薄膜晶体管液晶显示器TFT

合集下载

低温多晶硅薄膜晶体管液晶显示技术(LTPSTFT

低温多晶硅薄膜晶体管液晶显示技术(LTPSTFT

低温多晶硅薄膜晶体管液晶显示技术(LTPS TFT北方彩晶集团谷至华2005年1月由于多晶硅电学性能上的优势,可以实现玻璃基板上的驱动集成(CHIP ON GLASS 简写COG),系统集成(SYSTEM ON GLASS 简写SOG),可以现实更高分辨率,更快的响应速度,稳定性,可靠性更高的显示器件,低温多晶硅是TFT-LCD产业发展的方向。

该领域涉及主要产品及技术主要产品:手机、数码相机、便携视听产品,车载移动终端,高级计算机显示器等。

技术:低温多晶硅薄膜晶体管液晶显示器(Lp-Si TFT-LCD)技术涉及集成电路设计、信号转换、薄膜技术、液晶显示技术、激光技术、界面处理技术等,低温多晶硅薄膜晶体管液晶显示器是目前世界上最新的技术,代表了一个国家的平板显示产业的技术水平。

1.技术及产品发展现状LTPS TFT物理电学特性较a-Si TFT性能更加优异,具有更高的集成度,可以实现驱动电路的集成,甚至计算机系统的集成,外接元件大量减少,器件的性能得到大幅度提升,更加稳定,更加可靠,而器件的成本会更加低。

是平板显示技术的发展方向。

但是由于技术难度比较大,特别是大面积激光退火技术具有非常大的工艺挑战性。

目前只有日本东芝和松下在新加坡投资的4.5五代线可以生产17英寸的多晶硅液晶显示器,其他公司基本上只能处理手机和移动终端的小尺寸的多晶硅。

多晶硅TFT-LCD还是投影显示领域的核心技术之一。

是数字化电影院建设的关键部件,在教育、办公和大屏幕投影家庭影院领域也有巨大的市场。

随着LTPS技术的逐渐成熟,在未来的10年中,LTPS将成为平板显示领域的核心技术,有机电致发光,厚膜无机电致发光都需要LTPS技术,大尺寸液晶电视也期待着LTPS的应用。

LTPS作为平板显示器产业的重大潜在核心技术受到国际上科研和产业界的高度重视。

通过对早期TFT-LCDa-Si TFT生产线改造,投入少,可以使产业迅速升级。

目前国际上3代一下的非晶硅TFT-LCD生产线基本上都已经改造成为多晶硅生产线。

薄膜晶体管液晶显示器技术简(精品pdf)

薄膜晶体管液晶显示器技术简(精品pdf)

摘要: TFT-LCD结构。

薄膜晶体管液晶显示器由显示屏、背光源及驱动电路三大核心部件组成。

TFT-LCD显示屏,包括阵列玻璃基板、彩色滤光膜以及液晶材料。

阵列玻璃基板制备工艺是:用三个光刻掩膜板,首先在玻璃基板上连续淀积ITO膜(厚20~50n m)和Cr膜(厚50~100nm),并光刻图形,然后连续淀积绝缘栅膜SiN:(厚约400n m),再本征a-Si(厚50~100n m)和n+a-Si层,并光刻图形(干法)淀积Al膜,光刻漏源电极,最后以漏源电极作掩膜,自对准刻蚀象素电极上的Cr膜和TFT源漏之间n+a-Si膜。

这就是TFT反交错结构的简单制造工艺。

下一步是:在玻璃基板上涂布聚酰亚胺取向层,用绒布沿一定方向摩擦,使取向层表面形成方向一致的微细沟道,控制液晶分子定向排列。

在保证两块玻璃基板上下取向槽沟的槽方向正交的条件下,将两块玻璃基板上下密封成一个盒,盒间隙一般只有几个微米(如10μm),然后抽真空封灌液晶材料。

彩色滤光膜(Color Filter)简称CF。

TFT-LCD的彩色显示,实际是通过阵列基板的光,照射在彩膜上,显示屏就能显示颜色。

彩色滤光膜(如同着色的玻璃纸)可以制作在透明的电极之上(透明电极和液晶层之间),也可制作在透明电极之下(透明电极和玻璃之间),上下玻璃基板与CF膜对准精度非常高,要求CF膜黑白矩阵正好对准ITO象素电极的边缘,CF膜附着在液晶盒表面,然后用两片无色偏振片夹住液晶盒。

彩色显示原理可以简述为:把TFT-LCD的一个象素点分割成红、绿、蓝(R、G、B)三基色,并对应CF膜的RGB,起光阀作用的LCD对透过CF膜的三色光量,进行平衡、调节得到所要的彩色。

穿过CF膜的入射光如果漏射,则会影响TFT-LCD的对比度,所以在间隙处要设置遮光的黑矩阵(Black Matrix)简称BM。

为了稳定性和平滑性,使用丙烯基树脂和环氧树脂制成厚0.5~2μm的保护层(oe cota)简称OC。

tft lcd原理

tft lcd原理

tft lcd原理
TFT LCD(薄膜晶体管液晶显示器)是一种广泛用于平板电脑、智能手机、电视和计算机显示器等设备的平面显示技术。

下面是TFT LCD的基本原理:
1. 液晶材料:TFT LCD的基础是液晶材料。

液晶是一种介于液体和固体之间的有机分子,它在电场的作用下能够改变光的透过性。

液晶被封装在两块平板玻璃之间,这两块平板上有透明的电极。

2. 薄膜晶体管(TFT):TFT是薄膜晶体管的缩写,它是一种用于控制液晶像素的半导体器件。

每个像素都配备了一个TFT,用于控制电流的流动,从而精确地调节液晶分子的方向和透过性。

3. 像素结构:TFT LCD的屏幕由许多微小的像素组成。

每个像素由三个亮度可调的基本颜色(红、绿、蓝)的亮度调光器组成。

这三个颜色的不同亮度组合可呈现出各种颜色。

4. 背光源:TFT LCD需要一种背光源,以照亮屏幕上的像素。

常见的背光源包括冷阴极荧光灯(CCFL)和LED。

现代的LCD大多采用LED作为背光源,因为LED背光具有更低的功耗和更长的寿命。

5. 控制电路:TFT LCD屏幕上还有一套复杂的控制电路,用于接收来自计算机或其他设备的信号,并将其转化为适合液晶显示的信号。

6. 工作原理:当电流通过TFT时,TFT会控制液晶分子的排列,调节其透明度。

通过调整每个像素中红、绿、蓝三个亮度调光器的亮度,屏幕可以呈现出几百万种不同的颜色,形成图像。

总体来说,TFT LCD的原理是通过电流控制液晶分子的排列,从而调节光的透过性,最终呈现出清晰的图像。

TFT-LCD简介

TFT-LCD简介

TFT-LCD 简介TFT ﹕(Thin-Film Transistors)薄膜晶体管LCD﹕(Liquid-Crystals Display)液晶显示器TFT-LCD发明于1960年经过不断的改良在1991年时成功的商业化为笔记型计算机用面板﹐从此进入TFT-LCD的世代。

TFT-LCD 结构:简单的说TFT-LCD面板的基本结构为两片玻璃基板中间夹住一层液晶。

前端LCD面板贴上彩色滤光片﹐后端TFT面板上制作薄膜晶体管(TFT) 。

当施电压于晶体管时﹐液晶转向﹐光线穿过液晶后在前端面板上产生一个画素。

背光模块位于TFT-Array面板之后负责提供光源。

彩色滤光片给予每一个画素特定的颜色。

结合每一个不同颜色的画素所呈现出的就是面板前端的影像。

TFT Pixel Element:TFT面板就是由数百万个TFT device以及ITO((In Ti Oxide),此材料为透明导电金属)区域排列如一个matrix所构成,而所谓的Array就是指数百万个排列整齐的TFT device之区域,此数百万个排列整齐的区域就是面板显示区。

下图为一TFT画素的结构不论TFT板的设计如何的变化,制程如何的简化,其结构一定需具备TFT device和控制液晶区域(光源若是穿透式的LCD,则此控制液晶的区域是使用I TO,但对于反射式的LCD是使用高反射式率的金属,如Al等)TFT device是一个开关器,其功能就是控制电子跑到ITO区域的数量,当ITO区域流进去的电子数量达到我们想要的数值后,再将TFT device关掉,此时就将电子整个关(Keep)在ITO区域.上图为各画素点指定的时间变化﹐由t1到tn闸极驱动IC持续选择开启G1﹐使得源极驱动IC以D1、D2到Dn的顺序对G1上的TFT画素充电。

tn+1时﹐闸极驱动I C再度选择G2﹐源极驱动I C再D1开始依序选择。

上图可以表达几件事情:液晶站立的角度越垂直,越多的光不会被液晶导引,不同角度的液晶站立角度会导引不同数量的光线,以上面的例子来看,液晶站立角度越大,则可以穿透的光线越弱。

TFTLCD显示原理及驱动介绍

TFTLCD显示原理及驱动介绍

TFTLCD显示原理及驱动介绍TFTLCD是一种液晶显示技术,全称为Thin Film Transistor Liquid Crystal Display,即薄膜晶体管液晶显示器。

它是目前应用最广泛的显示器件之一,被广泛应用在电子产品中,如手机、平板电脑、电视等。

TFTLCD显示屏是由数百万个像素点组成的,每个像素点又包含红、绿、蓝三个亚像素。

这些像素点由一层薄膜晶体管(TFT)驱动。

薄膜晶体管是一种微型晶体管,位于每个像素点的背后,用来控制液晶材料的偏振状态。

当电流通过薄膜晶体管时,液晶分子会受到电场的影响,从而改变偏振方向,使光线在通过液晶层时发生偏转,从而改变像素点的亮度和颜色。

TFTLCD显示屏需要配备驱动电路,用来控制TFT晶体管的电流,以控制液晶分子的偏振状态。

驱动电路通常由一个控制器和一组电荷泵组成。

控制器负责接收来自外部的指令,通过电荷泵为晶体管提供适当的电流。

电荷泵可以产生高电压和低电压,从而控制液晶分子的偏振状态。

控制器通过一组驱动信号,将指令传递给TFT晶体管,控制像素点的亮度和颜色。

TFTLCD驱动器是用来控制TFTLCD显示屏的硬件设备,通常与控制器紧密连接。

驱动器主要负责将控制器发送的信号转换为液晶的电流输出,实现对像素点的亮度和颜色的控制。

驱动器还负责控制像素点之间的互动,以实现高质量的图像显示。

1.扫描电路:负责控制像素点的扫描和刷新。

扫描电路会按照指定的频率扫描整个屏幕,并刷新像素点的亮度和颜色。

2.数据存储器:用于存储显示数据。

数据存储器可以暂时保存控制器发送的图像数据,以便在适当的时候进行处理和显示。

3.灰度调节电路:用于调节像素点的亮度。

通过调节像素点的电流输出,可以实现不同的亮度效果。

4.像素点驱动电路:负责控制像素点的偏振状态。

像素点驱动电路会根据控制器发送的指令,改变液晶分子的偏振方向,从而改变像素点的亮度和颜色。

5.控制线路:用于传输控制信号。

控制线路通常由一组电线组成,将控制器发送的信号传输到驱动器中,以控制整个显示过程。

TFT-LCD显示器工作原理

TFT-LCD显示器工作原理
介电系数异方性为正型的液晶, 可以用在平行配位
VA mode :
> // → △ε= // - < 0
介电系数异方性为負型的液晶, 可以用在垂直配位
© Chi Mei Optoelectronics
Page10
Temperature Dependence
Tni
Tni
n⊥ & n\\ 受Temp. 影響
Prism II(棱鏡片) Diffuser(下扩散板) Light Guide Plate(導光板) Reflection Plate(反射板)
© Chi Mei Optoelectronics
Page14
© Chi Mei Optoelectronics
Page15
光與極化
© Chi Mei Optoelectronics
等方向性 任意的
Page7
Birefringence
雙折射
Isotropic
z
n
等方向性的光介質,如水、鑽石,在各個方向 的折射率相同, 其折射率分佈為球:
X2+ Y2+ Z2= n2
y
x
ne z Anisotropic
no no
x
非等方向性光介質,如液晶、石英,其折射 率分佈為一橢球:
X2/no2+ Y2/no2+ Z2/ne2=1
© Chi Mei Optoelectronics
Page18
光的調變1
z
no
ne
no
y
x
Cross polarizer 放在任何角度, 都呈現暗態
在两片垂直线偏级化的偏光版中间的材料并未对光产生极化态的改变,则Croos polarizer 一定是暗态。

TFT、LCD、OLED、LPTS区别是什么?

TFT、LCD、OLED、LPTS区别是什么?

薄膜晶体管TFT是指液晶显示器上的每一液晶象素点都是由集成在其后的薄膜晶体管来驱动。

从而可以做到高速度高亮度高对比度显示屏幕信息。

TFT属于有源矩阵液晶显示器。

补充:TFT是指薄膜晶体管,意即每个液晶像素点都是由集成在像素点后面的薄膜晶体管来驱动,从而可以做到高速度、高亮度、高对比度显示屏幕信息,是目前最好的LCD彩色显示设备之一,其效果接近CRT 显示器,是现在笔记本电脑和台式机上的主流显示设备。

TFT的每个像素点都是由集成在自身上的TFT来控制,是有源像素点。

因此,不但速度可以极大提高,而且对比度和亮度也大大提高了,同时分辨率也达到了很高水平。

TFT屏幕,它也是目前中高端彩屏手机中普遍采用的屏幕,分65536色及26万色,1600万色三种,其显示效果非常出色LCD概述LCD液晶显示器是Liquid Crystal Display的简称,LCD的构造是在两片平行的玻璃当中放置液态的晶体,两片玻璃中间有许多垂直和水平的细小电线,透过通电与否来控制杆状水晶分子改变方向,将光线折射出来产生画面。

比CRT要好的多,但是价钱较其贵。

LCD液晶投影机是液晶显示技术和投影技术相结合的产物,它利用了液晶的电光效应,通过电路控制液晶单元的透射率及反射率,从而产生不同灰度层次及多达1670百万种色彩的靓丽图像。

LCD投影机的主要成像器件是液晶板。

LCD投影机的体积取决于液晶板的大小,液晶板越小,投影机的体积也就越小。

根据电光效应,液晶材料可分为活性液晶和非活性液晶两类,其中活性液晶具有较高的透光性和可控制性。

液晶板使用的是活性液晶,人们可通过相关控制系统来控制液晶板的亮度和颜色。

与液晶显示器相同,LCD 投影机采用的是扭曲向列型液晶。

LCD投影机的光源是专用大功率灯泡,发光能量远远高于利用荧光发光的CRT投影机,所以LCD投影机的亮度和色彩饱和度都高于CRT投影机。

LCD投影机的像元是液晶板上的液晶单元,液晶板一旦选定,分辨率就基本确定了,所以LCD投影机调节分辨率的功能要比CRT投影机差。

tft pgu 工作原理

tft pgu 工作原理

TFT(薄膜晶体管)PGU(像素生成单元)是液晶显示器中的重要组成部分,它的工作原理如下:
1. TFT(薄膜晶体管):TFT是一种用于控制液晶显示器中每个像素的开关的晶体管。

每个像素都有一个对应的TFT,它可以控制液晶的透明度,从而控制像素的亮度。

2. PGU(像素生成单元):PGU是液晶显示器中的一个电路单元,它负责将输入的图像信号转换为每个像素的亮度值。

PGU包含了一个数字-模拟转换器(DAC),它将输入的数字信号转换为模拟电压信号。

这些模拟电压信号通过TFT控制液晶的透明度,从而生成每个像素的亮度。

具体的工作过程如下:
1. 输入信号:图像信号通过输入接口进入PGU。

2. 数字-模拟转换:PGU中的DAC将输入的数字信号转换为模拟电压信号。

每个像素对应一个DAC,它根据输入信号的亮度值生成相应的模拟电压。

3. TFT控制:模拟电压信号通过TFT控制液晶的透明度。

TFT
是一种开关,它可以控制液晶的通断状态。

当TFT导通时,液晶透明度较高,像素显示较亮;当TFT断开时,液晶透明度较低,像素显示较暗。

4. 像素显示:根据TFT的控制,液晶显示器中的每个像素显示相应的亮度。

所有像素的亮度组合在一起,形成完整的图像。

总结起来,TFT PGU的工作原理是通过数字-模拟转换和TFT 控制液晶的透明度,将输入的图像信号转换为每个像素的亮度值,从而实现图像的显示。

液晶显示器TN、TFT、STN和TFD详解!

液晶显示器TN、TFT、STN和TFD详解!

以前发表过关于液晶显示器的文章,但感觉不如下面的内容清晰,所以现在给大家参考参考!液晶显示器的分类。

常见的液晶显示器分为TN-LCD(Twisted Nematic-LCD,扭曲向列LCD)、STN-LCD(Super TN-LCD,超扭曲向列LCD)、DSTN-LCD(Double layer STN-LCD,双层超扭曲向列LCD)和TFT-LCD(Thin Film Transistor-LCD,薄膜晶体管LCD)四种。

其中TN-LCD、STN-LCD和DSYN-LCD三种基本的显示原理都相同,只是液晶分子的扭曲角度不同而已。

STN-LCD的液晶分子扭曲角度为180度甚至270度。

而TFT-LCD则采用与TN系列LCD截然不同的显示方式。

TN由于无法显示细腻的字符,通常应用在电子表、计算器上。

作为显示器TN系列的液晶显示器已基本被淘汰,STN由于扭转角度较大,字符显示比TN细腻,同时也支持基本的彩色显示,多用于液晶电视、摄像机的液晶显示器、掌上游戏机等。

而随后的DSTN和TFT 则被广泛制作成液晶显示设备,DSTN液晶显示屏多用于早期的笔记本电脑,由于支持的彩色数有限,所以也称为伪彩显。

TFT则既应用在笔记本电脑上,又逐步进入主流台式显示器市场。

三、TFT液晶显示器的原理。

TFT液晶显示器与TN系列液晶显示器的原理大不相同,但在构造上和TN液晶仍有相似之处,如玻璃基板、ITO膜、配向膜、偏光板等,它也同样采用两夹层间填充液晶分子的设计,只不过把TN上部夹层的电极改为FET晶体管,而下层改为共同电极。

在光源设计上,TFT的显示采用“背透式”照射方式,即假想的光源路径不是像TN液晶那样的从上至下,而是从下向上,这样的作法是在液晶的背部设置类似日光灯的光管。

光源照射时先通过下偏光板向上透出,它也借助液晶分子来传导光线,由于上下夹层的电极改成FET电极和共通电极。

在FET电极导通时,液晶分子的表现如TN液晶的排列状态一样会发生改变,也通过遮光和透光来达到显示的目的。

LCD几种显示类型介绍

LCD几种显示类型介绍

LCD几种显示类型介绍LCD(液晶显示器)是目前应用最广泛的平板显示技术之一,广泛应用于电视、电脑、手机、平板电脑等各种设备中。

根据不同的原理和结构,LCD显示器可分为多种类型。

以下将介绍LCD的几种主要显示类型。

1.TFT-LCD(薄膜晶体管液晶显示器)TFT-LCD是当前最主流的LCD显示技术,它采用薄膜晶体管作为每个像素点的控制开关,能够实现快速的响应速度和高质量的画面表现。

其中,TFT代表薄膜晶体管,表示每个液晶像素都被一个晶体管控制。

TFT-LCD显示器的最大优点是颜色还原度高,显示效果细腻,且能适应高分辨率与高亮度的显示要求。

大多数电脑显示器和高端电视就采用了TFT-LCD技术。

2.IPS-LCD(进通气孔开关液晶显示器)IPS-LCD是一种在TFT-LCD技术基础上改进的显示技术。

它的最大特点是拥有广视角,色彩还原度高,同时具有快速响应速度和较高的亮度。

这种液晶技术克服了TN-LCD(下文会介绍)的观看角度狭窄、色彩变化等问题。

IPS-LCD显示器被广泛应用于由于需要大视角和高色彩精度的领域,如专业设计、摄影等。

3.VA-LCD(垂直对齐液晶显示器)VA-LCD是一种垂直微扭转液晶技术,其特点是对比度高、观看角度更广,显示效果优于TN-LCD。

基于VA-LCD技术制造的显示器,能够实现更高的静态对比度和更大的观看角度范围,能够呈现更深的黑色和更鲜艳的颜色。

VA-LCD显示器因为良好的色彩表现和高对比度,适用于观看电影、游戏和图片等需要高画质表现的领域。

4.TN-LCD(扭曲向列液晶显示器)TN-LCD是最早问世的液晶显示技术,其特点是响应速度非常快,也较为廉价。

然而,相较于其他LCD类型,TN-LCD的观看角度较狭窄,色彩表现较差,同时在大面积亮部显示时会有较明显的亮度不均匀情况。

因此,TN-LCD并不适用于专业需求色彩准确性和广视角性能的场合,但在市场上仍然存在较大的应用。

5.OLED(有机发光二极管)OLED是另一种广泛应用于电子设备的显示技术,它不同于LCD,是一种基于有机发光材料的电致发光技术。

薄膜晶体管液晶显示器(TFT-LCD)生产线专用设备分析

薄膜晶体管液晶显示器(TFT-LCD)生产线专用设备分析

薄膜晶体管液晶显示器(TFT-LCD)生产线专用设备分析——半导体设备供应商争夺的又一大市场——七星电子 董大为1888年奥地利植物学家莱尼茨尔首先发现液晶材料,经许多科学家持续研究,特别是在1968年美国RCA公司的海麦尔发现:向列相液晶的透明薄层通电时,会出现混浊现象(即产生电光效应)。

首次制成了静态图像液晶显示器。

此后,日本的夏普,精工和卡西欧等公司在美国公司的成果基础上实现了产品的大量生产,并不断发展。

现在的LCD产品有以下几种类型:(1)70年代已经进行大量生产的,用于电子手表,计算器显示的扭曲向列型液晶显示器(TN-LCD);(2)在80年代开始大量生产的,应用范围更广,具有视角宽,对比度高,扫描线多等优点的,超扭曲向列型液晶显示器(STN-LCD);和(3)90年代后期快速发展的有源矩阵液晶显示器(AM-LCD)。

特别是TFT-LCD。

它们具有体积小,重量轻,电压低,功耗小,分辨率高,灰度等级大,无辐射,适合便携式应用等优点。

像素色彩可达1670万种。

成本降低潜力巨大。

现在已经成为当代液晶显示产品的主流。

有人视TN-LCD为低档产品,STN-LCD为中档产品,TFT-LCD为高档产品。

实际上它们是具有不同优点。

适合应用于不同场合的产品。

但是TFT-LCD可以看作是融合了微电子技术,光电子技术,高分子化学,高纯材料技术的一项新型器件技术TFT-LCD。

从工厂投资规模来看,一条STN-LCD生产线约需3500万美元,而一条8代TFT-LCD生产线则需要投资30亿美元。

而投资中大部分是设备购置费用。

与集成电路(IC)相比,IC是以硅片作为衬底;而TFT-LCD则是以玻璃板作为基板。

IC生产中目前大量采用的硅晶圆直径为200 mm和300 mm,而TFT-LCD生产中所用的玻璃板的尺寸,以7代线为例则已高达1870mm×2220mm,而8代线则为2160mm×2400mm。

TFT-LCD工作原理

TFT-LCD工作原理

Z SENSOR
三、光刻设备简介 Aligner
B 偏差补正设备 :
(1) MASKING BLADE ; (2) Plate / mask stage ; (3) ARC / X MAG ;
三、光刻设备简介 Aligner
(1) MASKING BLADE
X,Y mask blading 的作用一样,只说明Y mask blading
三、光刻设备简介 Aligner
Chamber外观
环境条件:
环境温度: 稳定性: 湿度: 洁净度: 18 to 25C < 0.1C . 45 to 55% RH 10.000级或以下
三、光刻设备简介 Aligner
Thermal Chamber定期点检项目
声音异常与震动 管道接口处的液体与气体泄漏 冷冻机的低/高压在正常范围 C-oil(冷却油)供给压力 冷却水流量 排气口处的温度
Y mask blading的主要作用是在曝光的过程中,在mask的下方遮光,以防止边缘出 现曝光不良。它主要是由两个挡板构成,在曝光的时候这两个挡板会移动到事先设 定的区域。它的初始位置由DEVICE DATA中的MB waiting进行设定。
三、光刻设备简介 Aligner
(2) Plate / mask stage
MASK STAGE:
Mask stage 就是装着mask的地方,它的 功能是在mask装着以后,对mask进行对 位,并且在曝光的时候与plate stage 同步
移动,为了保证mask的精确对位,上边设
有Mask set mark。为了限制Y方向的曝 光区域,在其下方设有Y MASK BLADE。
三、光刻设备简介 Aligner

TFT-LCD显示原理介绍

TFT-LCD显示原理介绍

混色效果 分別控制RGB dot亮度 ,自由组成各种图案
三角形越大所能显示的颜色越丰富
TFT LCD的显示方式
Scan Line
ON OFF
OFF OFF
先开启第一行,其余关闭。
TFT 玻璃电极
Data Line
OFF ON
OFF
OFF 接着关闭第一行,电压已经固定,所以显示颜色也已 固定。开启第二行,其余仍保持关闭。依此类推,可 完成整个画面之显示。
特点:视角好,色域高。但是响应时间较慢。功耗较大,成本较TN 屏高。显示模式: Normally black
6.TN技术
TN屏(Twisted Nematic(扭曲向列型)面板) 特点:视角较差,色域低。优点是成本较IPS低,响应时间快,功耗较小。 显示模式: Normally white
7.LVDS信号格式有两种,一种JEIDA的标准,一种是VESA的标准。 JEIDA(日本电子协会)数据格式: 单数据通道:
G
S
D
Scan Data
液晶特性:极性反转驱动
•液晶必须以交流信号驱动;
•长时间持某一极性,液晶分子可能受到破坏,导致出现液晶
极化现象。
VCOM (CF侧电极) --- +++
VCOM ++++
----
+
---
-
Vpixel
+(T+FT+侧电极)
正+极性驱动
Vpixel > Vcom
++++ ----
Vpixel 负极性驱动 Vpixel < Vcom
Frame Inversion

TFT-LCD工作原理

TFT-LCD工作原理

三、光刻设备简介 Aligner
正面图
三、光刻设备简介 Aligner
侧面图
三、光刻设备简介 Aligner
MAINBODY概述
集成mask stage和plate stage,还有一系列的检测及补偿器件, 这里是进行曝光的地方。
MAINBODY的功能以及硬件实现:
MAINBODY的功能就是将MASK上的图像精确的投射在glass上的光刻胶上, 使其感光,为了保证这个功能的实现, MAINBODY对应配置了两大系统。 光源系统 成 像 1. TFT Pattern 成像系统
工作过程演示
动画演示
三、光刻设备简介 Aligner
(2) Laser interference meter 功能与及结构: 利用光的干涉原理 功能:测定PS,MS 位置 结构:激光器,反射镜,接 收器,计算电路
三、光刻设备简介 Aligner
(3) A / S (alignment scope)
2测量照度的均匀性.
广义的plate stage 实际上包括plate stage base 和Plate stage chuck两个部分。
Plate chuck
三、光刻设备简介 Aligner
PS 搭载 glass 进行曝光
曝光光带
动画演示
三、光刻设备简介 Aligner
(3) ARC / X MAG
Y mask blading的主要作用是在曝光的过程中,在mask的下方遮光,以防止边缘出 现曝光不良。它主要是由两个挡板构成,在曝光的时候这两个挡板会移动到事先设 定的区域。它的初始位置由DEVICE DATA中的MB waiting进行设定。
三、光刻设备简介 Aligner

TFT液晶工作原理及常见不良分析

TFT液晶工作原理及常见不良分析
D. FPC压接问题。 E. IC压接问题。
二、偏光片的构造
• 偏光片的构造如图2所示,主要由PVA膜,TAC膜,
胶,离型膜,保护膜组成。PVA膜在经过延伸之 后,通常机械性质会降低,变得易碎裂。所以在 偏光基体(PVA)延伸完后,要在两侧贴上三醋酸纤 维(TAC)所组成的透明基板,一方面可做保护,一 方面则可防止膜的回缩。此外,在基板外层再加 一层感压胶、离型膜及保护膜(如图2)。
测出Y+Y-电压,然后根据分压原理即可计算出触 摸点的X坐标。
• 检测Y坐标:Y+,Y-间加参考电压,X+,X-接一起,
测出X+X-电压,然后根据分压原理即可计算出触 摸点的Y坐标。
• 上述过程由测试板上的TP驱动IC及程序自动完成。
2. 常见故障分析: 1)无触摸:触摸无反应 A. TP FPC断线。用万用表检测TP焊盘处电阻值。直
组装背光源等的模块组装。
• 4.TFT LCD DRIVER 的作用 • 产生液晶显示所需各种电压,处理外部
CPU送过来的指令。
• 5. LCD, IC, FPC, POL 的结构关系:
6、LCD+IC+FPC+POL 常见不 良现象分析
1)白屏:
A. 原理错误,LAYOUT错误。IM0,IM3接错,左右 反,其中某一引线错误,电源线接错,地线没接等。
3)显示颜色淡
A. 初始化代码。部分淡,部分不淡,常见 GAMMA代码不对。GAMMA 代码需LCD供应 商提供。初始化代码不要改变GAMMA值。
B. FPC上元器件虚焊(倍压电容,虑波电 容),造成VGH,VHL电压过小。 C. 晶振电阻过小。选择的晶振电阻过小。
D. 一般情况下与二极管无关。

最详细的TFTLCD液晶显示器结构及原理

最详细的TFTLCD液晶显示器结构及原理

最详细的TFTLCD液晶显示器结构及原理TFTLCD(薄膜晶体管液晶显示器)是一种广泛应用于消费电子产品中的显示技术。

它的结构相对复杂,涉及多个层次和部件。

下面将详细介绍TFTLCD液晶显示器的结构和工作原理。

1.基础液晶显示原理TFTLCD使用液晶物质的光电效应来显示图像。

液晶分为有机液晶和无机液晶两种类型。

当施加电场时,液晶分子会排列成特定的方式,光线通过液晶时会发生偏振现象。

通过控制电场的强度和方向,可以对光线进行精确控制,实现显示图像。

2.TFT液晶结构一个TFT液晶显示器主要包括以下几个部分:2.1前端玻璃基板前端玻璃基板是TFT液晶显示器的基础结构,其承载液晶层、电极、TFT芯片等关键组件。

2.2后端玻璃基板后端玻璃基板是用于封装液晶层和前端电极,同时也提供支持和保护的作用。

2.3液晶层液晶层是TFT液晶显示器的重要组成部分,其由液晶分子组成。

液晶分子分为垂直向上和垂直向下两种排列方式。

液晶层的液晶分子在正常情况下是扭曲排列的,通过施加电场,可以改变液晶分子的排列方式。

2.4像素结构TFT液晶显示器中的每个像素都由一对透明电极组成,它们位于液晶层的两侧。

其中一种电极是像素电极,用来控制液晶的取向,另一种是透光电极,用来调节光的透过程度。

当电场施加到液晶层时,液晶分子排列的方式会发生改变,从而控制光的透过程度,实现图像的显示。

2.5色彩滤光片色彩滤光片位于液晶层和玻璃基板之间,用于改变透过液晶后的光线的色彩。

每个像素点都有红、绿、蓝三个滤色片,通过控制光线通过滤色片的程度,可以实现不同颜色的显示。

2.6驱动电路TFT液晶显示器需要复杂的驱动电路来控制每个像素点的显示,以及刷新频率等参数。

驱动电路通常由TFT芯片和一系列的逻辑电路组成。

3.TFT液晶显示器的工作原理当TFT液晶显示器工作时,控制电压将被应用到像素电极上。

这会引起液晶层中液晶分子的重新排列。

具体来说,液晶分子会扭曲,改变光的透过程度,进而控制像素的颜色和亮度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

薄膜晶体管液晶显示器(TFT-LCD)具有重量轻、平板化、低功耗、无辐射、显示品质优良等特点,其应用领域正在逐步扩大,已经从音像制品、笔记本电脑等显示器发展到台式计算机、工程工作站(EWS)用监视器。

对液晶显示器要求也正在向高分辨率、高彩色化发展。

由于CRT显示器和液晶屏具有不同显示特性,两者显示信号参数也不同,因此在计算机(或MCU)和液晶屏之间设计液晶显示器驱动电路是必需,其主要功能是通过调制输出到LCD电极上电位信号、峰值、频率等参数来建立交流驱动电场。

本文实现了将VGA接口信号转换到模拟液晶屏上显示驱动电路,采用ADI 公司高性能DSP芯片ADSP-21160来实现驱动电路主要功能。

硬件电路设计
AD9883A是高性能三通道视频ADC可以同时实现对RGB三色信号实时采样。

系统采用32位浮点芯片ADSP-21160来处理数据,能实时完成伽玛校正、时基校正、图像优化等处理,且满足了系统各项性能需求。

ADSP-21160有6个独立高速8位并行链路口,分别连接ADSP-21160前端模数转换芯片AD9883A和后端数模转换芯片ADV7125。

ADSP-21160具有超级哈佛结构,支持单指令多操作数(SIMD)模式,采用高效汇编语言编程能实现对视频信号实时处理,不会因为处理数据时间长而出现延迟。

系统硬件原理框图如图1所示。

系统采用不同链路口完成输入和输出,可以避免采用总线可能产生通道冲突。

模拟视频信号由AD9883A完成模数转换。

AD9883A是个三通道ADC,因此系统可以完成单色视频信号处理,也可以完成彩色视频信号处理。

采样所得视频数字信号经链路口输入到ADSP-21160,完成处理后由不同链路口输出到ADV7125,完成数模转换。

ADV7125是三通道DAC,同样也可以用于处理彩色信号。

输出视频信号到灰度电压产生电路,得到驱动液晶屏所需要驱动电压。

ADSP-21160还有通用可编程I/O标志脚,可用于接受外部控制信号,给系统及其模块发送控制信息,以使整个系统稳定有序地工作。

例如,ADSP-21160为灰度电压产生电路和液晶屏提供必要控制信号。

另外,系统还设置了一些LED灯,用于直观指示系统硬件及DSP内部程序各模块工作状态。

图1 系统硬件原理框图
本设计采用从闪存引导方式加载DSP程序文件,闪存具有很高性价比,体积小,功耗低。

由于本系统中闪存既要存储DSP程序,又要保存对应于不同伽玛值查找表数据以及部分预设显示数据,故选择ST公司容量较大M29W641DL,既能保存程序代码,又能保存必要数据信息。

图2为DSP与闪存接口电路。

因为采用8位闪存引导方式,所以ADSP-21160地址线应使用A20~A0,数据线为D39~32,读、写和片选信号分别接到闪存相应引脚上。

图2 DSP和Flash接口电路
系统功能及实现
本设计采用ADSP-21160完成伽玛校正、时基校正、时钟发生器、图像优化和控制信号产生等功能。

伽玛校正原理
在LCD中,驱动IC/LSIDAC图像数据信号线性变化,而液晶电光特性是非线性,所以要调节对液晶所加外加电压,使其满足液晶显示亮度线性,即伽玛(γ)校正。

γ校正是一个实现图像能够尽可能真实地反映原物体或原图像视觉信息重要过程。

利用查找表来补偿液晶电光特性γ校正方法能使液晶显示系统具有理想传输函数。

未校正时液晶显示系统输入输出曲线呈S形。

伽玛表作用就是通过对ADC进来信号进行反S形非线性变换,最终使液晶显示系统输入输出曲线满足实际要求。

LCDγ校正图形如图3所示,左图是LCD电光特性曲线图,右图是LCD亮度特性曲线和电压模数转换图。

图3 LCDγ校正示意图
伽玛校正实现
本文采用较科学γ校正处理技术,对数字三基色视频信号分别进行数字γ校正(也可以对模拟三基色视频信号分别进行γ校正)。

在完成γ校正同时,并不损失灰度层次,使全彩色显示屏图像更鲜艳,更逼真,更清晰。

某单色光γ调整过程如图4所示,其他二色与此相同。

以单色光γ调整为例:ADSP-21160 首先根据外部提供一组控制信号,进行第一次查表,得到γ调整系数(γ值)。

然后根据该γ值和输入显示数据进行第二次查表,得到经校正后显示数据。

第一次查表γ值是通过外部控制信号输入到控制模块进行第一次查表得
到。

8位显示数据信号可查表数字0~255种灰度级显示数据(γ校正后)。

图4 单色光γ调整过程
图像优化
为了提高图像质量,ADSP-21160内部还设计了图像效果优化及特技模块,许多在模拟处理中无法进行工作可以在数字处理中进行,例如,二维数字滤波、轮廓校正、细节补偿频率微调、准确彩色矩阵(线性矩阵电路)、黑斑校正、g校正、孔阑校正、增益调整、黑电平控制及杂散光补偿、对比度调节等,这些处理都提高了图像质量。

数字特技是对视频信号本身进行尺寸、位置变化和亮、色信号变化数字化处理,它能使图像变成各种形状,在屏幕上任意放缩、旋转等,这些是模拟特技无法实现。

还可以设计滤波器来滤除一些干扰信号和噪声信号等,使图像清晰度更高,更好地再现原始图像。

所有信号和数据都是存储在DSP内部,由它内部产生时钟模块和控制模块实现。

时基校正及系统控制
由于ADSP-21160内部各个模块功能和处理时间不同,各模块之间存在一定延时,故需要进行数字时基校正,使存储器最终输出数据能严格对齐,而不会出现信息重叠或不连续。

数字时基校正主要用于校正视频信号中行、场同步信号时基误差。

首先,将被校正信号以它时基信号为基准写入存储器,然后,以TFT-LCD 时基信号为基准读出,即可得到时基误差较小视频信号。

同时它还附加了其他功能,可以对视频信号色度、亮度、饱和度进行调节,同时对行、场相位、负载波相位进行调节,并具有时钟台标功能。

控制模块主要负责控制时序驱动逻辑电路以管理和操作各功能模块,如显示数据存储器管理和操作,负责将显示数据和指令参数传输到位,负责将参数寄存器内容转换成相应显示功能逻辑。

内部信号发生器产生控制信号及地址,根据水平和垂直显示及消隐计数器值产生控制信号。

此外,它还可以接收外部控制信号,以实现人机交互,从而使该电路功能更加强大,更加灵活。

此外,ADSP21160内部还设计了I2C总线控制模块,模拟I2C总线工作,为外部具有I2C接口器件提供SCLK(串行时钟信号)和SDA(双向串行数据信号)。

模拟I2C工作状态如图5和图6所示。

图5 串行端口读/写时序
图6串行接口-典型字节传送
系统软件实现
在软件设计如图7所示,采用Matlab软件计算出校正值,并以查找表文件形式存储,供时序调用。

系统上电开始,首先要完成ADSP-21160一系列寄存器设置,以使DSP能正确有效地工作。

当ADSP-21160接收到有效视频信号以后,根据外部控制信息确定γ值。

为适应不同TFT-LCD屏对视频信号显示,系统可以通过调整γ值,以调节显示效果到最佳。

再如图4所示,对先前预存文件进行查表,得到所需矫正后值,然后暂存等待下一步处理。

系统还可以根据视频信号特点和用户需要完成一些图像优化和特技,如二维数字滤波、轮廓校正、增益调整、对比度调节等。

这些操作可由用户需求选择性使用。

利用ADSP-21160还可以实现图像翻转、停滞等特技。

最后进行数字时基校正,主要用于校正视频信号中行、场同步信号时基误差,使存储器最终输出数据能严格对齐,而不会出现信息重叠或不连续。

除了以上所述主要功能以外,ADSP-21160还根据时序控制信号,为灰度电压产生电路和TFT-LCD屏提供必要控制信号。

另外,ADSP-21160还能设置驱动通用I/O脚配置LED灯,显示系统工作状态。

图7 软件流程图
结束语
本文介绍了基于ADSP-21160液晶驱动电路设计。

该驱动电路能完成伽马校正、图像优化及时基校正等功能,并能提供具有足够驱动能力时序和逻辑控制信号,能驱动大部分TFT-LCD。

用ADSP-21160设计驱动电路实时性好、通用性强、速度快且高效;而且还能在ADSP-21160中嵌入其他功能模块控制,增强系统功能。

这样不仅充分利用了ADSP-21160资源,又节省了外部资源,简化了硬件电路设计。

作者将SONYLCX029CPT显示屏应用在本文所设计驱动电路上,显示出质量很高图像,因此该设计满足驱动液晶显示器要求。

相关文档
最新文档