锐角三角函数集体备课

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
内容
锐角三角函数
时间
主备人
地点
一区九年级办公室
出席人



况源自文库


教材分析:本章包括锐角三角函数的概念(主要是正弦、余弦和正切的概念),以及利用锐角三角函数解直角三角形等内容。锐角三角函数为解直角三角形提供了有效的工具,解直角三角形在实际当中有着广泛的应用,这也为锐角三角函数提供了与实际联系的机会。研究锐角三角函数的直接基础是相似三角形的一些结论,解直角三角形主要依赖锐角三角函数和勾股定理等内容,因此相似三角形和勾股定理等是学习本章的直接基础。难点在于,锐角三角函数的概念反映了角度与数值之间对应的函数关系,这种角与数之间的对应关系,以及用含有几个字母的符号sinA、cosA、tanA表示函数等,学生过去没有接触过,因此对学生来讲有一定的难度。至于关键,因为只有正确掌握了锐角三角函数的概念,才能真正理解直角三角形中边、角之间的关系,从而才能利用这些关系解直角三角形。
教学措施:
利用几何画板演示一垂直于地面的旗杆在一天阳光的照射下,影长发生了变化这一情境。可提高学生的兴奋点,激发学习兴趣和欲望,有利于引导学生进行数学思考。
1.从一个含30度角的直角三角形为例,通过回忆直角三角形中,30度角所对的直角边是斜边的一半,得到30度的对边与斜边比值固定,不随点的变化而变化;
过程与方法目标:经历锐角的正弦、余弦和正切的探索过程,体验数学问题的分析与解决;
情感、态度与价值观目标:培养多思考的学习习惯;学会用数学的眼光看世界,用数学来分析和解决生活中的问题。
教学重点:锐角的正弦、余弦、正切和锐角三角函数的概念;
教学难点:锐角三角函数的定义,正弦、余弦和正切三类函数的意义、符号、以及函数中以角为自变量是教学中的难点。
作业设计:
必做题:常规作业
选做题:探索30度,45度,60度的三角函数值。
思考题:在R t△ABC中,∠C=Rt∠,a,b,c分别是R t△ABC中∠A,∠B,∠C的对边,(1)请用关于a,b,c的代数式填表。
sinA=
sinB=
cosA=
cosB=
tanA=
tanB=
(2)观察表格,你发现了什么?
(设计意图:通过分层布置作业,体现新课标的理念,符合因材施教原则,使不同的人在数学上得到不同的发展。)
2.再从含45度角的直角三角形讨论45度的对边与斜边比值固定,不随点的位置而变化;
2.任意角∠ 是否同样存在对边与斜边比值固定这一结论?通过猜测、验证、归纳的手段来分析和解决数学问题。
3.通过以上探索,边角之间的关系是什么?
4.学习锐角三角函数的概念,表示方法及自变量取值范围和函数值取值范围。
(设计意图:建立在学生原有认知的基础上,发现问题,从而寻求方法解决问题。通过回忆熟悉的定理,让学生明白直角三角形中锐角与边比值存在关系,并大胆猜测直角三角形中任意角∠ 的对边与斜边比值是否固定?通过叠放含有∠ 的直角三角形,从而作出图形,易让学生用所学过的相似三角形的知识来解决问题,得到比值固定。进而得到锐角∠ 固定,比值固定,不随点的位置而变化;锐角∠ 变化,比值也随之变化。两者存在函数关系,从而给出锐角三角函数的概念)。
本章内容与已学"相似三角形""勾股定理"等内容联系紧密,并为高中数学中三角函数等知识的学习作好准备。
教学目标:
知识与技能目标:通过实例,了解三角函数的概念,掌握正弦、余弦和正切的符号,会用符号表示一个锐角的三角函数。掌握在直角三角形中锐角三角函数与边之比的关系,了解锐角的三角函数值都是正实数,会根据锐角三角函数的定义求锐角三角函数值;
相关文档
最新文档