正比例反比例一次函数

合集下载

【中考数学复习】一次函数与反比例函数知识

【中考数学复习】一次函数与反比例函数知识

【中考数学复习】一次函数与反比例函数知识提要初中代数中涉及的函数有:一次函数(包括正比例函数)、反比例函数、二次函数.每种函数一般从下面四个方面研究:定义,图象,性质,求解析式.本讲研究一次函数和反比例函数.一、一次函数1、定义:函数)0(≠+=k b kx y 称为一次函数,若0=b 则称函数为正比例函数.2、图象:一次函数是过点(0,b )和点(kb -,0)的直线.当b=0时的正比例函数)0(≠=k kx y 是过原点的一条直线,若k 与b 的符号不同,则直线经过的象限也不同,如图所示:3、性质:当0>k 时,y 随x 的增大而增大;当0<k 时,y 随x 的增大而减小.(此性质为一次函数的单调性)另外,正比例函数关于原点O 中心对称4、求解析式:求一次函数的解析式,一般需要两个条件,求出表达式b kx y +=中的k 及b 的值,常用待定系数法来求一次函数.而正比例函数的解析式只需要一个条件.二、反比例函数1、定义:形如)0(≠=k x k y 形式称为反比例函数,定义域为0≠x 的所有实数.2、图象:反比例图象为双曲线,如图所示:3、性质:反比例函数x k y =在0>k 且0>x 时,函数值y 随x 的增大而减小;在0>k 且0<x 时,函数值y 随x 的增大而减小.即:当0>k 时,反比例函数x k y =分布在一、三象限,在每个象限内,y 随x 的增大而减小,如图(1)所示.当0<k 时,反比例函数xk y =分布在二、四象限,在每个象限内,y 随x 的增大而增大,如图(2)所示.反比例函数x k y =图象上的点关于原点O 成中心对称的.当0>k 时,函数的图象关于直线x y =成轴对称;当0<k 时,函数的图象关于直线x y -=成轴对称.4、求解析式:反比例函数的解析式,只需要一个条件,求出xk y =)0(≠k 中的k 即可.在解决有关一次函数及反比例函数的问题时,常运用数形结合及分类讨论的思想方法.待定系数法是研究函数表达式的基本方法,同时紧密结合图象寻求思路,是处理这类问题的重要方法.例1、已知正比例函数x y =和)0(>=a ax y 的图象与反比例函数xky =(k>0)的图象在第一象限内分别相交于A 、B 两点,过A 、B 作x 轴的垂线,垂足分别为C 、D ,设△AOC 和△BOD 的面积分别为1S 、2S ,则1S 与2S 的大小关系怎样?例2、两个反比例函数x y 3=,x y 6=在第一象限内的图象如图所示,点1P ,2P ,3P ,…2005P 在反比例函数x y 6=图象上,它们的横坐标分别是1x ,2x ,3x ,…2005x ,纵坐标分别是1,3,5,…,共2005个连续奇数,过点1P ,2P ,3P ,…2005P 分别作y 轴的平行线,与xy 3=的图象交点依次是)(111y x Q ,,)(222y x Q ,,)(333y x Q ,,…)(200520052005y x Q ,,则_________2005=y .例3、平面直角坐标系内有A (2,-1)、B (3,3)两点,点P 是y 轴上一动点,求P 到A 、B 距离之和最小时的坐标.例4、已知一次函数的图象经过点(2,2),它与两坐标轴所围成的三角形的面积等于1,求这个一次函数的解析式.例5、已知A (-2,0)、B (4,0),点P 在直线221+=x y 上,若△PAB 是直角三角形,求点P 的坐标.例6、已知两人连续6年对某县农村甲鱼养殖业的规模(产量)进行调查,提供两个方面的信息,如图所示,请根据图中提供的信息,求:(1)第2年全县生产甲鱼的只数及甲鱼池的个数;(2)到第6年,这个县的甲鱼养殖规模比第1年是扩大了还是缩小了,请说明理由.例7、如图,已知C 、D 是双曲线xm y =在第一象限内的分支上的两点,直线CD 分别交x 轴、y 轴于A 、B 两点,设C 、D 的坐标分别是(11y x ,)、(22y x ,),连接OC 、OD.(1)求证:111y m y OC y +<<;(2)若α=∠=∠AOD BOC ,31tan =α,10=OC ,求直线CD 的解析式.(3)在(2)的条件下,双曲线是否存在一点P ,使POD POC S S ∆∆=?若存在,求出P 点坐标;若不存在,请说明理由.例8、有一个附有进、出水管的容器,每单位时间进、出的水量都是一定的,设从某时刻开始5分钟内只进水不出水,在随后的15分钟内既进水又出水,得到时间x (分)与水量y (升)之间的关系如图所示,若20分钟后只放水不进水,求多长时间能将水放完?例9、为了预防流感,某学校对教室用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例,药物燃烧后,y 与x 成反比例(如图),观测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克,请根据题中提供的信息解答下列问题:(1)药物燃烧时,y 关于x 的函数关系式为__________,自变量x 的取值范围是___________;药物燃烧后y 关于x 的函数关系式为____________.(2)研究表明,当空气中的每立方米含药量低于1.6毫克时,学生方可进教室,那么从消毒开始,至少需要经过多少分钟后,学生才能回到教室.(3)研究表示,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?例10、某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按120个工时计算)生产空调器、彩电、冰箱共360台,且冰箱至少生产60台,已知生产这些家电产品每台所需工时和每台产值如下表所示:家电名称空调器彩电冰箱工时/个213141产值/千元432问每周应生产空调器、彩电、冰箱各多少台,才能使产值最高?最高产值是多少?(以千元为单位)练习1、已知0≠abc 并且p b a c a c b c b a =+=+=+而直线p px y +=一定通过()A 第一、二象限B 第二、三象限C 第三、四象限D 第一、四象限2、函数kx y =和)0(<=k x k y 在同一坐标系中的图象是()3、一次函数b kx y +=过点)(11y x ,和)(22y x ,,且0>k ,b<0,当210x x <<时,有()A 21y b y >>B 21y b y <<C b y y <<<210D 012<<<y b y 4、若点(-2,1y ),(1,2y ),(2,3y )在反比例函数x y 21=的图象上,则下列结论正确的是()A 123y y y >>B 312y y y >>C 132y y y >>D 321y y y >>5、反比例函数x k y =的图象是轴对称图形,它的一条对称轴是下列正比例函数图象中的()A kxy -=B x k y =C x k k y =D kxy =6、一个一次函数图象与直线49545+=x y 平行,与x 轴、y 轴的交点分别为A 、B ,并且过点(-1,-25),则在线段AB 上(包括端点A 、B ),横、纵坐标都是整数的点有()A 4个B 5个C 6个D 7个7、如图,正比例函数x y 3=的图象与反比例函数xk y =(0>k )的图象交于点A ,若取k 为1,2,3,…,20,对应的Rt △AOB 的面积分别为1S ,2S ,…20S ,则__________2021=+++S S S .8、不论k 为何值,解析式0)11()3()12(=--+--k y k x k 表示函数的图象都经过一定点,则这个定点是_________.9、如图所示,直线l 和双曲线x k y =(0>k )交于A 、B 两点,P 是线段AB 上的点(不与A 、B 重合),过点A 、B 、P 分别向x轴作垂线,垂足分别为C 、D 、E ,连接OA 、OB 、OP.设△AOC 的面积为1S ,△BOD 的面积为2S ,△POE 的面积为3S ,则321S S S 、、的大小关系是______________.10、甲、乙两车出发后再同一条公路行驶,行驶路程与时间的关系如图所示,那么可以知道:(1)出发行驶在前面的车是_________,此时两车相隔_________;(2)两车的速度分别为甲:___________千米/小时,乙:_________千米/小时,经过___________小时,快车追上慢车;(3)甲、乙两车均行驶600千米时各用的时间分别是:甲用_________小时,乙用__________小时.11、如图,函数221+-=x y 的图象交y 轴于M ,交x 轴于N ,MN 上两点A ,B 在x 轴上射影分别为11B A 、,若411>+OB OA ,则A OA 1∆的面积1S 与B OB 1∆的面积2S 的大小关系是_____________.12、已知非负数x 、y 、z 满足323=++z y x ,433=++z y x ,则z y x w 423+-=的最大值为_________,最小值为__________.13、在直角坐标系中,有四个点:A (-8,3),B (-4,5),C (0,n ),D (m ,0),当四边形ABCD 的周长最短时,求nm 的值.14、设直线1)1(=++y k kx (k 是自然数)与两坐标轴所围成的图形的面积为1S ,2S ,…,2000S .求200021S S S +++ 的值.15、如图(1),已知直线m x y +-=21与反比例函数xk y =的图象在第一象限内交于A 、B 两点(点A 在点B 的左侧),分别于x 、y 轴交于C 、D ,AE ⊥x 轴于E.(1)若OE·CE=12,求k 的值;(2)如图(2),作BF ⊥y 轴于F ,求证:EF ∥CD ;(3)在(1)(2)的条件下,5=EF ,52=AB ,P 是x 轴正半轴上一点,且△PAB 是以P 为直角顶点的等腰直角三角形,求P 点的坐标.(1)(2)16、已知直线62+-=-k y x 和143+=+k y x ,若它们的交点在第四象限内.(1)求k 的取值范围;(2)若k 为非负整数,点A 的坐标为(2,0),点P 在直线62+-=-k y x 上,求使△PAO 为等腰三角形的点P 的坐标.17、A 市、B 市和C 市分别有某种机器10台、10台和8台,现决定把这些机器支援给D 市18台,E 市10台.已知从A 市调运一台机器到D 市、E 市的运费分别为200元和800元,从B 市调运一台机器到D 市、E 市的运费分别为300元和700元,从C 市调运一台机器到D 市、E 市的运费分别为400元和500元.(1)设从A 市、B 市各调x 台到D 市,当28台机器全部调运完毕后,求总运费w (元)关于x (台)的函数式,并求w 的最大值和最小值;(2)设从A 市调x 台到D 市,从B 市调y 台到D 市,当28台机器全部调运完毕后,用x ,y 表示总运费w (元),并求w 的最大值和最小值.18、直线133+-=x y 与x 轴、y 轴分别交于点A 、B ,以线段AB 为直角边在第一象限内作等腰直角三角形ABC ,其中∠BAC=90°.如果第二象限内有一点P (a ,21),使△ABP 的面积和△ABC 的面积相等,求a 的值.文式思维教育,传播知识,分享快乐19、如图,在直角坐标系中,点1O 的坐标为(1,0),⊙1O 与x 轴交于原点O 和点A ,又点B 、C 的坐标分别为(-1,0),(0,b ),且30<<b ,直线l 是过B 、C 点的直线.(1)当点C 在线段OC 上移动时,过点1O 作l D O 直线⊥1,交l 于D ,若a S S CBO BOC=∆∆1,试求b a 与的函数关系式及a 的取值范围.20、某仓储系统有20条输入传送带、20条输出传送带.某日,控制室的电脑显示,每条输入传送带每小时进库的货物流量如图(a ),每条输出传送带每小时出库的货物流量如图(b ),而该日仓库中原有货物8吨,在0时至5时,仓库中货物存量变化情况如图(c ),则在0时至2时有多少条输入传送带在工作?在4至5时有多少条输入传送带和输出传送带在工作?。

正比例函数、反比例函数、一次函数、二次函数

正比例函数、反比例函数、一次函数、二次函数

正比例函数、反比例函数、一次函数、二次函数【教学目标】1.通过具体实例,了解简单的分段函数,并能简单应用;2.整理初中已学过的函数正比例函数、反比例函数、一次函数、二次函数,特别是二次函数;3.学会运用函数图象理解和研究函数的性质。

【教学重点】基础知识整理【教学难点】题型分类解析【教学方法】引导学生自主学习法教学过程:【知识回顾】1.正比例函数的定义是:;图象是:2.反比例函数的定义是:;图象是:3.一次函数的定义: ;图象是:4.二次函数解析式的三种形式:①一般式、②两根式、③顶点式5.二次函数的图象和性质,通常抓住以下三方面:①对称轴②单调性、③最值 .【基础练习】1.函数y=x2+bx+c(x≥0)是单调函数的充要条件是f x=x2+bx+c对任意实数t都有f(2+t)=f(2-t ),则f(1)、f(2)、2.若函数()f(4)的大小关系是:3.关于x的不等式-mx2-8mx-21>0的解为:-7<x<-1则m的值为f x的顶点为(4,0),且过点(0,2),则4.二次函数()f(x)= .5.两个不同函数()f x =x 2+ax+1和g(x)=x 2+x+a (a 为常数)定义域都为R ,若()f x 与g(x)的值域相同,则a= . 6.函数()f x =2x 2-mx+3当x∈(-∞,-1)时是减函数,当x∈(-1,+∞)时是增函数,则f(2)= . 7.实系数方程20(0)ax bx c a ++=≠两实根异号的充要条件是 ,有两正根的充要条件是 ;有两负根的充要条件是 .8.已知二次函数21(0)y ax bx c a =++≠与一次函数2(0)y kx m k =+≠的图象相交于点(2,4),A B -(如图),则能使12y y >成立的x 的取值范围是_______.参考答案: 1. b≥ 02. f(2)<f(1)<f(4) 3. 34. 2)4(81-x5. 5-或16. 197. ;000;02121⎪⎩⎪⎨⎧>>+≥∆<x x x x ac ;0002121⎪⎩⎪⎨⎧><+≥∆x x x x(A (第8题)8. x<-2 ,x>8【典型例题】1.正比例函数、反比例函数、一次函数的图象、性质、应用 例1.已知正比例函数(21)y m x =-的图象上两点11(,)A x y 、22(,)B x y ,当12x x <时,有12y y >,那么m 的取值范围是_______. 答案:12m <例2.(1)已知函数)0()(<+=a xax x f ,请写出它的单调区间,你能画出它的简图吗?(2)请画出函数)0()(>+=a xax x f 的图象,并写出它的单调区间. 答案:(1)在)0,(-∞、),0(+∞上为增函数(2)),[],,(+∞--∞a a 增函数;],0(),0,[a a -减函数2.求二次函数的解析式例1.分别求满足下列条件的二次函数的解析式:①过点(0,2),(1,-1),(-2,20) ②过点(-1,0),(-4,0),(2,-36)③图象的顶点是(1,2)-,且经过原点答案:①2522+-=x x y ;②81022---=x x y ;③x x y 422--=例2.已知二次函数f(x)满足f(2)= -1,f(-1)= -1且f(x)的最大值是8,试确定此二次函数.思维分析:恰当选择二次函数的解析式法一:利用一般式设f(x)=ax 2+bx+c(a ≠0),由题意得:⎪⎪⎩⎪⎪⎨⎧=--=+--=++84411242a bac c b a c b a 解得:⎪⎩⎪⎨⎧==-=744c b a ∴f(x)= - 4x 2+4x+7法二:利用顶点式∵f(2)= f(-1) ∴对称轴212)1(2=-+=x 又最大值是8 ∴可设)0(8)21()(2<+-=a x a x f ,由f(2)= -1可得a= - 47448)21(4)(22++-=+--=∴x x x x f法三:由已知f(x)+1=0的两根为x 1=2,x 2=-1,故可设f(x)+1=a(x-2)(x+1)即f(x)=ax 2-ax-2a-1,又84)12(482max=---=aa a a y 即得a= - 4或a=0(舍)∴f(x)= - 4x 2+4x+7例3.已知二次函数f(x)=ax 2+bx+c 满足下列条件:(1)图象过原点,(2)f(-x+2002)=f(x -2000),(3)方程f(x)=x 有重根; 试确定此二次函数. 解:由(1)得:c=0,由(2)对称轴1220002002=-++-=x x x 可确定12=-ab, 由(3) f(x)=x 即ax 2+(b-1)x+c=0有重根 .2110)1(:))1(0(02-==∴=-==∆a b b c 从而得由x x x f +-=∴221)(3.二次函数在给定区间上的最值问题 例1.(1)已知f(x)=-x 2+2x+6, x∈[2,3],求f(x)的最大(小)值;(2)已知f(x)=-x 2+5x+6, x∈[2,3],求f(x)的最大(小)值. 答案:(1)大6,小3;(2)大449,小12;例2.已知f(x)=-x 2+ax+6, x∈[2,3],求f(x)的最大值答案:⎪⎪⎩⎪⎪⎨⎧>-≤≤+<+=).6(,33);64(,424);4(,22)(2maxa a a a a a x f例3.已知y=f(x)=x 2-2x+3,当x ∈[t,t+1]时,求函数的最大值和最小值. 答案:32,2,12min 2max +-=+=>t t y t y t 时2,2,121min 2max =+=≤<y t y t 时 2,32,210min 2max =+-=≤<y t t y t 时2,32,02min 2max +=+-=≤t y t t y t 时例4.已知函数f(x)= -x 2+2ax+1-a 在0≤x ≤1时有最大值2,求a 的值. 思维分析:一般配方后结合二次函数图象对字母参数分类讨论 解:f(x)= -(x-a)2+a 2-a+1(0≤x ≤1),对称轴x=a 10 a<0时,121)0()(max -=∴=-==a a f x f20 0≤a≤1时)(25121)()(2max舍得±==+-==aaaafxf30 a>1时,22)1()(max=∴===aafxf综上所述:a= - 1或a=24.一元二次方程根的分布的讨论例1.已知关于x的二次方程x2+2mx+2m+1=0(1)若方程有两根,一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的取值范围.(2)若方程两根在区间(0,1)内,求m的范围.思维分析:一般需从三个方面考虑①判别式Δ②区间端点函数值的正负③对称轴abx2-=与区间相对位置.解:设f(x)=x2+2mx+2m+1(1)由题意画出示意图216556)1(2)1(12)0(-<<-⇒⎪⎩⎪⎨⎧>+>=-<+=⇔mmffmf(2)2121100)1(0)0(0-≤<-⇒⎪⎪⎩⎪⎪⎨⎧<-<>>≥∆⇔m m f f例2.方程k x x =-232在(-1,1)上有实根,求k 的取值范围. 分析:宜采用函数思想,求)11(23)(2<<--=x x x x f 的值域.答案:)25,169[-∈k5.函数应用题:例.某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租的车将会增加一辆,租出的车每辆需要维护费150元,未租的车每辆每月需要维护费50元, (1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少时,租赁公司的月收益最大?最大月收益是多少?思维分析:应用问题的数学建模,识模—建模—解模—验模 解:(1)当每辆车的月租金定为3600元时,未租出的车辆数为125030003600=-∴租出100-12=88辆。

反比例函数的图象和性质3

反比例函数的图象和性质3

12 例、如图,已知反比例函数 y 的图象与一次函数 x
y= kx+4的图象相交于P、Q两点,且P点的纵坐标 是 6。 (1)求这个一次函数的解析式 (2)求三角形POQ的面积
D C o Q x
y
P
练 习4
①如果y与z成正比例, z 与x成正比例,则 y 与x 的函数 关系是:
Y与x成正比例
忆一忆
面积性质(一)
k 设P(m, n )是 双 曲 线 y (k 0)上 任 意 一 点 ,有 : x (1)过P作x轴 的 垂 线 ,垂 足 为 A, 则 1 1 1 SOAP OA AP | m | | n | | k | 2 2 2
y P(m,n) y P(m,n) o A x
席上,看似不经意地问了壹句。“愚弟只是去更衣。”“哟,四哥,您这个新郎官不见了,害得弟弟们想敬杯喜酒都没机会!”“好, 谢谢十弟。”“四哥,您刚才已经喝了不少,这杯,就由愚弟替您喝下吧。”“十三弟,放心吧,四哥的酒量还应承得下来。”“四哥, 您喝了十哥的酒,那九弟的酒?”“好,谢谢九弟。”“八弟来敬四哥壹杯!”“好,谢谢八弟!”“四弟,三哥也来凑个热闹,敬你 壹杯!”“谢谢三哥!”“四哥,十四弟恭敬您两杯!这喜事连连,喜酒也要成双才是”“谢谢十四弟!”“十四弟,四哥壹个人已经 喝了这么多,到你这儿,净出夭蛾子,怎么敬出双杯的来了?既然是喜事连连,那就由为兄代为喝下,也借机会沾沾喜气儿!”“十三 哥,不带这样的!你的酒,咱们单挑。”“怎么?十三弟连四哥的喜酒也要替喝?”“太子殿下,四哥喝得太多了!”“这是喜酒,哪 有替喝的道理。那么,本王敬的酒,十三弟也要替喝?”“这„„”“四弟谢太子殿下!”新郎官对于所有兄弟敬来的喜酒,壹律来者 不拒,也对十三阿哥替喝的请求壹概不予理会。开席之前,十四阿哥和十阿哥就卯足了劲儿,非要把四哥灌醉不可。也难怪这两个人如 此算计,原本十四阿哥就对皇阿玛赐婚给四哥很是不满,因此联合着平时跟自己关系非常要好的十哥,壹起向四哥发难。其它兄弟见这 两个活宝挑了头儿,平日里也没有什么机会能捉弄四哥,现在有这么壹个大好机会,又借着酒劲儿,众人拾柴火焰高,攒足了力气准备 跟四哥拼酒。太子和三阿哥作为兄长,虽然不至于和其它兄弟们胡闹,但是这种捉弄四弟的机会实在是太少了。平时里四弟做事严谨、 滴水不露,让这两位兄长颇是头痛不已,今天能这么壹个大好机会,虽然跟政务无关,但放弃了也实在是可惜。但是,众人轮番上阵的 结果,却是大大出乎意料:这新郎官怎么没有丝毫的推让,简直就是来者不拒,实打实地全部喝干!这下子,刚刚还喧闹的场合,即刻 安静了下来,众人都面面相觑,不知所以:壹会儿还洞房花烛夜呢,四哥(弟)怎么面对新娘子?第壹卷 第壹章 遇险秋水碧连天。 午后的京郊西南,官道上十来骑人马卷起阵阵风尘。为首壹个男子,30多岁,身形清瘦,面容冷峻,目光清洌、威严,天然壹股不怒自 威的气势,即使壹身深蓝色的便袍,也难以掩饰天生的贵胄之气。十来个随从,三个家仆打扮,其余的全部是侍卫。不多时,壹行人就 要来到他们的目的地:宝光寺,远远地,他们已经能够看得到林木掩映间的寺庙了。众人刚刚暗自松了壹口气,又立即失声惊呼,因为 他们同时看了冲天的火光!“保护好王爷!”侍卫首领壹边急呼 ,壹边与其它壹起,立即将为首的男子围在中间,同时马不停蹄,直 接冲

北师大版九年级(上)数学第19讲:反比例函数与一次函数的交点问题(教师版)——王琪

北师大版九年级(上)数学第19讲:反比例函数与一次函数的交点问题(教师版)——王琪

反比例函数与一次函数的交点问题一、正比例函数和反比例函数的交点问题若正比例函数y =k 1x(k 1≠0),反比例函数)0(22=/=k x ky ,则当k 1k 2<0时,两函数图象无交点;当k 1k 2>0时,两函数图象有两个交点,坐标分别为).,(),,(21122112k k k kk k k k --由此可知,正反比例函数的图象若有交点,两交点一定关于原点对称.二、一次函数和反比例函数的交点问题1.函数y=和y=在第一象限内的图象如图,点P 是y=的图象上一动点,PC ⊥x 轴于点C ,交y=的图象于点B .给出如下结论:①△ODB 与△OCA 的面积相等;②PA 与PB 始终相等;③四边形PAOB 的面积大小不会发生变化;④CA=AP .其中所有正确结论的序号是( )A .①②③B .②③④C .①③④D .①②④ 解:∵A 、B 是反比函数y=上的点,∴S △OBD =S △OAC =,故①正确;当P 的横纵坐标相等时PA=PB ,故②错误; ∵P 是y=的图象上一动点,∴S 矩形PDOC =4,∴S 四边形PAOB =S 矩形PDOC ﹣S △ODB ﹣﹣S △OAC =4﹣﹣=3,故③正确;连接OP ,===4,∴AC=PC ,PA=PC ,∴=3,∴AC=AP ;故④正确;综上所述,正确的结论有①③④.故选C .2.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数y=(x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE的面积是9,则k=()A. B. C. D.12解:∵四边形OCBA是矩形,∴AB=OC,OA=BC,设B点的坐标为(a,b),∵BD=3AD,∴D(,b),∵点D,E在反比例函数的图象上,∴=k,∴E(a,),∵S△ODE=S矩形OCBA﹣S△AOD﹣S△OCE﹣S△BDE=ab﹣﹣k﹣•(b﹣)=9,∴k=,故选C.3.反比例函数y=(k≠0)的图象经过点(﹣2,3),则它还经过点()A.(6,﹣1) B.(﹣1,﹣6)C.(3,2)D.(﹣2,3.1)解:∵反比例函数y=(k≠0)的图象经过点(﹣2,3),∴k=﹣2×3=﹣6,四个选项中只有A:6×(﹣1)=﹣6.故选A.4.若M(,y1)、N(,y2)、P(,y3)三点都在函数(k>0)的图象上,则y1、y2、y3的大小关系是()A.y2>y3>y1 B.y2>y1>y3 C.y3>y1>y2 D.y3>y2>y1解:∵M(,y1)、N(,y2)、P(,y3)三点都在函数(k>0)的图象上,∴M(,y1)、N(,y2)、P(,y3)三点都满足函数关系式(k>0),∴y1=﹣2k,y2=﹣4k,y3=2k;∵k>0,∴﹣4k<﹣2k<2k,即y3>y1>y2.故选C.5.已知点A(﹣1,5)在反比例函数的图象上,则该函数的解析式为()A. B. C. D.y=5x解:将P(﹣1,5)代入解析式y=得,k=(﹣1)×5=﹣5,解析式为:y=﹣.故选C.6.已知反比例函数的图象过点M(﹣1,2),则此反比例函数的表达式为()A.y= B.y=﹣ C.y= D.y=﹣解:设反比例函数的解析式为(k≠0).∵该函数的图象过点M(﹣1,2),∴2=,得k=﹣2.∴反比例函数解析式为y=﹣.故选B.7.已知一次函数y1=kx+b(k<0)与反比例函数y2=(m≠0)的图象相交于A、B两点,其横坐标分别是﹣1和3,当y1>y2,实数x的取值范围是()A.x<﹣1或0<x<3 B.﹣1<x<0或0<x<3C.﹣1<x<0或x>3 D.0<x<3解:依照题意画出函数图象,如图所示.观察函数图象,可知:当x<﹣1或0<x<3时,一次函数图象在反比例函数图象上方,∴当y1>y2,实数x的取值范围为x<﹣1或0<x<3.故选A.8.已知点A(﹣2,1),B(1,4),若反比例函数y=与线段AB有公共点时,k的取值范围是()A.﹣≤k<0或0<k≤4 B.k≤﹣2或k≥4C.﹣2≤k<0或k≥4 D.﹣2≤k<0或0<k≤4解:①当k>0时,如下图:将x=1代入反比例函数的解析式得y=k,∵y随x的增大而减小,∴当k≤4时,反比例函数y=与线段AB有公共点.∴当0<k≤4时,反比例函数y=与线段AB有公共点.②当k<0时,如下图所示:设直线AB的解析式为y=kx+b.将点A和点B的坐标代入得:,解得:k=1,b=3.所以直线AB所在直线为y=x+3.将y=x+3与y=联立,得:x+3=,整理得:x2+3x﹣k=0.∴32+4k≥0,解得:k≥﹣.综上所述,当﹣≤k<0或0<k≤4时,反比例函数y=与线段AB有公共点.故选:A.9.在平面直角坐标系中直线y=x+2与反比例函数 y=﹣的图象有唯一公共点,若直线y=x+m与反比例函数y=﹣的图象有2个公共点,则m的取值范围是()A.m>2 B.﹣2<m<2 C.m<﹣2 D.m>2或m<﹣2解:根据反比例函数的对称性可知:直线y=x﹣2与反比例函数y=﹣的图象有唯一公共点,∴当直线y=x+m在直线y=x+2的上方或直线y=x+m在直线y=x﹣2的下方时,直线y=x+m与反比例函数y=﹣的图象有2个公共点,∴m>2或m<﹣2.故选D.10.如图,直线y=kx与双曲线y=﹣交于A(x1,y1),B(x2,y2)两点,则2x1y2﹣8x2y1的值为()A.﹣6 B.﹣12 C.6 D.12解:将y=kx代入到y=﹣中得:kx=﹣,即kx2=﹣2,解得:x1=﹣,x2=,∴y1=kx1=,y2=kx2=﹣,∴2x1y2﹣8x2y1=2×(﹣)×(﹣)﹣8××=﹣12.故选B.11.如图,双曲线y=﹣(x<0)经过▱ABCO的对角线交点D,已知边OC在y轴上,且AC⊥OC于点C,则▱OABC的面积是()A. B. C.3 D.6解:∵点D为▱ABCD的对角线交点,双曲线y=﹣(x<0)经过点D,AC⊥y轴,∴S平行四边形ABCO=4S△COD=4××|﹣|=3.故选C.12.如图,在直角坐标系中,点A在函数y=(x>0)的图象上,AB⊥x轴于点B,AB的垂直平分线与y轴交于点C,与函数y=(x>0)的图象交于点D,连结AC,CB,BD,DA,则四边形ACBD 的面积等于()A.2 B.2 C.4 D.4解:设A(a,),可求出D(2a,),∵AB⊥CD,∴S四边形ACBD=AB•CD=×2a×=4,故选C.13.设点A(x1,y1)和点B(x2,y2)是反比例函数y=图象上的两点,当x1<x2<0时,y1>y2,则一次函数y=﹣2x+k的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限D.第四象限解:∵当x1<x2<0时,y1>y2,∴反比例函数y=图象上,y随x的增大而减小,∴图象在一、三象限,如图1,∴k>0,∴一次函数y=﹣2x+k的图象经过二、四象限,且与y轴交于正半轴,∴一次函数y=﹣2x+k的图象经过一、二、四象限,如图2,故选C.14.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A.(,0) B.(2,0)C.(,0)D.(3,0)解:过点B作BD⊥x轴于点D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO与△BCD中,∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y=,将B(3,1)代入y=,∴k=3,∴y=,∴把y=2代入y=,∴x=,当顶点A恰好落在该双曲线上时,此时点A移动了个单位长度,∴C也移动了个单位长度,此时点C的对应点C′的坐标为(,0)故选(C)15.如图,正方形ABCD的边长为5,点A的坐标为(﹣4,0),点B在y轴上,若反比例函数y=(k ≠0)的图象过点C,则该反比例函数的表达式为()A.y= B.y= C.y= D.y=解:如图,过点C作CE⊥y轴于E,在正方形ABCD中,AB=BC,∠ABC=90°,∴∠ABO+∠CBE=90°,∵∠OAB+∠ABO=90°,∴∠OAB=∠CBE,∵点A的坐标为(﹣4,0),∴OA=4,∵AB=5,∴OB==3,在△ABO和△BCE中,,∴△ABO≌△BCE(AAS),∴OA=BE=4,CE=OB=3,∴OE=BE﹣OB=4﹣3=1,∴点C的坐标为(3,1),∵反比例函数y=(k≠0)的图象过点C,∴k=xy=3×1=3,∴反比例函数的表达式为y=.故选A.16.如图,矩形OABC的两边OA、OC在坐标轴上,且OC=2OA,M、N分别为OA、OC的中点,BM与AN 交于点E,若四边形EMON的面积为2,则经过点B的双曲线的解析式为()A.y=﹣ B.y=﹣ C.y=﹣ D.y=﹣解:过M作MG∥ON,交AN于G,过E作EF⊥AB于F,设EF=h,OM=a,由题意可知:AM=OM=a,ON=NC=2a,AB=OC=4a,BC=AO=2a△AON中,MG∥ON,AM=OM,∴MG=ON=a,∵MG∥AB,∴==,∴BE=4EM,∵EF⊥AB,∴EF∥AM,∴==.∴FE=AM,即h=a,∵S△ABM=4a×a÷2=2a2,S△AON=2a×2a÷2=2a2,∴S△ABM=S△AON,∴S△AEB=S四边形EMON=2,S△AEB=AB×EF÷2=4a×h÷2=2,ah=1,又有h=a,a=(长度为正数)∴OA=,OC=2,因此B的坐标为(﹣2,),经过B的双曲线的解析式就是y=﹣.17.如图,直线y=x﹣6分别交x轴,y轴于A,B,M是反比例函数y=(x>0)的图象上位于直线上方的一点,MC∥x轴交AB于C,MD⊥MC交AB于D,AC•BD=4,则k的值为()A.﹣3 B.﹣4 C.﹣5 D.﹣6解:过点D作DE⊥y轴于点E,过点C作CF⊥x轴于点F,令x=0代入y=x﹣6,∴y=﹣6,∴B(0,﹣6),∴OB=6,令y=0代入y=x﹣6,∴x=2,∴(2,0),∴OA=2,∴勾股定理可知:AB=4,∴sin∠OAB==,cos∠OAB==设M(x,y),∴CF=﹣y,ED=x,∴sin∠OAB=,∴AC=﹣y,∵cos∠OAB=cos∠EDB=,∴BD=2x,∵AC•BD=4,∴﹣y×2x=4,∴xy=﹣3,∵M在反比例函数的图象上,∴k=xy=﹣3,故选A。

一次函数与反比例涵数的专题复习

一次函数与反比例涵数的专题复习

一次函数与反比例函数专题复习第一部分 知识梳理考点一、平面直角坐标系 (3分) 1、平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。

其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;两轴的交点O (即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

为了便于描述坐标平面内点的位置,把坐标平面被x 轴和y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

注意:x 轴和y 轴上的点,不属于任何象限。

2、点的坐标的概念点的坐标用(a ,b )表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。

平面内点的坐标是有序实数对,当b a ≠时,(a ,b )和(b ,a )是两个不同点的坐标。

考点二、不同位置的点的坐标的特征 (3分) 1、各象限内点的坐标的特征(1) 点P(x,y)在第一象限0,0>>⇔y x(2)点P(x,y)在第二象限0,0><⇔y x (3)点P(x,y)在第三象限0,0<<⇔y x (4)点P(x,y)在第四象限0,0<>⇔y x 2、坐标轴上的点的特征(1)点P(x,y)在x 轴上0=⇔y ,x 为任意实数(2)点P(x,y)在y 轴上0=⇔x ,y 为任意实数(3)点P(x,y)既在x 轴上,又在y 轴上⇔x ,y 同时为零,即点P 坐标为(0,0) 3、两条坐标轴夹角平分线上点的坐标的特征(1)点P(x,y)在第一、三象限夹角平分线上⇔x 与y 相等(2)点P(x,y)在第二、四象限夹角平分线上⇔x 与y 互为相反数 4、和坐标轴平行的直线上点的坐标的特征(1)位于平行于x 轴的直线上的各点的纵坐标相同。

(2)位于平行于y 轴的直线上的各点的横坐标相同。

5、关于x 轴、y 轴或远点对称的点的坐标的特征(1)点P 与点p ’关于x 轴对称⇔横坐标相等,纵坐标互为相反数 (2)点P 与点p ’关于y 轴对称⇔纵坐标相等,横坐标互为相反数 (3)点P 与点p ’关于原点对称⇔横、纵坐标均互为相反数 6、点到坐标轴及原点的距离 (1)点P(x,y)到x 轴的距离等于y (2)点P(x,y)到y 轴的距离等于x (3)点P(x,y)到原点的距离等于22y x +考点三、函数及其相关概念 (3~8分) 1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

一次函数与反比例函数的性质

一次函数与反比例函数的性质

05
典型例题解析
一次函数典型例题
例题1
已知一次函数 y = 2x + 1,求该函数在 x = 3 时的函数值。
例题2
已知一次函数 y = kx + b(k ≠ 0)的图像经 过点(2,3)和(-1,-2),求该函数的解 析式。
例题3
已知一次函数 y = -x + 4 与 x 轴交于点 A, 与 y 轴交于点 B,求 △AOB 的面积。
3
例题3
已知一次函数 y = kx + b 与反比例函数 y = m/x 的图像交于 C、D 两点,且 C 、D 两点的纵坐标分别为 -4 和 6,CD = 10,求这两个函数的解析式及 k、b、 m 的值。
06
总结与展望
知识体系总结
一次函数与反比例函数的基本性质
01
包括定义域、值域、单调性、奇偶性等基础概念。
一次函数的增减性与 其图像的斜率方向一 致。
当一次函数的比例系 数小于0时,函数在 整个定义域内是减函 数。
一次函数的对称性
一次函数不具有轴对称性,因为其图像是一 条直线,无法关于某条直线对称。
一次函数具有中心对称性,即其图像关于某 一点中心对称。该点即为一次函数的中心点 ,坐标为(h, k),其中h和k分别为一次函数与 x轴和y轴的交点横纵坐标的平均值。

综合应用典型例题
1
例题1
已知一次函数 y = ax + b(a ≠ 0)与反 比例函数 y = k/x(k ≠ 0)的图像交于 A、B 两点,且 A、B 两点的横坐标分别 为 -1 和 3,求这两个函数的解析式。
2
例题2
已知一次函数 y = -2x + m 与反比例函 数 y = n/x 的图像交于 A(-1,4)和 B (3,-2)两点,求这两个函数的解析式 及 m、n 的值。

正比例函数与反比例函数(含图像)

正比例函数与反比例函数(含图像)

1、正比例函数
定义:
形如y=kx(k为常数,且k≠0),我们就说y是x的正比例函数。

正比例函数是特殊的一次函数【一次函数的一般形式为y=kx+b(b不为0,k为常数)】。

图象作法:
a.列表(待定系数)
b.描点
c.连线
正比例函数的图象是一条直线,一定经过坐标的原点;
当k>0时,图象经过一、三象限,y随x的增大而增大;
当k<0时,图象经过二、四象限,y随x的增大而减小。

具体图像:
正比例函数y=x的函数图像
2、反比例函数
定义:
形如y=k/x(k为常数且k≠0)的函数,我们就说y是x的反比例函数。

(自变量x的取值范围是不等于0的一切实数)
图像作法:
反比例函数的图像为双曲线。

它可以无限地接近坐标轴,但永不相交;
当k>0时,图象在一、三象限,在每个象限内,y随x的增大而减小;
当k<0时,图象在二、四象限,在每个象限内,y随x的增大而增大。

具体图像:
反比例函数y=1/x的函数图像。

正比例函数、一次函数、反比例函数的性质及图象

正比例函数、一次函数、反比例函数的性质及图象

正比例函数、一次函数、反比例函数的性质及图象、一次函数的性质和图象:概念:一般地,形如y=kx+b(k , b是常数,且k z0 的函数,叫做一次函数。

图像和性质:①k>0,b>0,则图象过___________________________ 象限②k>0,b<0,则图象过___________________________ 象限当k>0时,y随x的增大而____________________________③k<0,b>0,则图象过________________________ 象限④k<0,b<0,则图象过________________________ 象限当k v 0时,y 随x的增大而 ______________________________________三、反比例函数性质和图象:1. ______________________ 定义:形如 (k为常数,k z0的函数称为反比例函数。

其他形式________________________________________________________2. 图像:反比例函数的图像是双曲线。

反比例函数的图象既是轴对称图形又是中心对称图形。

,在每个象限内y,在每个象限内y一、正比例函数性质和图象:概念:一般地,形如______________ (k是常数,且k z0的函数,叫做正比例函数。

当k>0时,图象过 __________________ 象限;y随x的增大而__________________________________ 。

3. _________________________________________________ 性质:当k >0时双曲线的两支分别位于_______________________________________值随x值的增大而减小。

一次函数、正比例函数、反比例函数

一次函数、正比例函数、反比例函数

1、正比例函数一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.正比例函数的图像经过(0,0 )和(1,k)的一条直线2、一次函数一般地,形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次(x的指数是1)函数.当b=0时,y=kx+b即y=kx,所以正比例函数是特殊的一次函数.一次函数的图象经过(0,b)和两点的一条直线3、直线y=kx+b的图象和性质与k、b的关系如下表所示:b>0 b<0 b=0经过第一、二、三象限经过第一、三、四象限经过第一、三象限k>0图象从左到右上升,y随x的增大而增大经过第一、二、四象限经过第二、三、四象限经过第二、四象限k<0图象从左到右下降,y随x的增大而减小5、正比例函数与一次函数图象之间的关系一次函数y=kx+b的图象是一条直线,它可以看作是由直线y=kx平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移).6、直线l1:y1=k1x+b1与l2:y2=k2x+b2的位置关系当k1≠k2时,l1与l2相交,交点是(0,b)7、反比例函数(1)定义:一般地,形如x k y =(k 为常数,o k ≠)的函数称为反比例函数。

xk y =还可以写成kx y =1- 8、反比例函数的图像是双曲线轴对称图形(对称轴是x y =或x y -=)9、反比例函数x k y =(0≠k )中比例系数k 的几何意义是:过双曲线xk y = (0≠k )上任意引x 轴y 轴的垂线,所得矩形面积为k 。

10、反比例函数性质如下表:k 的取值图像所在象限 函数的增减性 o k >一、三象限 在每个象限内,y 值随x 的增大而减小 o k <二、四象限 在每个象限内,y 值随x 的增大而增大练习 (1)若函数y=(k +1)x +k 2-1是正比例函数,则k 的值为( )A .0B .1C .±1D .-1(3)当m=_______时,函数是一次函数.(4).函数y =ax +b 与y =bx +a 的图象在同一坐标系内的大致位置正确的是( )(5)一次函数 y=(6-3m)x +(2n -4)不经过第三象限,则m 、n 的范围是__________。

正比例函数和反比例函数的区别(附图)

正比例函数和反比例函数的区别(附图)

正比例函数和反比例函数的区别(附图)
一:正比例函数
y=kx(k为常数,且k≠0),我们就说y是x的正比例函数,
正比例函数是特殊的一次函数,一次函数的一般形式为y=kx+b(b不为0,k为常数)。

正比例函数的图象是一条直线,一定经过坐标的原点,
当k>0时,图象经过一、三象限,y随x的增大而增大,
当k<0时,图象经过二、四象限,y随x的增大而减小。

二、反比例函数
y=k/x(k为常数且k≠0) 的函数,我们就说y是x的反比例函数 (自变量x的取值范围是不等于0的一切实数) 。

反比例函数的图像为双曲线,它可以无限地接近坐标轴,但永不相交,
当k>0时,图象在一、三象限,在每个象限内,y随x的增大而减小,
当k<0时,图象在二、四象限,在每个象限内,y随x的增大而增大。

正比例函数、一次函数和反比例函数知识点归纳

正比例函数、一次函数和反比例函数知识点归纳

正比例函数、一次函数和反比例函数知识点归纳正比例函数:解析式:y=kx(k为常数,k工0) ,k叫做函数的比例系数;(注意:x的指数为1)图像:过原点的直线;必过点:(0,0 )和(1,k);走向:k>o,图像过一三象限,k<0,图像过二四象限;y yK>0k<0/ \0OJx IV x倾斜度:|k|越大,倾斜度越大,也就是越靠近y轴,|k|越小,倾斜度越小,也就是越靠近x轴;如图:yy=2x//y=xO yx增减性:k>O,y随x的增大而增大;k<0,y随x的增大而减小;一次函数:解析式:y=kx+b(k,b为常数,k^ 0),k叫做函数的比例系数,(注意:x的指数为1,b为直线与y轴交点的纵坐标);正比例函数是一次函数的特殊情况,即b=0时的一种情况;图像:一条直线;必过点:(0,b)(-b/k,0);走向:k>o, b>0,图像过一二三象限,k>0,b<0,图像过一三四象限;y yk>0,b<0O O /x x倾斜度:|k|越大,倾斜度越大,也就是越靠近y轴,|k|越小,倾斜度越小,也就是越靠近x轴;如图:yy=2x /F y=xk>0,b>0k<o,b>0,图像过一二四象限k<o ,b>0,图像过二三四象限增减性:k>O,y 随x 的增大而增大;k<0, y 随x 的增大而减小;平移:y=kx+b,向上平移 m 个单位:y=kx+b+m;向下平移 n 个单位:y=kx+b-n;向左平移 m 个单位:y=k (x+m )+b;向右平移 n 个单位:y=k (x-n )+b;简称:上加下减,左加右减;(注:上加下减到代数式后面,左加右减到x 后面,直接与x进行加减,与系数和指数都没关系);反比例函数:解析式:y=k/x (k 为常数,k z 0) 图像:双曲线(图像无限靠近坐标轴, 所在象限:k>0图像经过一三象限;增减性:k>0,y 随x 的增大而减小;k<0,y 随x 的增大而增大;反比例函数知识点归纳1、基础知识(一)反比例函数的概念但永不相交。

初二数学正比例反比例一次函数知识点总结

初二数学正比例反比例一次函数知识点总结

正比例、反比例、一次函数第一象限(+,+),第二象限(-,+)第三象限(-、-)第四象限(+,-);x 轴上的点的纵坐标等于0,反过来,纵坐标等于0的点都在x 轴上,y 轴上的点的横坐标等于0,反过来,横坐标等于0的点都在y 轴上,若两个点关于x 轴对称,横坐标相等,纵坐标互为相反数;若两个点关于y 轴对称,纵坐标相等,横坐标互为相反数;若两个点关于原点对称,横坐标、纵坐标都是互为相反数。

原点(x ,y ) (x ,-y );(x ,y ) (-x ,y );(x ,y ) (-x ,-y )对称1、 一次函数,正比例函数的定义(1)如果y=kx+b(k,b 为常数,且k ≠0),那么y 叫做x 的一次函数。

(2)当b =0时,一次函数y=kx+b 即为y=kx(k ≠0).这时,y 叫做x 的正比例函数。

注:正比例函数是特殊的一次函数,一次函数包含正比例函数。

2、正比例函数的图象与性质(1)正比例函数y=kx(k ≠0)的图象是过(0,0)(1,k )的一条直线。

3、一次函数的图象与性质一次函数y=kx+b(k ≠0)的图象是必过点(0,b )和点(-k b ,0)的一条直线。

注:(0,b )是直线与y 轴交点坐标,(-kb ,0)是直线与x 轴交点坐标.x 轴 对称 y 轴 对称4、一次函数y=kx+b(k≠0, k b 为常数)中k 、b的符号对图象的影响(1)k>0, b>0⇔直线经过一、二、三象限(2)k>0, b<0⇔直线经过一、三、四象限(3)k<0, b>0⇔直线经过一、二、四象限(4)k<0, b<0⇔直线经过二、三、四象限5、对一次函数y=kx+b 的系数k, b 的理解。

(1)k(k ≠0)相同,b 不同时的所有直线平行,即直线l 1:y=k 1x+b 1;直线l 2:y=k 2x+b 2( k 1,k 2均不为零,k 1,b 1,k 2, b 2为常数)k 1=k 2 k 1=k 2l 1∥l 2平行 l 1与l 2重合b 1≠b 2 b 1=b 2(2)k(k ≠0)不同,b 相同时的所有直线恒过y 轴上一定点(0,b ),例如:直线y=2x+3, y=-2x+3, y=21x+3均交于y 轴一点(0,3) 6、直线的平移:所谓平移,就是将一条直线向左、向右(或向上,向下)平行移动,平移得到的直线k 不变,直线沿y 轴平移多少个单位,可由公式︱b 1-b 2︱得到,其中b 1,b 2是两直线与y 轴交点的纵坐标,直线沿x 轴平移多少个单位,可由公式︱x 1-x 2︱求得,其中x 1,x 2是由两直线与x 轴交点的横坐标。

正比例、一次函数笔记

正比例、一次函数笔记

正比例函数、一次函数、反比例函数(一)正比例函数:1、一般形式:y=kx (其中k是比例系数,k≠0)2、图像:是一条经过原点的直线。

3、简单作图:(0,0)、(1,k)4、性质:当k>0时,图像经过一、三象限;y随x的增大而增大;当k<0时,图像经过二、四象限;y随x的减小而减小。

5、特殊的直线:一、三象限的角平分线:y=x;二、四象限的角平分线:y=-x(二)一次函数:1、一般形式:y=kx +b(其中k、b是常数,k≠0)2、图像:当b≠0时,是一条不经过原点的直线,当b=0时,图像是经过原点的直线。

3、直线与坐标轴的交点:与x轴的交点(bk-,0);与y轴的交点(0,b)4、简单作图:(bk-,0)、(0,b)5、k、b的几何意义:k决定直线的倾斜程度:当k>0时,图像从左向右上升;当k<0时,图像从左向右下降。

b是直线与y轴交点的纵坐标:当b>0时,直线与y轴的交点在正半轴;当b<0时,直线与轴的交点在负半轴。

6、性质:(1)当k>0时,图像从左向右上升, y随x的增大而增大;当k<0时,图像从左向右下降, y随x的增大而减小。

(2)当b>0时,直线与y轴的交点在正半轴;当b<0时,直线与y轴的交点在负半轴。

(3)经过的象限:与k、b都有关。

一般根据k、b的几何意义,先确定b对应的大致位置,再确定k对应的倾斜程度,画出大概图像,从而决定经过的象限。

这也是画大致图像的方法。

(三)反比例函数:1、一般形式:y=kx(其中k是常数,k≠0),还有:y=kx-1、xy=k 、x=ky、等。

2、图像:是双曲线。

3、性质:当k>0时,图像位于一、三象限,在每个象限内,y随x的增大而减小;当k<0时,图像位于二、四象限,在每个象限内,y随x的增大而增大。

4、k的几何意义:︱k︱=S矩形或︱k︱=2S△(其中,S矩形指过双曲线上任意一点作x、y轴的垂线,这两条垂线和坐标轴围城的矩形的面积。

而S△是(四)待定系数法具体步骤:1、设。

正比例函数、一次函数及反比例函数

正比例函数、一次函数及反比例函数

正比例函数
概念:
一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数。

图像:
一般地,正比例函数y=kx(k是常数,k≠0)的图像是一条经过原点的直线,我们称它为y=kx。

当k>0时,直线y=kx经过第三、一象限,从左往右上升,即随着x的增大y也增大;当k<0时,直线y=kx经过第二、四象限,从左往右下降,即随着x的增大y反而减下。

一次函数
概念:
一般地,形如y=kx+b(k,b是常数,k≠0)的函数,叫做一次函数。

当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数。

图像:
一次函数y=kx+b的图像是一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx 平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移)。

当k>0时,直线y=kx+b从左往右上升,即随着x的增大y也增大;
当k<0时,直线y=kx+b从左往右下降,即随着x的增大y反而减下。

反比例函数
概念:
一般地,形如(k为常数,k≠0)的函数称为反比例函数。

自变量x的取值范围是不等于0的一切实数。

图像:
反比例函数的图像属于双曲线:随着x的不断增大(或减小),曲线越来越接近坐标轴。

当k>0时,双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值得增大而减小;
当k<0时,双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值得增大而增大。

性质:
反比例函数y=的图像关于直线y=±x对称。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正比例、反比例、一次函数
1.若函数y =(m +1)x m 2+3m+1是反比例函数,则m 的值是( )
(A) m =-1 (B )m =-2 (C )m =2或m =1 (D )m =-2或m =-1
2.已知一次函数y =(m +2)x +(1-m ),若y 随x 的增大而减小,且该函数的图像与x 轴的交点在原点的右侧,则m 的取值范围是( )
(A )m>-2 (B )m<1 (C )-2<m<-1 (D )m<-2
3.函数y =k x
与y =kx +1(k ≠0)在同一坐标系内的图像大致为图中的( ) y y y y
4.已知一次函数的图像是一条直线,该直线经过(0,0),(2,-a),(a,-3)三点,且函数值随自变量x 值的增大而减小,则此函数的解析式 。

5.一次函数y =2x -3与y 轴的交点是
6.对于函数y =-1x
,当x>0时,y 随x 的增大而 7.如果直线y =2x +m 不经过第二象限,那么实数m 的取值范围是
8.若双曲线y =(m -1)x -1在第二、四象限,则m 的取值范围是
9.已知直线y =34
x+b被两坐标轴截取的线段长为5,求此直线函数解析式。

10.已知一次函数y =kx +2b+3的图象经过点(-1,-3),k是方程m2-3m=10的一个
根,且Y 随x的增大而增大,求这个一次函数解析式。

考点训练:
1. y= x 的图象是一条过原点及点(-3,3 2 )的直线
2.一次函数y=kx+b 的图象经过P(1,0) 和Q(0,1)两点,则k= ,b= .
3.正比例函数的图象与直线y= -23
x+4平行,则该正比例函数的解析式为 , 该正比例函数y 随x 的增大而 .
4.已知y-2与x 成正比例,且x=2时,y=4,则y 与x 之间的函数关系是 ,若点(m,2m+7), 在这个函数的图象上,则m =
5. 函数y=(m-4)x m2-5m-5的图象是过一、三象限的一条直线,则 m =
6.函数y=k x
(k ≠0)的图象经过点( 2 ,3),则k= ,当x>0时,y 随着x 的增大而 7.如果一次函数y=kx+b 和反比例函数y=k x
的图象都经过(-2,1)点,则b 的值是 8.已知一次函数y=kx+b 的y 随x 的增大而减小,那么它的图象必经过 象限。

9.已知函数y= -2x-6。

(1)求当x= -4时,y 的值,当y= -2时,x 的值。

(2)画出函数图象;
(3)求出函数图象与坐标轴的两个交点之间的距离;
(4)如果y 的取值范围-4≤y ≤2,求x 的取值范围.
10.已知z 与y- 3 成正比例,x 与 6 z
成反比例,(1)证明:y 是x 的一次函数;(2)如果这个一次函数的图象经过点(-2,3 3 ),并且与x 、y 轴分别交于A 、B 两点。

求两 点的坐标。

*11.已知函数y=k x
的图象上有一点P (m,n),且m,n关于t的方程t2-4at+4a2-6a-8=0的两个实数根,其中a是使方程有实数根的最小整数,求函数y=k x
的解析式,
解题指导
1.函数y= - 32
x 的图象是一条过原点(0,0)及点(2, )的直线,这条直线经过第 象限,y 随的增大而
2.已知一次函数y= - 12
x+2,当x= 时,y=0;当x 时y>0; 当x 时y<0. 3.若一次函数y 1=kx-b 图象经过第一、三、四象限,则一次函数y 2=bx+k 的图象经过第 象限。

4.直线y 1=k 1x+b 1和直线y 2=k 2x+b 2相交于y 轴上同一点的条件是 ;这两直线平行的条件是
5.过点(0,2)且与直线y= - x 平行的直线是 。

6.y 与3x+2成正比例,比例系数是4,则y 与x 的函数关系式是 。

7.等腰三角形的周长为30cm ,它的腰长为ycm 与底长xcm 的函数关系式是 。

8.y= x -1 的图象是一条过点(45 ,- 34
)的双曲线,在它的图象所在的每一个象限内,y 随x 的增大而 。

9.把直线y= -32
x -2向上平移2个单位,得到直线 , 把直线y= - 32 x -2向 平移 个单位,得到直线y= - 32 (x+4) 10.
11.直线y=kx+b 经过点(0,3),且与两坐标轴构成的直角三角形的面积是6,求其解析式。

12.已知反比例函数y=k x
(k>0)的图象上的一点P,它到原点O 的距离OP=2 5 ,PQ 垂直于y 轴,垂足为Q.若△OPQ 的面积为4平方单位,求:(1)点P 的坐标;(2)这个反比例函数的解析式.
独立训练(一):
1.函数y= - 2x 是 函数,这个函数的图象位于第 象限。

2.对函数y= - 53x
当x>0时,y 随x 的增大而 。

3.反比例函数y=k x
的图象上有一点P ,它的横坐标m 与纵坐标n 是方程t 2-4t-2=0的两个根,则k=
4.如图,P 为反比例函数y=k x
的图象上的点,过P 分别向 x 轴和y 轴引垂线,它们与两条坐标轴围成的矩形面积为2,
这个反比例函数解析式为 。

5.反比例函数y=(a-3)x 2a -2a-4的函数值是4时,它的自变量x 的值是 。

6.一次函数y=kx+b 与反比例函数y=2x 的图象的两个交点的横坐标为12
和 -1,则一次函数y= 7.一次函数y=kx+b 过点(-2,5),且它的图象与y 轴的交点和直线y=-12
x+3与y 轴的交点关于x 轴对称,那么一次函数的解析式是
8.如图,在矩形ABCD 中,已知AB=2 3 ,BD=6,对角线AC
和BD 相交于O ,以O 为原点分别以平行于AB 和AD 的直线为
轴和轴建立平面直角坐标系,则对角线AC 和BD 的函
数表达式分别为 。

9.求直线y=3x+10,y= -2x-5与y 轴所围成的三角形的面积。

独立训练(二):
1. 如图,A 、B 是函数y=1x
的图象上关于原点O 对称的任意两点,AC
(A )S=1 (B ) 1<S<2 (C ) S=2 (D ) S>2
2.函数y=k 1x+b(k 1b<0)与y=k 2x (k 2<0)在同一坐标系中的图象大致是( )
3.在边长为 2 的正方形ABCD 的边BC 上,有一点P 从 B 点运动到C 点,设PB=x ,图形APCD 的面积为y , 写出y 与自变量x 的函数关系式,并且在直角坐标系 中画出它的图象
4.已知y=y 1+y 2,y 1与x 2成正比例,y 2与x 成反比例,并且当x=1时,y=1,当x=3时,y=-17,求x=-1
时,y 的值
5.如图,在y= 8x
(x>0)反比例函数的图象上有不重合的两点 A 、B ,且A 点的纵坐标是2,B 点的横坐标为2,BB 1和AA 1 都垂直于轴,垂足分别为B 1和A 1,(1)求A 点横坐标;
(2)求S △1
OBB (3)当OB=2 5 时,求S △OBA。

相关文档
最新文档