,得2102x ⎛⎫-< ⎪⎝⎭,无解,所以不等式的解集为∅.13.(23-24高一上·江苏镇江·期中)(1)解关于x 的不等式()210x m x m -++<.(2)若对任意的[]()21,2,10x x m x m ∈-++≤恒成立,求实数m 的取值范围.【答案】(1)分类讨论,答案见解析;(2)2m ≥.【解析】(1)不等式()210x m x m -++<化为:()(1)0x m x --<,当1m <时,解得1m x <<;当0m =时,不等式无解;当1m >时,解得1x m <<,所以当1m <时,原不等式的解集为(,1)m ;当0m =时,原不等式的解集为∅;当1m >时,原不等式的解集为(1,)m .(2)当1x =时,2(1)0x m x m -++≤恒成立,则m ∈R ,当(1,2]x ∈时,不等式2(1)0(1)(1)x m x m m x x x m x -++≤⇔-≥-⇔≥,依题意,(1,2]x ∀∈,m x ≥,而x 最大值为2,因此2m ≥,所以实数m 的取值范围是2m ≥.。

2024年中考数学抢分秘籍(解析版)(全国通用版):统计与概率

2024年中考数学抢分秘籍(解析版)(全国通用版):统计与概率

秘籍08统计与概率概率预测☆☆☆☆☆题型预测解答题☆☆☆☆☆考向预测①数据的整理、描述和分析。

②概率问题。

统计与概率是全国中考的必考内容!但总有一部分学生,因为粗心,因为混淆概念等的小错误就丢了分数。

1.从考点频率看,统计与概率是高频考点,通常考查条形统计图、扇形统计图和树状图。

2.从题型角度看,选择题、填空题较多,同时考查多个考点的综合性题目以解答题为主,分值9分左右!1.平均数2.中位数:几个数据按从小到大的顺序排列时,①m=,n=;②补全条形统计图;③根据调查数据,即可知道该市市民家庭处理过期药品最常见的方式是B类;④180×10%=18(万户).信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的中考统计与概率是基础题。

条形统计图和扇形统计图的结合经常考查求总量、画条形统计图、求扇形度数和估计等。

数据整理和分析常考的知识点有众数、中位数、平均数和方差。

有时也会考查频率和频数。

请根据图表信息,回答下列问题.(1)参加此次调查的总人数是______人,频数统计表中a=(2)在扇形统计图中,D组所在扇形的圆心角度数是______°(3)该校准备开展以“劳动美”为主题的教育活动,要从报名的得,请用树状图或列表法求恰好抽到一名男生和一名女生的概率.【答案】(1)150,60(2)36(3)恰好抽到一名男生和一名女生的概率为2请根据所给信息解答下列问题:(1)填空:① a____________,②(2)若把统计表每组中各个成绩用这组数据的中间值代替(例如:的200名学生成绩的平均数;(3)规定海选成绩不低于90分记为种等可能的结果,其中甲、乙两人选到的两本名著是《三国演义》和《红楼梦》的结果有(1)扇形统计图中的%n ________%,B项活动所在扇形的圆心角的大小是________ .(2)甲同学想参加A、B、C三个活动中的一个,乙同学想参加B、C、E这三个活动中的一个,若他们随机抽选其中一个活动的概率相同,请用列表法或画树状图法,求他们同时选中同一个活动的概率.【答案】(1)15,72(2)13已知测试成绩F组的全部数据为96,95,97,96,99请根据以上信息,完成下列问题:(1)m=,a=,并补全条形统计图.(2)F组成绩的中位数是.组同学中有两名是九年级的,其余两名是其他年级的,现从故答案为:50,72 .(2)解:将F组成绩的成绩从低向高排列为:则中位数为969796.5 2.故答案为96.5.共有12种等可能情况,其中恰好有一名是九年级学生的有∴P(恰好有一名是九年级学生【点睛】本题主要考查了扇形统计图和条形统计图的结合、中位数、用树状图求概率等知识点,正确画出请根据图表中的信息,解答下列问题:(1)填空:b ,抽取的学生竞赛成绩的中位数落在,请你估计全校此次抽取的学生竞赛成绩的平均数为1 100(3)解:此次竞赛成绩为“优秀”的学生人数为此次竞赛成绩为“优秀”的学生人数为720【点睛】本题考查频数分布直方图、统计表、用样本估计总体,解答本题的关键是明确统计图的特点和中位数的含义,利用数形结合的思想解答.5.(2023·江苏徐州·统考一模)校园安全问题受到全社会的广泛关注,.十分熟悉、根据以上信息解答下列问题:(1)本次接受调查的学生共有人,扇形统计图中A部分所对应的扇形圆心角是(2)请补全条形统计图;(3)若该中学共有学生1800人,估计该校学生中对校园安全知识的了解程度达到【答案】(1)60,90(2)见解析(3)根据题意,155 180060060(人)答:该校学生中对校园安全知识的了解程度达到【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.6.(2023·江苏苏州·统考二模)2023年春节假期,苏州文旅全面复苏,接待人次、旅游收入双创新高:重请你根据统计图中的信息,解决下列问题:(1)这次调查一共抽取了___名同学:扇形统计图中,旅游地点D所对应的扇形圆心角的度数形统计图.(2)若小志所在学校共有3000名学生,请你根据调查结果估计该校最喜爱生总人数.(2)解:189 ********60(名),答:估计该校最喜爱“穹窿山景区”和“灵岩山景区【点睛】本题考查了条形统计图和扇形统计图,补全条形统计图,利用样本估计总体的知识,将条形统计图和扇形统计图的数据加以联系,并注重数形结合是解答本题的关键.7.(2023·广东河源·统考一模)某校为了解本校学生对十大”知识竞赛(百分制),从中分别随机抽取了根据以上信息,解答下列问题:(1)直接写出上述a,b,c(2)你认为这次竞赛中哪个年级成绩更好,为什么?(3)若该校九年级共500人参加了此次竞赛活动,估计竞赛成绩优秀(【答案】(1)40;96;91.5(2)九年级成绩相对更好,理由见解析(1)本次调查的学生共有人;扇形统计图中,区域A所对应的扇形圆心角的度数是(2)将条形统计图补充完整;(3)该中学共有学生2400人,请估算该校参与声乐类和书法类社团的学生总人数;(4)校园艺术节到了,学校将从符合条件的4名社团学生(男女各持人.请用列表或画树状图的方法,求恰好选中1名男生和【答案】(1)50,100.8(3)解:14162400144050(人),答:该校参与声乐类和书法类社团的学生总人数约有(4)解:用1A ,2A 表示男同学,1B ,1A 2A 1B 1A (2A ,1A )(四个等级,并绘制了如图所示的两幅不完整的统计图表,根据图表信息,(1)随机抽取的学生共______(2)若全校有1400人参加了知识竞赛,请你估计其中等级为(3)若成绩为100分的学生有甲、乙、丙、丁四人,学校将从这四人中随机选出表或画树状图的方法,求甲、乙两人被同时选中的概率.【答案】(1)60,84结果:(甲,乙),(甲,丙),(甲,丁),(乙,甲),(丁,甲),(丁,乙),(丁,丙)∴共有12种等可能性的结果,其中甲、乙两人被同时选中的结果有设甲、乙两人被同时选中的事件为M,请结合图中的信息,解决下列问题:(1)请求出接受问卷调查的人数,并补全条形统计图;(2)请求出扇形统计图中“满意”部分的圆心角度数;(3)该兴趣小组准备从调查结果为“不满意”的4位市民中随机选择2位进行回访,已知这性,2位女性.请用画树状图或列表的方法求出选择回访的市民为“一男一女【答案】,统计图见解析(2)20360144 50,(3)画树状图得:∵共有12种等可能的结果,其中是“一男一女”的有8种情况,∴一男一女的概率为82=123.【点睛】此题考查了列表法或树状图法求概率以及条形与扇形统计图的知识.用到的知识点为:概率b.七年级成绩在8090x 的数据如下(单位:分)808185858585858585c.七、八年级各抽取的30名学生成绩的平均数、中位数、众数、方差如下表:年级平均数中位数众数方差分,可以推断他的成绩超过了该校八年级一半以上学生的成绩.名学生,估计七年级成绩优秀的学生人数.(1)这次被调查的学生共有_______人;(2)请补全条形统计图;(3)在数独比赛项目中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中随机选取两名参加数独决赛,请利用画树状图或列表的方法,求恰好选中甲、乙两位同学的概率.【答案】(1)200人(2)见解析(3)解:甲乙(1)则该班的总人数为______人,其中学生选D“羽毛球”所在扇形的圆心角的度数是(2)补全条形统计图;(3)该班班委4人中,2人选修篮球,1人选修足球,1人选修排球,李老师要从这体育社团活动课的看法,请你用列表或画树状图的方法,求选出的)利用选足球的学生的百分比乘以总人数求得选足球的人数,再利用总人数减去其他课程的人数求得选(3)解:画树状图如下:共有12种等可能的情况,其中选出的2人恰好∴选出的2人恰好1人选修篮球,1人选修足球的概率为(1)训练前成绩的中位数是分,训练后成绩的众数是(2)训练后比训练前平均分增加了多少分?(3)如果该校九年级有400名学生,那么估计训练后成绩为满分的人数有多少人?【答案】(1)8,10(2)训练后平均分增加了1.08分(3)192人。

2024年新高一数学初升高衔接《等式性质与不等式性质》含答案解析

2024年新高一数学初升高衔接《等式性质与不等式性质》含答案解析

第06讲 等式性质与不等式性质模块一 思维导图串知识模块二 基础知识全梳理(吃透教材)模块三 核心考点举一反三模块四 小试牛刀过关测1.通过用不等式(组)表示实际问题,提升数学抽象与数学建模素养;2.通过比较两个实数的大小、不等式性质的应用,提升逻辑推理、数学运算素养;3.运用不等式的性质解决有关问题.知识点 1 不等关系与不等式1、不等式的概念(1)用数学符号“≠”“>”“<”“≥”“≤”连接两个数或代数式,以表示它们之间的不等式关系,含有这些不等式号的式子,叫做不等式.(2)用“<”或“>”连接的不等式叫严格不等式;用“≤”或“≥”连接的不等式叫非严格不等式.2、常见文字语言与符号语言之间的对应关系文字语言大于、高于、超过小于、低于、少于大于或等于、至少、不低于小于或等于、至多、不多于、不超过符号语言><≥≤3、用不等式组表示不等式关系当问题情境中包含两个或两个以上的不等式关系时,需要用不等式组来表示不等关系.知识点 2 等式性质性质文字表述性质内容注意1对称性a b b a=⇔=可逆2传递性,a b b c a c==⇒=同向3可加、减性a b a c b c =⇔±=±可逆4可乘性a b ac bc=⇒=同向5可除性,0a b a b c c c=≠⇒=同向知识点 3 不等式性质性质别名性质内容注意1对称性a >b ⇔b <a 可逆2传递性a >b ,b >c ⇒a >c 同向3可加性a >b ⇔a +c >b +c 可逆4可乘性a >b ,c >0⇒ac >bc a >b ,c <0⇒ac <bc c 的符号5同向可加性a >b ,c >d ⇒a +c >b +d 同向6正数同向可乘性a >b >0,c >d >0⇒ac >bd 同向7正数乘方性a >b >0⇒a n >b n (n ∈N ,n ≥2)同正知识点 4 比较大小的方法1、作差法、作商法是比较两个实数(或代数式)大小的基本方法.①作差法的步骤:作差、变形、判断差的符号、得出结论.②作商法的步骤:作商、变形、判断商与1的大小、得出结论.2、介值比较法也是比较大小的常用方法,其实质是不等式的传递性:若a >b ,b >c ,则a >c ;若a <b ,b <c ,那么a <c .其中b 是介于a 与c 之间的值,此种方法的关键是通过恰当的放缩,找出一个比较合适的中介值.3、平方法:对两式先平方,再比较大小.【注意】(1)比较代数式的大小通常采用作差法,如果含有根式,也可以先平方再作差,但此时一定要保证代数式大于零;(2)作差时应该对差式进行恒等变形(如配方、因式分解、有理化、通分等),直到能明显看出其正负号为止;(3)作商法适合于幂式、积式、分式间的大小比较,作商后应变形为能与“1”比较大小的式子,要注意营养函数的有关性质.考点一:用不等式(组)表示不等式关系例1.(23-24高一上·广东深圳·月考)公司运输一批木材,总重600吨,车队有两种货车,A 型货车载重量30吨,B 型货车载重量24吨,设派出A 型货车x 辆,B 型货车y 辆,则运输方案应满足的关系式是( )A .54100x y +<B .54100x y +≥C .54100x y +>D .54100x y +≤【变式1-1】(23-24高一上·贵州遵义·月考)持续的高温干燥天气导致某地突发山火,现需将物资运往灭火前线.从物资集散地到灭火前线-共40km ,其中靠近灭火前线5km 的山路崎岖,需摩托车运送,其他路段可用汽车运送.已知在可用汽车运送的路段,运送的平均速度为60km h ,设需摩托车运送的路段平均速度为km h x ,为使物资能在1小时内到达灭火前线,则x 应该满足的不等式为( ).A .40160x>+B .40160x<+C .355160x+>D .355160x+<【变式1-2】(22-23高一上·甘肃酒泉·期末)铁路总公司关于乘车行李规定如下:乘坐动车组列车携带品的外部尺寸长、宽、高之和不超过130cm ,且体积不超过372000cm ,设携带品外部尺寸长、宽、高分别记为a ,b ,c (单位:cm ),这个规定用数学关系式可表示为( )A .130a b c ++<且72000abc <B .130a b c ++>且72000abc >C .130a b c ++≤且72000abc ≤D .130a b c ++≥且72000abc ≥【变式1-3】(22-23高一上·四川眉山·月考)将一根长为5m 的绳子截成两段,已知其中一段的长度为x m ,若两段绳子长度之差不小于1m ,则x 所满足的不等关系为( )A .25005x x ->⎧⎨<<⎩B .251x -≥或521x -≥C .52105x x -≥⎧⎨<<⎩D .25105x x ⎧-≥⎨<<⎩考点二:比较实数(代数式)的大小例2. (23-24高一上·河南洛阳·期末)今年某地因天气干旱导致白菜价格不稳定,假设第一周、第二周的白菜价格分别为a 元/斤、b 元/斤()a b ≠,王大妈每周购买10元的白菜,李阿姨每周购买8斤白菜,王大妈和李阿姨两周买白菜的平均价格分别记为1m ,2m ,则1m 与2m 的大小关系为( )A .12m m =B .12m m >C .12m m <D .无法确定【变式2-1】(23-24高一上·江苏常州·期末)设a ,b ,m 都是正数,且a b <,记,a m ax y b m b +==+,则( )A .x y >B .x y=C .x y< D .x 与y 的大小与m的取值有关【变式2-2】(23-24高一上·陕西榆林·月考)设0a b >>,比较2222a b a b -+与a b a b -+的大小【变式2-3】(23-24高一上·山东青岛·月考)已知0a >,0b >的大小;考点三:利用不等式的性质判断命题真假例3. (23-24高一上·河北石家庄·月考)若||||a b >,则下列不等式成立的是( )A .0a b ->B .11a b<C .a b >D .22a b >【变式3-1】(23-24高一上·内蒙古呼和浩特·期中)下列说法正确的是( )A .若a b >,则22ac bc >B .若22a bc c >,则a b >C .若a b >,cd >,则ac bd>D .若0b a >>,则a c ab c b+>+【变式3-2】(23-24高一上·吉林延边·月考)(多选)下列结论错误的是()A .若a b >,则ac bc <B .若a b >,则11a b <C .若a b >,则22a b >D .若22ac bc >,则a b>【变式3-3】(23-24高一上·广西贺州·期末)(多选)若0a b >>,0c <,则下列不等关系正确的是( )A .a c b c+>+B .22a bc c >C .ac bc >D .11a b b a+>+考点四:利用不等式的性质求范围例4. (23-24高一上·陕西咸阳·月考)已知23a <<,21b -<<-,则2a b -的取值范围是( )A .[]6,7B .()2,5C .[]4,7D .()5,8【变式4-1】(23-24高一上·江西景德镇·月考)已知3b a b <<-,则ab的取值范围为( )A .03ab<<B .03a b≤<C .3a b >D .13a b<<【变式4-2】(23-24高一上·河北石家庄·期中)已知14a b ≤+≤,12a b -≤-≤,则42a b -的取值范围是( )A .{}410x x -<<B .{}36x x -<<C .{}214x x -<<D .{}210x x -≤≤【变式4-3】(23-24高一上·吉林四平·期中)已知2236x y ≤+≤,3569x y -≤-≤,则113z x y =+的取值范围是( )A .58933z z ⎧⎫≤≤⎨⎬⎩⎭B .5|273z z ⎧⎫≤≤⎨⎬⎩⎭C .8933z z ⎧⎫≤≤⎨⎬⎩⎭D .{}327z z ≤≤考点五:利用不等式的性质证明不等式例5. (23-24高一上·河北保定·月考)设,,a b c ∈R ,0a b c ++=,1abc =.(1)证明:0ab bc ca ++<;(2)若a b >,证明33a b >.【变式5-1】(23-24高一上·陕西榆林·期中)证明下列不等式:(1)已知a b c d >>>,求证:11a db c<--;(2)已知0,0,0a b c d e >><<<,求证:e e a c b d>--.【变式5-2】(23-24高一上·安徽芜湖·月考)(1)已知0b a >>,证明:2a a b b a<+;(2)若a ,b ,c 为三角形的三边长,则2a b cb c a c a b++<+++.【变式5-3】(23-24高一上·云南·月考)证明下列不等式:(1)若0,0a b >>,求证:22a ba b b a++≥;(2)若0a b >>,0c d <<,0e <,求证:()()22eea cb d >--.考点六:不等式性质的实际应用例6. (23-24高一上·四川南充·月考)火车站有某公司待运的甲种货物1530吨,乙种货物1150吨.现计划用A ,B 两种型号的货箱共50节运送这批货物.已知35吨甲种货物和15吨乙种货物可装满一节A 型货箱,25吨甲种货物和35吨乙种货物可装满一节B 型货箱,据此安排A ,B 两种货箱的节数,下列哪个方案不满足:( )A .A 货箱28节,B 货箱22节B .A 货箱29节,B 货箱21节C .A 货箱31节,B 货箱19节D .A 货箱30节,B 货箱20节【变式6-1】(22-23高一上·山东·月考)某化工厂制定明年某产品的生产计划,受下面条件的制约:生产每袋需用4h ;生产此产品的工人不超过200人,每个工人的年工作时间约为2100h ;生产每袋需用原料20kg ,年底库存原料600t ,明年可补充1200t ;此产品今年销售量是60000袋,预计明年的销售量至少在今年的基础上增长13.根据这些数据条件可以预测明年的产量在( )A .70000到75000袋之间B .70000到80000袋之间C .80000到85000袋之间D .80000到90000袋之间【变式6-2】(23-24高一上·全国·专题练习)王老师是高三的班主任,为了更好地督促班上的学生完成作业,王老师特地组建了一个学习小组的钉钉群,群的成员由学生、家长、老师共同组成.已知该钉钉群中男学生人数多于女学生人数,女学生人数多于家长人数,家长人数多于教师人数,教师人数的两倍多于男学生人数.则该钉钉群人数的最小值为( )A .18B .20C .22D .28【变式6-3】(23-24高一上·吉林长春·月考)不等关系是数学中一种最基本的数关系,生活中随处可见.例如.已知b 克糖水中含有a 克糖(0)b a >>,再添加m 克糖(0)m >(假设全部溶解),糖水变甜了.(1)请将这一事实表示为一个不等式.并证明这个不等式成立:(2)利用(1)中的结论证明:若,,a b c 为三角形的三边长,则2a b cb c a c a b++<+++.一、单选题1.(22-23高一上·河北邢台·月考)在开山工程爆破时,已知导火索燃烧的速度是每秒0.5厘米,人跑开的速度为每秒4米,距离爆破点150米以外(含150米)为安全区.为了使导火索燃尽时人能够跑到安全区,导火索的长度x (单位:厘米)应满足的不等式为( )A .41500.5x⨯<B .41500.5x⨯≥C .41500.5x⨯≤D .41500.5x⨯>2.(23-24高一上·云南昆明·期中)设2254M a a =++,(1)(3)N a a =++,则M 与N 的大小关系为( )A .M N>B .M N=C .M N<D .无法确定3.(23-24高一上·广东深圳·期末)已知,,R,a b c a b ∈>,则下列一定成立的是( )A .11a b<B .2ab b >C .b c ba c a+>+D .()()2211a c b c +>+4.(23-24高一上·安徽宣城·自主招生)已知实数a ,b ,则下列选项中正确的是( )A .若a b >,则22a b >B .若a b >,则22a b >C .若a b >,则22a b >D .若a b >,则11a b<5.(23-24高一上·河南驻马店·期末)已知15,31a b -<<-<<,则以下错误的是( )A .155ab -<<B .46a b -<+<C .28a b -<-<D .553ab-<<6.(23-24高一上·山东菏泽·月考)已知11x y -≤+≤,13x y ≤-≤,则32x y -的取值范围是( )A .2328x y ≤-≤B .3328x y ≤-≤C .2327x y ≤-≤D .53210x y ≤-≤二、多选题7.(23-24高一上·山东日照·期末)若实数a ,b ,c 满足()0a b b >≠且0a >,0c >,则下列不等式正确的是( )A .11a b<B .ac bc-<-C .b c ba c a+>+D .22222b a a b+>8.(23-24高一上·四川乐山·期中)下列不等式中,一定成立的是( )A .若0,a b c >>∈R ,则22c ca b<B .若0,a b c >>∈R ,则22ac bc >C .若0a b <<,则22a ab b >>D .若0a b <<,则22a a b b+<+三、填空题9.(23-24高一上·广东韶关·月考)已知x ∈R ,则23x + 2x .(填“<”,“>”,或“=”)10.(23-24高一上·北京西城·期中)已知a ,b ,c 为实数,能说明“若a b c >>,则2a bc >”为假命题的一组a ,b ,c 的值是.11.(23-24高一上·山东菏泽·期中)“双节”遇上亚运会,民宿成为潮流趋势.民宿的改造中,窗户面积与地板面积之比越大,采光效果越好.现有一所地板面积为180平方米的民宿需要同时增加窗户和地板的面积,已知地板增加的面积是窗户增加的面积的2倍,且民宿改造后的采光效果不逊于改造前,则改造前的窗户面积最大为平方米.四、解答题12.(23-24高一上·福建泉州·月考)(1)已知R a ∈,设()21M a a =+,()()21N a a =+-,比较M 与N 的大小;(2)证明:已知a b c >>,且0a b c ++=,求证:c ca cb c>--.13.(23-24高一上·湖北·期中)(1)已知b 克糖水中含有a 克糖(0b a >>),再添加m 克糖(0m >)(假设全部溶解),糖水变甜了.请将这一事实表示为一个不等式,不必证明.利用此结论证明:若,,a b c 为三角形的三边长,则2a b cb c a c a b++<+++.(2)超市里面提供两种糖:白糖每千克1p 元,红糖每千克2p 元()12p p ≠.小东买了相同质量的两种糖,小华买了相同价钱的两种糖.请问谁买的糖的平均价格比较高?请证明你的结论.(物品的平均价格=物品的总价钱÷物品的总质量)第06讲 等式性质与不等式性质模块一 思维导图串知识模块二 基础知识全梳理(吃透教材)模块三 核心考点举一反三模块四 小试牛刀过关测1.通过用不等式(组)表示实际问题,提升数学抽象与数学建模素养;2.通过比较两个实数的大小、不等式性质的应用,提升逻辑推理、数学运算素养;3.运用不等式的性质解决有关问题.知识点 1 不等关系与不等式1、不等式的概念(1)用数学符号“≠”“>”“<”“≥”“≤”连接两个数或代数式,以表示它们之间的不等式关系,含有这些不等式号的式子,叫做不等式.(2)用“<”或“>”连接的不等式叫严格不等式;用“≤”或“≥”连接的不等式叫非严格不等式.2、常见文字语言与符号语言之间的对应关系文字语言大于、高于、超过小于、低于、少于大于或等于、小于或等于、至多、至少、不低于不多于、不超过符号语言><≥≤3、用不等式组表示不等式关系当问题情境中包含两个或两个以上的不等式关系时,需要用不等式组来表示不等关系.知识点 2 等式性质性质文字表述性质内容注意1对称性a b b a=⇔=可逆2传递性,a b b c a c==⇒=同向3可加、减性a b a c b c =⇔±=±可逆4可乘性a b ac bc=⇒=同向5可除性,0a b a b c c c=≠⇒=同向知识点 3 不等式性质性质别名性质内容注意1对称性a >b ⇔b <a 可逆2传递性a >b ,b >c ⇒a >c 同向3可加性a >b ⇔a +c >b +c 可逆4可乘性a >b ,c >0⇒ac >bc a >b ,c <0⇒ac <bc c 的符号5同向可加性a >b ,c >d ⇒a +c >b +d 同向6正数同向可乘性a >b >0,c >d >0⇒ac >bd 同向7正数乘方性a >b >0⇒a n >b n (n ∈N ,n ≥2)同正知识点 4 比较大小的方法1、作差法、作商法是比较两个实数(或代数式)大小的基本方法.①作差法的步骤:作差、变形、判断差的符号、得出结论.②作商法的步骤:作商、变形、判断商与1的大小、得出结论.2、介值比较法也是比较大小的常用方法,其实质是不等式的传递性:若a >b ,b >c ,则a >c ;若a <b ,b <c ,那么a <c .其中b 是介于a 与c 之间的值,此种方法的关键是通过恰当的放缩,找出一个比较合适的中介值.3、平方法:对两式先平方,再比较大小.【注意】(1)比较代数式的大小通常采用作差法,如果含有根式,也可以先平方再作差,但此时一定要保证代数式大于零;(2)作差时应该对差式进行恒等变形(如配方、因式分解、有理化、通分等),直到能明显看出其正负号为止;(3)作商法适合于幂式、积式、分式间的大小比较,作商后应变形为能与“1”比较大小的式子,要注意营养函数的有关性质.考点一:用不等式(组)表示不等式关系例1.(23-24高一上·广东深圳·月考)公司运输一批木材,总重600吨,车队有两种货车,A 型货车载重量30吨,B 型货车载重量24吨,设派出A 型货车x 辆,B 型货车y 辆,则运输方案应满足的关系式是( )A .54100x y +<B .54100x y +≥C .54100x y +>D .54100x y +≤【答案】B【解析】由已知可得,3024600x y +≥,所以有54100x y +≥.故选:B.【变式1-1】(23-24高一上·贵州遵义·月考)持续的高温干燥天气导致某地突发山火,现需将物资运往灭火前线.从物资集散地到灭火前线-共40km ,其中靠近灭火前线5km 的山路崎岖,需摩托车运送,其他路段可用汽车运送.已知在可用汽车运送的路段,运送的平均速度为60km h ,设需摩托车运送的路段平均速度为km h x ,为使物资能在1小时内到达灭火前线,则x 应该满足的不等式为( ).A .40160x>+B .40160x<+C .355160x+>D .355160x+<【答案】D【解析】由题意汽车所用时间加上摩托车所用时间小于1小时,即355160x+<,故选:D .【变式1-2】(22-23高一上·甘肃酒泉·期末)铁路总公司关于乘车行李规定如下:乘坐动车组列车携带品的外部尺寸长、宽、高之和不超过130cm ,且体积不超过372000cm ,设携带品外部尺寸长、宽、高分别记为a ,b ,c (单位:cm ),这个规定用数学关系式可表示为( )A .130a b c ++<且72000abc <B .130a b c ++>且72000abc >C .130a b c ++≤且72000abc ≤D .130a b c ++≥且72000abc ≥【答案】C【解析】由长、宽、高之和不超过130cm 得130a b c ++≤,由体积不超过372000cm 得72000abc ≤.故选:C.【变式1-3】(22-23高一上·四川眉山·月考)将一根长为5m 的绳子截成两段,已知其中一段的长度为x m ,若两段绳子长度之差不小于1m ,则x 所满足的不等关系为( )A .25005x x ->⎧⎨<<⎩B .251x -≥或521x -≥C .52105x x -≥⎧⎨<<⎩D .25105x x ⎧-≥⎨<<⎩【答案】D【解析】由题意,可知另一段绳子的长度为()5m x -.因为两段绳子长度之差不小于1m ,所以()5105x x x ⎧--≥⎪⎨<<⎪⎩,化简得:25105x x ⎧-≥⎨<<⎩.故选:D考点二:比较实数(代数式)的大小例2. (23-24高一上·河南洛阳·期末)今年某地因天气干旱导致白菜价格不稳定,假设第一周、第二周的白菜价格分别为a 元/斤、b 元/斤()a b ≠,王大妈每周购买10元的白菜,李阿姨每周购买8斤白菜,王大妈和李阿姨两周买白菜的平均价格分别记为1m ,2m ,则1m 与2m 的大小关系为( )A .12m m =B .12m m >C .12m m <D .无法确定【答案】C【解析】由题意可得,0a >,0b >,a b ¹,12021010abm a b a b==++,288162a b a b m ++==,()()221224()()0222ab a b ab a b a b m m a b a b a b +-+---=-==<+++ ,12m m ∴<.故选:C .【变式2-1】(23-24高一上·江苏常州·期末)设a ,b ,m 都是正数,且a b <,记,a m ax y b m b +==+,则( )A .x y >B .x y=C .x y< D .x 与y 的大小与m的取值有关【答案】A【解析】由0,0,0a b m >>>,且a b <,即0b a ->,可得()()0m b a a m a b m b x b b m y --=+-=>++,即x y >,故选:A.【变式2-2】(23-24高一上·陕西榆林·月考)设0a b >>,比较2222a b a b -+与a b a b -+的大小【答案】2222a b a ba b a b-->++【解析】00,0a b a b a b >>⇒+>-> ,()()2222220,0a b a b a b a b a b a b a b +---∴=>>+++,222222222()211a b a b ab a b a b a b a b a b-++∴==+>-+++,2222a b a ba b a b--∴>++.【变式2-3】(23-24高一上·山东青岛·月考)已知0a >,0b >的大小;≤a b =时取等号)=()()3322x y x y x xy y +=+-+,可得分子)33a b =+=,a b+==进一步对其分子利用基本不等式可得a b+≥=,且等号成立当且仅当a b =,1≥,≤a b =时取等号).考点三:利用不等式的性质判断命题真假例3. (23-24高一上·河北石家庄·月考)若||||a b >,则下列不等式成立的是( )A .0a b ->B .11a b<C .a b >D .22a b >【答案】D【解析】因为||||a b >,所以22a b >,D 正确;当2,1a b =-=时,满足||||a b >,但是a b <,A,C 不正确;当2,1a b =-=-时,满足||||a b >,但是11a b>,B 不正确;故选:D 【变式3-1】(23-24高一上·内蒙古呼和浩特·期中)下列说法正确的是( )A .若a b >,则22ac bc >B .若22a bc c >,则a b >C .若a b >,c d >,则ac bd >D .若0b a >>,则a c ab c b+>+【答案】B【解析】对于A :当0c =时,2c =0,若a b >,则220ac bc ==,故A 错误;对于B :因为22a b c c>,所以20c ≠,即20c >,所以a b >,故B 正确;对于C :当1a =,0b =,1c =-,2d =-时,满足a b >,c d >,但是ac bd <,故C 错误;对于D :当0c =时,a c ab c b+=+,故D 错误.故选:B 【变式3-2】(23-24高一上·吉林延边·月考)(多选)下列结论错误的是()A .若a b >,则ac bc <B .若a b >,则11a b <C .若a b >,则22a b >D .若22ac bc >,则a b>【答案】AB【解析】取2,2,1a b c ==-=可得,a b >,但22ac bc =>-=,A 错误;取2,2a b ==-可得,a b >,但111122a b=>-=,B错误;因为a b >,又0b ≥,所以22a b >,故22a b >,C 正确;由22ac bc >,可得20c >,所以a b >,D 正确;故选:AB.【变式3-3】(23-24高一上·广西贺州·期末)(多选)若0a b >>,0c <,则下列不等关系正确的是( )A .a c b c +>+B .22a bc c >C .ac bc >D .11a b b a+>+【答案】ABD【解析】对A, 0a b >>,0c <,由不等式性质易知 a c b c +>+,故A 正确;对B, 0a b >>,0c <,则22210,a bc c c >∴>,故B 正确;对C, 0a b >>,0c <,由不等式性质易知ac bc <,故C 错误;对D, 若0a b >>,则()11110⎛⎫⎛⎫+-+=-+> ⎪ ⎪⎝⎭⎝⎭a b a b b a ab , 故D 正确.故选:ABD.考点四:利用不等式的性质求范围例4. (23-24高一上·陕西咸阳·月考)已知23a <<,21b -<<-,则2a b -的取值范围是( )A .[]6,7B .()2,5C .[]4,7D .()5,8【答案】D【解析】由题意可知426a <<,12b <-<,所以528<-<a b ,故选:D【变式4-1】(23-24高一上·江西景德镇·月考)已知3b a b <<-,则ab的取值范围为( )A .03a b<<B .03a b≤<C .3a b >D .13a b<<【答案】B【解析】因为3b a b <<-,所以0b <,则有10b<,将不等式3b a b <<-的两边同时乘1b ,可得31a b-<<,所以03a b ≤<.故选:B .【变式4-2】(23-24高一上·河北石家庄·期中)已知14a b ≤+≤,12a b -≤-≤,则42a b -的取值范围是( )A .{}410x x -<<B .{}36x x -<<C .{}214x x -<<D .{}210x x -≤≤【答案】D【解析】由12a b -≤-≤,14a b ≤+≤,得()()06a b a b ≤-++≤,即026a ≤≤,()224a b -≤-≤,所以()22210a b a -≤-+≤,即24210a b -≤-≤,故选:D【变式4-3】(23-24高一上·吉林四平·期中)已知2236x y ≤+≤,3569x y -≤-≤,则113z x y =+的取值范围是( )A .58933z z ⎧⎫≤≤⎨⎬⎩⎭B .5|273z z ⎧⎫≤≤⎨⎬⎩⎭C .8933z z ⎧⎫≤≤⎨⎬⎩⎭D .{}327z z ≤≤【答案】D【解析】设)231156(3)(x y x x y n y m +=-++,则25)(113(36)x y m n y m n x +++=-,所以2511363m n m n +=⎧⎨-=⎩,解得31m n =⎧⎨=⎩,于是1133(56)23)(x y y x x y +++=-又63(23)18x y ≤+≤,3569x y -≤-≤,所以33(56)2723)(x y x y ++≤-≤,即311327x y ≤+≤.故{}327z z ≤≤.故选:D .考点五:利用不等式的性质证明不等式例5. (23-24高一上·河北保定·月考)设,,a b c ∈R ,0a b c ++=,1abc =.(1)证明:0ab bc ca ++<;(2)若a b >,证明33a b >.【答案】(1)证明见解析;(2)证明见解析【解析】(1)证明:∵()22222220a b c a b c ab ac bc ++=+++++=,∴()22212ab bc ca a b c ++=-++.a ,b ,c 不同时为0,则2220a b c ++>,∴()222102ab bc ca a b c ++=-++<;(2)()()3322a b a b a ab b -=-++.∵222213024a ab b a b b ⎛⎫++=++≥ ⎪⎝⎭,取等号的条件为0a b ==,而a b >,∴等号无法取得,即222213024a b b a ab b ⎛⎫=++> ⎪⎝+⎭+,又a b >,∴()()33220a b a b a ab b -=-++>,∴33a b >.【变式5-1】(23-24高一上·陕西榆林·期中)证明下列不等式:(1)已知a b c d >>>,求证:11a db c<--;(2)已知0,0,0a b c d e >><<<,求证:e e a c b d>--.【答案】(1)证明见解析;(2)证明见解析【解析】(1)a b c d >>>Q ,即,a b d c >->-,0a d b c ∴->->,则11a db c<--.(2)0,0,0a b c d e >><<< ,0c d ∴->->,0,0,0a c b d b a c d ∴->->-<-<,则()()()()()()()()()()0e b d e a c e b d a c e b a c d e ea cb d ac bd a c b d a c b d -----+-+--===>--------,.e ea cb d∴>--【变式5-2】(23-24高一上·安徽芜湖·月考)(1)已知0b a >>,证明:2a a b b a<+;(2)若a ,b ,c 为三角形的三边长,则2a b cb c a c a b++<+++.【答案】(1)证明见解析;(2)证明见解析.【解析】(1)()()()()22a b a ab a a b a ab b a b b a b b a +---==+++,由0b a >>,得0a b -<,而0b >,0b a +>,0a >,则()()0a a b b b a -<+,所以2a ab b a<+.(2),,a b c 为ABC 的三边长,则有0a b c +>>,0a c b +>>,0b c a +>>,由(1)知:c c c a b a b c +<+++,a a a b c a b c +<+++,b b ba c ab c+<+++,将以上不等式左右两边分别相加得:2c a b c c a a b b a b b c a c a b c a b c a b c+++++<++=+++++++++,所以2c a b a b b c c a++<+++.【变式5-3】(23-24高一上·云南·月考)证明下列不等式:(1)若0,0a b >>,求证:22a ba b b a++≥;(2)若0a b >>,0c d <<,0e <,求证:()()22eea cb d >--.【答案】(1)证明见解析;(2)证明见解析【解析】(1)证明:因为()()()2223322a b a b a b a b a b ab a b b a ab ab +-⎛⎫+--+-+== ⎪⎝⎭,又因为0,0a b >>,所以()()20a b a b ab+-≥,所以22a b a b b a++≥.(2)证明:由()()()()()()222222e b d a c eea cb d ac bd ⎡⎤---⎣⎦-=----()()()()()()22e a b c d b a c d a c b d ⎡⎤⎡⎤+-+-+-⎣⎦⎣⎦=--,因为0a b >>,0c d <<,所以0a b +>,0c d +<,0b a -<,0c d -<,所以()()0a b c d +-+>,()()0b a c d -+-<.因为0e <,所以()()()()0e a b c d b a c d ⎡⎤⎡⎤+-+-+->⎣⎦⎣⎦又因为()()220a c b d -->,所以()()220eea cb d ->--,即()()22eea cb d >--.考点六:不等式性质的实际应用例6. (23-24高一上·四川南充·月考)火车站有某公司待运的甲种货物1530吨,乙种货物1150吨.现计划用A ,B 两种型号的货箱共50节运送这批货物.已知35吨甲种货物和15吨乙种货物可装满一节A 型货箱,25吨甲种货物和35吨乙种货物可装满一节B 型货箱,据此安排A ,B 两种货箱的节数,下列哪个方案不满足:( )A .A 货箱28节,B 货箱22节B .A 货箱29节,B 货箱21节C .A 货箱31节,B 货箱19节D .A 货箱30节,B 货箱20节【答案】C【解析】设A 、B 货箱分别有x ,y 节,则503525153015351150x y x y x y +=⎧⎪+≥⎨⎪+≥⎩,A :共50节且352825221530⨯+⨯=,1528352211901150⨯+⨯=>,满足;B :共50节且3529252115401530⨯+⨯=>,1529352111701150⨯+⨯=>,满足;C :共50节且3531251915601530⨯+⨯=>,1531351911301150⨯+⨯=<,不满足;D :共50节且3530252015501530⨯+⨯=>,153035201150⨯+⨯=,满足;故选:C.【变式6-1】(22-23高一上·山东·月考)某化工厂制定明年某产品的生产计划,受下面条件的制约:生产每袋需用4h ;生产此产品的工人不超过200人,每个工人的年工作时间约为2100h ;生产每袋需用原料20kg ,年底库存原料600t ,明年可补充1200t ;此产品今年销售量是60000袋,预计明年的销售量至少在今年的基础上增长13.根据这些数据条件可以预测明年的产量在( )A .70000到75000袋之间B .70000到80000袋之间C .80000到85000袋之间D .80000到90000袋之间【答案】D【解析】设明年的产量为x 袋,则()42002100160000132060012001000x x x ⎧≤⨯⎪⎪⎛⎫≥+⎨ ⎪⎝⎭⎪⎪≤+⨯⎩,所以8000090000x ££,故可以预测明年的产量在80000到90000袋之间,故选:D.【变式6-2】(23-24高一上·全国·专题练习)王老师是高三的班主任,为了更好地督促班上的学生完成作业,王老师特地组建了一个学习小组的钉钉群,群的成员由学生、家长、老师共同组成.已知该钉钉群中男学生人数多于女学生人数,女学生人数多于家长人数,家长人数多于教师人数,教师人数的两倍多于男学生人数.则该钉钉群人数的最小值为( )A .18B .20C .22D .28【答案】C【解析】依题意,设教师、家长、女生、男生人数分别为,,,x y z t ,且,,,N x y z t *∈,于是1,12,123y x z y x t z y x ≥+≥+≥+≥+≥+≥+,则46x y z t x +++≥+,又23x t x >≥+,解得3x >,因此min 4x =,此时22x y z t +++≥,所以当4,5,6,7x y z t ====时,min ()22x y z t +++=,即该钉钉群人数的最小值为22.故选:C【变式6-3】(23-24高一上·吉林长春·月考)不等关系是数学中一种最基本的数关系,生活中随处可见.例如.已知b 克糖水中含有a 克糖(0)b a >>,再添加m 克糖(0)m >(假设全部溶解),糖水变甜了.(1)请将这一事实表示为一个不等式.并证明这个不等式成立:(2)利用(1)中的结论证明:若,,a b c 为三角形的三边长,则2a b cb c a c a b++<+++.【答案】(1)a a mb b m+<+,(0,0)b a m >>>,证明见解析;(2)证明见解析;【解析】(1)糖水变甜了得出不等式a a mb b m+<+,(0,0)b a m >>>.证明:()()()aa ma b m b a m b b m b b m ++-+-==++()()()ab am ba bm m a b b b m b b m +---=++.0,0,0b a a b b >>∴-<> .0,0m b m >∴+> ,()0()m a b b b m -∴<+,a a mb b m+∴<+.(2)设ABC 的三边长分别为,,a b c ,则有,,a b c a c b b c a +>+>+>,由(1)已证不等式可得:c c c a b a b c +<+++,a a a b c a b c +<+++,b b ba c ab c+<+++,将以上不等式左右两边分别相加得:2c a b c c a a b b a b b c a c a b c a b c a b c+++++<++=+++++++++,所以,2c a b a b b c c a++<+++.一、单选题1.(22-23高一上·河北邢台·月考)在开山工程爆破时,已知导火索燃烧的速度是每秒0.5厘米,人跑开的速度为每秒4米,距离爆破点150米以外(含150米)为安全区.为了使导火索燃尽时人能够跑到安全区,导火索的长度x (单位:厘米)应满足的不等式为( )A .41500.5x⨯<B .41500.5x⨯≥C .41500.5x⨯≤D .41500.5x⨯>【答案】B【解析】由题意知导火索的长度x (单位:厘米),故导火索燃烧的时间为0.5x秒,人在此时间内跑的路程为40.5x ⎛⎫⨯ ⎪⎝⎭米,由题意可得41500.5x ⨯≥.故选:B.2.(23-24高一上·云南昆明·期中)设2254M a a =++,(1)(3)N a a =++,则M 与N 的大小关系为( )A .M N >B .M N=C .M N<D .无法确定【答案】A【解析】因为()()()22213254131024M N a a a a a a a ⎛⎫-=++-++=++=++> ⎪⎝⎭,所以M N >.故选:A.3.(23-24高一上·广东深圳·期末)已知,,R,a b c a b ∈>,则下列一定成立的是( )A .11a b<B .2ab b >C .b c ba c a+>+D .()()2211a c b c +>+【答案】D【解析】对于A ,当1,2a b ==-,则11a b>,故A 不正确;对于B ,当0b =时,由a b >可得20ab b ==,故B 不正确;对于C ,当2,1,0a b c ===时,b c ba c a+=+,故C 不正确;对于D ,因为210c +>恒成立,所以由a b >可得()()2211a c b c +>+,故D 正确.故选:D.4.(23-24高一上·安徽宣城·自主招生)已知实数a ,b ,则下列选项中正确的是( )A .若a b >,则22a b >B .若a b >,则22a b >C .若a b >,则22a b >D .若a b >,则11a b<【答案】C【解析】对于A 选项,1,1a b ==-,满足a b >,此时221,1a b ==,不满足22a b >,故A 错误;对于B 选项,1,1a b ==-,满足a b >,此时221,1a b ==,不满足22a b >,故B错误;对于C 选项,0a b >≥,所以222a b b >=,故C 正确;对于D 选项,1,1a b ==-,满足a b >,此时,1111a b==-,不满足11a b <,故D错误,故选:C.5.(23-24高一上·河南驻马店·期末)已知15,31a b -<<-<<,则以下错误的是( )A .155ab -<<B .46a b -<+<C .28a b -<-<D .553ab-<<【答案】D【解析】因为1,153a b -<<-<<,所以13b -<-<,对于A ,1515330a ab b -<<⎧⇒-<<⎨-<<⎩,1500a ab b -<<⎧⇒=⎨=⎩,151501a ab b -<<⎧⇒-<<⎨<<⎩,综上可得155ab -<<,故A 正确;对于B ,314156a b --=-<+<+=,故B 正确;对于C ,112358a b --=-<-<+=,故C 正确;对于D ,当14,2a b ==时,8a b=,故D 错误;故选:D.6.(23-24高一上·山东菏泽·月考)已知11x y -≤+≤,13x y ≤-≤,则32x y -的取值范围是( )A .2328x y ≤-≤B .3328x y ≤-≤C .2327x y ≤-≤D .53210x y ≤-≤【答案】A【解析】设()()()()32x y m x y n x y m n x m n y -=+--=-++,所以32m n m n -=⎧⎨+=-⎩,解得1252m n ⎧=⎪⎪⎨⎪=-⎪⎩,即可得()()153222x y x y x y -=++-,因为11x y -≤+≤,13x y ≤-≤,所以2≤()()153222x y x y x y -=++-8≤,故选:A .二、多选题7.(23-24高一上·山东日照·期末)若实数a ,b ,c 满足()0a b b >≠且0a >,0c >,则下列不等式正确的是( )A .11a b <B .ac bc-<-C .b c ba c a +>+D .22222b a a b+>【答案】BC【解析】对于A ,若1,1a b ==-,则1111a b=>=-,所以A 错误,对于B ,因为a b >,所以a b -<-,因为0c >,所以ac bc -<-,所以B 正确,对于C ,因为a b >,0a >,0c >,所以()0c a b ->,()0a a c +>,所以()()()0()()b c b a b c b a c c a b a c a a a c a a c ++-+--==>+++,所以b c ba c a+>+,所以C 正确,对于D ,若1,1a b ==-,则2222112b a a b+=+=,所以D 错误,故选:BC8.(23-24高一上·四川乐山·期中)下列不等式中,一定成立的是( )A .若0,a b c >>∈R ,则22c ca b<B .若0,a b c >>∈R ,则22ac bc >C .若0a b <<,则22a ab b >>D .若0a b <<,则22a a b b+<+【答案】AC【解析】对于A ,由0a b >>,20c>,知110a b <<,得22c ca b<,故A 正确;对于B ,当0c =时,故B 错误;对于C ,当0a b <<时,由()20a ab a a b -=->,得2a ab >,又()20ab b b a b -=->,则2ab b >,故有22a ab b >>,故C 正确;对于D ,当2a =-,1b =-时,22a a b b +>+,D 中不等式不一定成立,故D 错误.故选:AC.三、填空题9.(23-24高一上·广东韶关·月考)已知x ∈R ,则23x + 2x .(填“<”,“>”,或“=”)【答案】>【解析】()2232120x x x +-=-+>,故232x x +>.故答案为:>.10.(23-24高一上·北京西城·期中)已知a ,b ,c 为实数,能说明“若a b c >>,则2a bc >”为假命题的一组a ,b ,c 的值是.【答案】1a =,1b =-,2c =-(答案不唯一)【解析】当1,1,2a b c ==-=-时,21a =,2bc =,此时满足a b c >>,但是2a bc <.故答案为:1,1,2a b c ==-=-(答案不唯一).11.(23-24高一上·山东菏泽·期中)“双节”遇上亚运会,民宿成为潮流趋势.民宿的改造中,窗户面积与地板面积之比越大,采光效果越好.现有一所地板面积为180平方米的民宿需要同时增加窗户和地板的面积,已知地板增加的面积是窗户增加的面积的2倍,且民宿改造后的采光效果不逊于改造前,则改造前的窗户面积最大为 平方米.【答案】90【解析】设改造前的窗户面积为x ,窗户增加的面积为y ,0,0x y >>,依题意1801802x x yy+≤+,即1802180180,2180,90x xy x y xy y x +≤+≤≤,所以改造前的窗户面积最大为90平方米.故答案为:90四、解答题12.(23-24高一上·福建泉州·月考)(1)已知R a ∈,设()21M a a =+,()()21N a a =+-,比较M 与N 的大小;(2)证明:已知a b c >>,且0a b c ++=,求证:c ca cb c>--.【答案】(1)M N >;(2)证明见解析.【解析】(1)()()()221721212()024M a a a a N a a a ++-=++==+--+>,则M N >;(2)因为a b c >>,且0a b c ++=,则0,0a c ><,则0a c b c ->->,则()()0a c b c -->,则10()()a cbc >--,则11()()0()()()()a c b c a c b c a c b c ⋅->⋅->----,则110b c a c>>--,又0c <则c c a c b c>--.命题得证.13.(23-24高一上·湖北·期中)(1)已知b 克糖水中含有a 克糖(0b a >>),再添加m 克糖。

2020初升高数学衔接知识(word解析版)

2020初升高数学衔接知识(word解析版)

2020初高中数学衔接教程中考数学与初高中衔接的关系中考起着为高中选拔人才的作用,莘莘学子通过中考这一座桥梁走向高中.初中数学教材难度下降,初中教学跟着中考指挥棒,弱化了很多初高中数学学习中需要一直贯彻的数学思想方法,高中数学内容起点高、难度大、容量多,学生到了高中易衔接不上中考试题除了考察学生对初中知识的掌握程度以外,还为学生适应高中学习做适当的衔接,将会很好地体现“以学生的发展为根本”这一教学理念. 一、延伸高中数学思想方法在初高中数学学习中需要一直贯彻的数学思想方法有函数的思想、数形结合思想、对图形的认识与空间想象能力等例如函数思想,生长点在初中,而发展点在高中,是初高中数学衔接的重要内容初中教材中函数知识的考察重点在于函数的基本性质和如何求函数表达式,而高中数学重视各种函数间的关系、动态问题中融合函数知识等内容.中考试题中对这类问题加以重视,把高中数学思想方法渗入初中的学习,以达到初高中接轨. 例1如图1,在平面直角坐标系x0y 中,四边形ABCD 是菱形,顶点A 、C 、D 均在坐标轴上,且AB=5,4sin 5B =. (1)求过A 、C 、D 三点的抛物线的解析式;(2)记直线AB 的解析式为y 1=mx+n ,(1)中抛物线的解析式为22y ax bx c =++,求当12y y <时,自变量x 的取值范围;(3)设直线AB 与(1)中抛物线的另一个交点为E ,P 点为抛物线上,A ,E 两点之间的一个动点,当P 点在何处时,△PAE 的面积最大?并求出面积的最大值.类似的题型还有结合高中几何不等式考察数形结合思想;利用三视图延伸到高中立体几何,考察空间理解能力;渗透排列组合知识强化概率知识的理解能力等等.学生通过解这一类题目,可以把解题思想延伸到高中,利用高中思维方法解初中函数题,以达到初高中思维方法上的衔接. 二、滲透高中数学概念概念是基础知识的核心.初中概念简单,容易理解,从升学考看,学生只要记准概念公式及教师所讲例题类型,一般均可对号入座取得中考好成绩造成了轻知识形成过程、轻概念理解、重题量的情形.初、高中教师教学方法上的差异中间又缺乏过渡过程,至使高中新生在理解概念时,普遍感到吃力.把高中的概念理解渗透到中考试题,引导学生重视概念理解,正确理解和灵活运用概念,从而增强概念理解能力.例2如图3,对于平面直角坐标系中的任意两点()111,P x y ,()222,P x y ,我们把1212x x y y -+-叫做12,P P 两点间的直角距离记作()12,d P P .(1)已知O 为坐标原点,动点P (x ,y )满足d (O ,P )=1,请写出x 与y 之间满足的关系式,并在所给的直角坐标系中画出所有符合条件的点P 所组成的图形;(2)设()000,P x y 是一定点,Q (x ,y )是直线上的动点,我们把()0,d P Q 的最小值叫做P 到直线y=ax+b 的直角距离试求点M (2,1)到直线y=x+2的直角距离.类似的题型有以下几种:直接利用高中数学概念解题如直接给出正弦函数、余弦函数解斜三角形;以高中数学概念为背景结合初中知识解题,如射影定理、圆幂定理的应用;或者改编高中概念,使其简单化,在初中背景下应用等这类试题要求学生通过阅读对概念的本质进行理解、概括在新背景下运用新概念,结合初中知识解决问题这类题目能很好地考查学生的数学阅读理解能力数学抽象概括能力和对概念的实际应用能力.三、衔接高中解题技巧高中数学解题有较多技巧,用高中解题技巧解初中数学题,很多时候能事半功倍,展现数学的奥妙之处中考题融人高中解题技巧,能促使师生更新原有的思维方式,为高中后续学习做铺垫.例3为解方程()()2221514x x ---+=0,我们可以将x 2-1视为一个整体然后设x 2-1=y ,则()2221x y -=,原方程化为y 2-5y+4=0 ①,解得121,4y y ==.当y=1时,211,2x x -==当y=4时,214,x x -==所以,原方程的解为1234x x x x ===-解答问题(1)填空:在由原方程得到①过程中,利用法达到了降次的目的,体现了的数学思想;(2)解方程:4260x x --=. 例4观察下列等式: 第1个等式:111111323a ⎛⎫==- ⎪⨯⎝⎭第2个等式111135235⎛⎫==- ⎪⨯⎝⎭ 第3个等式3111157257a ⎛⎫==- ⎪⨯⎝⎭第4个等式4111179279a ⎛⎫==- ⎪⨯⎝⎭请解答下列问题:(1)请按以上规律列出第5个等式:5a = = .(2)用含n 的代数式表示第n 个等式:n a ==.(n 为正整数)(3)求1234100a a a a a +++++的值.四、弥补初中知识层面的不足初中教材知识层面较简单,对能力要求不高,相对来说,高中对数学能力和数学思想的运用要求比较高,初高中知识存在着很多需要衔接的地方,中考题可以在这些方面加以重视.新高一学生的数学知识上看,明显在一元二次方程的解、二次函数根与系数的关系方面知识欠缺,遇到此类问题时,学生表现出思维能力、分析能力等方面的乏力,中考题中,可利用二次函数在开闭区间上的最值,十字相乘法分解因式,元二次不等式的解法等,作为初中数学学习的延伸,高中数学学习的阶梯,并依此为突破口,做好初、高中数学教学的衔接;射影定理,平行线分线段比例定理,圆幂定理等,初中深度不够,高中应用频繁,在考察相似三角形知识的中考题可引用此类知识;初中教材中没有关于含有字母系数的方程的解法和公式变形等内容,进入高中后进行公式推动有困难,这方面中考题可尝试渗透;直线与圆的位置关系的讨论,学生在初中掌握的很肤浅,可在中考题中利用几何法和代数法探讨,作进一步深化;含有参数的函数、方程、不等式,初中教材中同样不作要求,只作定量研究,而在高中,这部分内容被视为重难点,可在中考综合题(如动点问题)中涉及,作为区分度较高的拔高知识点;几何部分很多概念(如重心、垂心、外心、内心等),初中生大都没有学习,而高中教材多常常要涉及,这些也可以作为考察的内容.中考题的多方面、多层次变化,决定了初中教师要站在更高的平台上展望,初高中衔接的中考题,对初中知识和数学思想进行补充、对初中教师的教学起到指导性作用.初中老师在平时的教学中,或初三备考时,不妨多与高中知识、思想方法接轨,以崭新的视角看待中考,以达到中考的真正意义.中考数学与初高中衔接的关系例题答案解析中考起着为高中选拔人才的作用,莘莘学子通过中考这一座桥梁走向高中.初中数学教材难度下降,初中教学跟着中考指挥棒,弱化了很多初高中数学学习中需要一直贯彻的数学思想方法,高中数学内容起点高、难度大、容量多,学生到了高中易衔接不上中考试题除了考察学生对初中知识的掌握程度以外,还为学生适应高中学习做适当的衔接,将会很好地体现“以学生的发展为根本”这一教学理念. 一、延伸高中数学思想方法在初高中数学学习中需要一直贯彻的数学思想方法有函数的思想、数形结合思想、对图形的认识与空间想象能力等例如函数思想,生长点在初中,而发展点在高中,是初高中数学衔接的重要内容初中教材中函数知识的考察重点在于函数的基本性质和如何求函数表达式,而高中数学重视各种函数间的关系、动态问题中融合函数知识等内容.中考试题中对这类问题加以重视,把高中数学思想方法渗入初中的学习,以达到初高中接轨.例1如图1,在平面直角坐标系x0y 中,四边形ABCD 是菱形,顶点A 、C 、D 均在坐标轴上,且AB=5,4sin 5B =. (1)求过A 、C 、D 三点的抛物线的解析式;(2)记直线AB 的解析式为y 1=mx+n ,(1)中抛物线的解析式为22y ax bx c =++,求当12y y <时,自变量x 的取值范围;(3)设直线AB 与(1)中抛物线的另一个交点为E ,P 点为抛物线上,A ,E 两点之间的一个动点,当P 点在何处时,△PAE 的面积最大?并求出面积的最大值.【解答】 如图2,(1)由菱形ABCD 的边长和一角的正弦值,可求出OC ,OD ,OA 的长,进而确定A ,C ,D 三点坐标,通过待定系数法求出抛物线的解析式222433y x x =-++. (2)首先由A ,B 的坐标确定直线AB 的解析式143y x =--83,然后求出直线A 与抛物线的两个交点(-2,0)和285,3⎛⎫- ⎪⎝⎭,然后通过观察图象找出直线y 1在抛物线y 2图象下方的部分,由图可知:当y 1<y 2时,-2<x<5.(3)该题的关键点是确定点P 的位置,△APE 的面积最大,那么12APE S AE h ∆=⨯中h 的值最大,即点P 离直线AE 的距离最远,那么点P 为与直线AB 平行且与抛物线有且仅有的唯一交点的直线上的点. 若设直线4:3L y x b =-+,直线L ∥AB ,当直线L 与抛物线有且只有一个交点P 时,24224333x b x x -+=-++,且0∆=. 求得112b =,即直线411:32L y x =-+;可得点37,22P ⎛⎫⎪⎝⎭. 由(2)得285,3E ⎛⎫ ⎪⎝⎭,则直线11:93PE y x =-+.则点2749,0,1111F AF OA OF ⎛⎫=+=⎪⎝⎭.∴△PAE 的最大值:149211PAE PAF AEF S S S ∆∆∆=+=⨯⨯2873433212⎛⎫+=⎪⎝⎭, 综上所述,当P 为37,22⎛⎫⎪⎝⎭时,△PAE 的面积最大,为34312. 【点评】本题是一道二次函数综合题,初高中衔接性较强,问题(2)在初中求交点方法的基础上拓展了高中数学中直线与抛物线的交点问题,再利用了高中用图象解一元二次不等式的思维方法解题问题(3)突破了常规动点问题的模式,利用直线与抛物线相切找出平行线间的最大距离这一高中常见的数形结合思想解初中动点问题,从而求出三角形的最大面积.类似的题型还有结合高中几何不等式考察数形结合思想;利用三视图延伸到高中立体几何,考察空间理解能力;渗透排列组合知识强化概率知识的理解能力等等.学生通过解这一类题目,可以把解题思想延伸到高中,利用高中思维方法解初中函数题,以达到初高中思维方法上的衔接. 二、滲透高中数学概念概念是基础知识的核心.初中概念简单,容易理解,从升学考看,学生只要记准概念公式及教师所讲例题类型,一般均可对号入座取得中考好成绩造成了轻知识形成过程、轻概念理解、重题量的情形.初、高中教师教学方法上的差异中间又缺乏过渡过程,至使高中新生在理解概念时,普遍感到吃力.把高中的概念理解渗透到中考试题,引导学生重视概念理解,正确理解和灵活运用概念,从而增强概念理解能力.例2如图3,对于平面直角坐标系中的任意两点()111,P x y ,()222,P x y ,我们把1212x x y y -+-叫做12,P P 两点间的直角距离记作()12,d P P .(1)已知O 为坐标原点,动点P (x ,y )满足d (O ,P )=1,请写出x 与y 之间满足的关系式,并在所给的直角坐标系中画出所有符合条件的点P 所组成的图形;(2)设()000,P x y 是一定点,Q (x ,y )是直线上的动点,我们把()0,d P Q 的最小值叫做P 到直线y=ax+b的直角距离试求点M (2,1)到直线y=x+2的直角距离. 【解答】 如图4,(1)由题意,得|x|+|y|=1,所有符合条件的点P 组成的图形如图所示,(2)(,)|2||d M Q x y =-+-1||2||21|x x =-++-|2||1|x x =-++,∴x 可取一切实数,|x-2|+|x+1|表示数轴上实数x 所对应的点到2和-1所对应的点的距离之和,其最小值为 3.∴点M (2,1)到直线y=x+2的直角距离为3.【点评】本题以高中数学平面两点间距离的知识为背景,将其和初中绝对值知识结合起来,以新概念的形式命题,让学生通过阅读理解“直角距离”这一新概念,转化为自己熟悉的绝对值几何意义,结合绝对值及一次函数的定义灵活结合解题问题(2)还渗透高中“点到直线距离”这一概念,体现初高中概念的紧密联系. 类似的题型有以下几种:直接利用高中数学概念解题如直接给出正弦函数、余弦函数解斜三角形;以高中数学概念为背景结合初中知识解题,如射影定理、圆幂定理的应用;或者改编高中概念,使其简单化,在初中背景下应用等这类试题要求学生通过阅读对概念的本质进行理解、概括在新背景下运用新概念,结合初中知识解决问题这类题目能很好地考查学生的数学阅读理解能力数学抽象概括能力和对概念的实际应用能力.三、衔接高中解题技巧高中数学解题有较多技巧,用高中解题技巧解初中数学题,很多时候能事半功倍,展现数学的奥妙之处中考题融人高中解题技巧,能促使师生更新原有的思维方式,为高中后续学习做铺垫.例3为解方程()()2221514x x ---+=0,我们可以将x 2-1视为一个整体然后设x 2-1=y ,则()2221x y -=,原方程化为y 2-5y+4=0 ①,解得121,4y y ==.当y=1时,211,x x -==当y=4时,214,x x -==所以,原方程的解为1234x x x x ===-解答问题(1)填空:在由原方程得到①过程中,利用 法达到了降次的目的,体现了的数学思想;(2)解方程:4260x x --=. 解:(1)换元法(2)由题意可得:()()22230x x+-=,由于220x +>,故230,x x -==.【点评】本题灵活地运用换元法解高次方程,利用变换思想将数学问题进行有效转化,使解法更加简单、直观,这是高中数学常常用到的解题技巧类似的还有利用换元法进行因式分解、解较复杂的分式方程或无理方程等.例4观察下列等式: 第1个等式:111111323a ⎛⎫==- ⎪⨯⎝⎭第2个等式111135235⎛⎫==- ⎪⨯⎝⎭ 第3个等式3111157257a ⎛⎫==- ⎪⨯⎝⎭第4个等式4111179279a ⎛⎫==- ⎪⨯⎝⎭请解答下列问题:(1)请按以上规律列出第5个等式:5a = = .(2)用含n 的代数式表示第n 个等式:n a ==.(n 为正整数)(3)求1234100a a a a a +++++的值.【解答】 (1)411119112911a ⎛⎫==- ⎪⨯⎝⎭(2)()()1111212122121n a n n n n ⎛⎫==- ⎪-+-+⎝⎭(3)1234100a a a a a +++++11111112335199201⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦100201=. 【点评】本题是初中常见的寻找规律题取材于高中数学中的数列结合高中数列求和常用的裂项相消法解题技巧性较强.中考题可渗透韦达定理、参数法数学归纳法反证法解题方法技巧等增加试题的灵活性,提高试题的丰富度这些创新的题型及解法可引导学生平时注重涉足课本以外知识开拓视野发展思维脱离“应试教育”的误区. 四、弥补初中知识层面的不足初中教材知识层面较简单,对能力要求不高,相对来说,高中对数学能力和数学思想的运用要求比较高,初高中知识存在着很多需要衔接的地方,中考题可以在这些方面加以重视.新高一学生的数学知识上看,明显在一元二次方程的解、二次函数根与系数的关系方面知识欠缺,遇到此类问题时,学生表现出思维能力、分析能力等方面的乏力,中考题中,可利用二次函数在开闭区间上的最值,十字相乘法分解因式,元二次不等式的解法等,作为初中数学学习的延伸,高中数学学习的阶梯,并依此为突破口,做好初、高中数学教学的衔接;射影定理,平行线分线段比例定理,圆幂定理等,初中深度不够,高中应用频繁,在考察相似三角形知识的中考题可引用此类知识;初中教材中没有关于含有字母系数的方程的解法和公式变形等内容,进入高中后进行公式推动有困难,这方面中考题可尝试渗透;直线与圆的位置关系的讨论,学生在初中掌握的很肤浅,可在中考题中利用几何法和代数法探讨,作进一步深化;含有参数的函数、方程、不等式,初中教材中同样不作要求,只作定量研究,而在高中,这部分内容被视为重难点,可在中考综合题(如动点问题)中涉及,作为区分度较高的拔高知识点;几何部分很多概念(如重心、垂心、外心、内心等),初中生大都没有学习,而高中教材多常常要涉及,这些也可以作为考察的内容.中考题的多方面、多层次变化,决定了初中教师要站在更高的平台上展望,初高中衔接的中考题,对初中知识和数学思想进行补充、对初中教师的教学起到指导性作用.初中老师在平时的教学中,或初三备考时,不妨多与高中知识、思想方法接轨,以崭新的视角看待中考,以达到中考的真正意义.专题01数与式的运算本专题在初中、高中扮演的角色初中阶段“从分数到分式”,通过观察、分析、类比,找出分式的本质特征,及它们与分数的相同点和不同点,进而归纳得出分式的概念及运算性质,我们已经运用的这些思想方法是高中继续学习的法宝.二次根式是在学习了平方根、立方根等内容的基础上进行的,是对“实数”、“整式”等内容的延伸和补充,对数与式的认识更加完善.二次根式的化简对勾股定理的应用是很好的补充;二次根式的概念、性质、化简与运算是高中学习解三角形、一元二次方程、数列和二次函数的基础.二次根式是初中阶段学习数与式的最后一章,是式的变形的终结章.当两个二次根式的被开方数互为相反数时,可用“夹逼”的方法推出,两个被开方数同时为零.本专题内容蕴涵了许多重要的数学思想方法,如类比的思想(指数幂运算律的推广)、逼近的思想(有理数指数幂逼近无理数指数幂)n的异同.通过与初中所学的知识进行类比,理解分数指数幂的概念,进而学习指数幂的性质,掌握分数指数幂和根式之间的互化,掌握分数指数幂的运算性质高中必备知识点1:绝对值绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即:,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. 两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离.典型考题【例题】阅读下列材料:我们知道x 的几何意义是在数轴上数x 对应的点与原点的距离,即x =0x -,也就是说,x 表示在数轴上数x 与数0对应的点之间的距离;这个结论可以推广为21x x -表示在数轴上数1x 与数2x 对应的点之间的距离;例1解方程|x |=2.因为在数轴上到原点的距离为2的点对应的数为2±,所以方程|x |=2的解为2±=x . 例2解不等式|x -1|>2.在数轴上找出|x -1|=2的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为-1或3,所以方程|x -1|=2的解为x =-1或x =3,因此不等式|x -1|>2的解集为x <-1或x >3.例3解方程|x -1|+|x +2|=5.由绝对值的几何意义知,该方程就是求在数轴上到1和-2对应的点的距离之和等于5的点对应的x 的值.因为在数轴上1和-2对应的点的距离为3(如图),满足方程的x 对应的点在1的右边或-2的左边.若x 对应的点在1的右边,可得x =2;若x 对应的点在-2的左边,可得x =-3,因此方程|x -1|+|x +2|=5的解是x =2或x =-3. 参考阅读材料,解答下列问题: (1)方程|x +2|=3的解为 ; (2)解不等式:|x -2|<6; (3)解不等式:|x -3|+|x +4|≥9; (4)解方程: |x -2|+|x +2|+|x -5|=15.【训练】实数在数轴上所对应的点的位置如图所示:化简.【能力提升】已知方程组的解的值的符号相同.(1)求的取值范围; (2)化简:. 高中必备知识点2:乘法公式我们在初中已经学习过了下列一些乘法公式: (1)平方差公式22()()a b a b a b +-=-;(2)完全平方公式222()2a b a ab b ±=±+. 我们还可以通过证明得到下列一些乘法公式: (1)立方和公式2233()()a b a ab b a b +-+=+; (2)立方差公式2233()()a b a ab b a b -++=-;(3)三数和平方公式2222()2()a b c a b c ab bc ac ++=+++++; (4)两数和立方公式33223()33a b a a b ab b +=+++; (5)两数差立方公式33223()33a b a a b ab b -=-+-.典型考题【例题】(1)计算:203212016(2)(2)2-⎛⎫-++-÷- ⎪⎝⎭(2)化简:2(2)(2)(2)a b a b a b +---【训练】计算:(1)0221( 3.14)(4)()3π--+-- (2)2(3)(2)(2)x x x --+-【能力提升】已知10x =a ,5x =b ,求: (1)50x 的值; (2)2x 的值;(3)20x 的值.(结果用含a 、b 的代数式表示)高中必备知识点3:二次根式一般地,形如0)a ≥的代数式叫做二次根式.根号下含有字母、且不能够开得尽方的式子称为无理式.例如32a b 212x ++,22x y ++等是有理式. 1.分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式,例如与与b 与b 互为有理化因式.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行,运算中要运用公式0,0)a b =≥≥;而对于二次根式的除法,通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项式的加减法类似,应在化简的基础上去括号与合并同类二次根式.2a ==,0,,0.a a a a ≥⎧⎨-<⎩典型考题【例题】计算下面各题.(1)2163)1526(-⨯-;(2时,想起分配律,于是她按分配律完成了下列计算:==她的解法正确吗?若不正确,请给出正确的解答过程.【能力提升】先化简,再求值:(2a ba b-+-ba b-)÷a2ba b-+,其中,.高中必备知识点4:分式1.分式的意义形如AB的式子,若B中含有字母,且0B≠,则称AB为分式.当M≠0时,分式AB具有下列性质:A A MB B M⨯=⨯;A A MB B M÷=÷.上述性质被称为分式的基本性质.2.繁分式像abc d+,2m n pmn p+++这样,分子或分母中又含有分式的分式叫做繁分式.典型考题【例题】先化简,再求值22122()121x x x xx x x x+++-÷--+,其中x满足x2+x﹣1=0.化简:22442x xy y x y-+-÷(4x 2-y 2)【能力提升】已知:112a b-=,则ab b a b ab a 7222+---的值等于多少?专题验收测试题1.如图,若实数m =﹣7+1,则数轴上表示m 的点应落在( )A .线段AB 上B .线段BC 上C .线段CD 上D .线段DE 上2.观察下列各式及其展开式: (a+b )2=a 2+2ab+b 2 (a+b )3=a 3+3a 2b+3ab 2+b 3 (a+b )4=a 4+4a 3b+6a 2b 2+4ab 3+b 4 (a+b )5=a 5+5a 4b+10a 3b 2+10a 2b 3+5ab 4+b 5 …请你猜想(a+b )10的展开式第三项的系数是( ) A .36 B .45C .55D .663.已知1-1x x =,则221x x+等于( ) A .3B .2C .1D .04.设边长为3的正方形的对角线长为a ,下列关于a 的四种说法:① a 是无理数;② a 可以用数轴上的一个点来表示;③ 3<a<4;④ a 是18的算术平方根.其中,所有正确说法的序号是 A .①④B .②③C .①②④D .①③④5.定义一种关于整数n 的“F ”运算:一、当n 为奇数时,结果为3n +5;二、当n 为偶数时,结果为2k n(其中k 是使2kn为奇数的正整数),并且运算重复进行.例如:取n =58,第一次经F 运算是29,第二次经F 运算是92,第三次经F 运算是23,第四次经F 运算是74……,若n =449,求第2020次运算结果是( ) A .1B .2C .7D .86.如图所示,将形状、大小完全相同的“•”和线段按照一定规律摆成下列图形,第1幅图形中“•”的个数为1a ,第2幅图形中“•”的个数为2a ,第3幅图形中“•”的个数为3a ,…,以此类推,则123191111a a a a ++++…的值为( )A .2021B .6184C .589840D .4317607.定义新运算,*(1)a b a b =-,若a 、b 是方程2104x x m -+=(0m <)的两根,则**b b a a -的值为() A .0B .1C .2D .与m 有关8.已知1x ,2x ,…,2019x 均为正数,且满足()()122018232019M x x x x x x =++++++,()()122019232018N x x x x x x =++++++,则M ,N 的大小关系是( )A .M N <B .M N >C .MND .M N ≥9.下列运算正确的是( )A .1a b a b b a -=--B .m n m na b a b --=- C .11b b a a a+-= D .2221a b a b a b a b+-=--- 10.已知a ,b 为实数且满足1a ≠-,1b ≠-,设11=+++a b M a b ,1111=+++N a b .①若1ab =时,M N ;②若1ab >时,M N >;③若1ab <时,M N <;④若0a b +=,则0M N ≤.则上述四个结论正确的有( ) A .1B .2C .3D .411.若11122299919991a +=+,22233399919991b +=+,则a 与b 的大小关系为( ) A .a b >B .a b =C .a b <D .无法确定12.已知实数x ,y ,z 满足1x y ++1y z ++1z x +=76,且z x y x y y z z x+++++=11,则x +y +z 的值为( )A .12B .14C .727D .913.已知226a b ab +=,且a>b>0,则a ba b+-的值为( ) A .2 B .±2C .2D .±214.若a ab+有意义,那么直角坐标系中点A(a,b)在( ) A .第一象限B .第二象限C .第三象限D .第四象限15.已知a 为实数,则代数式227122a a -+的最小值为( ) A .0B .3C .33D .916.已知m 、n 是正整数,若2m +5n是整数,则满足条件的有序数对(m ,n )为( ) A .(2,5)B .(8,20)C .(2,5),(8,20)D .以上都不是17.已知31=3,32=9,33=27,34=81,35=243,36=729,37=2187…….则3+32+33+34+…+32019的末位数字是____.18.如图,将一个正方形分割成11个大小不同的正方形,记图中最大正方形的周长是1C ,最小正方形的周长是2C ,则12C C =_____.19.对于整数a ,b ,c ,d ,定义a dbc =ac ﹣bd ,已知1<1d 4b<3,则b+d 的值为_______. 20. 已知21x y =⎧⎨=⎩,是二元一次方程组81mx ny nx my +=⎧⎨-=⎩的解,则m+3n 的平方根为______.21.若m 35223x y m x y m +--+-199199x y x y =---+m =________.22.若214x x x ++=,则2211x x ++= ________________. 23.已知22143134m n m n =--+,则11m n+的值等于______.24.已知函数1x f x x,那么1f_____.25.先化简,再求值:24211326x x x x -+⎛⎫-÷⎪++⎝⎭,其中1x =+. 26.观察下列等式:1)131====-====回答下列问题:(1;(2;(3….270=(1)求实数,a b 的值;(2的整数部分为x ,小数部分为y ①求2x y +的值;②已知10kx m -=+,其中k 是一个整数,且01m <<,求k m -的值. 28.已知下面一列等式:111122⨯=-;11112323⨯=-;11113434⨯=-;11114545⨯=-;… (1)请你按这些等式左边的结构特征写出它的一般性等式:(2)验证一下你写出的等式是否成立; (3)利用等式计算:11(1)(1)(2)x x x x ++++11(2)(3)(3)(4)x x x x ++++++.29.对有理数a 、b 、c ,在乘法运算中,满足:①交换律:ab ba =;②对加法的分配律:()c a b ca cb +=+.现对a b ⊕这种运算作如下定义,规定:a b a b a b ⊕=⋅++. (1)这种运算是否满足交换律?(2)举例说明:这种运算是否满足对加法的分配律?30.李狗蛋同学在学习整式乘法公式这一节时,发现运用乘法公式在进行一些计算时特别简便,这激发了李狗蛋同学的学习兴趣,他想再探究一些有关整式乘法的公式,便主动查找资料进行学习,以下是他找来的资料题,请你一同跟李狗蛋同学探究一下: (1)探究:()()a b a b -+=____;()()22a b a ab b -++=___;()()3223a b a a b ab b -+++=_____;(2)猜想:()()1221...n n n n a b aa b ab b -----++++=______(n 为正整数,且2n ≥);(3)利用上述猜想的结论计算:98732222...2221-+-+-+-的值.专题01数与式的运算本专题在初中、高中扮演的角色初中阶段“从分数到分式”,通过观察、分析、类比,找出分式的本质特征,及它们与分数的相同点和不同点,进而归纳得出分式的概念及运算性质,我们已经运用的这些思想方法是高中继续学习的法宝.二次根式是在学习了平方根、立方根等内容的基础上进行的,是对“实数”、“整式”等内容的延伸和补充,对数与式的认识更加完善.二次根式的化简对勾股定理的应用是很好的补充;二次根式的概念、性质、化简与运算是高中学习解三角形、一元二次方程、数列和二次函数的基础.二次根式是初中阶段学习数与式的最后一章,是式的变形的终结章.当两个二次根式的被开方数互为相反数时,可用“夹逼”的方法推出,两个被开方数同时为零.本专题内容蕴涵了许多重要的数学思想方法,如类比的思想(指数幂运算律的推广)、逼近的思想(有理数。

初升高数学衔接教材

初升高数学衔接教材

A.{x|﹣3<x<11,x∈Q}
4
初升高数学衔接教材
B.{x|﹣3<x<11} C.{x|﹣3<x<11,x=2k,k∈N} D.{x|﹣3<x<11,x=2k,k∈Z}
【题型强化】1.已知集合
,则集合 A 中元素的个数为( )
A.3
B.4
C.5
2.平面直角坐标系中纵轴上的点的坐标组成的集合为________.
4.已知集合

关系为( )
A.
B.
C.
, D.
,则 A, B, C 满足的
【题型强化】1.设集合
A.
B.
2.集合 与 的关系是( )
A. 0 ∅
B.
,则下列关系正确的是( )
C.
D.
C.0
D.
3.设集合 A={0,1,2},B={m|m=x+y,x∈A,y∈A},则集合 A 与 B 的关系为( )
(3)设集合 A 是“好集”,若 x∈A,y∈A,则 x+y∈A.
A.0
B.1
C.2
【题型强化】1.已知:集合
,定义集合运算 ※
※=
2.已知集合

.定义集合
D.3
,则 ,求集合 .
【名师点睛】 1.集合命题中与运算法则相关的问题已经成为新课标高考的热点.这类试题的特点:通过给出新的数学概 念或新的运算方法,在新的情况下完成某种推理证明或指定要求是集合命题的一个新方向.常见的有定义 新概念、新公式、新运算和新法则等类型. 2.解决这类问题的基本方法:仔细审题,准确把握新信息,想方设法将新定义的问题化归为已经解决的熟 悉问题,从而使问题得到解决.也就是“以旧带新”法.
【名师点睛】1.求解有限集合的子集问题,关键有三点: (1)确定所求集合; (2)合理分类,按照子集所含元素的个数依次写出; (3)注意两个特殊的集合,即空集和集合本身. 2.一般地,若集合 A 中有 n 个元素,则其子集有 2n 个,真子集有 2n-1 个,非空真子集有 2n-2 个.

【初升高数学衔接教材讲义系列】第02章 分式运算(解析版)

【初升高数学衔接教材讲义系列】第02章 分式运算(解析版)

第2章 分式运算【知识衔接】————初中知识回顾————(一)分式的运算规律1、加减法 同分母分式加减法:c b a c b c a ±=± 异分母分式加减法:bc bd ac c d b a ±=±2、乘法:bd ac d c b a =⋅3、除法:bc ad c d b a d c b a =⋅=÷4、乘方:n nn ba b a =)( (二)分式的基本性质1、)0(≠=m bm am b a2、)0(≠÷÷=m mb m a b a ————高中知识链接————比例的性质(1)若d c ba=则bc ad = (2)若d c ba =则d d c b b a ±=±(合比性质) (3)若d c ba =(0≠-db )则d b d bc a c a -+=-+(合分比性质) (4)若d c b a ==…=n m ,且0≠+++n d b 则b a n d b m c a =++++++ (等比性质) 分式求解的基本技巧1、分组通分2、拆项添项后通分3、取倒数或利用倒数关系4、换元化简5、局部代入6、整体代入7、引入参数8、运用比例性质【经典题型】初中经典题型1.若代数式4x x -有意义,则实数x 的取值范围是( ) A . x =0 B . x =4 C . x ≠0 D . x ≠4【答案】D【解析】由分式有意义的条件:分母不为0,即x-4≠0,解得x≠4,故选D .2.化简:,结果正确的是( )A . 1B .C .D .【答案】B 【解析】试题分析:原式==.故选B .3.当x =______时,分式523x x -+的值为零. 【答案】5. 【解析】解:由题意得:x ﹣5=0且2x +3≠0,解得:x =5,故答案为:5.4.先化简,再求值: 22121x x x x x x ⎛⎫-÷ ⎪+++⎝⎭,其中x =22. 【答案】21x -,7. 【解析】试题分析:根据分式的减法和除法可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题.试题解析:原式=()22121x x x x x x ++-⋅+=()2211x x x x x +-⋅+=()()2111x x x x x-+⋅+=21x - 当x =22=(2221-=8-1=7.高中经典题型例1:化简232||211x x x x x +-+-- 解:原式=22|)|1()1()1(x x x -+- 当0≥x 且1≠x 时,原式=x +1当0<x 且1-≠x 时,原式=xx +-1)1(2 例2:化简:++++3223bab b a a a 442222223223311b a b a a b b a b ab b a a b -+-+--+-+-例3:计算2)(32222233332222-++÷---++nm m n n m m n n m m n n m m n n m m n 解:设a m n =,b nm =,则1=ab ∴原式=2)(32223322-++÷---++b a b a b a b a b a =ba ab b a b a ab b a ab b a +-+----++2)(32223322=2222232)()()(nm n m b a b a b a b a b a b a -+-=-+=+-⋅-+ 例4:计算abbc ac c b a ac ab bc b a c bc ac ab a c b +---++----+---222 解:既不便于分式通分,又不适合分组通分,试图考察其中一项,从中发现规律ca b a c a b a b a c a c a b a bc bc ac ab a c b ---=-----=--=+---11))(()()())((2 因此不难看出,拆项后通分更容易 ∴原式=))(())(())((b c a c b a a b c b a c c a b a c b ---+------- =))(()()())(()()())(()()(b c a c a c b c a b c b c b a b c a b a b a c a -----+----------- =ac b c a c a b c b c a b a -=---+-+-----2111111 例5:若1=abc ,求111++++++++c ac c b bc b a ab a 解:∵1=abc ,∴bc a 1=,将式中的a 全换成bc1 ∴原式=11111++++++++c bcc c b bc b bc bc b bc =11111=++++++++bc b bc bc b b bc b 例6:已知x z y x y z y x z z y x ++-=+-=-+且0≠xyz ,求分式xyzx z z y y x ))()((+++的值 解:分析:已知条件以连比的形式出现,可引进一个参数来表示这个连比,从而将分式化成整式。

2024年新高一数学初升高衔接《充分条件与必要条件》含答案解析

2024年新高一数学初升高衔接《充分条件与必要条件》含答案解析

第04讲充分条件与必要条件模块一思维导图串知识模块二基础知识全梳理(吃透教材)模块三核心考点举一反三模块四小试牛刀过关测1.理解充分条件、必要条件的概念,理解充要条件的意义;2.了解充分条件与判定定理、必要条件与性质定理的关系;3.培养逻辑思维能力,能够在复杂情况下运用充分条件与必要条件进行推理,解决数学问题.知识点1充分条件与必要条件1、命题(1)命题的定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫命题.判断为真的语句是真命题,判断为假的语句是假命题.(2)命题的形式:中学数学中的许多命题可以写成“若p,则q”,“如果p,那么q”等形式.其中p 称为命题的条件,q 称为命题的结论.2、充分条件与必要条件(1)一般地,“若p ,则q ”为真命题,是指由条件p 通过推理可以得出结论q .这时,我们就说,由p 可推出q ,记作p q ⇒,并且说,p 是q 的充分条件,q 是p 的必要条件.(2)如果“若p ,则q ”为假命题,那么由条件p 不能推出结论q ,记作p q ¿.这时,我们就说,p 不是q 的充分条件,q 不是p 的必要条件.(3)充分条件与必要条件的关系p 是q 的充分条件反映了p q ⇒,而q 是p 的必要条件也反映了p q ⇒,所以p 是q 的充分条件与q 是p 的必要条件表述的是同一个逻辑关系,只是说法不同.而p 是q 的充分条件只反映了p q ⇒,与q 能否推出p 没有任何关系.3、充要条件(1)充要条件的概念:如果“若p ,则q ”和它的逆命题“若q ,则p ”均为真命题,即既有p q ⇒,又有q p ⇒,就记作p q ⇔.此时,p 既是q 的充分条件,也是q 的必要条件,我们说p 是q 的充分必要条件,简称充要条件.(2)充要条件的含义:若p 是q 的充要条件,则q 也是p 的充要条件,虽然本质上是一样的,但在说法上还是不同的,因为这两个命题的条件与结论不同.(3)充要条件的等价说法:p 是q 的充要条件又常说成是q 成立当且仅当p 成立,或p 与q 等价.4、充分条件与必要条件的传递性(1)若p 是q 的充分条件,q 是s 的充分条件,即p q ⇒,q s ⇒,则有p s ⇒,即p 是s 的充分条件;(2)若p 是q 的必要条件,q 是s 的必要条件,即q p ⇒,s q ⇒,则有s p ⇒,即p 是s 的必要条件;(3)若p 是q 的充要条件,q 是s 的充要条件,即p q ⇔,q s ⇔,则有p s ⇔,即p 是s 的充要条件.5、条件关系判定的常用结论p 与q 的关系结论p q ⇒,但q p ¿p 是q 的充分不必要条件q p ⇒,但p q ¿p 是q 的必要不充分条件p q ⇒且q p ⇒,即p q ⇔p 是q 的充要条件p q ¿且q p¿p 是q 的既不充分也不必要条件知识点2从不同角度理解充分必要性1、从命题的角度充分理解充分必要性若把原命题中的条件和结论分别记作p和q,则原命题与逆命题同p与q之间有如下关系:(1)若原命题是真命题,逆命题是假命题,则p是q的充分不必要条件;(2)若原命题是假命题,逆命题是真命题,则p是q的必要不充分条件;(3)若原命题和逆命题都是真命题,则p和q互为充要条件;(4)若原命题和逆命题都是假命题,则p是q的既不充分也不必要条件.2、从集合的角度理解充分必要性若条件p,q以集合的形式出现,即A={x|p(x)},B={x|q(x)},则由A⊆B可得,p是q的充分条件,(1)若A B,则p是q的充分不必要条件;(2)若A⊇B,则p是q的必要条件;(3)若A B,则p是q的必要不充分条件;(4)若A=B,则p是q的充要条件;(5)若A⊈B且A⊉B,则p是q的既不充分也不必要条件.充分必要条件判断精髓:小集合推出大集合,小集合是大集合的充分不必要条件,大集合是小集合的必要不充分条件;若两个集合范围一样,就是充要条件的关系;知识点3充分、必要、充要条件的证明1、证明“充分不必要条件”“必要不充分条件”,一般先证明一个方面,然后验证另一个方面不成立。

专题07方程与不等式(解析版)-2021年初升高数学无忧衔接(人教A版2019)

专题07方程与不等式(解析版)-2021年初升高数学无忧衔接(人教A版2019)

专题07方程与不等式一元二次不等式的解法是初中阶段一元一次不等式或一元一次不等式组的延续和深化,也与后面的线性规划、直线与圆锥曲线以及导数等内容密切相关,许多问题的解决都会借助一元二次不等式的解法.一元二次不等式的解法在整个高中数学中具有很强的基础性和工具性.一元二次不等式、一元二次函数与一元二次方程三者之间有着密切联系,理解并掌握利用二次函数的图象确定一元二次不等式解集的方法即图象法,其本质就是要能利用数形结合的思想方法认识方程的解,不等式的解集与函数图象上对应点的横坐标的内在联系.二次函数图象是连接三个“二次”的纽带,是理解和解决问题的关键,要深入理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法.一元二次不等式的解题步骤:①.将含x的式子用y来表示,构建一个一元二次函数;②.令这个函数中的y=0,构建一个一元二次方程,求出对应方程的解,即找到图中的关键点——函数的零点;③.利用图象开口与零点画出对应函数的草图;④观察草图,得出不等式所对应的解集.高中必备知识点1:二元二次方程组的解法方程 22260x xy y x y +++++=是一个含有两个未知数,并且含有未知数的项的最高次数是2的整式方程,这样的方程叫做二元二次方程.其中,,叫做这个方程的二次项,,叫做一次项,6叫做常数项. 我们看下面的两个方程组:第一个方程组是由一个二元二次方程和一个二元一次方程组成的,第二个方程组是由两个二元二次方程组成的,像这样的方程组叫做二元二次方程组.下面我们主要来研究由一个二元二次方程和一个二元一次方程组成的方程组的解法. 一个二元二次方程和一个二元一次方程组成的方程组一般可以用代入消元法来解. 高中必备知识点2:一元二次不等式的解法为了方便起见,我们先来研究二次项系数a >0时的一元二次不等式的解.我们知道,对于一元二次方程ax 2+bx +c =0(a >0),设△=b 2-4ac ,它的解的情形按照△>0,△=0,△<0分别为下列三种情况——有两个不相等的实数解、有两个相等的实数解和没有实数解,相应地,抛物线y =ax 2+bx +c (a >0)与x 轴分别有两个公共点、一个公共点和没有公共点(如图2.3-2所示),因此,我们可以分下列三种情况讨论对应的一元二次不等式ax 2+bx +c >0(a >0)与ax 2+bx +c <0(a >0)的解. (1)当Δ>0时,抛物线y =ax 2+bx +c (a >0)与x 轴有两个公共点(x 1,0)和(x 2,0),方程ax 2+bx +c =0有两个不相等的实数根x 1和x 2(x 1<x 2),由图2.3-2①可知 不等式ax 2+bx +c >0的解为 x <x 1,或x >x 2;不等式ax 2+bx +c <0的解为 x 1<x <x 2.(2)当Δ=0时,抛物线y =ax 2+bx +c (a >0)与x 轴有且仅有一个公共点,方程ax 2+bx +c =0有两个相等的实数根x 1=x 2=-b2a ,由图2.3-2②可知 不等式ax 2+bx +c >0的解为x ≠-b2a ;不等式ax 2+bx +c <0无解. (3)如果△<0,抛物线y =ax 2+bx +c (a >0)与x 轴没有公共点,方程ax 2+bx +c =0没有实数根,由图2.3-2③可知不等式ax 2+bx +c >0的解为一切实数; 不等式ax 2+bx +c <0无解. 今后,我们在解一元二次不等式时,如果二次项系数大于零,可以利用上面的结论直接求解;如果二次项系数小于零,则可以先在不等式两边同乘以-1,将不等式变成二次项系数大于零的形式,再利用上面的结论去解不等式. 高中必备知识点1:二元二次方程组的解法【典型例题】已知方程组{x 2+2y 2−6=0y =mx +3有两组相等的实数解,求m 的值,并求出此时方程组的解.【答案】m =±1,当m =1时 {x =−2y =1 ;当m =−1时 {x =2y =1【解析】{x 2+2y 2−6=0①y =mx +3②把②代入①后计算得(2m 2+1)x 2+12mx +12=0, ∵方程组有两组相等的实数解, ∴△=(12m )2−4(2m 2+1)•12=0, 解得:m =±1,当m =1时,解得{x =−2y =1当m =−1时,解得{x =2y =1【变式训练】解方程组:{x 2−xy −2y 2=0,x 2+2xy +y 2=1,【答案】{x 1=23y 1=13 ; {x 2=−23y 2=−13 【解析】{x 2−xy −2y 2=0①x 2+2xy +y 2=1②, 由①得 (x+y )(x -2y )=0, ∴x+y=0或x -2y=0, 由②得 (x+y )2=1, ∴x+y=1或x+y=-1,所以原方程组化为{x +y =0x +y =1 或{x +y =0x +y =−1 或{x −2y =0x +y =1 或{x −2y =0x +y =−1,所以原方程组的解为{x 1=23y 1=13 {x 2=−23y 2=−13.【能力提升】解方程组:{ x +y =4; x 2 +xy −2y 2 =0. 【答案】{x 1=8y 1=−4 ,{x 2=2y 2=2【解析】由②得:(x +2y)(x −y)=0 所以x +2y =0或x −y =0 所以{x +y =4x +2y =0 或{x +y =4x −y =0 ,所以原方程组的解为{x 1=8y 1=−4 ,{x 2=2y 2=2 .高中必备知识点2:一元二次不等式的解法【典型例题】解下列不等式:(1)-3x 2-2x +8≥0; (2)0<x 2-x -2≤4;【答案】(1) .(2) {x/-2x 1,23}x ≤<-<≤. 【解析】(1)原不等式可化为3x 2+2x -8≤0, 即(3x -4)(x +2)≤0. 解得-2≤x ≤, 所以原不等式的解集为. (2)原不等式等价于 ⇔ ⇔⇔借助于数轴,如图所示,原不等式的解集为.【变式训练】求不等式的解. 【答案】或26}x ≤≤ 【解析】由题意,不等式,可得或, 由不等式组,可得解集为 由不等式组,可得解集为或, 所以不等式的解集为或26}x ≤≤.【能力提升】解下列不等式:(1)0622≥+--x x ; (2); (3).【答案】(1);(2);(3)或. 【解析】(1)由题意,不等式0622≥+--x x ,可化为23262(2)()02x x x x +-=+-≤, 所以不不等式的解集为;(2)由题意,可得22131()024x x x ++=++>,所以不等式的解集为; (3)由不等式,可化为23250x x +->,即, 所以不等式的解集为或.1.若实数a 使关于x 的不等式组至少有3个整数解,且使关于y 的分式方程有正整数解,则符合条件的所有整数a 的和为( ) A .B .C .D .【答案】B解:解不等式组可得:,∵不等式组至少有3个整数解,∴,∴,解分式方程可得:,∵分式方程有正整数解,∴且,∴,且,∴a可以取值为-7,-5,∴符合条件的所有整数a的和为-7-5=-12,故选B.2.不等式组的解集为()A.B.C.D.无解【答案】B解:,由①得:x<-1,由②得:x<4,∴不等式组的解集为:.故选B.3.已知关于的分式方程有整数解,且关于的不等式组有且只有3个负整数解,则符合条件的所有整数的个数为()A.1B.2C.3D.4【答案】A解:分式方程去分母得:1-ax-3-2+x=0,即(1-a)x=4,由分式方程有整数解,得到1-a≠0,解得:x=,不等式组整理得:,即,由不等式组有且只有3个整数解,得到, 解得:-1<a ≤,由x 为整数,且,得到1-a =±1,-2,±4, 解得:a =0,则符合条件的所有整数a 的个数为1, 故选:A .4.已知不等式组的解为:,则的值为( ) A .1 B .2020 C .-1 D .-2020【答案】A解:解不等式x +a >1,得:x >1﹣a , 解不等式2x -b <2,得:x <, 所以不等式组的解集为1﹣a <x <, ∵不等式组的解集为﹣2<x <3, ∴1﹣a =﹣2,=3, 解得:a =3,b =4, ∴=1. 故选:A .5.下面是解不等式的过程,每一步只对上一步负责,则其中有错的步骤是( )A .只有④B .①③C .②④D .①②④【答案】D ∵,∴624x x >-+,故①错误; 由624x x >--,得,故②错误; 由,得,故③正确;由,得,故④错误.综上所述:错误点步骤有:①②④ 故选:D .6.下列命题正确的是( ) A .若,则 B .m ,n 为整数,若2,2m n a b ==,则332m n a b +=+ C .若,则 D .若0a b >>,则【答案】D解:A 、若,则,解得,故此选项不符合题意; B 、m ,n 为整数,若,,则()333322222m n m n m n ab +===,故此选项不符合题意;C 、若,即,故此选项不符合题意;D 、若0a b >>,则,故此选项符合题意. 故选D .7.不等式组的解集在数轴上表示为( ) A . B . C . D .【答案】A 解:解不等式①得,; 解不等式②得,所以,不等式组的解集为: 在数轴上表示为:故选:A .8.若关于的一元一次不等式组恰有3个整数解,且一次函数不经过第三象限,则所有满足条件的整数的值之和是( ) A . B .C .0D .1【答案】C解:由不等式组,得,∵关于x 的一元一次不等式组恰有3个整数解, ∴,解得-3<a ≤1,∵一次函数y =(a -2)x +a +1不经过第三象限, ∴a -2<0且a +1≥0, ∴-1≤a <2, 又∵-3<a ≤1, ∴-1≤a ≤1,∴整数a 的值是-1,0,1,∴所有满足条件的整数a 的值之和是:-1+0+1=0, 故选:C .9.关于的不等式组只有3个整数解,求的取值范围( ) A . B .89a <≤C .89a <<D .【答案】A 解:, 解①得,, 解②得,,∴不等式组的解集为:, ∵不等式组只有3个整数解, ∴10211a ≤+<, 解得,, 故选:A .10.若整数a 是使得关于x 的不等式组有且只有2个整数解,且使得且关于y 的分式方程+=a 有非负数解,则所有满足条件的整数a 的个数为( ) A .6 B .5C .4D .3【答案】B 解:由①得,2(x -1)>3x -6 解得:x <4,由②得,x ≥,∵有且只有2个整数解, ∴1<≤2, 解得,1<a <7, +=a 2y +3-a -1=a (y -1) (2-a )y =-2 y =, a ≠2∵有非负数解, ∴2-a <0, ∴a >2, ∴1<a ≤7 , ∴2<a ≤7∴a 可为3、4、5、6、7, 故答案为:B .11.不等式组的解集是______. 【答案】 解:.不等式 的解集是 x >2, 不等式 的解集是 x >1. 在数轴上表示为 :∴原不等式组的解集是 x >2. 故答案为:x > 2.12.已知二次函数的图象与轴有且只有一个公共点,则一元二次不等式220x x m ++>的解集为________.如图所示:∵二次函数y=x 2+2x+m 的图象与x 轴有且只有一个公共点, ∴△=22−4m=0, 解得:m=1,故y=x 2+2x+1,则图象与x 轴交于点(−1,0), 故一元二次不等式x 2+2x+m>0的解集为:x≠−1. 故答案为:x≠−1.13.已知二次函数y =ax 2+bx +c(a≠0)的图象如图所示,则一元二次不等式ax 2+bx +c >0的解是______.【答案】-1<x<3 【解析】由图象可知一元二次不等式20ax bx c ++>的解是: 故答案为:14.已知二次函数的部分图象如图所示,则关于的一元二次不等式220x x m -++>的解集为______________________. 【答案】由图可知,对称轴为直线,所以,二次函数图象与x 轴的另一个交点坐标为(,0), 由图象可知:函数值大于0的的取值范围为:, 所以,220x x m -++>的解集为. 故答案为:.15.已知二次函数的顶点坐标及部分图象(如图所示),其中图象与横轴的正半轴交点为,由图象可知: ①当________时,函数值随着的增大而减小;②关于的一元二次不等式2ax bx c 0++>的解是________.①由图可知,x>1时,函数值随着x的增大而减小;②∵顶点坐标(1,3)图象与横轴的正半轴交点为(3,0),∴图象与横轴的另一交点为(-1,0),∴ax2+bx+c>0的解是-1<x<3.故答案为>1;-1<x<3.16.自主学习,请阅读下列解题过程.解一元二次不等式:>0.解:设=0,解得:=0,=5,则抛物线y=与x轴的交点坐标为(0,0)和(5,0).画出二次函数y=的大致图象(如图所示),由图象可知:当x<0,或x>5时函数图象位于x轴上方,此时y>0,即>0,所以,一元二次不等式>0的解集为:x<0或x>5.通过对上述解题过程的学习,按其解题的思路和方法解答下列问题:(1)上述解题过程中,渗透了下列数学思想中的和.(只填序号)①转化思想 ②分类讨论思想 ③数形结合思想(2)一元二次不等式<0的解集为.(3)用类似的方法解一元二次不等式:>0.【答案】(1)①,③;(2)0<x<5;(3)x<﹣1或x>3.【解析】(1)上述解题过程中,渗透了下列数学思想中的①和③;故答案为①③;(2)由图象可知:当0<x<5时函数图象位于x轴下方,此时y<0,即<0,∴一元二次不等式<0的解集为:0<x<5;故答案为0<x<5.(3)设=0,解得:=3,=﹣1,∴抛物线y=与x轴的交点坐标为(3,0)和(﹣1,0).画出二次函数y=的大致图象(如图所示),由图象可知:当x<﹣1,或x>3时函数图象位于x轴上方,此时y>0,即>0,∴一元二次不等式>0的解集为:x<﹣1或x>3.17.不等式组的解集为,则的取值范围为_____.【解析】解不等式2x+9>6x+1可得x <2,解不等式x -k <1,可得x <k+1,由于x <2,可知k+1≥2,解得k≥1. 故答案为k≥1.18.不等式组的整数解的个数是_________. 【答案】 解不等式得:x≤4解不等式523(1)x x +>-得:x > ∴<x≤4∴整数解有:-2、-1、0、1、2、3、4共7个 故答案为:719.关于的不等式组恰好只有三个整数解,则的取值范围是_____________. 【答案】解不等式4a+3x>0得:x>-a , 解不等式3a -4x≥0得:x≤a , ∴不等式的解集为:-a<x≤a , ∵方程组只有三个整数解, ∴方程组的解包括0,∴方程组的整数解为:0、1、2或-1、0、1或-2、-1、0, 当整数解为0、1、2时: ,方程组无解, 当整数解为-1、0、1时:,解得:≤a≤, 当整数解为-2、-1、0时: 方程组无解, ∴a 的取值范围为:≤a≤, 故答案为≤a≤20.对于满足0≤p≤4的一切实数,不等式x 2+px >4x+p ﹣3恒成立,则实数x 的取值范围是_______. 【答案】x >3或x <﹣1【解析】试题解析:令y=x 2+px -(4x+p -3)=x 2+px -3x -(x+p -3) =x (x+p -3)-(x+p -3) =(x -1)(x+p -3)>0∴其解为 x>1 且 x>3-p①,或x<1 且x<3-p②,因为 0≤p≤4,∴-1≤3-p≤3,在①中,要求x大于1和3-p中较大的数,而3-p最大值为3,故x>3;在②中,要求x小于1和3-p中较小的数,而3-p最小值为-1,故x<-1;故原不等式恒成立时,x的取值范围为:x>3或x<-1.故答案为:x>3或x<-1.21.请阅读下列解题过程:解一元二次不等式:x2-3x>0.解:x(x-3)>0,∵或,解得x>3或x<0.∵一元二次不等式x2-3x>0的解集为x<0或x>3.结合上述解题过程回答下列问题:(1)上述解题过程渗透的数学思想为;(2)一元二次不等式x2-3x<0的解集为;(3)请用类似的方法解一元二次不等式:x2-2x-3<0.【答案】(1)转化的思想;(2)0<x<3;(3)-1<x<3(1)根据解题过程知,解题过程渗透的数学思想为:转化的思想;(2)∵x2-3x<0,即x(x-3)<0,∴或,解得:0<x<3,∴一元二次不等式x2-3x<0的解集为0<x<3;(3)x2-2x-3<0,即(x-3)(x+1)<0,则或,解得:-1<x<3.∴一元二次不等式x2-2x-3<0的解集为:-1<x<3.22.先阅读理解下列题,再按要求完成问题:例题:解一元二次不等式0262>--x x解:把分解因式得:)12)(23(262+-=--x x x x又0262>--x x 所以0)12)(23(>+-x x 由有理数乘法法则“两数相乘,同号得正”,有 (1)或(2),解不等式组(1),得解不等式(2),得因此,一元二次不等式0262>--x x 的解集为或; 问题;根据阅读解不等式:. 【答案】 【解析】因为,由有理数除法法法则“两数相除,异号得负”,有(1)或(2),再分别求出这两个不等式组的解集即可.因为,由有理数除法法法则“两数相除,异号得负”,有 (1)或(2) 解不等式组(1),得 解不等式(2),得无解 因此的解集为.23.请阅读下列解题过程: 解一元二次不等式:. 解:(3)0x x -> ,或, 解得或.一元二次不等式的解集为或. 结合上述解答过程回答下列问题:(1)上述解题过程渗透的数学思想为________; (2)一元二次不等式的解集为________;(3)请用类似的方法解一元二次不等式:2560x x --<. 【答案】(1)分类讨论思想;(2);(3). (1)分类讨论思想;(2)由解题过程可知:,即(3)0x x -<. ,或,解得.(3)2560x x --<,即(1)(6)0x x +-<, 则或, 解得.∴一元二次不等式2560x x --<的解集为. 24.阅读材料,解答问题.例:用图象法解一元二次不等式:2230x x --> 解:设,则是的二次函数.∵, ∵抛物线开口向上.又∵当时,2230x x --=,解得,. ∵由此得抛物线的大致图象如图所示.观察函数图象可知:当或时,. ∵2230x x -->的解集是:或.(1)观察图象,直接写出一元二次不等式:2230x x --<的解集是______; (2)仿照材料、用图象法解一元二次不等式:.【答案】(1);(2)或 (1)观察图象可知:时,y<0, ∴2230x x --<的解集是, 故答案为:(2)设,则是的二次函数, ∵,∴抛物线开口向上. 又∵当时,,解得,.∴由此得抛物线的大致图象如图所示.观察函数图象可知:当或时,. ∴的解集是:或.25.阅读材料,解答问题:例:用图象法解一元二次不等式:2230x x -->. 解:设,则是的二次函数.10a =>∴,抛物线开口向上.又当时,2230x x --=,解得. 由此得抛物线的大致图象如图所示.观察函数图象可知:当或时,.2230x x -->的解集是:或.(1)观察图象,直接写出一元二次不等式:2230x x --<的解集是 ; (2)仿照上例,用图象法解一元二次不等式:2430x x -+-<. 【答案】(1)-1<x<3;(2)x<1或x>3,作图见解析.(1)观察图象可以写出直接写出一元二次不等式:2230x x --<的解集是-1<x<3; (2)设243y x x =-+-,则y 是x 的二次函数, 抛物线开口向下.当y=0时,2430x x -+-= 解得:由此得抛物线243y x x =-+-的大致图象如图所示:观察图象可知:当x<1或x>3时,y<0;2430x x -+-<的解集是: x<1或x>326.先阅读理解下面的例题,再按要求解答后面的问题 例题:解一元二次不等式>0.解:令y=,画出y=如图所示,由图像可知:当x <1或x >2时,y >0.所以一元二次不等式>0的解集为x <1或x >2.填空:(1)<0的解集为 ;(2)>0的解集为 ;用类似的方法解一元二次不等式>0.【答案】(1)1&lt;x&lt;2;(2)x&lt;-1或x&gt;1;-6<x <1. 【解析】 (1)<0的解集为1<x<2; (2)>0的解集为x<-1或x>1;令y=画出y=如图所示:由图像可知:当-6<x <1,y >0 所以一元二次不等式>0的解集为-6<x <1.27.解一元二次不等式 .请按照下面的步骤,完成本题的解答. 解: 可化为 (2)(2)0x x +->.(1)依据“两数相乘,同号得正”,可得不等式组① 或不等式组②________. (2)解不等式组①,得________. (3)解不等式组②,得________. (4)一元二次不等式 的解集为________. 【答案】(1);(2);(3);(4)或.(1)∵“两数相乘,同号得正”,∴另一不等式组应为; 故答案为: (2),解不等式①得x >﹣2,解不等式②得x >2. ∴不等式组①的解集为x >2. 故答案为:x >2 (3),解不等式①得x<﹣2,解不等式②得x<2.∴不等式组②的解集为x<﹣2.故答案为:x<﹣2(4)∵不等式组②的解集为x>2,不等式组②的解集为x<﹣2,所以一元二次不等式x2-4>0的解集为x<﹣2或x>2.故答案为:x<﹣2或x>2.28.先阅读下面的例题,再按要求解答后面的问题.例题:解一元二次不等式x2﹣3x+2>0解:令y=x2﹣3x+2,画出y=x2﹣3x+2如图所示,由图象可知:当x<1或x>2时,y>0所以一元二次不等式x2﹣3x+2>0的解集为x<1或x>2(1)填空:x2﹣3x+2<0的解集为;x2﹣3x≥0的解集为.(2)用类似的方法解一元二次不等式:﹣x2﹣2x+3>0.【答案】(1)1<x<2;x≤0或x≥3;(2)﹣3<x<1.【解析】解:(1)x2﹣3x+2<0的解集为1<x<2;x2﹣3x≥0的解集为x≤0或x≥3;故答案为1<x<2;x≤0或x≥3;(2)令y=﹣x2﹣2x+3=﹣(x+1)2+4,画出y=﹣x2﹣2x+3的图象,如图所示,由图象可知当﹣3<x<1时,y>0,所以一元二次不等式﹣x2﹣2x+3>0的解集为﹣3<x<1.29.先阅读,再解题.例题:解一元二次不等式 (x+3)(x-3)>0解:因为 (x+3)(x-3)>0.由有理数的乘法法则“两数相乘,同号得正”,所以有3030xx+>⎧⎨->⎩①或3030xx+<⎧⎨-<⎩②解不等式组①,得x>3,解不等式组②,得x<-3.故(x+3)(x-3)>0的解集为x>3或x<-3.即一元二次不等式(x+3)(x-3)>0的解集为x>3或x<-3.问题:求不等式的解集.【答案】【解析】由有理数的除法法则“两数相除,同号得正,异号得负”得,不等式组①或② .解不等式组①得;解不等式组②得无解;所以原不等式的解集为 .30.阅读材料,解答问题.例:用图象法解一元二次不等式:x2﹣2x﹣3>0解:设y=x2﹣2x﹣3,则y是x的二次函数.∵a=1>0,∵抛物线开口向上.又∵当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3.∵由此得抛物线y=x2﹣2x﹣3的大致图象如图所示.观察函数图象可知:当x<﹣1或x>3时,y>0.∵x2﹣2x﹣3>0的解集是:x<﹣1或x>3.(1)观察图象,直接写出一元二次不等式:x2﹣2x﹣3>0的解集是________;(2)仿照上例,用图象法解一元二次不等式:x2﹣1>0.【答案】解:(1)x<﹣1或x>3;(2)设y=x2﹣1,则y是x的二次函数,∵a=1>0,∴抛物线开口向上.又∵当y=0时,x2﹣1=0,解得x1=﹣1,x2=1.∴由此得抛物线y=x2﹣1的大致图象如图所示.观察函数图象可知:当x<﹣1或x>1时,y>0.∴x2﹣1>0的解集是:x<﹣1或x>1.。

第12章 函数及其表示假期晋级利器之初升高数学衔接教材精品(解析版)

第12章 函数及其表示假期晋级利器之初升高数学衔接教材精品(解析版)

第12章 函数及其表示【知识衔接】————初中知识回忆————一、正比例函数和一次函数的概念一般地,若是b kx y +=〔k ,b 是常数,k ≠0〕,那么y 叫做x 的一次函数。

特别地,当一次函数b kx y +=中的b 为0时,kx y =〔k 为常数,k ≠0〕。

这时,y 叫做x 的正比例函数。

一次函数的图像所有一次函数的图像都是一条直线;一次函数b kx y +=的图像是通过点〔0,b 〕的直线;正比例函数kx y =的图像是通过原点〔0,0〕的直线。

二、反比例函数的概念 一般地,函数xk y =〔k 是常数,k ≠0〕叫做反比例函数。

反比例函数的解析式也可以写成1-=kx y 的形式。

自变量x 的取值范围是x ≠0的一切实数,函数的取值范围也是一切非零实数。

反比例函数的图像反比例函数的图像是双曲线,它有两个分支,这两个分支别离位于第一、三象限,或第二、四象限,它们关于原点对称。

由于反比例函数中自变量x ≠0,函数y ≠0,所以,它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无穷接近坐标轴,但永远达不到坐标轴。

3、二次函数的概念一般地,若是)0,,(2≠++=a c b a c bx ax y 是常数,,那么y 叫做x 的二次函数。

)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。

二次函数的图像 二次函数的图像是一条关于ab x 2-=对称的曲线,这条曲线叫抛物线。

二次函数图像的画法五点法:〔1〕先按照函数解析式,求出极点坐标,在平面直角坐标系中描出极点M ,并用虚线画出对称轴 〔2〕求抛物线c bx ax y ++=2与坐标轴的交点:当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C ,再找到点C 的对称点D 。

将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就取得二次函数的图像。

二次函数的解析式有三种形式:学=科网〔1〕一般式:)0,,(2≠++=a c b a c bx ax y 是常数,〔2〕极点式:)0,,()(2≠+-=a k h a k h x a y 是常数,〔3〕当抛物线c bx ax y ++=2与x 轴有交点时,即对应二次好方程02=++c bx ax 有实根1x 和2x 存在时,按照二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2可转化为两根式))((21x x x x a y --=。

初升高暑假数学衔接教材含问题详解

初升高暑假数学衔接教材含问题详解

初升高暑假数学衔接教材第一部分,如何做好高、初中数学的衔接●第一讲如何学好高中数学●初中生经过中考的奋力拼搏,刚跨入高中,都有十足的信心、旺盛的求知欲,都有把高中课程学好的愿望。

但经过一段时间,他们普遍感觉高中数学并非想象中那么简单易学,而是太枯燥、乏味、抽象、晦涩,有些章节如听天书。

在做习题、课外练习时,又是磕磕碰碰、跌跌撞撞,常常感到茫然一片,不知从何下手。

相当部分学生进入数学学习的“困难期”,数学成绩出现严重的滑坡现象。

渐渐地他们认为数学神秘莫测,从而产生畏惧感,动摇了学好数学的信心,甚至失去了学习数学的兴趣。

造成这种现象的原因是多方面的,但最主要的根源还在于初、高中数学教学上的衔接问题。

下面就对造成这种现象的一些原因加以分析、总结。

希望同学们认真吸取前人的经验教训,搞好自己的数学学习。

一高中数学与初中数学特点的变化1 数学语言在抽象程度上突变。

不少学生反映,集合、映射等概念难以理解,觉得离生活很远,似乎很“玄”。

确实,初、高中的数学语言有着显著的区别。

初中的数学主要是以形象、通俗的语言方式进行表达。

而高一数学一下子就触及抽象的集合语言、逻辑运算语言以及以后要学习到的函数语言、空间立体几何等。

2 思维方法向理性层次跃迁。

高中数学思维方法与初中阶段大不相同。

初中阶段,很多老师为学生将各种题建立了统一的思维模式,如解分式方程分几步;因式分解先看什么,再看什么。

即使是思维非常灵活的平面几何问题,也对线段相等、角相等,分别确定了各自的思维套路。

因此,初中学习中习惯于这种机械的、便于操作的定势方式。

高中数学在思维形式上产生了很大的变化,数学语言的抽象化对思维能力提出了高要求。

当然,能力的发展是渐进的,不是一朝一夕的。

这种能力要求的突变使很多高一新生感到不适应,故而导致成绩下降。

高一新生一定要能从经验型抽象思维向理论型抽象思维过渡,最后还需初步形成辩证型思维。

3 知识内容的整体数量剧增。

高中数学在知识内容的“量”上急剧增加了。

通用版2022年初升高数学衔接专题《等式性质、不等式性质》讲义(解析版)

通用版2022年初升高数学衔接专题《等式性质、不等式性质》讲义(解析版)

通用版2022-2023学年初升高衔接新知识预习篇专题:等式性质、不等式性质(解析版)一、基本知识及其典型例题1.不等式的概念:用不等号()<>≤≥≠、、、、表示不等关系的式子,如a b <,()()f x g x ≥等.用“<”或“>”连接的不等式叫严格不等式,用“≤”或“≥”连接的不等式叫非严格不等式.2.不等关系的分类【例1】某校对高一美术生划定录取分数线,专业成绩x 不低于95分,文化课总分y 高于380分,体育成绩z 超过45分,用不等式表示就是( )A .⎩⎨⎧x ≥95,y ≥380,z >45B ⎩⎨⎧x ≥95,y >380,z ≥45C.⎩⎨⎧x >95,y >380,z >45D.⎩⎨⎧x ≥95,y >380,z >45【解析】D“不低于”即“≥”,“高于”即“>”,“超过”即“>”, ∴x ≥95,y >380,z >45.【变式1】(1)用不等式(组)表示不等关系)某写字笔原以2.5元/支的价格销售,可以售出8万支.据市场调查,若单价每减少0.1元,销售量就可能相应增加1.5万支.若把减价后写字笔的定价设为x 元,怎样用不等式表示销售的总收入仍不低于100万元呢? 【解析】提价后销售的总收入为x x)5.11.05.28(⨯-+万元, 那么不等关系“销售的总收入仍不低于100万元”可以表示为不等式.100)5.11.05.28(≥⨯-+x x【反思】数学中考查的能力之一就是抽象概括能力,即能用数学语言表示出实际问题中的数量关系.用不等式(组)表示实际问题中的不等关系时 (1)要先读懂题,设出未知量; (2)抓关键词,找到不等关系;(3)用不等式表示不等关系.思维要严密、规范.(2)某电脑用户计划使用不超过500元的资金购买单价为60元的键盘和单价为70元的鼠标.根据需要,键盘至少买3个,鼠标至少买2个。

2022年初升高数学衔接讲义(第2套) 第7讲 等式性质与不等式性质(教师版含解析)

2022年初升高数学衔接讲义(第2套)  第7讲 等式性质与不等式性质(教师版含解析)

第7讲 等式性质与不等式性质1. 实数比较大小的“标杆”:①若0a b ->,则a b >;②若0a b -=,则a b =;③若0a b -<,则a b <.2. 等式有以下基本性质: 性质1 a b b a =⇒= 性质2 ,a b b c a c ==⇒= 性质3 a b a c b c =⇒±=± 性质4 a b ac bc =⇒= 性质5 b a =,0≠c ⇒cb c a =3. 不等式基本性质: 性质1 a b b a >⇒< 性质2 ,a b b c a c >>⇒> 性质3 a b a c b c >⇒+>+性质4 ,0a b c ac bc >>⇒>;,0a b c ac bc ><⇒< 性质5 ,a b c d a c b d >>⇒+>+ 性质6 0,0a b c d ac bd >>>>⇒>性质7 ()0n n a b a b n N *>>⇒>∈例1.比较下列代数式的大小:(1)221x x -+与21x x +-;(2)22a b +与2ab .【答案】(1)22211x x x x -+>+-;(2)222a b ab +≥. 【解析】(1)()()()222221122110xx x x x x x -+-+-=-+=-+>,22211x x x x ∴-+>+-;(2)()()22220ab ab a b +-=-≥,222a b ab ∴+≥.例2.用十字相乘法分解下列因式:(1) 228x x --= ; (2) 23512x x +-= . 【答案】(1)()()42x x -+;(2)()()343x x -+.例3.设a 4b ,c ,那么,,a b c 的大小关系式为 .【答案】a c b >>【解析】30,40,0a b c =>==<=>,且0a c -==>,a c b ∴>>.例4.已知,a b R +∈,1a b +=,3322a b M a b a b =+++,3322b a N a b a b=+++,则,M N 的大小关系是( )A.M N > B .M N < C .M N = D .M N ≤ 【答案】C【解析】()33333322222211a b b a M N a b a ba b a b a b a b a b ⎛⎫⎛⎫⎛⎫-=+-+=-- ⎪ ⎪ ⎪++++++⎝⎭⎝⎭⎝⎭ ()()()()()()()()332233222210a b a b a b a b a b a b a b a b a b a b --+-+--=-==++++,M N ∴=,选C.例5.实数,,,a b c d 满足条件:①,a b c d <<;②()()0a c b c -->③()()0a d b d --<,则有( )A. a c d b <<<B.c a b d <<<C.a c b d <<<D.c a d b <<< 【答案】D【解析】()()()(),0a b a c b c c a c b <--=-->,c a ∴<或c b >,()()()()0a d b d d a d b --=--<,a d b ∴<<,又c d <,c a ∴<,综上所述,c a d b <<<,选D. 例6.已知,,a b c R ∈,有以下命题:①若a b >,则22ac bc >;②若22ac bc >,则a b >;③若110a b<<,则2ab b <;④若0c a b >>>,则a b c a c b >--;⑤若a b >且11a b>,则0,0a b ><. 其中正确的是_______.(填上所有正确命题的序号) 【答案】②③④⑤【解析】①错误,当0c =时22ac bc =;②正确,由22ac bc >知0c ≠,所以2220,c ac bc a b >>⇒>;③正确,若110a b<<,则,0,0a b ab <>,同乘以ab 得0b a <<,()20ab b b a b -=-<,2ab b ∴<;④正确,0c a b >>>,()()()()()()()0a c b b c a c a b a b c a c b c a c b c a c b -----==>------,a bc a c b∴>--;⑤正确,a b >且11a b >,110b a a b ab-∴-=>,0ab ∴<,结合a b >可知0,0a b ><.例7. 已知0,0a b c >>>,试证明:b bc a a c+<+. 【证明】0,0a b c >>>,()()()()()0b a c a b c b b c c b a a a c a a c a a c +-++-∴-==<+++, b b c a a c+∴<+. 例8.(1) 已知13,24a b <<<<,求2a b -的取值范围; (2) 已知13,26a b b <-<<<,求2a b -的取值范围. 【答案】(1)224a b -<-<;(2)521a b -<-<.【解析】(1)13,24a b <<<<,226,42a b ∴<<-<-<-, 两不等式相加得224a b -<-<; (2)26b <<,62b ∴-<-<-,又13a b <-<,两不等式相加得521a b -<-<. 例9.若120a a <<,120b b <<,且12121a a b b +=+=,则下列代数式中值最大的是( )A.1122a b a b +B.1212a a b b +C.1221a b a b +D.12【答案】A【解析】取12121213,,b ,3344a ab ====,则112278412144a b a b +==,121259144a a b b +=,122156012144a b a b +==,1722144=,1122a b a b ∴+最大,选A.跟踪训练1. 设22,1,,s a b t a b a b R =+=++∈,则,s t 的大小关系是( ) A.s t >B. s t ≥C.s t <D. s t ≤【答案】D【解析】()()()222110s t a b a b b -=+-++=--≤,s t ∴≤,选D.2. 已知14a b c =+=则,,a b c 的大小关系为( )A.a b c >>B. c a b >>C. c b a >>D. b c a >> 【答案】C【解析】由14a b c ===得22288168a b c =+=+==+,所以c b a >>,选C.3. 已知,0x y z x y z >>++=,则下列不等式中成立的是( )A.xy yz > B .xz yz > C .xy xz > D .x y z y > 【答案】C 【解析】,0x y z x y z >>++=,30,30x x y z z x y z ∴>++=<++=,0,0x y ∴><,A 错误,若0y =则xy yz =;B 错误,0x y xz yz z >⎫⇒<⎬<⎭;C 正确,0y z xy xz x >⎫⇒>⎬>⎭;D 错误,若0y =则x y z y =,故选C.4. 若0a b >>,则下列不等式中一定成立的是( ) A.11a b b a +>+ B.11b b a a +>+ C .11a b b a ->- D.22a b a a b b+>+ 【答案】A【解析】A 正确,()()1111110a b a b a b b a b a ab ⎛⎫⎛⎫⎛⎫⎛⎫+-+=-+-=-+> ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,11a b b a ∴+>+; B 、D 错误,当2,1a b ==时,112213b b a a +=<=+,25224a b a a b b +=<=+;C 错误,当11,2a b ==时,11112a b b a -=-<-=-,故选A.5. 若11αβ-<<<,则下列各式中恒成立的是( ) A.20αβ-<-<B .21αβ-<-<-C .10αβ-<-<D .11αβ-<-<【答案】A【解析】111111200ααββαβαβ-<<⎧⎫⎪⎪-<<<⇒-<-<⇒-<-<⎨⎬⎪⎪-<⎩⎭,选A.6. 已知120,1a a <<,记1212,1M a a N a a ==+-,则,M N 的大小关系是( ) A.M N < B .M N >C .M N =D .不确定【答案】B【解析】()()()()121212*********M N a a a a a a a a a a -=-+-=---=-->,M N ∴>,选B.7. 设,0,,111x y x yx y A B x y x y+>==+++++,则,A B 的大小关系是( )A.A B =B.A B <C.A B >D.不能确定【答案】B【解析】由已知11011,011011x x x y x x y xx y x y y y y x y y ⎧<⎪++>+>+++⎧⎫⎪>⇒⇒⎨⎬⎨++>+>⎩⎭⎪<⎪+++⎩, 所以11111x y x y x yA B x y x y x y x y+==+<+=++++++++,选B.8. 已知,,a b c R ∈,那么下列命题中正确的是( )A.若a b >,则22ac bc >B.若a bc c>,则a b > C.若33a b >且0ab <,则11a b > D.若22a b >且0ab >,则11a b< 【答案】C【解析】A 错误,当0c =时,22ac bc =;B 错误,当0c <时,a ba b c c>⇒<; C 正确,若33a b >且0ab <,则0,0a b ><,所以11a b>;D 错误,当2,1a b =-=-时, 11112a b=->=-,故选C.9. 已知a b a <<,则以下不等式中恒成立的是( ) A.b a <-B.0ab >C.0ab <D.a b <【答案】A【解析】a a <,0a ∴<,则不等式a b a <<化为a b a <<-, b a a ∴<=-,A 正确,D 错误,b 的正负性无法确定,BC 错误.10. 设1,0a b c >><,给出下列四个结论:①c c a b >;②ac bc <;③()()a b c b a c ->-;④a b c c>. 正确的结论有 .(写出所有正确的序号) 【答案】①②③【解析】①②正确,④错误:111100c ca b a ba b ac bc c a b c c c⎧>⎫⎪>>⇒<⎪⎪⎪⇒<⎬⎨⎪⎪<⇒<⎪⎪<⎭⎩;③正确:()()()()()0a b c b a c c b a a b c b a c ---=->⇒->-.11. 已知,,,a b c d 均为实数,有下列命题 ①若0,0ab bc ad >->,则0c d a b ->;②若0,0c dab a b>->,则0bc ad ->; ③若0,0c dbc ad a b->->,则0ab >.其中正确的命题是________. 【答案】①②③【解析】①正确:0,000bc ad c dab bc ad ab a b->->⇒>⇒->; ②正确:0,000c d c d ab ab bc ad a b a b ⎛⎫>->⇒->⇒-> ⎪⎝⎭;③正确:0000c d bc ad ab a b ab bc ad -⎫->⇒>⎪⇒>⎬⎪->⎭.12. 已知13,24a b a b -<+<<-<,求23a b +的取值范围 . 【答案】9132322a b -<+<【解析】设()()()()23a b x a b y a b x y a x y b +=++-=++-, 则23x y x y +=⎧⎨-=⎩,解得5212x y ⎧=⎪⎪⎨⎪=-⎪⎩,13,24a b a b -<+<<-<,()()55151,212222a b a b ∴-<+<-<--<-,两不等式相加得9132322a b -<+<.13. 已知221110,1,1,,211a A a B a C D a a-<<=+=-==+-,则,,,A B C D 的大小关系是 .(用“>”连接) 【答案】C A B D >>>【解析】221110,1,1,,211a A a B a C D a a -<<=+=-==+-,221111,011,1,0111A a B a C D a a∴=+><=-<=><=<+-, 又()()22213124110111a a a a a A C a a a a⎡⎤⎛⎫++⎢⎥ ⎪++⎝⎭⎢⎥⎣⎦-=+-==<+++,()()2221512411111a a a a a B D a a a a⎡⎤⎛⎫--⎢⎥ ⎪--⎝⎭⎢⎥⎣⎦-=--==---, 102a -<<,22151********a ⎛⎫⎛⎫∴--<---< ⎪ ⎪⎝⎭⎝⎭,0B D ∴-> 所以,A C B D <<, 综上,C A B D >>>.14. 设,a b 为实数,比较22a b +与1ab a b ++-的大小. 【答案】221a b ab a b +≥++-【解析】()()()2222112222222a b ab a b a b ab a b +-++-=+---+ ()()()()()()2222222112212111022a b ab a a b b a b a b ⎡⎤⎡⎤=+-+-++-+=-+-+-≥⎣⎦⎣⎦, 所以221a b ab a b +≥++-.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档