第一章 等腰三角形的证明
第1课时 等腰三角形(1)
ห้องสมุดไป่ตู้
第1课时 等腰三角形(1)
目录 contents
课前小测
课堂精讲
课后作业
目录 contents
课前小测
课前小测
Listen attentively
关键视点 1.等腰三角形的两底角 相等 . 2.等腰三角形的 顶角平分线 、 底边上的中线 及 底边上的高 互相重合.
课前小测
目录 contents
课堂精讲
课堂精讲
Listen attentively
知识点1 等腰三角形的性质 【例1】(1)如图,在△ABC中,AB=AC,∠A=40°, 点D在AC上,BD=BC,则∠ABD的度数是 30 °. 【解答】解:∵AB=AC,∠A=40°, ∴∠ABC=∠C=(180°﹣40°)=70°, ∵BD=BC, ∴∠CBD=180°﹣70°×2=40°, ∴∠ABD=∠ABC﹣∠CBD =70°﹣40° =30°. 故答案为:30.
课后作业
Listen attentively
7.如图,在△ABC中,AB=AC,D为BC中点, ∠BAD=35°,则∠C的度数为( C ) A.35° B.45° C.55° D.60° 8.等腰三角形的周长为16,其一边长为6,则另 6,4或5,5 两边为 . 9.如图,AB∥CE,BF交CE于点D,DE=DF, ∠F=20°,则∠B的度数为 40°.
课后作业
Listen attentively
10.如图,已知房屋的顶角∠BAC=100°,过屋顶 A的立柱AD⊥BC,屋椽AB=AC,求顶架上∠B、 ∠C、∠BAD、∠CAD的度数. 解:∵△ABC中,AB=AC,∠BAC=100°, ∴∠B=∠C= = =40°. ∵AB=AC,AD⊥BC,∠BAC=100°, ∴AD平分∠BAC, ∴∠BAD=∠CAD=50°.
北师大版八年级数学(下) 第一章 三角形的证明 第3节 等腰三角形的判定与反证法
图⑤中,∵AB∥DE,∴∠A=∠D=30°,∵∠BCD=∠A+∠B=60°,
∴∠B=60°﹣∠A=30°,∴∠B=∠A,∴△ABC 是等腰三角形;
能判定△ABC 是等腰三角形的有 4 个,故选:C.
例 2:如图,在△ABC 中,AB=AC,∠BAC=108°,BD=AD=AE,则图中等腰三角形的个数为( )
CBE 是等腰三角形.∴图中的等腰三角形有 8 个.故选:D.
B.6
C.7
D.8
例 3:已知:如图△ABC 中,∠B=50°,∠C=90°,在射线 BA 上找一点 D,使△ACD 为等腰三角
形,则∠ACD 的度数为
.
解:如图,有三种情形:
①当 AC=AD 时,∠ACD=70°. ②当 CD′=AD′时,∠ACD′=40°. ③当 AC=AD″时,∠ACD″=20°, 故答案为 70°或 40°或 20°
C.50°、60°
D.100°、30°
解:A、∵三角形中已知两个内角为30°、60°,∴第三个内角为 180°﹣30°﹣60°=90°,
∴这个三角形是直角三角形,不是等腰三角形,故选项 A 不符合题意;
B、∵三角形中已知两个内角为 40°、70°,∴第三个内角为 180°﹣40°﹣70°=70°,
∴这个三角形由两个内角相等,∴这个三角形是等腰三角形,故选项 B 符合题意;
反证法
在证明时,先假设命题的结论不成立,然后 由此推导出与定义、基本事实、已有定理或已知 条件相矛盾的结果,从而证明命题的结论一定成 立.这种证明方法称为反证法.
用反证法证题的一般步骤:
1. 假设: 先假设命题的结论不成立; 2. 归谬: 从这个假设出发进行推理,得出与定义、基本事实、 已有定理或已知条件相矛盾的结果;
(八年级数学)第一章 三角形的证明 —— 等腰三角形(2)
1.1等腰三角形(2)一、交流预习1、已知△ABC 和△DEF ,请按要求画图:(1)AB 和DE 边上的高; (2)BC 和EF 边上的中线;(3)∠C 和∠F 的平分线。
2、等腰△ABC 中,若有一个角等于50°,则其余两个角的度数分别是_________________。
二、互助探究1、如图,等腰△ABC 中,AB =AC 。
分别画出两个底角的平分线并量一量,然后完成证明。
证明:等腰三角形两个底角的平分线相等。
已知:如图,在△ABC 中,____________,BD 和CE 是△ABC 的_____________。
求证:__________________ 证明:请继续研究等腰三角形两腰上的中线、高分别有什么关系?请师友组之间交流证明方法。
2、已知:等腰三角形ABC ,AB =AC 。
求证:AB CAB C3、已知:等腰三角形ABC ,AB =AC 。
求证: 结论:4、等边三角形是_____的等腰三角形,它的三边______,三个内角______并且都等于_____。
已知:如图,在△ABC 中,AB =AC =BC 。
求证:∠A =∠B =∠C =600 证明:三、互助提高参考上面证明“等腰三角形两底角的平分线相等”的证明方法完成下面练习。
如图,在△ABC 中,AB =AC ,点D 、E 分别在边AC 和AB 上, (1)如果∠ABD =31∠ABC ,∠ACE =31∠ACB 。
求证:BD =CE 。
(2)如果AD =21AC ,AE =21AB 。
求证:BD =CE 。
ABCABC五、巩固练习1、求等边三角形两条中线相交所成锐角的度数。
已知:等边△ABC中,,求:的度数。
画图2、如图,在△ABC中,D,E是BC的三等分点,且△ADE是等边三角形,求∠BAC的度数。
1、如图,AB=AC,BD平分∠ABC,交AC于D。
若BD=BC,求∠A的度数,2、已知,在△ABC 中,AB =AC ,D 为BC 的中点,点E ,F 分别在AB 和AC 上,并且AE =AF ,求证:DE =DF 。
第一章 三角形的证明
第一章三角形的证明1.1等腰三角形导学案基础知识基本技能1.等腰三角形(1)概念:有两边相等的三角形叫等腰三角形,其中相等的两边叫腰,另一条边叫底边,两腰的夹角叫做顶角,腰与底边的夹角叫做底角.(2)理解:①等腰三角形是特殊的三角形,它具备三角形所有的性质,如内角和是180°,两边之和大于第三边等.②等腰三角形是轴对称图形,这既是等腰三角形的特点也是研究它的重要方法.破疑点等腰三角形有关概念的认识(1)对于等腰三角形问题,我们说角或边时,一般都要指明是顶角还是底角,是底边还是腰,没说明则都有可能,要讨论解决,这是解决等腰三角形最容易忽视和错误的地方;(2)等腰三角形顶角可以是直角,是钝角或锐角,而底角只能是锐角.【例1】等腰三角形两边长分别是5 cm和11 cm,则它的周长是().A.27 cm B.22 cmC.27 cm或22 cm D.无法确定2.等腰三角形性质1(1)性质1:等腰三角形的两个底角相等(简写成“等边对等角”).(2)理解:这是等腰三角形的重要性质,它是证明角相等常用的方法,它的应用可省去三角形全等的证明,因而更简便.(3)适用条件:必须在同一个三角形中.(4)应用模式:在△ABC中,因为AB=AC,所以∠B=∠C.【例2-1】已知等腰三角形的一个角为40°,则其顶角为().A.40°B.80°C.40°或100°D.100°哦,不指明是底角还是顶角时,要分类讨论,还要看三角形内角和是否是180°啊!【例2-2】如图,AD、BC相交于O,AB∥CD,OA=OB,求证:∠C=∠D.3.等腰三角形性质2(1)性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.习惯上称作等腰三角形“三线合一”性质.(2)含义:这是等腰三角形所特有的性质,它实际上是一组定理,应用过程中,只要是在等腰三角形前提下,知道是其中“一线”,就可以说明是其他的“两线”,性质中包含有线段相等、角相等、垂直等关系,所以应用非常广泛.(3)对称性:等腰三角形是轴对称图形,顶角平分线(或底边上的高、底边上的中线)所在的直线是它的对称轴.(4)应用模式:如图,在△ABC中,解技巧“三线合一”的应用因为题目的证明或计算所求结果大多都是单一的,所以“三线合一”性质实际的应用也是单一的,一般得出一个结论,因此应用要灵活.【例3】如图,在△ABC中,AB=AC,AD⊥BC,交BC于D,BD=5 cm,求底边BC的长.分析:因为是等腰三角形,所以底边上的高也是底边上的中线,所以BC=2BD,即可求出BC的长.4.等腰三角形的判定(1)判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).(2)与性质的关系:判定定理与性质定理是互逆的,性质:→;判定:→.(3)理解:性质和判定应用的前提都是在同一三角形中,并且不经过三角形全等的证明,直接由等边得等角或由等角得等边,所以应用起来更简单、便捷.破疑点等腰三角形的判定方法的理解教材中涉及等腰三角形的判定方法主要有两种:一是判定定理;二是定义.另外还有很多方法,如在同一个三角形中,三线中两线重合,也能说明是等腰三角形.但不常用,一般是通过推理得出角相等或边相等,再得出是等腰三角形.【例4】如图,BE平分∠ABC,交AC于E,过E作DE∥BC,交AB于D.试证明△BDE是等腰三角形.5.等边三角形的概念和性质(1)等边三角形①概念:三边都相等的三角形是等边三角形.②认识:它是特殊的等腰三角形,具备等腰三角形的所有性质.(2)性质:等边三角形的三个内角都相等,并且每一个角都等于60°.(3)拓展:等边三角形是轴对称图形,它有三条对称轴,它三边相等,三个内角相等,各边上的高、中线,对应的角平分线重合,且长度相等.【例5】如图,点M、N分别在等边△ABC的边BC、AC上,且BM=CN,AM、BN交于点Q.求证:∠BQM=60°.6.等边三角形的判定(1)判定定理:①三个角都相等的三角形是等边三角形;②有一个角是60°的等腰三角形是等边三角形.(2)判定方法:等边三角形的判定方法有三种:一是定义,另运用两个定理.(3)拓展理解:对于判定定理①,有时候在一个三角形中只要有两个角是60°也可判定是等边三角形.解技巧巧用条件证明等边三角形在证明三角形是等边三角形时,根据所给已知条件确定选择用哪个方法证明.若已知三边关系,一般选定义法;若已知三角关系,一般选判定定理①;若已知该三角形是等腰三角形,则选判定定理②.【例6】如图,等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP =CQ,问△APQ是什么形状的三角形?试说明你的结论.基本方法基本能力7.等腰三角形性质和判定的综合应用类似于全等三角形的性质和判定的关系,等腰三角形的性质和判定很多时候也是综合运用的.一方面等腰三角形是特殊的三角形,由等腰三角形性质,可以知道许多相等的线段,相等的角,还能知道垂直关系,成倍数关系的线段或角,所以有时通过判定是等腰三角形来证明角相等、线段相等或垂直关系等;另一方面通过等腰三角形性质和判定的运用,直接由线段相等得到角相等,由角相等到线段相等,省去了全等的证明,简化了过程,因此很多时候,等腰三角形性质和判定的应用更广泛.注意:等腰三角形性质和判定的应用前提是在同一个三角形中.【例7】如图1,在△ABC中,∠B=2∠C,AD是BC边上的高,求证:CD=AB+BD.图1 图28.巧用“三线合一”性质解题(1)性质:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合,简称“三线合一”性质;(2)应用:它是等腰三角形特有的性质,这条线段是中线、高,也是角平分线,它包含有线段相等、角相等、垂直等关系,涉及量多,应用广泛,是证明线段相等、线段的倍数关系、角相等、角的倍数关系、垂直等常用的方法.构造“三线合一”解决等腰三角形问题在等腰三角形问题中,最常添加的辅助线就是作底边上的高,或作顶角的平分线,或作底边上的中线,这样就可以由其中一线得到其他两线,从而知道更多的条件,以便更好地完成计算、证明.【例8】已知:如图a所示,△ABC中,AB=AC,BF是AC边上的高,求证:∠FBC=∠BAC.图a 图b9.等边三角形的应用等边三角形也称正三角形,它是最特殊的三角形,它除了三边相等,三个内角相等,且每个角都是60°外,还具有很多特殊的性质:如,证明两个等边三角形全等只要有一边相等即可;同一个等边三角形的高、中线、角平分线都相等,并且任何一条高(或中线、顶角的平分线)将等边三角形都分成全等的两个含有30°角的直角三角形;它的高和边长也存在着特殊的比例关系,因此已知是等边三角形,就可以知道其中的许多等量关系.等边三角形的判定也具有自己独特的特点,可以由普通三角形满足条件直接判定,也可以在等腰三角形的基础上进行判定.【例9】(学科内综合题)如下图所示,在等边三角形ABC中,∠B、∠C的角平分线交于点O,OB和OC的垂直平分线分别交BC于E、F,试用你所学的知识说明BE=EF=FC的道理.思维拓展创新应用10.面积法证明等腰三角形的性质面积法是解决几何问题常用的一种的方法,它巧妙地运用面积之间的关系,通过计算的方式,求线段的长度,或用来证明线段之间的数量关系,有时它比运用线段之间的等量关系证明、计算更简捷,更巧妙,因而在特定条件下能出奇制胜,是一种很好的方法.面积法的运用,一般以同一个三角形的面积是相等的为基础,运用不同求法,即底不同、高不同、但面积都等于底×高的一半,或将一个图形分解成不同的图形来求面积,但面积之和相等.通过面积相等联系起各量之间的关系,再运用等式的性质,通过化简求出某些线段的长,或计算出某些线段之间的数量(如比例)关系.解技巧巧用面积法证明线段的关系因为直角三角形的特殊性,所以面积法最常用在直角三角形中求斜边上的高,有时也用在等腰三角形中证明线段相等或求线段的和.11.等腰三角形中的“二推一”模式应用在等腰三角形问题中,“等边、角平分线(等角)、平行”是出现最多,最常见的数量与位置关系,若这三个关系出现在同一图中,一般以其中任意两个条件为题设,推导、证明出第三个条件成立,因此我们称它为等腰三角形中的“二推一”.(1)基本图形:等腰三角形中的“二推一”一般有两种情况,一种是角平分线在外,要用到一个外角等于和它不相邻的两内角和;另一种是角平分线在内,基本图形如图①和图②所示,演变图形类型较多,主要有以下几种:(2)方法:通过角相等作为纽带,将线段相等、线段平行联系起来,在此过程中要用到等量代换得出的角相等,方式一般是:→→;→→.【例11-1】如图1,已知,在△ABC中,AB=AC,BD为腰AC上的高,G为底边BC上任一点,GF⊥AB,GE⊥AC,垂足分别为F、E.求证:GF+GE=BD.分析:要证明BD=GF+GE,按常规思路将BD分成两段,如图2,证明BH=GF,DH=GE.所以过G作BD的垂线,通过证明三角形全等和判定是矩形完成,既复杂又超出现在所学,但用面积法却简单得多.如图3,连接AG,运用面积法,分别表示出△ABG和△ACG的面积,由于同一三角形面积是相等的,所以S△ABC=S△ABG+S△ACG,所以AB·GF+AC·GE=AC·BD,由于AB =AC,经过等量代换和化简即可得到GF+GE=BD.【例11-3】如图,已知△ABC中,AC+BC=24,AO、BO分别是∠BAC、∠ABC的角平分线,MN过O点,且MN∥BA,分别交AC于N、BC于M,则△CMN的周长为___.【例11-4】如图,△ABC中,∠ABC、∠ACB的平分线BO、CO相交于点O,OE∥AB,OF ∥AC,△OEF的周长=10,求BC的长.直角三角形学习过程:一、课前准备1.每个命题都是由、两部分组成。
等腰三角形判定定理的证明
等腰三角形判定定理的证明
要证明一个三角形是等腰三角形,需要证明其两条边相等。
设三角形的三条边分别为a、b、c,且为等腰三角形。
不失一般性,假设a=b,则有以下两种情况:
1. 如果a=b=c,则三角形是等边三角形,也是等腰三角形。
2. 如果a=b≠c,则根据等腰三角形的定义,只需要证明c是a 和b的中线即可。
我们可以通过使用三角形的余弦定理来证明这一点。
根据三角形的余弦定理,可以得到以下等式:
c^2 = a^2 + b^2 - 2ab * cos(∠C)
由于a=b,所以a^2 = b^2,上述等式可以简化为:
c^2 = 2a^2 - 2a^2 * cos(∠C)
因为∠C是锐角或直角,所以cos(∠C) < 1,因此2a^2 * cos(∠C) < 2a^2。
因此,c^2 < 2a^2,或者说c < √2 * a。
因此,在这种情况下,c < √2 * a,证明了c是a和b的中线。
因此,三角形是等腰三角形。
综上所述,根据等腰三角形的定义和余弦定理的推导,我们可以得出等腰三角形判定定理的证明。
初三数学上册第一单元预习知识点
初三数学上册第一单元预习知识点第一章证明一、等腰三角形1、定义:有两边相等的三角形是等腰三角形。
2、性质:⑴等腰三角形的两个底角相等(简写成“等边对等角”)⑵等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合(“三线合一”)⑶等腰三角形的两底角的平分线相等。
(两条腰上的中线相等,两条腰上的高相等)⑷等腰三角形底边上的垂直平分线上的点到两条腰的距离相等。
⑸等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
⑹等腰三角形底边上任意一点到两腰距离之和等于一腰上的高。
(可用等面积法证)⑺等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴。
3、判定:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。
特殊的等腰三角形——等边三角形1、定义:三条边都相等的三角形叫做等边三角形,又叫做正三角形。
(注意:若三角形三条边都相等则说这个三角形为等边三角形,而一般不称这个三角形为等腰三角形)。
2、性质:⑴等边三角形的内角都相等,且均为60度。
⑵等边三角形每一条边上的中线、高线和每个角的角平分线互相重合。
⑶等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线或所对角的平分线所在直线。
3、判定:⑴三边相等的三角形是等边三角形。
⑵三个内角都相等的三角形是等边三角形。
⑶有一个角是60度的等腰三角形是等边三角形。
⑷有两个角等于60度的三角形是等边三角形。
二、直角三角形全等11、直角三角形全等的判定有5种:⑴两角及其夹边对应相等的两个三角形全等;(ASA)⑵两边及其夹角对应相等的两个三角形全等;(SAS)⑶三边对应相等的两个三角形全等;(SSS)⑷两角及其中一角的对边对应相等的两个三角形全等;(AAS)⑸斜边及一条直角边对应相等的两个三角形全等;(HL)2、在直角三角形中,如有一个内角等于30o,那么它所对的直角边等于斜边的一半3、在直角三角形中,斜边上的中线等于斜边的一半4、垂直平分线:垂直于一条线段并且平分这条线段的直线。
八下数学第一章三角形的证明知识点归纳
八下数学第一章三角形的证明知识点归纳主要内容:本章分四节第一节:等腰三角形。
主要学习了等腰三角形(含等边三角形)的性质定理和判定定理的证明,以及运用反证法证明命题的方法第二节:直角三角形。
介绍了直角三角形全等、性质和判定方法,引出了互逆定理、逆定理概念第三节:线段的垂直平分线。
通过对具体事例的观察与探索,学习了线段垂直平分线的性质定理及其逆定理第四节:角平分线。
在已经学习的角平分线的概念及三角形知识基础上进一步证明了角平分线的性质定理及其逆定理第一节:等腰三角形等腰三角形的性质及判定定理性质:1.定义:两边相等的三角形是等边三角形2.定理:等腰三角形的两个底角相等(等边对等角).3.推论:等腰三角形顶角的平分线、底边上的中线、底边上的高线互相重合(即“三线合一”).判定:1.定义:两边相等的三角形是等腰三角形2.定理:两个角相等的三角形是等腰三角形(等角对等边)等边三角形的性质及判定定理1.性质定理:等边三角形的三个角都相等,并且每个角都等于60°;等边三角形是轴对称图形,有3条对称轴.2.判定定理:(1)有一个角是60°的等腰三角形是等边三角形(2)三个角都相等的三角形是等边三角形(3)有一个角是60°的等腰三角形是等边三角形第二节:直角三角形全等判定1.定义:能够完全重合的两个三角形称为全等三角形.(注:全等三角形是相似三角形中的特殊情况)2.全等判定:SSS,SAS,ASA,AAS,HL直角三角形的性质及判定性质1.定义:有一个角等于90°的三角形是直角三角形2.推论:直角三角形如果有一个角等于30°,那么它所对直角边等于斜边的一半3.定理:直角三角形两条直角边平方和等于斜边平方判定定理:1.定义:有一个角等于90度的三角形2.定理:如果一个三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形第三节:线段的垂直平分线1.定理:线段垂直平分线上的点到这条线段两个端点的距离相等2.逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上3.三角形垂直平分线定理:三角形三边垂直平分线交于一点,并且这一点到三角形的三边距离相等第四节:角平分线1.定理:角平分线上的点到这个角的两边距离相等2.逆定理:到一个角两边距离相等的点在这个角的平分线上3.三角形角平分线定理:三角形的三条角平分线交于一点,并且这一点到三条边的距离相等三角形的证明几何语言汇总性质定理推理符号语言几何语言等腰三角形定理:等腰三角形的两底角相等(等边对等角)∵AB=AC ∴∠B=∠C推论:等腰三角形顶角的平分线、底边上的中线及底边上的高线互相重合(即“三线合一”).∵AB=AC ,点D 在BC 上∵AD 平分∠BAC∴AD ⊥BC ,AD 平分BC ∵AD ⊥BC∴AD 平分∠BAC ,AD 平分BC ∵AD 平分BC∴AD ⊥BC ,AD 平分∠BAC 定理:有两个角相等的三角形是等腰三角形(等角对等边)∵∠B=∠C ∴AB=AC∴△ABC 是等腰三角形等边三角形三条边相等的三角形是等边三角形∵△ABC 是等边三角形∴AB=AC=BC定理:三个角都相等的三角形是等边三角形∵∠A=∠B=∠C∴△ABC 是等边三角形定理:等边三角形的三个内角都相等,并且每个角都等于60°∵AB=AC=BC∴∠A=∠B=∠C=60°定理:有一个角是60°的等腰三角形是等边三角形在△ABC 中∵∠A=60°,AB=AB ∴△ABC 是等边三角形直角三角形有一个角是90°的三角形是直角三角形∵∠B=90°∴△ABC 是直角三角形定理:在直角三角形中,如果一个锐角等于30°,那么它所对直角边等于斜边的一半在RT △ABC 中,∠B=90°,∠A=30°∴BC=½AC定理:直角三角形的两个锐角互余∠B=90∴∠A+∠C=90°定理:有两个角互余的三角形是直角三角形在△ABC 中∵∠A+∠C=90°∴△ABC 是直角三角形,∠B=90°勾股定理:直角三角形两条直角边平方和等于斜边平方在RT △ABC 中,∠B=90°∴AB 2+BC 2=AC 2定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形在△ABC 中∵AB 2+BC 2=AC 2∴△ABC 是直角三角形,∠B=90°直角三角形全等判定:斜边和一条直角边分别相等的两个直角三角形全等(HL )在RT △ABC 和RT △A`B`C`中∵AC=A`C`,AB=A`B`∴RT △ABC ≌RT △A`B`C`线段的垂直平分线定理:线段垂直平分线上的点到这条线段两个端点的距离相等∵CD 垂直平分AB ∴CA=CB定理:到一条线段两个端点距离相等的点在这条线段的垂直平分线上∵CA=CB∴点C 在AB 的垂直平分线上三角形垂直平分线定理:三角形三边垂直平分线交于一点,并且这一点到三个顶点的距离相等∵点P 是△ABC 的三边垂直平分线的交点∴PA=PB=PC角平分线定理:角平分线上的点到这个角的两边的距离相等∵OP 平分∠AOB ,PD ⊥OA ,PE ⊥OB ∴PD=PE定理:在一个角的内部,到角两的边距离相等的点在这个角的平分线上∵PD=PE ,PD ⊥OA ,PE ⊥OB ∴OP 平分∠AOB三角形三条角平分线相交于一点,并且这一点到三条边的距离相等∵点P 是△ABC 三个内角平分线的交点,PD ⊥BC ,PE ⊥AC ,PF ⊥AB ,垂足分别为D ,E ,F ∴PD=PE=PF。
1.1等腰三角形第1课时
∴ ∠ B= ∠C (全等三角形的对应角相等).
等腰三角形的性质
1 等腰三角形的两 个底角相等(等边 对等角)
例1 在三角形ABC中,已知AB=AC, 且∠B=80° ,则∠C= ___度, ∠A=____度?
∵AB=AC(已知)
2等腰三角形顶角的 平分线,底边上的 ∴∠B=∠C(等边对等角) 中线和底边上的高 ∵∠B=80° (已知) 互相重合(等腰三 ∴∠C=80° 角形三线合一) 又∵∠A+∠B+∠C=180° (三角形内角和为180° ) ∴∠A=180°- ∠B-∠C
14分42秒
B
D
C
随堂练习 A
3.已知AD⊥ BC,试找出等腰三角形ABC (AB=AC)中,存在相等关系的量。
12
∠B=∠C ∠1=∠2 ∠BDA=∠CDA=90° BD=CD
2014年3月2日星期日8时 14分42秒
B
D
C
中考链接
1
1.(2010.江西)已知等腰三角形的两条边 长分别是7和3,则下列四个数中,第三条边的 长是( B ) A. 8 B. 7 C. 4 D. 3.
△ABC(AB=AC) △ADB(AD=BD)
2014年3月2日星期日8时 14分42秒
A
D B C
△BDC (BD=BC)
材料: 剪刀、一张矩形纸 方法:(1)先将矩形纸按图中虚线对折;
(2)剪去阴影部分; (3)将剩余部分展开。
2014年3月2日星期日8时 14分42秒
大胆猜测
请同学们拿出你们刚剪好的等腰三角形 纸片,它除了两腰相等以外,你还能发 A 现什么?
2014年3月2日星期日8时 14分42秒
作底边中线
等腰三角形的性质定理和判定定理及其证明
等腰三角形的性质定理和判定定理及其证明等腰三角形是指有两条边相等的三角形。
在几何学中,等腰三角形具有独特的性质和判定定理。
本文将介绍等腰三角形的性质定理和判定定理,并给出其详细证明。
一、等腰三角形的性质定理性质定理1:等腰三角形的底角相等。
证明:设△ABC为等腰三角形,其中AB=AC。
假设∠ABC和∠ACB不相等,即∠ABC>∠ACB或∠ABC<∠ACB。
不妨设∠ABC >∠ACB。
由于∠ABC>∠ACB,所以∠ABD>∠ACD,其中D为∠ABC外一点沿边AC的延长线上的点。
又因为∠ABC=∠ACB,所以∠ADB=∠ACD。
根据角度相等的性质,∠ABD=∠ADB-∠ABD=∠ACD-∠ABD=∠ADC。
而∠ABD>∠ADC,与三角形内角和定理矛盾。
所以,假设不成立,即∠ABC=∠ACB,即等腰三角形的底角相等。
性质定理2:等腰三角形的等腰边上的角相等。
证明:设△ABC为等腰三角形,其中AB=AC。
假设∠BAC和∠BCA不相等,即∠BAC>∠BCA或∠BAC<∠BCA。
不妨设∠BAC >∠BCA。
由于∠BAC>∠BCA,所以∠BAC>∠BDC,其中D为∠BAC外一点沿边AB的延长线上的点。
又因为∠BAC=∠BCA,所以∠BCD=∠BDC。
根据角度相等的性质,∠BCA=∠BAC-∠BCA=∠BDC-∠BCA=∠CDB。
而∠BCA>∠CDB,与三角形内角和定理矛盾。
所以,假设不成立,即∠BAC=∠BCA,即等腰三角形的等腰边上的角相等。
性质定理3:等腰三角形的高、中线、中位线、角平分线重合。
证明:设△ABC为等腰三角形,其中AB=AC。
过顶点A作边BC的垂线,交边BC于点D。
连接AD,BD与CD。
首先证明AD是三角形ABC的高。
根据性质定理1可知∠BAD=∠CAD,又因为AD是AB和AC的垂线,所以∠BAD=90°,∠CAD=90°,因此AD与BC垂直,即AD是三角形ABC的高。
接下来证明BD与CD分别是△ABC的中线。
1.1 等腰三角形2 第1课时 全等三角形和等腰三角形的性质
A
已知:如图,在ΔABC中,∠B=∠C。 求证:AB=AC
证明: 作∠BAC的平分线AD 则∠1=∠2
在△BAD和△CAD中 ∠1=∠2 ∠B=∠C AD=AD (公共边)
12
B
DC
你还有其 他证法吗?
∴ △BAD ≌ △CAD (AAS)
∴ AB= AC (全等三角形的对应边相等)
等腰三角形的判定定理:
1、等腰三角形是怎样定义的?
A
有两条边相等的三角形,叫做等腰三角形。
2、等腰三角形有哪些性质?
①等腰三角形是轴对称图形。
B DC
②等腰三角形的两个底角相等(简写
成“等边对等角”) 。
③等腰三角形顶角的平分线、底边上的中线、底边 上的高重合(也称为“三线合一”).
探究新知
1.我们把等腰三角形的性质定理的条件和结论反 过来还成立吗?如果一个三角形有两个角相等,那 么这两个角所对的边也相等吗?
3、等边三角形中,高、中线、角平分线共有( A ) A.3条 B.6条 C.9条 D.7条
课堂小结
等边三角形的性质:
名 称
图形
性质
等
A
三条边都相等
边
三个角都相等,且都为60°
三
角B
C 三线合一
形
轴对称图形,有三条对称轴
第3课时 等腰三角形的判定及反证法
北师大版 八年级下册
复习旧知
既是性质又
是判定
注意:在同 一个三角形 中应用哟!
如果一个三角形有两个角相等,那么这两个角所 对的边也相等(简写成“等角对等边”)。
A
几何语言:
∵∠B =∠C (已知)
∴ AB=AC(等角对等边)
北师大版八年级数学下册第一章三角形的证明1.1等腰三角形(教案)
举例:在平面几何中,当一个三角形是等腰三角形时,可1)等腰三角形性质的理解与应用:学生需要理解并熟练掌握等腰三角形的性质,能将其应用于解决问题。
难点解析:学生可能会混淆等腰三角形底边中线、高、角的平分线的关系,需要通过实例和练习加深理解。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了等腰三角形的基本概念、重要性质和应用。同时,我们也通过实践活动和小组讨论加深了对等腰三角形的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在本次等腰三角形的教学中,我发现学生们对于等腰三角形的定义和性质掌握得相对较好,但在实际应用和判定方法上还存在一些问题。通过这次教学,我有以下几点思考:
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解等腰三角形的基本概念。等腰三角形是指有两边长度相等的三角形。它的重要性体现在其独特的性质和应用方面。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了等腰三角形在实际中的应用,以及它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调等腰三角形的定义和性质这两个重点。对于难点部分,如等腰三角形的判定方法,我会通过举例和比较来帮助大家理解。
5.教学过程中,我发现部分学生对等腰三角形在实际问题中的应用感到困惑。针对这个问题,我计划在今后的教学中增加一些与生活密切相关的实例,让学生更好地理解等腰三角形在实际生活中的应用。
6.总结回顾环节,我要求学生对所学知识进行梳理,并鼓励他们提出疑问。从学生的提问来看,他们在某些知识点上还存在盲点。在今后的教学中,我要更加关注学生的疑问,及时解答,帮助他们巩固所学知识。
北师大版数学 八年级下册 第一章第3课时 等腰三角形的判定与反证法 优秀课件
由题得AB=15×2=30(海里)
N B 72° 36° C
∵ ∠A= ∠C
∴ BC=AB=30 (海里)
36°
A
2、如图, △ABC中, ∠A=36°,AB=AC, BD平分 ∠ABC, DE∥BC, EF平分∠AED,问在这个图形中,有 那几个等腰三角形?请分别写出来.
A
△ABC、 △BCD 、△EBD、 △EDF 、△FAE 、△ADE、 △ABD
的形式.而已知中的角平分线和平 行线告诉我们图形中有等腰三角形
M
D
出现,因此,找到问题的突破口. B
N C
4、已知五个正数的和等于1,用反证法证明:这五个数 中至少有一个大于或等于1/5.
证明: 设这五个正数为a1、a2、a3、a4、a5 假设这五个数中没有一个大于或等于1/5,即都小于1/5, 那么这五个数的和a1+a2+a3+a4+a5就小于1. 这与已知这五个数的和a1+a2+a3+a4+a5=1相矛盾. 因此, 假设不成立,即这五个数中至少有一个大于或等于 1/5成立.
36°
F
E 36°72°D
73263°°6°
B
72°
C
想一想
小明说, 在一个三角形中,如果两个角不相等, 那么这两个角所对的边也不相等.
即在△ABC中, 如果∠B≠∠C, 那么AB≠AC.
A
B
C
你认为这个结论成立吗? 如果成立, 你能证明它吗?
小明是这样想的:
如图, 在△ABC中, 已知∠B≠∠C, 此时, AB与AC要
B
C
在△ABD和 △ACD中
D
∵∠B=∠C. ∠ADB=∠ADC.AD=AD
第一章第01讲 等腰三角形的性质与判定(6类热点题型讲练)(解析版)
第01讲 等腰三角形的性质与判定(6类热点题型讲练)1.经历“探索一发现一猜想一证明”的过程,逐步掌握综合法证明的方法,发展推理能力.2.进一步了解作为证明基础的几条基本事实的内容,能证明等腰三角形的性质.3.有意识地培养学生对文字语言、符号语言和图形语言的转换能力,关注证明过程及其表达的合理性.知识点01 等腰三角形的性质(1)等腰三角形性质1:等腰三角形的两个底角相等(简称:等边对等角)(2)等腰三角形性质2:文字:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称:等腰三角的三线合一)图形:如下所示;符号:在ABC D 中,AB =AC ,1212,,;,,;,12.BD CD AD BC AD B BD CD AD BC C BD CD Ð=Ðìï=^Ð=Ð^Ð=Ðíï^î==若则若则若,则 知识点02 等腰三角形的判定(1)等腰三角形的判定方法1:(定义法)有两条边相等的三角形是等腰三角形;(2)等腰三角形的判定方法2:有两个角相等的三角形是等腰三角形;(简称:等角对等边)21D C B A题型01根据等腰三角形腰相等求第三边或周长【例题】(2023上·河南商丘·八年级商丘市实验中学校考阶段练习)一个等腰三角形的两条边长分别为8cm 和4cm,则第三边的长为cm.【答案】8【分析】本题考查等腰三角形的性质及三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,是解题的关键.【详解】解:①若一腰长为8cm,则底边为4cm,则第三边的长为8cm,488+>,故能组成三角形;②若一腰长为4cm,则底边为8cm,则第三边的长为4cm,+=,故不能组成三角形.448故答案为:8.【变式训练】解得:4a =,5b =,当4为等腰三角形的腰长,5为等腰三角形的底边时,则等腰三角形的周长为44513++=,当5为等腰三角形的腰长,4为等腰三角形的底边时,则等腰三角形的周长为55414++=,故答案为:13或14.题型02 根据等腰三角形等边对等角求角的度数题型03 根据等腰三角形三线合一进行求解【答案】25【详解】解:如图,作BE∵AB BC =,∴AE CE =,∵AC CD ^,90BAD Ð=°∴EBA BAE BAE Ð+Ð=Ð+Ð【答案】10【详解】解:AB Q 5BD CD \==,210BC BD \==,故答案为:10.(1)求AF 的长.(2)求CD 的长.【详解】(1)解:连接AF ,如下图,根据题意,90BAC Ð=°,AB ∴222(2)BC AB AC =+=+∴190452B ACB Ð=Ð=´°=°,∵F 为BC 中点,题型04 根据等腰三角形三线合一进行证明 (1)若106BAC DAE ÐÐ=°,(2)求证:BD EC =.【详解】(1)解:∵AB AC =(1∵,AB AC AD AE ==,∴,BF CF DF EF ==,∴BD CE =.【变式训练】1.(2023上·山东威海·七年级校联考期中)如图,已知AB AE ABC AED BC ED =Ð=Ð=,,,点F 是CD 的中点,连接AF ,请判断AF 与CD 的位置关系.【答案】垂直【分析】此题考查全等三角形的判定和性质,等腰三角形三线合一的性质:连接AC AD ,,证明ABC AED ≌△△,得到AC AD =,根据等腰三角形三线合一的性质得到AF CD ^,熟练掌握全等三角形的判定定理及等腰三角形的性质是解题的关键.【详解】答:AF CD^连接AC AD ,∵AB AE ABC AED BC ED =Ð=Ð=,,∴ABC AED≌△△∴AC AD=又∵点F 是CD 的中点∴AF CD ^.2.如图,在ABC V 中,AB AC =,40BAC а=,AD 是BC 边上的高.线段AC 的垂直平分线交AD 于点E ,交AC 于点F ,连接BE .(1)试问:线段AE 与BE 的长相等吗?请说明理由;(2)求EBD Ð的度数.【详解】(1)解:线段AE 与BE 的长相等,理由如下:连接CE ,如图所示:=,AD∵AB AC=,∴BD CD∴AD为BC的垂直平分线,∵点E在AD上,=,∴BE CE又∵线段AC的垂直平分线交题型05根据等角对等边证明等腰三角形Ð,【例题】(2023上·广西玉林·八年级统考期中)如图,点E在BA的延长线上,已知AD平分CAE ∥.求证:ABCAD BCV是等腰三角形.【答案】证明见解析【分析】本题主要考查了等角对等边,平行线的性质与角平分线的定义,先根据平行线的性质得到EAD B CAD C Ð=ÐÐ=Ð,,再由角平分线的定义和等量代换得到B C Ð=Ð,即可证明ABC V 是等腰三角形.【详解】证明:∵AD BC ∥,∴EAD B CAD C Ð=ÐÐ=Ð,,∵AD 平分CAE Ð,∴EAD CAD Ð=Ð,∴B C Ð=Ð,∴ABC V 是等腰三角形.【变式训练】【答案】ABC V 是等腰三角形,理由见解析【分析】本题主要考查了等腰三角形的判定,三角形外角的性质,角平分线的定义,设4ACD x Ð=,3ECD x =∠,由角平分线的定义得到1【答案】证明见解析【分析】本题考查了平行线的性质,等腰三角形的性质和判定,证明根据角平分线的定义可得,以及直线平行的性质证明题型06 等腰三角形的性质和判定综合应用【例题】如图,在ABC V 中,AB AC =,D 是BC 边的中点,连接AD ,BE 平分ABC Ð交AC 于点E .(1)若40C Ð=°,求BAD Ð的度数;(2)过点E 作EF BC ∥交AB 于点F ,求证:BEF △是等腰三角形.(3)若BE 平分ABC V 的周长,AEF △的周长为15,求ABC V 的周长.【详解】(1)解:AB AC =Q ,C ABC \Ð=Ð,∵40C Ð=°,∴40ABC Ð=°,AB AC =Q ,D 为BC 的中点,AD BC \^,90BDA \Ð=°,∴90904050BAD ABC °°°°Ð=-Ð=-=;(2)证明:BE Q 平分ABC Ð,ABE EBC \Ð=Ð,又∵EF BC ∥,∴EBC BEF Ð=Ð,∴EBF FEB Ð=Ð,BF EF \=,BEF \V 是等腰三角形;(3)解:AEF QV 的周长为15,15AE AF EF \++=,BF EF =Q ,15AE AF BF \++=,即15AE AB +=,BE Q 平分ABC V 的周长,=15AE AB BC CE \++=,ABC \V 的周长+1515=30AE AB BC CE ++=+.【变式训练】1.如图,在ABC V 中,AB AC =,D 为CA 延长线上一点,DE BC ^于点E ,交AB 于点F .(1)求证:ADF △是等腰三角形(1)试判断折叠后重叠部分△的面积.(2)求重叠部分AFC△【详解】(1)解:AFC∵四边形ABCD是长方形,∥,∴AD BC一、单选题1.(2023上·河南许昌·八年级统考期中)等腰三角形的一个底角为80°,则这个等腰三角形的顶角为( ).A .20°B .80°C .100°D .20°或100°【答案】A【分析】本题主要查了等腰三角形的性质.根据“等腰三角形两底角相等”,即可求解.【详解】解:∵等腰三角形的一个底角为80°,∴等腰三角形的顶角为180808020°-°-°=°.故选:A2.(2024下·全国·七年级假期作业)如图,在ABC V 中,,AB AC AD =为BC 边上的中线,30B Ð=°,则CAD Ð的度数为( )A .50°B .60°C .70°D .80°【答案】B【解析】略3.(2023上·广东珠海·八年级校考阶段练习)下列条件中,可以判定ABC V 是等腰三角形的是( )A .40B Ð=°,80C Ð=°B .123A BC ÐÐÐ=::::C .2A B CÐ=Ð+ÐD .三个角的度数之比是2:2:1【答案】D【分析】本题考查了等腰三角形的判定,三角形内角和定理,熟练掌握等腰三角形的判定是解题的关键.利A.16【答案】A【分析】此题考查的是全等三角形的判定与性质、等腰三角形的性质,解题关键是掌握并会运用全等三角形的判定与性质、等腰三角形性质定理.二、填空题【答案】117°/117度【分析】本题考查等腰三角形的性质,三角形内角和定理与外角的性质,根据等边对等角可得54BAC BCA °Ð=Ð=,CAE CEA Ð=Ð127CAE ACB Ð=Ð=°,1BAD Ð=Ð【答案】10°,80°,140°或20°【详解】本题考查了等腰三角形的性质,先利用三角形内角和定理可得:AP AB =时;当AP AB =时;当BA BP =解:∵130ABC Ð=°,30ACB Ð=°,+ ∵BAC Ð是ABP V 的一个外角,∴20BAC APB ABP Ð=Ð+Ð=°,∵AB AP =,∵AB AP =,20BAP Ð=°,∴180802BAP ABP APB °-ÐÐ=Ð==°;当BA BP =时,如图:∵BA BP =,∴20BAP BPA Ð=Ð=°,∴180140ABP BAP BPA Ð=°-Ð-Ð=°;当PA PB =时,如图:∵PA PB =,∴20BAP ABP Ð=Ð=°;综上所述:当ABP V 是等腰三角形时,故答案为:10°,80°,140°或20°.11.(2023上·广东汕尾·八年级校联考阶段练习)用一条长为21cm 的细绳围成一个等腰三角形.(1)如果腰长是底边长的3倍,那么各边的长是多少?(1)求BD的长.(2)求BE的长.【答案】(1)4 (2)5,AE CD ^Q ,AD AC =AE \平分CAD Ð,CAE DAE \Ð=Ð,在CAE V 和DAE V 中,当AD BC^时,Q AB AC=,\142BD CD BC===,Q DEFV的周长DE DF EF=++,\DEFV的周长CE EF CD=+++(1)若120BAC Ð=°,求BAD Ð(2)求证:ADF △是等腰三角形.【答案】(1)60度(2)见解析(1)求证:BD CE =;(2)若BD AD =,B DAE Ð=Ð,求【答案】(1)见解析(2)108BAC Ð=°∵,AB AC AD AE ==.∴,BF CF DF EF ==,∴BD CE =.(2)∵,AB AC AD AE ==,AF ^∴BAF CAF Ð=Ð,DAF EAF Ð=Ð【答案】(1)等腰;(2)3;(3)12;(4)30;(5)5cm【分析】本题考查平行线的性质,角平分线的定义,对角对等边.(1)平行线的性质结合角平分线平分角,得到B C Ð=Ð,即可得出结果;(2)平行线的性质结合角平分线平分角,得到A ABC CB =Ð∠,进而得到AB AC =即可;(3)同法(2)可得:BD DE =,利用AB AD BD =+,求解即可;(4)同法(2)得到,FD BD CE EF ==,推出ADE V 的周长等于+AB AC ,即可得出结果;(5)同法(2)得到,PD BD PE CE ==,推出PDE △的周长等于BC 的长即可.掌握平行线加角平分线往往存在等腰三角形,是解题的关键.【详解】解:(1)∵AE BC ∥,∴,DAE B CAE C Ð=ÐÐ=Ð,∵AE 平分DAC Ð,∴DAE CAE Ð=Ð,∴B C Ð=Ð,∴ABC V 是等腰三角形;故答案为:等腰;(2)∵BC 平分ABD Ð,AC BD ∥,∴,ABC DBC ACB DBC Ð=ÐÐ=Ð,∴A ABC CB =Ð∠,∴3AB AC ==;故答案为:3;(3)同法(2)可得:7BD DE ==,∴5712AB AD BD =+=+=;故答案为:12;(4)同法(2)可得:,FD BD CE EF ==,∴ADE V 的周长30AD AE DE AD AE DF EF AD AE BD CE AB AC =++=+++=+++=+=;故答案为:30;(5)同法(2)可得:,PD BD PE CE ==,∴PDE △的周长5cm PD PE DE BD CE DE BC =++=++==;故答案为:5cm .理解概念:(1)如图1,在Rt ABC △中,90ACB Ð=°,CD AB ^,请写出图中两对概念应用:(2)如图2,在ABC V 中,CD 为角平分线,40A Ð=°,60B Ð=°.求证:动手操作:(3)当ACD V 是等腰三角形,DA DC =时,如图,则50ACD A Ð=Ð=°,BCD Ð=∴100ACB ACD BCD Ð=Ð+=°∠当ACD V 是等腰三角形,DA AC =则65ACD ADC Ð=Ð=°,BCD Ð∴5065115ACB Ð=°+°=°;当ACD V 是等腰三角形,CD AC =则1803ACD BCD B °-Ð=Ð=Ð=∴2603ACB ACD BCD Ð=+=∠∠当BCD △是等腰三角形,DB =则BDC BCD Ð=Ð,设BDC BCD x Ð=Ð=,则B Ð=则1802ACD B x Ð=Ð=°-,由题意得,180250x x °-+°=,230x °。
八下 1.1等腰三角形
第一章 三角形的证明第一节 等腰三角形基本知识:一、全等三角形(1)定义: 能够完全重合的三角形是全等三角形。
(2)性质:全等三角形的对应边、对应角相等。
(3)判定:“SSS ”、“SAS ”、“AAS ”、“ASA ”、“HL ”(HL 只适用于直角三角形)典型例题例1.如图,D E ,分别为ABC △的AC ,BC 边的中点,将此三角形沿DE 折叠,使点C 落在AB 边上的点P 处.若48CDE ∠=°,则APD ∠等于( )A .42°B .48°C .52°D .58°例2.如图,点P 是 AB 上任意一点,,还应补充一个条件,才能推出.从下列条件中补充一个条件,不一定能....推出的是( )A .B .C .D .ABC ABD ∠=∠APC APD △≌△APC APD △≌△BC BD =AC AD =ACB ADB ∠=∠CAB DAB ∠=∠例3.某同学把一块三角形的玻璃打碎了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是()A.带①去B.带②去C.带③去D.带①②③去变式题1、尺规作图作的平分线方法如下:以为圆心,任意长为半径画弧交、于、,再分别以点、为圆心,以大于长为半径画弧,两弧交于点,作射线由作法得的根据是()A.SAS B.ASA C.AAS D.SSS2、如图,给出下列四组条件:①AB DE BC EF AC DF===,,;②AB DE B E BC EF=∠=∠=,,;③B E BC EF C F∠=∠=∠=∠,,;④AB DE AC DF B E==∠=∠,,.其中,能使ABC DEF△≌△的条件共有()A.1组B.2组C.3组D.4组AOB∠O OA OBC D C D12CD P OP,OCP ODP△≌△O DPCAB3、如图,在△ABC 和△DCB 中,AB = DC ,AC = DB ,AC 与DB 交于点M . (1)求证:△ABC ≌△DCB ;(2)过点C 作CN ∥BD ,过点B 作BN ∥AC ,CN 与BN 交于点N ,试判断线段BN 与CN 的数量关系,并证明你的结论.4、 在△ABC 中,,∠ACB=90°,AC=BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN于E 。
北师大版八年级数学下册课件:等腰三角形(1)
6.【例3】(人教8上P76改编)如图,在△ABC中,AB=AC,点D 在线段BC上,AD=BD. (1)求证:∠BAD=∠C; (2)若CA=CD,求△ABC三个内角的度数.
(1)证明:∵AB=AC,∴∠B=∠C. ∵AD=BD,∴∠B=∠BAD. ∴∠BAD=∠C.
(2)解:∵CA=CD,∴∠CAD=∠CDA, 由(1)得∠B=∠C=∠BAD, 设∠B=x,则∠CDA=∠B+∠BAD=2x, ∴∠CAD=∠CDA=2x, ∠BAC=∠CAD+∠BAD=3x,
∴在△ABC中,有∠B+∠C+∠BAC=x+x+3x=180°, 解得x=36°, ∴在△ABC中,∠BAC=108°,∠B=∠C=36°.
★9.(创新题)如图,在△ABC中,AB=AC. (1)如果∠BAD=30°,AD是BC上的高,AD=AE, 则∠EDC= 15° ; (2)如果∠BAD=40°,AD是BC上的高,AD=AE, 则∠EDC= 20° ; (3)通过以上两题,你发现在AD=AE的条件下, ∠BAD与∠EDC之间有什么关系?并给予证明.
5.【例2】如图,在△ABC中,AB=AC,AD是BC边上的中 线,BE⊥AC于点E.求证:∠CBE=∠BAD. 证明:∵AB=AC,AD是BC边上的中 线,BE⊥AC, ∴AD⊥BC,∠BAD=∠CAD. ∴∠CBE+∠C=∠CAD+∠C=90°. ∴∠CBE=∠CAD. ∴∠CBE=∠BAD.
8.(核心教材母题:北师8下P5、)如图,已知AB=AC,AD=AE. 求证:BD=CE.
证明:如图,过A点作AF⊥BC于点F. ∵AB=AC,∴BF=CF. 又∵AD=AE,∴DF=EF. ∴BF-DF=CF-EF, ∴BD=CE.
答案图
核心教材母题:教材是新中考命题的依据,近年来广东省中考 数学卷中都有较多题的素材来源于北师大版和人教版教材. 本书将两个版本重合的教材母题进行汇总,作为课堂例习题 呈现.
《等腰三角形》三角形的证明
角的判定
总结词
在三角形ABC中,如果角B =角C,则三角形ABC是等腰三角形。
详细描述
根据等腰三角形的定义,等腰三角形两个底角相等的特性,只要在三角形中找 出两个底角相等的条件,就可以判定该三角形是等腰三角形。
THANK S感谢观看
结论
通过利用平行线的证明方法,我们可以证明等腰三角形的两个底角的度数是相等的。
06
习题与解答
习题一:利用三角形全等的证明方法解答
要点一
总结词
要点二
详细描述
通过构造两个全等三角形,证明它们相等,从而证明 等腰三角形的性质。
首先,利用等腰三角形的性质,构造两个全等三角形 ABC和A'B'C',使AC=AC',BC=BC'。然后,通过三角 形全等的证明方法(例如SSS或ASA),证明三角形 ABC和三角形A'B'C'全等。最后,根据全等三角形的性 质,角形是否为等腰三角 形。
利用勾股定理的证明方法
定义
证明过程
结论
如果一个三角形的三条边满足勾股定 理,即两条直角边的平方和等于斜边 的平方,那么这个三角形是直角三角 形。
假设我们有一个等腰三角形ABC,其 中AB和AC是相等的边,BC是底边。 我们想要证明这个三角形是直角三角 形。根据勾股定理的定义,如果AB和 AC的长度为a和b,并且BC的长度为c ,那么a²+b²=c²。由于AB和AC是相 等的边,所以a=b,因此 (a²+b²)/2=a²=c²,即证明了BC是直 角边。
通过勾股定理的证明方法,我们可以 证明等腰三角形是否为直角三角形。
等腰三角形的判定1
已知:在△ABC中,∠B=∠C,
求证:AB=AC.
小颖:
小亮:
构造两个全等的三角 形,使AB与AC成为对 应边就可以了
D
过点A作∠BAC的平 分线交BC于点D.
D
过点A作AD⊥BC于点D.
过点A作BDC 边的中线AD.
概括新知
等腰三角形的判定
等腰三角形的判定
定理:有两个角相等的三角形是等腰三角形(简述为“等角对等边”)
北师大版八年级下册
第一章 三角形的证明
1.1 等腰三角形(三)
银川市第十六中学 授课教师:许 甜
复习引入
等腰三角形
定义:两条边相等的三角形是等腰三角形. A
几何语言:
在△ABC 中, ∵AB =AC
∴△ABC是等腰三角形
B
C
等边对等角
在△ABC 中,
AB =AC
∠C=∠B
在△ABC 中,
∠C=∠B AC = AB
添加辅助线 三角形的等面积法 正难则反——反证法
步骤:
1.反设:假设命题的结论不成立
2.找矛盾: 从假设出发,经过正确的 推理证明,得出矛盾
3.结论:由矛盾判定假设不正确, 从而肯定命题的结论正确
适用的题型: 1.直接证明困难的命题
2.需分成很多类进行讨论类命题
3.结论为“至少”、“至多”、“ 无穷多个”类命题
小亮:添加
三条辅助线
E
F
过点A作BC边的中交BC于点D
过点D作DE⊥AB于点E,
B
D
C 过点D作DF⊥AC于点F.
运用新知
例1:已知:如图,AB=DC,BD=CA.
2
求证:△AED是等腰三角形
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
证明:∵AD∥BC, ∴∠1=∠B(两直线平行,同位角相等), ∠2=∠C(两直线平行,内错角相等). 又∵∠1=∠2,∴∠B=∠C. ∴AB=AC(等角对等边).
2、等腰三角形一腰上的高与另一腰的夹角为60°,则 这个等腰三角形的顶角为___3_0_°__或__1_5_0_°_____.
60°
30° 60°
3、已知五个正数的和等于1,用反证法证明:这五个数 中至少有一个大于或等于1/5.
证明: 设这五个正数为a1、a2、a3、a4、a5 假设这五个数中没有一个大于或等于1/5,即都小于1/5, 那么这五个数的和a1+a2+a3+a4+a5就小于1. 这与已知这五个数的和a1+a2+a3+a4+a5=1相矛盾. 因此, 假设不成立,即这五个数中至少有一个大于或等于 1/5成立.
例3:用反证法证明:一个三角形中不能有两个角是直角.
已知: △ABC 求证: ∠A, ∠ B, ∠C中不能有两个角是直角. 证明: 假设∠A, ∠ B, ∠C中有两个角是直角,不妨设∠A和∠B是直 角,即∠A=90°, ∠B=90°. 于是 ∠A+∠ B+ ∠C=90°+90°+ ∠C >180°. 这与三角形内角和定理相矛盾,因此“∠A和∠B是直角” 的假设不成立. 所以,一个三角形中不能有两个角是直角.
想一想
小明说, 在一个三角形中,如果两个角不相等, 那么 这两个角所对的边也不相等.
即在△ABC中, 如果∠B≠∠C, 那么AB≠AC.
你认为这个结论成立吗?
A
如果成立, 你能证明它吗?
B
C
证明命题的新思路
小明是这样想的:
如图, 在△ABC中, 已知∠B≠∠C, 此时, AB与
AC要么相等, 要么不相等.
A
∠B=∠C.
B
C
已知: 如图, 在△ABC中, ∠B=∠C. 求证: AB=AC.
证明:作底边BC边上的高AD。
在△ABD和 △ACD中
B
∵∠B=∠C. ∠ADB= ∠ADC.AD=AD
∴△ABD≌ △ACD(AAS)
∴ AB=AC
A
「
C
D
还有其他的证明方法吗?
已知: 如图, 在△ABC中, ∠B=∠C. 求证: AB=AC. 证法二:
证明:作顶角的平分线AD 在△ABD和 △ACD中 ∵∠B=∠C. ∠1=∠2.AD=AD ∴△ABD≌ △ACD(AAS) ∴ AB=AC
还可以怎么作辅助线?
A
21
B
C
D
几何语言:
等腰三角形的判定定理:
有两个角相等的三角形是等腰三角形
(简称:等角对等边).
A
几何语言:
如图:在△ABC中
∵∠B=∠C(已知), B
学习目标: 1、探索等腰三角形的判定定理,并会运用其进行 简单的推理证明;
2、了解反证法的基本证明思路,并能感受简单应 用,培养学生的逆向思维能力.
复习引入 问题1. 等腰三角形性质定理的内容是什么?
这个命题的题设和结论分别是什么?
问题2. 我们是如何证明上述定理的?
做辅助线
构造全等三角形
问题3. 我们把性质定理的条件和结论反过来还成立么? 如果一个三角形有两个角相等,那么这个三角形是 等腰三角形吗?
本节课你有什么收获?
1、等腰三角形的判定定理:
有两个角相等的三角形是等腰三角形.
简称:等角对等边.
A
几何语言:如图, 在△ABC中,
∵∠B=∠C.
∴AB=AC. B
C
2、反证法的一般步骤:
1. 设:先假设命题的结论不成立;即结论的反面成立; 2. 归谬:从这个假设出发,应用正确的推论方法,得出与 定义,公理、已证定理或已知条件相矛盾的结果; 3. 结论:由矛盾的结果判定假设不正确,从而肯定命题的 结论正确.
作 业 习题1.3,第1、2题.
C
∴AB=AC(等角对等边).
例2:
已 知 : 如 图 , AB=DC , A
D
BD=CA.
E
求证明证::△AED是等腰三角形.
∵AB=DC,BD=CA,AD=DA,
B
C
∴ △ADB ≌ △DCA(SSS).
∴ ∠ADB= ∠DAC(全等三角形的对应角相等).
∴AE=DE(等角对等边)
∴ △AED是等腰三角形.
假设AB=AC, 那么根据“等边
对等角”定理得∠B=∠C, 但已知
条件是∠ B≠∠C.
B
“∠B=∠C”与已知条件
“∠B≠∠C”相矛盾,因此
A C
AB≠AC.
小明在证明时,先假设命题的结论不成立,然 后推导出与定义,公理、已证定理或已知条件相矛 盾的结果,从而证明命题的结论一定成立。这种证 明方法称为反证法(reduction to absurdity).
反证法的一般步骤:
1. 假设:先假设命题的结论不成立;即结论的 反面成立;
2. 归谬:从这个假设出发,应用正确的推论方 法,得出与定义,公理、已证定理或已知条件相 矛盾的结果;
3. 结论:由矛盾的结果判定假设不正确,从而 肯定命题的结论正确.
随堂练习
1、已知:如图,∠CAE是△ABC的外角,AD∥BC