八年级数学轴对称知识点总结

合集下载

8年级上册数学第三单元《第十三章 轴对称》知识点总结

8年级上册数学第三单元《第十三章 轴对称》知识点总结

第十三章轴对称一、概念1.把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。

这条直线就是它的对称轴。

这时我们也说这个图形关于这条直线(成轴)对称。

2. 把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。

这条直线叫做对称轴。

折叠后重合的点是对应点,叫做对称点3、让学生知道轴对称图形(一个图形,有一条或多条对称轴)和轴对称(两个图形,只有一条对称轴)的区别与联系4.轴对称的性质①关于某直线对称的两个图形是全等形。

②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。

二、线段的垂直平分线1.经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。

2.线段垂直平分线上的点与这条线段的两个端点的距离相等3.与一条线段两个端点距离相等的点,在线段的垂直平分线上三、用坐标表示轴对称小结:在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数.关于y轴对称的点横坐标互为相反数,纵坐标相等.点(x, y)关于x轴对称的点的坐标为(x,- y).点(x, y)关于y轴对称的点的坐标为(-x, y).注意:像类似点(x,y)关于X=1对称的题目要学会做法2.三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等注意:知道角平分线交点(到边相等)和垂直平分线交点(到点相等)的区别四、等腰三角形1.等腰三角形的性质①.等腰三角形的两个底角相等。

(等边对等角)②.等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。

(三线合一)2、等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等。

(等角对等边)注意:三线合一不能直接来判定等腰三角形,需要证明全等。

八年级数学复习考点1 轴对称及轴对称图形的意义

八年级数学复习考点1 轴对称及轴对称图形的意义

ABCDP八年级数学复习考点1 轴对称及轴对称图形的意义一、考点讲解:1.轴对称:两个图形沿着一条直线折叠后能够互相重合,我们就说这两个图形成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点,对应线段叫做对称线段.2.如果一个图形沿某条直线对折后,直线两旁的部分能够互相重合,那么这个图形就叫做轴对称图形,这条直线叫做对称轴.3.轴对称的性质:如果两个图形关于某广条直线对称,那以对应线段相等,对应角相等,对应点所连的线段被对称轴垂直平分,对应点的连线互相平行或在同一条直线上,对应的线段(或其延长线)相交,交点在对称轴上。

4.简单的轴对称图形:线段:有两条对称轴:线段所在直线和线段中垂线. 角:有一条对称轴:该角的平分线所在的直线. 等腰(非等边)三角形:有一条对称轴,底边中垂线. 等边三角形:有三条对称轴:每条边的中垂线. 等腰梯形:过两底中点的直线 正n 边形有n 条对称轴 圆有无数条对称轴。

二、基本图形:1.已知:点A 、B 分别在直线l 的同侧,在直线l 上找一点P ,使PA+PB 最短。

变形1:正方形ABCD 中,点E 是AB 边上的一点,在对角线AC 上找一点P ,使PA+PB 最短。

变形2:已知点A (1,6)、点B (6,4),在x 轴和y 轴上各找一点C 、D ,使四边形ACDB 的周长最短。

三、经典考题剖析:1.(2006无锡市3分)在下面四个图案中,如果不考虑图中的文字和字母,那么不是轴对称图形的是( )2.(2006 山西省3分)下列图形中是轴对称图形的是( )。

3.(2006河南省3分)下列图形中,是轴对称图形的有( )ABABlB A CDA.4个B.3个C.2个D.1个4.(2006鸡西市3分)在下列四个图案中,既是轴对称图形,又是中心对称图形的是( )(A) (B) (C) (D)5.(2006苏州市3分)如图,如果直线m 是多边形ABCDE 的对称轴,其中∠A=1300, ∠B=1100.那么∠BCD 的度数等于 ( ) A. 400B.500C .60D.7006.(2006梅州市3分)小明在镜中看到身后墙上的时钟,实际时间最接近8时的是下图中的( )7.(2006 湛江市6分)如图5,请你画出方格纸中的图形关于点O 的中心对称图形,并写出整个图形的对称轴的条数.四、针对性训练:1.(2006宜昌市3分)从汽车的后视镜中看见某车车牌的后5位号码是 ,该车的后5位号码实际是 。

人教版初二数学13章轴对称图形复习知识点

人教版初二数学13章轴对称图形复习知识点
线段垂直平分线上的点到线段两个端点的距离相等; (3)线段垂直平分线的判定: 到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
如图,AD与BC相交于点O,OA=OC,∠A=∠C,BE=DE.求证:OE垂直平分BD.
5.如图,AC=AD,BC=BD,则有( )
A
A.AB垂直平分CD
B.CD垂直平分AB
底边上的高互相重合。
(3)判别方法:①有两条边相等(概念)
②等角对等边
2.等边三角形 (1)三边都相等的三角形叫做等边三角形,它是轴对称图形,有三条对称轴。
(2)性质:等边三角形的三个角都是60° (3)判定: ①三个角都相等的三角形是等边三角形 ②有一个角是60°的等腰三角形是等边三角形 ③有三个边都相等的三角形是等边三角形
∴ AE+EF+AF =BE+EF+CF=10cm
C∠EAF= ∠BAC-∠BAE-∠CAF =120°- ∠B- ∠C=60°
例6 如图,△ABC中,AB=AC,∠A=50°,AB的垂直平分线交AC于D,求∠ FBC的度数。
A
解:∵ AB=AC, ∠A=50°
∴ ∠ABC= ∠C=65°
又∵ AC是线段AB的垂直平分线

(x,-y)
(-x,y)
1.已知点P1(a,3)和点P2(4,b)关于y轴对称,则(a+b)2007= -1
2.点A(2,5)与点B(2,-3)关于直线 y=1
对称.
知识点6
•等腰三角形的性质:等边对等角 三线合一
• 等腰三角形的判定: ①有两条边相等(概念) ②等角对等边
知识点7
初中阶段五种基本的尺规作图 (1)作一条线段等于已知线段; (2)作一个角等于已知角; (3)作已知角的平分线; (4)作线段的垂直平分线; (5)过直线外一点作已知直线的垂线。

第13章轴对称知识点

第13章轴对称知识点

第13章 轴对称知识点总结一、定义1.轴对称图形:一个图形沿一条直线对折,直线两旁的部分能够完全重合。

这条直线叫做对称轴。

2.轴对称:两个图形沿一条直线对折,其中一个图形能够与另一个图形完全重合。

这条直线叫做对称轴。

3.轴对称图形与轴对称的区别和联系:区别:轴对称图形讨论的是“一个图形与一条直线的对称关系”;轴对称讨论的是“两个图形与一条直线的对称关系”。

联系:把轴对称图形中“对称轴两旁的部分看作两个图形”便是轴对称;把轴对称的“两个图形看作一个整体”便是轴对称图形。

4.轴对称的性质:(1)成轴对称的两个图形全等。

(2)对称轴与对应点连结的线段垂直。

(3)对应点到对称轴的距离相等。

(4)对应点的连线互相平行。

二、.线段的垂直平分线(1)定义:经过线段的中点且与线段垂直的直线,叫做线段的垂直平分线。

∵CA=CB ,直线m ⊥AB 于C ,∴直线m 是线段AB 的垂直平分线。

(2)垂直平分线性质:线段垂直平分线上的点与线段两端点的距离相等。

∵CA=CB ,直线m ⊥AB 于C ,点P 是直线m 上的点。

∴PA=PB 。

(3)垂直平分线判定:∵PA=PB ,直线m 是线段AB 的垂直平分线,∴点P 在直线m 上 。

三、等腰三角形1.定义:有两条边相等的三角形,叫做等腰三角形。

①相等的两条边叫做腰。

第三条边叫做底。

②两腰的夹角叫做顶角。

③腰与底的夹角叫做底角。

注意:等腰三角形底角只能是锐角。

2.等腰三角形性质:①等腰三角形是轴对称图形,其对称轴是“底边的垂直平分线”,只有一条。

②等边对等角。

③三线(垂线、中线、角平分线)合一。

3.等腰三角形判定①有两条边相等的三角形是等腰三角形。

m CA B D'D C'B'A'K J I H 底边底角底角顶角腰腰CBA②有两个角相等的三角形是等腰三角形。

四、等边三角形1.等边三角形定义:三条边都相等的三角形,叫做等边三角形。

说明:等边三角形就是腰和底相等的等腰三角形,因此,等边三角形是特殊的等腰三角形。

初中数学轴对称图形知识点加习题总结

初中数学轴对称图形知识点加习题总结

知识点1 轴对称图形如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;这时,我们也说这个图形关于这条直线的轴对称。

知识点2 对称轴的性质1.对称轴是一条直线。

2.在轴对称图形中,对称轴两侧的对应点到对称轴两侧的距离相等。

3.在轴对称图形中,沿对称轴将它对折,左右两边完全重合。

4.图形对称例1下面哪些图形是轴对称图形?画出轴对称图形的对称轴。

例2.推理游戏:下面应该是什么图形?知识点3线段垂直平分线定义及其性质定义:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

性质1.垂直平分线垂直且平分其所在线段。

2.垂直平分线上任意一点,到线段两端点的距离相等。

逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

3.如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。

例3.如图,直线CD是线段AB的垂直平分线,P为直线CD上的一点,已知线段PA=6,则线段PB的长度为〔〕A.3 B.5 C.6 D.8解析:∵直线CD是线段AB的垂直平分线,∴PB=PA,∵PA=6,∴PB=6.答案C.例4如以下图,DE是线段AB的垂直平分线,以下结论一定成立的是〔〕A.ED=CDB.∠DAC=∠BC.∠C>2∠BD.∠B+∠ADE=90°分析:∵DE是线段AB的垂直平分线,∴AD=BD.∴∠B=∠BAD,∠ADE=∠BDE.∴∠B+∠ADE=90°答案D课堂练习11.点A,B关于直线a对称,P是直线a上的任意一点,以下说法不正确的选项是〔〕A.直线AB与直线a垂直B.直线a是点A和点B的对称轴C.线段PA与线段PB相等D.假设PA=PB,则点P是线段AB的中点2.三角形中到三边的距离相等的点是〔〕A.三条边的垂直平分线的交点B.三条高的交点C.三条中线的交点D.三条角平分线的交点3.已知A和B两点在线段EF的中垂线上,且∠EAF=100°,∠EBF=70°,则∠AEB等于( )A、95°B、15°C、95°或15°D、170°或30°4.已知:如图,线段AB垂直平分线段CD则AC=。

八年级轴对称数学知识点

八年级轴对称数学知识点

八年级轴对称数学知识点
轴对称是数学中比较基础的概念之一,对数学学习的深入和有效应用有很大帮助。

在初中数学学习中,八年级轴对称是一个非常重要的知识点。

本文将就八年级轴对称这个知识点进行详细的介绍。

一、什么是轴对称
轴对称是指图形对某条直线具有对称性。

具体的表现形式是:图形关于某一直线对称之后,在原图形的基础上能“翻转”到副本的位置,并且重叠相拼即可得到。

二、轴对称的性质
1、轴对称图形的对称轴是唯一的。

2、轴对称图形中的任意一点,关于对称轴的对称点必然满足在对称轴同侧。

3、轴对称图形的内部点对称于对称轴上的点,整体上左右对称。

三、常见八年级轴对称问题类型
1、求轴对称的轴线:当给出轴对称图形时,需要从图形上分
析出轴对称的轴线。

2、用轴对称复制图形:当给出了一个图形和它的对称轴时,
需要求出轴对称的图形。

3、判断轴对称图形:当给出来了几个图形时,需要判断哪些
是轴对称图形。

4、证明轴对称性:当给出一个轴对称图形时,需要证明这个
图形具有轴对称性。

四、轴对称的应用
1、绘画:许多艺术作品都运用了轴对称的特性,如某些建筑物、雕塑等,能够更加精确和美观的呈现在人们面前。

2、工程:在设计一些具有轴对称性质的工程中能够更好地满
足实际需求,如建筑、桥梁等。

3、其他学科:在生物、化学等学科中都涉及到轴对称的概念。

五、本章小结
八年级轴对称是一个相对比较基础且重要的知识点,对于学习几何以及正方形、矩形、圆等问题都有着一定的应用。

掌握了轴对称的性质及应用,能够更好地促进数学的学习效果,提高学生的综合素质。

八年级数学上册轴对称知识点总结

八年级数学上册轴对称知识点总结

轴对称知识点总结(zǒngjié)1、轴对称图形(túxíng):一个图形沿一条直线对折,直线两旁(liǎngpáng)的部分能够完全重合。

这条直线(zhíxiàn)叫做对称轴。

互相重合的点叫做对应点。

2、轴对称:两个(liǎnɡɡè)图形沿一条直线对折,其中一个图形能够与另一个图形完全重合。

这条直线叫做对称轴。

互相重合的点叫做对应点。

3、轴对称图形与轴对称的区别与联系:(1)区别。

轴对称图形讨论的是“一个图形与一条直线的对称关系”;轴对称讨论的是“两个图形与一条直线的对称关系”。

(2)联系。

把轴对称图形中“对称轴两旁的部分看作两个图形”便是轴对称;把轴对称的“两个图形看作一个整体”便是轴对称图形。

4、轴对称的性质:(1)成轴对称的两个图形全等。

(2)对称轴与连结“对应点的线段”垂直。

(3)对应点到对称轴的距离相等。

(4)对应点的连线互相平行。

5、线段的垂直平分线:(1)定义。

经过线段的中点且与线段垂直的直线,叫做线段的垂直平分线。

如图2,∵CA=CB,直线m⊥AB于C,∴直线m是线段AB的垂直平分线。

(2)性质。

线段垂直平分线上的点与线段两端点的距离相等。

如图3,∵CA=CB,直线m⊥AB于C,点P是直线m上的点。

∴PA=PB 。

(3)判定。

与线段两端点距离相等的点在线段的垂直平分线上。

如图3,∵PA=PB,直线m是线段AB的垂直平分线,∴点P在直线m上。

6、等腰三角形:图1 图2 图3(1)定义。

有两条边相等的三角形,叫做等腰三角形。

①相等的两条边叫做腰。

第三条边叫做底。

②两腰的夹角叫做顶角。

③腰与底的夹角叫做底角。

说明:顶角=180°- 2底角底角=可见,底角只能是锐角。

(2)性质。

①等腰三角形是轴对称图形,其对称轴是“底边的垂直平分线”,只有一条。

②等边对等角。

如图5,在△ABC中∵AB=AC∴∠B=∠C 。

数学轴对称的性质知识点总结和重难点精析

数学轴对称的性质知识点总结和重难点精析

数学轴对称的性质知识点总结和重难点精析一、知识梳理1.轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。

2.轴对称的性质(1)关于某条直线对称的两个图形是全等形;(2)如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线;(3)两个关于某直线对称的图形在对应线段或延长线上相交时,交点在对称轴上;(4)对应线段平行(或或在同一直线上)且相等。

3.轴对称的应用:(1)解决与轴对称相关的问题,关键是找到对称轴,然后根据轴对称的性质,找到对称点或对称线段。

(2)确定两个点关于某直线对称的问题,可以以其中一点为对称点,连接对称轴,再找到另一个点的对应点即可。

二、重难点精析1.轴对称的性质是难点,需要灵活运用。

在学习的过程中,可以通过做大量的例题来加深对轴对称性质的理解。

2.解决与轴对称相关的问题时,找到对称轴是关键。

可以通过画图的方式,来找到对称轴,然后根据对称轴的性质解决问题。

3.对于两个点关于某直线对称的问题,可以通过以其中一点为对称点,连接对称轴,再找到另一个点的对应点来解决。

三、例题解析例1:已知A、B两点关于直线m对称,A、B两点间的距离为5cm,AB与直线m的交点为C,AC的长度为2.5cm。

求:(1)B点在A 点的什么位置?(2)B点到直线m的距离为多少?解:(1)因为A、B两点关于直线m对称,所以B点在A点的对称位置,且AB与直线m的交点为C,AC的长度为2.5cm。

因为A、B 两点间的距离为5cm,所以BC的长度也为2.5cm,因此B点在A点的正上方或正下方2.5cm处。

(2)因为B、A两点关于直线m对称,所以BC的长度等于AC的长度,即2.5cm。

因此B点到直线m的距离为2.5cm。

例2:在三角形ABC中,AB=AC=10cm,BC=8cm。

求三角形ABC 的面积。

解:过A点作AD垂直于BC于D点,因为AB=AC=10cm,所以BD=CD=4cm。

初二数学期末考试轴对称知识点总结

初二数学期末考试轴对称知识点总结

初二数学期末考试轴对称知识点总结初中数学中,轴对称是一个重要的几何概念。

轴对称是指一个图形或者一个物体能够与某条轴线对称,即图形或物体的一部分关于轴线对称地出现在另一部分的相对位置。

轴对称的性质是常用的,它在初中数学的课本中会有详细的介绍和讲解。

以下是对初二数学期末考试轴对称知识点的总结:一、轴对称的定义和性质:1. 轴对称:如果一个图形、物体或者函数,相对于某条轴线可以对称地出现,那么就称这个图形、物体或者函数是轴对称的。

2. 轴线:轴线是指对称图形相对出现的那根线。

3. 轴对称的性质:轴对称的图形具有以下性质:- 轴线上的点不动。

- 对称轴的两侧对称,即轴线上的一点与该图形对称轴另一侧的点,关于对称轴中点对称。

- 对称轴的两侧的点与对称轴上的一点对称关系。

二、判断轴对称的方法:1. 观察法:通过观察图形是否关于某条线对称,可以判断图形是否轴对称。

如果图形可以重叠折叠,使得一个部分与另一个部分完全重合,那么这个图形就是轴对称的。

2. 对称线法:使用直尺将图形的两个对称部分的最近相对线段连接起来,如果这条线段与直尺重合,那么这条线段就是图形的对称线。

3. 折叠法:将纸张上的图形剪下来,然后将图形沿着一个假想的轴线折叠起来,如果两个对称的部分完全重合,那么这个图形就是轴对称的。

三、轴对称的常见图形:1. 一阶图形:一个点、一条线段、一条射线、一个无面积的抽象图形等。

2. 二阶图形:矩形、正方形、菱形、圆、椭圆等。

3. 三阶图形:五角星、六边形等。

四、轴对称和平移、旋转的关系:1. 平移:平移是图形在平面上沿水平方向或者垂直方向移动的变换,平移不改变图形的形状和大小,也不改变图形的轴对称性。

2. 旋转:旋转是图形围绕一个点或者直线进行旋转的变换,旋转不改变图形的形状和大小,但可能改变图形的轴对称性。

有些图形在旋转一定角度之后仍然保持轴对称,有些则不再保持轴对称。

五、轴对称的应用:1. 填充对称:将一个图形沿着对称轴镜像复制,用来填充平面空间。

初二数学知识点详解之轴对称

初二数学知识点详解之轴对称

初二数学知识点详解之轴对称一、轴对称图形1.把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。

这条直线就是它的对称轴。

这时我们也说这个图形关于这条直线(成轴)对称。

2.把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。

这条直线叫做对称轴。

折叠后重合的点是对应点,叫做对称点3、轴对称图形和轴对称的区别与联系4.轴对称与轴对称图形的性质①关于某直线对称的两个图形是全等形。

②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。

⑤两个图形关于某条直线成轴对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。

二、线段的垂直平分线1.定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。

2.性质:线段垂直平分线上的点与这条线段的两个端点的距离相等3.判定:与一条线段两个端点距离相等的点,在线段的垂直平分线上三、用坐标表示轴对称小结:1.在平面直角坐标系中①关于x轴对称的点横坐标相等,纵坐标互为相反数;②关于y轴对称的点横坐标互为相反数,纵坐标相等;③关于原点对称的点横坐标和纵坐标互为相反数;④与X轴或Y轴平行的'直线的两个点横(纵)坐标的关系;⑤关于与直线X=C或Y=C对称的坐标点(x,y)关于x轴对称的点的坐标为_(x,-y)_____.点(x,y)关于y轴对称的点的坐标为___(-x,y)___.2.三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等四、(等腰三角形)知识点回顾1.等腰三角形的性质①.等腰三角形的两个底角相等。

(等边对等角)②.等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。

(三线合一)理解:已知等腰三角形的一线就可以推知另两线。

初中数学知识点——轴对称与中心对称

初中数学知识点——轴对称与中心对称

初中数学知识点——轴对称与中心对称一、轴对称与轴对称图形:1.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做对称点,对应线段叫做对称线段。

2.轴对称图形:如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。

注意:对称轴是直线而不是线段3.轴对称的性质:(1)关于某条直线对称的两个图形是全等形;(2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线;(3)两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上;(4)如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。

4.线段垂直平分线:(1)定义:垂直平分一条线段的直线是这条线的垂直平分线。

(2)性质:①线段垂直平分线上的点到这条线段两个端点的距离相等;②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

注意:根据线段垂直平分线的这一特性可以推出:三角形三边的垂直平分线交于一点,并且这一点到三个顶点的距离相等。

5.角的平分线:(1)定义:把一个角分成两个相等的角的射线叫做角的平分线.(2)性质:①在角的平分线上的点到这个角的两边的距离相等.②到一个角的两边距离相等的点,在这个角的平分线上.注意:根据角平分线的性质,三角形的三个内角的平分线交于一点,并且这一点到三条边的距离相等.6.等腰三角形的性质与判定:性质:(1)对称性:等腰三角形是轴对称图形,等腰三角形底边上的中线所在的直线是它的对称轴,或底边上的高所在的直线是它的对称轴,或顶角的平分线所在的直线是它的对称轴;(2)三线合一:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合;(3)等边对等角:等腰三角形的两个底角相等。

说明:等腰三角形的性质除“三线合一”外,三角形中的主要线段之间也存在着特殊的性质,如:①等腰三角形两底角的平分线相等;②等腰三角形两腰上的中线相等;③等腰三角形两腰上的高相等;④等腰三角形底边上的中点到两腰的距离相等。

初中数学知识点:轴对称

初中数学知识点:轴对称

初中数学知识点:轴对称轴对称知识点一、轴对称与轴对称图形:1.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做对称点,对应线段叫做对称线段。

2.轴对称图形:如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。

注意:对称轴是直线而不是线段3.轴对称的性质:(1)关于某条直线对称的两个图形是全等形;(2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线;(3)两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上;(4)如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。

4.线段垂直平分线:(1)定义:垂直平分一条线段的直线是这条线的垂直平分线。

(2)性质:①线段垂直平分线上的点到这条线段两个端点的距离相等;②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

注意:根据线段垂直平分线的这一特性可以推出:三角形三边的垂直平分线交于一点,并且这一点到三个顶点的距离相等。

5.角的平分线:(1)定义:把一个角分成两个相等的角的射线叫做角的平分线.(2)性质:①在角的平分线上的点到这个角的两边的距离相等.②到一个角的两边距离相等的点,在这个角的平分线上.注意:根据角平分线的性质,三角形的三个内角的平分线交于一点,并且这一点到三条边的距离相等.6.等腰三角形的性质与判定:性质:(1)对称性:等腰三角形是轴对称图形,等腰三角形底边上的中线所在的直线是它的对称轴,或底边上的高所在的直线是它的对称轴,或顶角的平分线所在的直线是它的对称轴;(2)三线合一:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合;(3)等边对等角:等腰三角形的两个底角相等。

说明:等腰三角形的性质除三线合一外,三角形中的主要线段之间也存在着特殊的性质,如:①等腰三角形两底角的平分线相等;②等腰三角形两腰上的中线相等;③等腰三角形两腰上的高相等;④等腰三角形底边上的中点到两腰的距离相等。

【八上数学】《轴对称》最全知识点汇总

【八上数学】《轴对称》最全知识点汇总

5、垂直平分线(中垂线)定义垂直并且平分⼀条线段的直线,叫做这条线段的垂直平分线.书写格式:判定:∵AO=A′O,∠1=90°,∴l 是AA′的垂直平分线.性质:∵l是AA′的垂直平分线,∴AO=A′O,∠1=∠2=90° .6、轴对称性质成轴对称的两个图形全等,且(1)对应点的连线被对称轴垂直平分.(2)对应点的连线互相平⾏(或在同⼀条直线上).(3)对应线段相等,对应⾓相等.(4)对应线段所在直线的交点在对称轴上(或对应线段所在直线互相平⾏).如图:(1)AA′,BB′,CC′,DD′,被l垂直平分.(2)AA′∥BB′∥CC′,CC′、DD′在同⼀直线上.(3)AB=A′B′,BC=B′C′,CD=C′D′,AD=A′D′,∠BAD=∠B′A′D′,∠ABC=∠A′B′C′,∠BCD=∠B′C′D′,∠CDA=∠C′D′A′.(4)BA、B′A′,BC、B′C′,CD、C′D′的延长线交点在l上.DA、D′A′的延长线平⾏.7、对称轴的作法法1:作⼀条对应点的连线,并作其中垂线.法2:作两条对应点的连线,并分别作其中点,两点确定⼀条直线.法3:分别延长两对对应线段,确定两个交点,两点确定⼀条直线.8、给出⼀个图形及对称轴,作其对称图形的作法过原图形各点画对称轴的垂线,以各点到垂⾜的距离为半径,截取相等,将所作对应点分别相连.⼆、实战演练例1:请在下列三个2×2的⽅格中,各画出⼀个三⾓形,要求所画三⾓形与图中三⾓形成轴对称,且所画的三⾓形顶点与⽅格中的⼩正⽅形顶点重合,并将所画三⾓形涂上阴影.分析:我们应该利⽤轴对称图形的性质,先选择不同的直线当对称轴,再作对称图形.显然⼤⽅格作为正⽅形,有4条对称轴,⽽还有⼀条⽐较难想,对称轴可以经过斜边和直⾓边的中点.解答:例2:如图,桌⾯上有A、B两球,若要将B球射向桌⾯任意⼀边,使⼀次反弹后击中A球,则可以瞄准的点有哪些?分析:本题中,对于桌⾯反弹的问题,其实属于物理中的光路问题,⼊射⾓等于反射⾓,⽽将⼊射⾓作对称后,恰好与反射⾓是对顶⾓,光线在同⼀直线上,因此我们考虑作对称.解答:变式:如图是⼀个台球桌⾯的⽰意图,图中四个⾓上的阴影部分分别表⽰四个⼊球孔.若⼀个球按图中所⽰的⽅向被击出(球可以经过多次反弹),则该球最后落⼊的球袋是______袋.分析:本题与例2类似,但如果每次都作对称,未免太过⿇烦,我们不难发现⼊射线与桌边的夹⾓为45°,则反射后的夹⾓也为45°,问题得解.解答:例3:如图,已知∠AOB=60°,点P为∠AOB内⼀点,分别作点P关于OA,OB的对称点P1,P2,连接P1P2,交OA于点M,交OB于点M.(1)连接OP1,OP2,求∠P1OP2的度数.(2)若P1P2=8,求△PMN周长.分析:(1)要求∠P1OP2的度数,直接求显然很困难,我们不妨从对应线段考虑,则想到连接OP.(2)同样的,将组成三⾓形的三条线段中,能找到对应相等的线段找出,进⾏转化.解答:变式:如图,△ABC和△A′B′C′关于直线MN对称,△A′B′C′和△A′′B′′C′′关于直线EF对称.(1)画出直线EF;(2)直线MN与EF相交于点O,试探究∠BOB′′与直线MN、EF所夹锐⾓α的数量关系.分析:(1)问不难,只需⽤3种⽅法中的任意⼀种即可.(2)问与例3类似,准确依据题意,画出图形后,根据对称性,连接对应线段就能有所突破.解答:(1)如图,连接B′B′′,C′C′′,各取中点,连接后,直线EF即为所求.(2)连接OB′,∵△ABC和△A′B′C′关于直线MN对称,∴∠BOM=∠B′OM,同理可得∠B′OE=∠B′′OE,∴∠BOB′′=∠BOB′+∠B′OB′′=2∠B′OM+2∠B′OE=2∠MOE=2α.。

八年级数学上册轴对称知识点总结

八年级数学上册轴对称知识点总结

轴对称知识点总结1、轴对称图形:一个图形沿一条直线对折,直线两旁的部分能够完全重合。

这条直线叫做对称轴。

互相重合的点叫做对应点。

2、轴对称:两个图形沿一条直线对折,其中一个图形能够与另一个图形完全重合。

这条直线叫做对称轴。

互相重合的点叫做对应点。

3、轴对称图形与轴对称的区别与联系:(1)区别。

轴对称图形讨论的是“一个图形与一条直线的对称关系” ;轴对称讨论的是“两个图形与一条直线的对称关系”。

(2)联系。

把轴对称图形中“对称轴两旁的部分看作两个图形”便是轴对称;把轴对称的“两个图形看作一个整体”便是轴对称图形。

4、轴对称的性质:(1)成轴对称的两个图形全等。

(2)对称轴与连结“对应点的线段”垂直。

(3)对应点到对称轴的距离相等。

(4)对应点的连线互相平行。

5、线段的垂直平分线:(1)定义。

经过线段的中点且与线段垂直的直线,叫做线段的垂直平分线。

如图2,∵CA=CB ,直线m ⊥AB 于C ,∴直线m 是线段AB 的垂直平分线。

(2)性质。

线段垂直平分线上的点与线段两端点的距离相等。

如图3,∵CA=CB ,直线m ⊥AB 于C , 点P 是直线m 上的点。

∴PA=PB 。

(3)判定。

与线段两端点距离相等的点在线段的垂直平分线上。

如图3,∵PA=PB ,直线m 是线段AB 的垂直平分线, ∴点P 在直线m 上 。

6、等腰三角形:(1)定义。

有两条边相等的三角形,叫做等腰三角形。

①相等的两条边叫做腰。

第三条边叫做底。

②两腰的夹角叫做顶角。

③腰与底的夹角叫做底角。

说明:顶角=180°- 2底角底角=顶角顶角21-902180︒=-︒ 可见,底角只能是锐角。

(2)性质。

①等腰三角形是轴对称图形,其对称轴是“底边的垂直平分线” ,只有一条。

②等边对等角。

如图5,在△ABC 中 ∵AB=AC∴∠B=∠C 。

③三线合一。

(3)判定。

①有两条边相等的三角形是等腰三角形。

如图5,在△ABC 中, ∵AB=AC∴△ABC 是等腰三角形 。

八年级上册数学第十三章 轴对称 知识点总结

八年级上册数学第十三章  轴对称 知识点总结

第十三章轴对称一、知识框架:二、知识概念:1.基本概念:⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.⑸等边三角形:三条边都相等的三角形叫做等边三角形.2.基本性质:⑴对称的性质:①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.②对称的图形都全等.⑵线段垂直平分线的性质:①线段垂直平分线上的点与这条线段两个端点的距离相等.②与一条线段两个端点距离相等的点在这条线段的垂直平分线上.⑶关于坐标轴对称的点的坐标性质①点P (x, y) 关于x 轴对称的点的坐标为P ' (x, y) .②点P (x, y) 关于y 轴对称的点的坐标为P " ( x, y) .⑷等腰三角形的性质:①等腰三角形两腰相等.②等腰三角形两底角相等(等边对等角).③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合.④等腰三角形是轴对称图形,对称轴是三线合一(1 条).⑸等边三角形的性质:①等边三角形三边都相等.②等边三角形三个内角都相等,都等于60°③等边三角形每条边上都存在三线合一.④等边三角形是轴对称图形,对称轴是三线合一(3 条).3.基本判定:⑴等腰三角形的判定:①有两条边相等的三角形是等腰三角形.②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边).⑵等边三角形的判定:①三条边都相等的三角形是等边三角形.②三个角都相等的三角形是等边三角形.③有一个角是60°的等腰三角形是等边三角形.4.基本方法:⑴做已知直线的垂线:⑵做已知线段的垂直平分线:⑶作对称轴:连接两个对应点,作所连线段的垂直平分线.⑷作已知图形关于某直线的对称图形:⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短.。

八年级上册数学轴对称知识点总结

八年级上册数学轴对称知识点总结

八年级上册数学轴对称知识点总结一、引言数学作为一门基础学科,其所包含的内容广泛而深刻。

在八年级上册中,轴对称作为其中的一个重要知识点,对学生来说具有一定的挑战性。

在本文中,我们将以八年级上册数学轴对称知识点为主题,进行全面的评估和总结,帮助学生更好地理解和掌握这一知识点。

二、基本概念1. 关于轴对称轴对称是指平面上存在一条直线,使得图形关于这条直线对称。

一个图形如果可以分成两部分,且其中一部分经过旋转、翻转或平移后可以和另一部分完全重合,那么这个图形就是关于这条直线对称的。

2. 轴对称的性质- 轴对称的图形关于对称轴是对称的。

- 轴对称的图形的对称中心在对称轴上。

- 轴对称的图形的每一点经过对称轴的对称变换后都能恰好在图形上。

三、基本题型在八年级上册数学中,关于轴对称的题型主要包括:1. 判断图形是否轴对称2. 找出图形的对称中心和对称轴3. 根据轴对称的性质,解决相关的计算题目四、实例分析以具体的实例来分析轴对称的知识点:题目:如图,判断图形是否关于虚线对称。

[图片]解析:根据图形可以看出,通过对折可以发现,图形A和图形B可以重合,因此该图形是关于虚线对称的。

又如,若已知一个三角形的对称轴为边AC,对称中心为边BC的中点O,求证△ABC是个等腰三角形。

解析:根据轴对称的性质,可以证明线段BO和OA相等,从而得到△ABC为等腰三角形。

五、拓展应用除了基本的题型和实例分析,八年级上册数学中的轴对称知识点还涉及到一些拓展应用,在真实生活中也是有一定的应用场景的。

在建筑设计中,轴对称的思想可以帮助设计师更好地进行建筑设计和规划,保证建筑物的整体美观和稳定性。

在工程制图和艺术设计中,轴对称也扮演着重要的角色。

六、总结与展望通过对八年级上册数学轴对称知识点的全面评估和总结,我们更深入地理解了轴对称的基本概念、基本题型和实例分析,以及在拓展应用中的意义。

在今后的学习中,我们应该更加注重轴对称知识点的理解和应用,结合实际情况进行综合训练,提高解决问题的能力和思维方式,为未来的学习和生活打下坚实的基础。

八年级上册数学轴对称知识点总结

八年级上册数学轴对称知识点总结

八年级上册数学轴对称知识点总结八年级上册数学轴对称知识点总结1.对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

2.性质:(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

(2)角平分线上的点到角两边距离相等。

(3)线段垂直平分线上的任意一点到线段两个端点的距离相等。

(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

(5)轴对称图形上对应线段相等、对应角相等。

3.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)4.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一〞。

5.等腰三角形的判定:等角对等边。

6.等边三角形角的特点:三个内角相等,等于60°,7.等边三角形的判定:三个角都相等的三角形是等腰三角形。

有一个角是60°的.等腰三角形是等边三角形有两个角是60°的三角形是等边三角形。

8.直角三角形中,30°角所对的直角边等于斜边的一半。

9.直角三角形斜边上的中线等于斜边的一半。

数学学习方法诀窍1细心地发掘概念和公式很多同学对概念和公式不够重视,这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。

例如,在代数式的概念(用字母或数字表示的式子是代数式)中,很多同学忽略了“单个字母或数字也是代数式〞。

二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。

这样就不能很好的将学到的知识点与解题联系起来。

三是,一部分同学不重视对数学公式的记忆。

记忆是理解的基础。

如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?我们的建议是:更细心一点(观察特例),更深入一点(了解它在题目中的常见考点),更熟练一点(无论它以什么面目出现,我们都能够应用自如)。

2养成良好的解题习惯要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。

轴对称知识点总结

轴对称知识点总结

轴对称知识点总结轴对称是初中数学中的重要概念,在几何图形的研究和实际生活中都有广泛的应用。

下面我们来详细总结一下轴对称的相关知识点。

一、轴对称的定义如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。

例如,等腰三角形是轴对称图形,底边的高所在的直线就是它的对称轴;矩形是轴对称图形,对边中点的连线所在的直线是它的对称轴。

二、轴对称图形的性质1、对称轴是任何一对对应点所连线段的垂直平分线。

2、对应线段相等,对应角相等。

3、成轴对称的两个图形全等。

三、轴对称与轴对称图形的区别与联系1、区别轴对称是指两个图形沿着某条直线对折后能够完全重合,是两个图形的位置关系。

轴对称图形是指一个图形沿着某条直线对折后直线两旁的部分能够完全重合,是一个图形自身的特性。

2、联系都有对称轴。

如果把成轴对称的两个图形看成一个整体,那么它就是一个轴对称图形;如果把轴对称图形沿对称轴分成两部分,那么这两部分关于这条对称轴成轴对称。

四、作轴对称图形1、作轴对称图形的对称轴如果一个图形是轴对称图形,那么连接一对对应点的线段的垂直平分线就是该图形的对称轴。

对于两个成轴对称的图形,对称轴是连接对称点的线段的垂直平分线。

2、作轴对称图形几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对应点,再连接这些对应点,就可以得到原图形的轴对称图形。

五、用坐标表示轴对称1、点(x,y)关于 x 轴对称的点的坐标为(x,y)。

2、点(x,y)关于 y 轴对称的点的坐标为(x,y)。

例如,点(2,3)关于 x 轴对称的点的坐标为(2,-3);点(-1,4)关于 y 轴对称的点的坐标为(1,4)。

六、轴对称的实际应用轴对称在实际生活中有很多应用,比如:1、建筑设计中,许多建筑都采用了轴对称的设计,使得建筑更加美观、稳定。

2、飞机、汽车等交通工具的外形设计也常常运用轴对称,以减少空气阻力,提高性能。

八年级数学上册“第十三章轴对称”必背知识点

八年级数学上册“第十三章轴对称”必背知识点

八年级数学上册“第十三章轴对称”必背知识点一、轴对称与轴对称图形的定义1. 轴对称:如果两个图形关于某一条直线对称,那么这两个图形就叫做关于这条直线的轴对称图形,这条直线叫做对称轴。

折叠后重合的点是对应点,叫做对称点。

2. 轴对称图形:如果一个图形沿着一条直线折叠,直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。

这条直线就是它的对称轴。

二、轴对称的性质1. 对应点性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

2. 对应线段与对应角:轴对称图形上对应线段相等、对应角相等。

三、线段的垂直平分线1. 定义:经过线段的中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线(或线段的中垂线)。

2. 性质:线段垂直平分线上的点与这条线段两个端点的距离相等。

与一条线段两个端点距离相等的点,在线段的垂直平分线上。

四、坐标表示轴对称1. 关于x轴对称:点(x, y)关于x轴对称的点的坐标为(x, -y)。

2. 关于y轴对称:点(x, y)关于y轴对称的点的坐标为(-x, y)。

五、等腰三角形与等边三角形的性质1. 等腰三角形:性质:等腰三角形的两个底角相等 (等边对等角);顶角平分线、底边上的中线、底边上的高互相重合 (三线合一)。

判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)。

2. 等边三角形:性质:等边三角形的三个角都相等,并且每一个角都等于60°;等边三角形具有等腰三角形所有的性质。

判定:三条边都相等的三角形是等边三角形;三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形。

六、特殊线段的性质1. 三角形的中位线:连接三角形两边中点的线段叫做三角形的中位线。

三角形的中位线平行于第三边,并且等于它的一半。

2. 三角形三条边的垂直平分线:三角形的三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等。

八年级数学轴对称知识点总结

八年级数学轴对称知识点总结

轴对称【知识脉络】【基础知识】Ⅰ. 轴对称(1)轴对称图形如果一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.轴对称图形的性质:轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.(2)轴对称定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴.成轴对称的两个图形的性质:①关于某条直线对称的两个图形形状相同,大小相等,是全等形;②如果两个图形关于某条直线对称,则对称轴是任何一对对应点所连线段的垂直平分线;③两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么它们的交点在对称轴上.(3)轴对称图形与轴对称的区别和联系区别:轴对称是指两个图形的位置关系,轴对称图形是指具有特殊形状的一个图形;轴对称涉及两个图形,而轴对称图形是对一个图形来说的.联系:如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条轴对称;如果把成轴对称的两个图形看成一个整体,那么它就是一个轴对称图形.(4)线段的垂直平分线线段的垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等.反过来,与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.Ⅱ. 作轴对称图形1.作轴对称图形(1)几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对应点,再连接这些点,就可以得到原图形的轴对称图形;(2)对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.2.用坐标表示轴对称点(x,y)关于x轴对称的点的坐标为(x,-y);点(x,y)关于y轴对称的点的坐标为(-x,y);点(x,y)关于原点对称的点的坐标为(-x,-y).Ⅲ. 等腰三角形1.等腰三角形(1)定义:有两边相等的三角形,叫做等腰三角形.(2)等腰三角形性质①等腰三角形的两个底角相等,即“等边对等角”;②等腰三角形顶角的平分线、底边上的中线与底边上的高线互相重合(简称“三线合一”).特别地,等腰直角三角形的每个底角都等于45°.(3)等腰三角形的判定如果一个三角形有两个角相等,那么这两个角所对的边也相等(即“等角对等边”).2.等边三角形(1)定义:三条边都相等的三角形,叫做等边三角形.(2)等边三角形性质:等边三角形的三个角相等,并且每个角都等于60°.(3)等边三角形的判定:①三条边都相等的三角形是等边三角形;②三个角都相等的三角形是等边三角形;③有一个角为60°的等腰三角形是等边三角形.3.直角三角形的性质定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半. Ⅳ. 最短路径。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学轴对称知识点
总结
Prepared on 21 November 2021
轴对称
【知识脉络】
【基础知识】
Ⅰ.轴对称
(1)轴对称图形
如果一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图
形,这条直线就是它的对称轴.
轴对称图形的性质:轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.
(2)轴对称
定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴.成轴对称的两个图形的性质:
①关于某条直线对称的两个图形形状相同,大小相等,是全等形;
②如果两个图形关于某条直线对称,则对称轴是任何一对对应点所连线段的垂直平分线;
③两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么它们的交点在对称轴上.
(3)轴对称图形与轴对称的区别和联系
区别:轴对称是指两个图形的位置关系,轴对称图形是指具有特殊形状的一个图形;轴对称涉
及两个图形,而轴对称图形是对一个图形来说的.
联系:如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条轴对称;如果
把成轴对称的两个图形看成一个整体,那么它就是一个轴对称图形.
(4)线段的垂直平分线
线段的垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等.
反过来,与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.
Ⅱ.作轴对称图形
1.作轴对称图形
(1)几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对应点,再连接这些点,就可以得到原图形的轴对称图形;
(2)对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.
2.用坐标表示轴对称
点(x,y)关于x轴对称的点的坐标为(x,-y);点(x,y)关于y轴对称的点的坐标为(-x,y);点(x,y)关于原点对称的点的坐标为(-x,-y).
Ⅲ.等腰三角形
1.等腰三角形
(1)定义:有两边相等的三角形,叫做等腰三角形.
(2)等腰三角形性质
①等腰三角形的两个底角相等,即“等边对等角”;
②等腰三角形顶角的平分线、底边上的中线与底边上的高线互相重合(简称“三线合一”).特别地,等腰直角三角形的每个底角都等于45°.
(3)等腰三角形的判定
如果一个三角形有两个角相等,那么这两个角所对的边也相等(即“等角对等边”).
2.等边三角形
(1)定义:三条边都相等的三角形,叫做等边三角形.
(2)等边三角形性质:等边三角形的三个角相等,并且每个角都等于60°.(3)等边三角形的判定:
①三条边都相等的三角形是等边三角形;②三个角都相等的三角形是等边三角形;
③有一个角为60°的等腰三角形是等边三角形.
3.直角三角形的性质定理:
在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半. Ⅳ.最短路径。

相关文档
最新文档