中南大学数字信号处理实验三
数字信号处理上机实验 作业结果与说明 实验三、四、五
上机频谱分析过程及结果图 上机实验三:IIR 低通数字滤波器的设计姓名:赵晓磊 学号:赵晓磊 班级:02311301 科目:数字信号处理B一、实验目的1、熟悉冲激响应不变法、双线性变换法设计IIR 数字滤波器的方法。
2、观察对实际正弦组合信号的滤波作用。
二、实验内容及要求1、分别编制采用冲激响应不变法、双线性变换法设计巴特沃思、切贝雪夫I 型,切贝雪夫II 型低通IIR 数字滤波器的程序。
要求的指标如下:通带内幅度特性在低于πω3.0=的频率衰减在1dB 内,阻带在πω6.0=到π之间的频率上衰减至少为20dB 。
抽样频率为2KHz ,求出滤波器的单位取样响应,幅频和相频响应,绘出它们的图,并比较滤波性能。
(1)巴特沃斯,双线性变换法Ideal And Designed Lowpass Filter Magnitude Responsefrequency in Hz|H [e x p (j w )]|frequency in pi units|H [ex p (j w )]|Designed Lowpass Filter Phase Response in radians frequency in pi unitsa r g (H [e x p (j w )](2)巴特沃斯,冲激响应不变法(3)切贝雪夫I 型,双线性变换法(4)切贝雪夫Ⅱ型,双线性变换法综合以上实验结果,可以看出,使用不同的模拟滤波器数字化方法时,滤波器的性能可能产生如下差异:使用冲击响应不变法时,使得数字滤波器的冲激响应完全模仿模拟滤波器的冲激响应,也就是时域逼急良好,而且模拟频率和数字频率之间呈线性关系;但频率响应有混叠效应。
frequency in Hz|H [e x p (j w )]|Designed Lowpass Filter Magnitude Response in dBfrequency in pi units|H [e x p (j w )]|frequency in pi unitsa r g (H [e x p (j w )]Ideal And Designed Lowpass Filter Magnitude Responsefrequency in Hz|H [e x p (j w )]|frequency in pi units|H [e xp (j w )]|frequency in pi unitsa r g (H [e x p (j w )]Ideal And Designed Lowpass Filter Magnitude Responsefrequency in Hz|H [e x p (j w )]|frequency in pi units|H [ex p (j w )]|Designed Lowpass Filter Phase Response in radiansfrequency in pi unitsa r g (H [e x p (j w )]使用双线性变换法时,克服了多值映射的关系,避免了频率响应的混叠现象;在零频率附近,频率关系接近于线性关系,高频处有较大的非线性失真。
数字信号处理实验报告 3
数字信号处理实验报告姓名:班级:通信学号:实验名称:频域抽样定理验证实验类型:验证试验指导教师:实习日期:2013.频域采样定理验证实验一. 实验目的:1. 加深对离散序列频域抽样定理的理解2.了解由频谱通过IFFT 计算连续时间信号的方法3.掌握用MATLAB 语言进行频域抽样与恢复时程序的编写方法 4、用MATLAB 语言将X(k)恢复为X(z)及X(e jw )。
二. 实验原理:1、1、频域采样定理: 如果序列x(n)的长度为M ,频域抽样点数为N ,则只有当频域采样点数N ≥M 时,才有x N (n)=IDFT[X(k)]=x(n),即可由频域采样X(k)无失真的恢复原序列 x(n)。
2、用X(k)表示X(z)的内插公式:∑-=-----=10111)(1)(N k kNNzWz k X Nz X内插函数: zWzkNNN z 1k111)(-----=ϕ频域内插公式:∑-=-=10)2()()(N K j k Nk X e X πωϕω频域内插函数:e N j N N )21()2sin()2sin(1)(--=ωωωωϕ三. 实验任务与步骤:实验一:长度为26的三角形序列x(n)如图(b)所示,编写MATLAB 程序验证频域抽样定理。
实验二:已知一个时间序列的频谱为X(e jw )=2+4e -jw +6e -j2w +4e -j3w +2e -j4w分别取频域抽样点数N为3、5和10,用IPPT计算并求出其时间序列x(n),用图形显示各时间序列。
由此讨论原时域信号不失真地由频域抽样恢复的条件。
实验三:由X32(k)恢复X(z)和X(e jw)。
四.实验结论与分析:实验一:源程序:M=26;N=32;n=0:M; %产生M长三角波序列x(n)xa=0:floor(M/2);xb= ceil(M/2)-1:-1:0; xn=[xa,xb];Xk=fft(xn,512); %1024点FFT[x(n)], 用于近似序列x(n)的TFX32k=fft(xn,32); %32点FFT[x(n)]x32n=ifft(X32k); %32点IFFT[X32(k)]得到x32(n)X16k=X32k(1:2:N); %隔点抽取X32k得到X16(K)x16n=ifft(X16k,N/2); %16点IFFT[X16(k)]得到x16(n)subplot(3,2,2);stem(n,xn,'.');box ontitle('(b) 三角波序列x(n)');xlabel('n');ylabel('x(n)');axis([0,32,0,20])k=0:511;wk=2*k/512;subplot(3,2,1);plot(wk,abs(Xk));title('(a)FT[x(n)]');xlabel('\omega/\pi');ylabel('|X(e^j^\omega)|');axis([0,1,0,200])k=0:N/2-1;subplot(3,2,3);stem(k,abs(X16k),'.');box ontitle('(c) 16点频域');xlabel('k');ylabel('|X_1_6(k)|');axis([0,8,0,200])n1=0:N/2-1;subplot(3,2,4);stem(n1,x16n,'.');box ontitle('(d) 16点IDFT[X_1_6(k)]');xlabel('n');ylabel('x_1_6(n)');axis([0,32,0,20])k=0:N-1;subplot(3,2,5);stem(k,abs(X32k),'.');box ontitle('(e) 32点频域采样');xlabel('k');ylabel('|X_3_2(k)|');axis([0,16,0,200])n1=0:N-1;subplot(3,2,6);stem(n1,x32n,'.');box ontitle('(f) 32点IDFT[X_3_2(k)]');xlabel('n');ylabel('x_3_2(n)');axis([0,32,0,20])结果如下所示:实验一分析:序列x(n)的长度M=26,由图中可以看出,当采样点数N=16<M时,x16(n)确实等于原三角序列x(n)以16为周期的周期延拓序列的主值序列。
数字信号处理实验报告
实验一 信号、系统及系统响应一、实验目的1、熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对时域采样定理的理解。
2、熟悉离散信号和系统的时域特性。
3、熟悉线性卷积的计算编程方法:利用卷积的方法,观察、分析系统响应的时域特性。
4、掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号、系统及其系统响应进行频域分析。
二、 实验原理1.理想采样序列:对信号x a (t)=A e −αt sin(Ω0t )u(t)进行理想采样,可以得到一个理想的采样信号序列x a (t)=A e −αt sin(Ω0nT ),0≤n ≤50,其中A 为幅度因子,α是衰减因子,Ω0是频率,T 是采样周期。
2.对一个连续时间信号x a (t)进行理想采样可以表示为该信号与一个周期冲激脉冲的乘积,即x ̂a (t)= x a (t)M(t),其中x ̂a (t)是连续信号x a (t)的理想采样;M(t)是周期冲激M(t)=∑δ+∞−∞(t-nT)=1T ∑e jm Ωs t +∞−∞,其中T 为采样周期,Ωs =2π/T 是采样角频率。
信号理想采样的傅里叶变换为X ̂a (j Ω)=1T ∑X a +∞−∞[j(Ω−k Ωs )],由此式可知:信号理想采样后的频谱是原信号频谱的周期延拓,其延拓周期为Ωs =2π/T 。
根据时域采样定理,如果原信号是带限信号,且采样频率高于原信号最高频率分量的2倍,则采样以后不会发生频率混叠现象。
三、简明步骤产生理想采样信号序列x a (n),使A=444.128,α=50√2π,Ω0=50√2π。
(1) 首先选用采样频率为1000HZ ,T=1/1000,观察所得理想采样信号的幅频特性,在折叠频率以内和给定的理想幅频特性无明显差异,并做记录;(2) 改变采样频率为300HZ ,T=1/300,观察所得到的频谱特性曲线的变化,并做记录;(3) 进一步减小采样频率为200HZ ,T=1/200,观察频谱混淆现象是否明显存在,说明原因,并记录这时候的幅频特性曲线。
中南大学数字信号处理实验报告
数字信号处理实验报告学院:信息科学与工程学院专业班级:姓名:学号:指导老师:实验一 常见离散信号的产生和频谱分析一、实验目的(1) 熟悉MATLAB 应用环境,常用窗口的功能和使用方法;(2) 加深对常用离散时间信号的理解;(3) 掌握简单的绘图命令;(4) 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号进行频域分析。
二、实验内容及要求1、复习常用离散时间信号的有关内容2、用MATLAB 编程产生任意3种序列(长度可输入确定,对(d)(e)(f)中的参数可自行选择)(序列包括a 、单位抽样序列;b 、单位阶跃序列;c 、矩形序列;d 、正弦序列;e 、实指数序列;f 、复指数序列),并绘出其图形。
3、混叠现象对连续信号01()sin(2***)x t pi f t =(其中,01500f Hz =)进行采样,分别取采样频率2000,1200,800s f Hz Hz Hz =,观察|)(|jw e X 的变化,并做记录(打印曲线),观察随着采样频率降低频谱混叠是否明显存在,说明原因。
4、截断效应 给定()cos()4x n n π=,截取一定长度的信号()()()y n x n w n =,()w n 为窗函数,长度为N ,()()N w n R n =。
分别取N=6,8,12,计算()y n 的N 点DFT 变换,画出其幅频特性曲线;做2N 点DFT 变换,分析当N 逐渐增大时,分析是否有频谱泄露现象、主瓣的宽度变化?如何减小泄露?5、栅栏效应给定()4()x n R n =,分别计算()jw X e 在频率区间[]0,2π上的16点、32点、64点等间隔采样,绘制()jw X e 采样的幅频特性图,分析栅栏效应,如何减小栅栏效应?三、实验用MATLAB 函数介绍1、数字信号处理中常用到的绘图指令(只给出函数名,具体调用格式参看help)figure()、plot()、stem()、axis()、grid on 、title()、xlabel()、ylabel()、text()、hold on 、subplot()2、离散时间信号产生可能涉及的函数zeros()、ones()、exp()、sin()、cos()、abs()、angle()、real()、imag()四、实验结果及分析1、单位阶跃序列的程序及图像2、矩阵序列的程序及图像3、正弦序列的程序及图像4、混叠现象分析及程序、图像(1)采样频率为2000Hz分析:随着采样频率降低,频谱混叠越来越明显,原因:采样频率为f01=500Hz,根据采样定理,采样频率必满足Fs>=2fc,否则会在频率Fs/2处出现频谱混叠。
中南大学数字信号处理实验三
实验报告实验名称用双线性变换法设计IIR数字滤波器课程名称数字信号处理姓名成绩班级学号日期 2014年5月24号地点综合实验楼机房备注:1.实验目的(1)熟悉用双线性变换法设计IIR 数字滤波器的原理与方法;(2)掌握数字滤波器的计算机仿真方法;(3)通过观察对实际心电图信号的滤波作用,获得数字滤波的感性知识。
2.实验环境应用MATLAB 6.5软件操作系统:windows XP3.实验内容及原理(1)用双线性变换法设计一个巴特沃斯低通IIR 数字滤波器。
设计指标参数为:在通带内截止频率低于0.2π时,最大衰减小于1dB ;在阻带内[0.3π,π]频率区间上,最小衰减大于15dB 。
(2)以0.02π为采样间隔,打印出数字滤波器在频率区间[0,π/2]上的幅频响应特性曲线。
(3)用所设计的滤波器对实际心电图信号采样序列进行仿真滤波处理,并分别打印出滤波前后的心电图信号波形图,观察总结滤波作用与效果。
教材例中已求出满足本实验要求的数字滤波系统函数:∏==31)()(k k z H z H ,3,2,1,1)21()(2121=--++=----k zC z B z z A z H k k k 式中 A=0.09036,2155.0,9044.03583.0,0106.17051.0,2686.1332211-==-==-==C B C B C B4.实验结果心电图信号采样序列一级滤波后的心电图信号:三级滤波后的心电图信号:滤波器的幅频响应曲线:00.050.10.150.20.250.30.350.40.450.5-50-40-30-20-1010w/pi 20l g |H (j w )|滤波器的幅频响应曲线5.思考题 用双线性变换法设计数字滤波器过程中,变换公式中T 的取值,对设计结果有无影响? 为什么?答:对设计结果没有影响。
因为,只于信号本身有关,即s 与T 无关。
6.实验结论双线性变换法的特点:对频率的压缩符合下列公式:11112--+-=z z T s s TsT z -+=22这样的变换叫做双线性变换。
数字信号处理实验报告
数字信号处理实验报告引言数字信号处理(Digital Signal Processing,DSP)是一门研究数字信号的获取、分析、处理和控制的学科。
在现代科技发展中,数字信号处理在通信、图像处理、音频处理等领域起着重要的作用。
本次实验旨在通过实际操作,深入了解数字信号处理的基本原理和实践技巧。
实验一:离散时间信号的生成与显示在实验开始之前,我们首先需要了解信号的生成与显示方法。
通过数字信号处理器(Digital Signal Processor,DSP)可以轻松生成和显示各种类型的离散时间信号。
实验设置如下:1. 设置采样频率为8kHz。
2. 生成一个正弦信号:频率为1kHz,振幅为1。
3. 生成一个方波信号:频率为1kHz,振幅为1。
4. 将生成的信号通过DAC(Digital-to-Analog Converter)输出到示波器上进行显示。
实验结果如下图所示:(插入示波器显示的正弦信号和方波信号的图片)实验分析:通过示波器的显示结果可以看出,正弦信号在时域上呈现周期性的波形,而方波信号则具有稳定的上下跳变。
这体现了正弦信号和方波信号在时域上的不同特征。
实验二:信号的采样和重构在数字信号处理中,信号的采样是将连续时间信号转化为离散时间信号的过程,信号的重构则是将离散时间信号还原为连续时间信号的过程。
在实际应用中,信号的采样和重构对信号处理的准确性至关重要。
实验设置如下:1. 生成一个正弦信号:频率为1kHz,振幅为1。
2. 设置采样频率为8kHz。
3. 对正弦信号进行采样,得到离散时间信号。
4. 对离散时间信号进行重构,得到连续时间信号。
5. 将重构的信号通过DAC输出到示波器上进行显示。
实验结果如下图所示:(插入示波器显示的连续时间信号和重构信号的图片)实验分析:通过示波器的显示结果可以看出,重构的信号与原信号非常接近,并且能够还原出原信号的形状和特征。
这说明信号的采样和重构方法对于信号处理的准确性有着重要影响。
中南大学数字信号处理实验报告
中南大学《数字信号处理》实验报告-课程名称数字信号处理指导教师李宏学院信息科学与工程学院专业班级姓名学号目录实验一常见离散时间信号的产生和频谱分析 (3)一、实验目的 (3)二、实验原理 (3)三、实验内容 (6)实验二数字滤波器的设计 (12)一、实验目的 (12)二、实验原理 (12)三、实验内容 (16)实验一 常见离散时间信号的产生和频谱分析一、实验目的(1)熟悉MATLAB 应用环境,常用窗口的功能和使用方法;(2)加深对常用离散时间信号的理解;(3)掌握简单的绘图命令;(4)掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号进行频域分析。
二、实验原理(1)常用离散时间信号a )单位抽样序列⎩⎨⎧=01)(n δ 00≠=n n 如果)(n δ在时间轴上延迟了k 个单位,得到)(k n -δ即:⎩⎨⎧=-01)(k n δ0≠=n k n b )单位阶跃序列⎩⎨⎧=01)(n u 00<≥n n c )矩形序列 ⎩⎨⎧=01)(n R N 其他10-≤≤N nd )正弦序列)sin()(ϕ+=wn A n xe )实指数序列f )复指数序列()()jw n x n e σ+=(2)离散傅里叶变换:()()n x n a u n =设连续正弦信号()x t 为0()sin()x t A t φ=Ω+这一信号的频率为0f ,角频率为002f πΩ=,信号的周期为00012T f π==Ω。
如果对此连续周期信号()x t 进行抽样,其抽样时间间隔为T ,抽样后信号以()x n 表示,则有0()()sin()t nT x n x t A nT φ===Ω+,如果令w 为数字频率,满足000012s sf w T f f π=Ω=Ω=,其中s f 是抽样重复频率,简称抽样频率。
为了在数字计算机上观察分析各种序列的频域特性,通常对)(jw e X 在[]π2,0上进行M 点采样来观察分析。
数字信号处理高西全实验报告三
数字信号处理高西全实验报告三选择FFT的变换区间N为8和16 两种情况进行频谱分析^p 。
分别打印其幅频特性曲线。
并进行对比、分析^p 和讨论。
(2)对以下周期序列进行谱分析^p 。
选择FFT的变换区间N为8和16 两种情况分别对以上序列进行频谱分析^p 。
分别打印其幅频特性曲线。
并进行对比、分析^p 和讨论。
(3)对模拟周期信号进行谱分析^p选择采样频率,变换区间N=16,32,64 三种情况进行谱分析^p 。
分别打印其幅频特性,并进行分析^p 和讨论。
四、程序码与运行结果(1) 实验程序:1n=[ones(1,4)];M=8;a=1:(M/2); b=(M/2):-1:1; 2n=[a,b];3n=[b,a];1k8=fft(1n,8);1k16=fft(1n,16);2k8=fft(2n,8);2k16=fft(2n,16);3k8=fft(3n,8);3k16=fft(3n,16);以下绘制幅频特性曲线n=0:length(1k8)-1;subplot(3,2,1);stem(n,abs(1k8),#;.#;);label({#;ω/π#;;#;8点DFT[1(n)]#;});ylabel(#;幅度#;);n=0:length(1k16)-1;subplot(3,2,2);stem(n,abs(1k16),#;.#;);label({#;ω/π#;;#;16点DFT[1(n)]#;});ylabel(#;幅度#;); n=0:length(2k8)-1;subplot(3,2,3);stem(n,abs(2k8),#;.#;);label({#;ω/π#;;#; 8点DFT[2(n)]#;});ylabel(#;幅度#;); n=0:length(2k16)-1;subplot(3,2,4);stem(n,abs(2k16),#;.#;);label({#;ω/π#;;#;16点DFT[2(n)]#;});ylabel(#;幅度#;); n=0:length(3k8)-1;subplot(3,2,5);stem(n,abs(3k8),#;.#;);l abel({#;ω/π#;;#; 8点DFT[3(n)]#;});ylabel(#;幅度#;); n=0:length(3k16)-1;subplot(3,2,6);stem(n,abs(3k16),#;.#;);label({#;ω/π#;;#;16点DFT[3(n)]#;});ylabel(#;幅度#;); 图形:(2)实验程序:n=0:7;4n=cos(pi/4n);4k8=fft(4n,8);subplot(2,2,1);stem(2n/8,abs(4k8),#;.#;);label({#;ω/π#;;#;8点DFT[4(n)]#;});ylabel(#;幅度#;); 5n=cos(pi/4n)+cos(pi/8n);5k8=fft(5n,8);subplot(2,2,2);stem(2n/8,abs(5k8),#;.#;);label({#;ω/π#;;#;8点DFT[5(n)]#;});ylabel(#;幅度#;); n=0:15;4n=cos(pi/4n);5n=cos(pi/4n)+cos(pi/8n);4k16=fft(4n,16);subplot(2,2,3);stem(2n/16,abs(4k16),#;.#;);label({#;ω/π#;;#;16点DFT[4(n)]#;});ylabel(#;幅度#;); 5k16=fft(5n,16);subplot(2,2,4);stem(2n/16,abs(5k16),#;.#;);label({#;ω/π#;;#;16点DFT[5(n)]#;});ylabel(#;幅度#;); 图形:(3)实验代码:Fs=64;T=1/Fs;N=16;n=0:N-1;6nT=cos(8pinT)+cos(16pinT)+cos(20pinT);6k16=fft(6nT);6k16=fftshift(6k16);Tp=NT;F=1/Tp;k=-N/2:N/2-1;fk=kF;subplot(3,1,1);stem(fk,abs(6k16),#;.#;);label({#;f(Hz)#;;#;16点DFT[6(nT)]#;});ylabel(#;幅度#;); N=32;n=0:N-1;6nT=cos(8pinT)+cos(16pinT)+cos(20pinT);6k32=fft(6nT,32);6k32=fftshift(6k32);Tp=NT;F=1/Tp;k=-N/2:N/2-1;fk=kF;subplot(3,1,2);stem(fk,abs(6k32),#;.#;);label({#;f(Hz)#;;#;32点DFT[6(nT)]#;});ylabel(#;幅度#;); N=64;n=0:N-1;6nT=cos(8pinT)+cos(16pinT)+cos(20pinT);6k64=fft(6nT,64);6k64=fftshift(6k64);Tp=NT;F=1/Tp;k=-N/2:N/2-1;fk=kF;subplot(3,1,3);stem(fk,abs(6k64),#;.#;);label({#;f(Hz)#;;#;64点DFT[6(nT)]#;});ylabel(#;幅度#;);图形:五、实验总结1.结论用DFT对信号进行谱分析^p 时,重点关注频谱分辨率和分析^p 误差,频谱分辨率F=1/Tp=Fs/N,可以依据此等式来选择FFT的变换区间N,而误差主要来自于用FFT作频谱分析^p 时,得到的是离散谱,而当信号是非周期信号时,应该得到连续谱,只有当N较大时,用FFT做出来的离散谱才接近于连续谱,因此N要适当选择大一些。
(完整版)数字信号处理实验三
3.41;3.42 由教材可知: ,即序列的偶部分的傅立叶变换是序列的傅立叶变换的实部。
5、实验步骤
1、进行本实验,首先必须熟悉matlab的运用,所以第一步是学会使用matlab。
2、学习相关基础知识,根据《数字信号处理》课程的学习理解实验内容和目的。
plot(w/pi,angle(h1));grid
xlabel('\omega/\pi');ylabel('以弧度为单位的相位');
title('原序列的相位谱')
subplot(2,2,4)
plot(w/pi,angle(h2));grid
xlabel('\omega/\pi');ylabel('以弧度为单位的相位');
grid;
title('相位谱arg[H(e^{j\omega})]');
xlabel('\omega/\pi');
ylabel('以弧度为单位的相位');
3.4
clf;
w=-4*pi:8*pi/511:4*pi;
num1=[1 3 5 7 9 11 13 15 17];
h=freqz(num,1,w);
Q3.32 通过加入合适的注释语句和程序语句,修改程序P3.8,对程序生成的图形中的两个轴加标记。时移量是多少?
Q3.33 运行修改后的程序并验证离散傅里叶变换的圆周时移性质。
Q3.36 运行程序P3.9并验证离散傅里叶变换的圆周卷积性质。
Q3.38 运行程序P3.10并验证线性卷积可通过圆周卷积得到。
数字信号处理实验报告三
实验三 抽样一、实验原理抽样过程基于两个基本原理:混叠合重建,涉及正弦波合现行调频信号的混叠。
二、 实验内容.3.3.1抽样引起的混叠 由于在MATLAB 中不能产生模拟信号,实验需要做实时t 轴的仿真。
因此,把仿真时的△t 与所研究的抽样周期Ts 明确地区分开始很重要的。
1. 正弦信号混叠对连续时间正弦信号考虑下面表达式:()()φπ+=t f t 02sin x可以按抽样频率ST s f 1=对()t x 抽样来获得离散时间信号[]()()⎪⎪⎭⎫ ⎝⎛+=====φπn f f t x t x s f n t nT t ss 0/2sin n x 2. 实验内容以不同组合的0f 和s f 绘出[]n x ,可以说明混叠问题。
以下,取抽样频率s f =8kHz.a. 首先,绘出一个被抽样的正弦波的单图。
令正弦波的频率为300Hz ,然后在10ms 长间隔上抽样。
相位φ可以任意指定。
使用stem 绘出产生的离散时间信号。
因为是用眼睛实现重建可视化信号包络,应该很容易看到正弦信号的轮廓。
b. 如果必要,使用plot 绘图。
在这种情况下,点用直线段连接 起来, 这样正弦信号的特点应该是明显的。
用直线段连接信号 样本是自离散时间样本产生连续时间信号的“信号重建”的 一 种方式。
它 不是抽样定理所说的理想重建,但对大多数的情形它已经是足够好,很有用。
c. 把正弦的频率从100Hz 变至475Hz,每次增加125Hz ,如在()a 部 分中那样,绘出一系列相应的图。
注意,正如所预期的那样, 显 现的正弦信号的频率在逐渐增加。
最好用subplot 指令把四 个图放在同一屏上。
d. 把正弦的频率从7525Hz 变至7900Hz ,每次增加125Hz ,正 如在()c 中那样,另外绘出一系列相应的图。
注意现在显现的正弦信号的频率在逐渐减少。
解释这一现象。
e.把正弦的频率从32100Hz变至32475Hz,每次增加125Hz,再次绘出一些列类似的图。
数字信号处理--实验三
一、实验目的1.了解工程上两种最常用的变换方法:脉冲响应不变法和双线性变换法。
2.掌握双线性变换法设计IIR 滤波器的原理及具体设计方法,熟悉用双线性设计法设计低通、带通和高通IIR 数字滤波器的计算机程序.3.观察用双线性变换法设计的滤波器的频域特性,并与脉冲响应不变法相比较,了解双线性变换法的特点。
4.熟悉用双线性变换法设计数字Butterworth 和Chebyshev 滤波器的全过程。
5.了解多项式乘积和多项式乘方运算的计算机编程方法。
二、实验原理与方法从模拟滤波器设计IIR 数字滤波器具有四种方法:微分-差分变换法、脉冲响应不变法、双线性变换法、z 平面变换法。
工程上常用的是其中的两种:脉冲响应不变法、双线性变换法。
脉冲响应不变法需要经历如下基本步骤:由已知系统传输函数H(S)计算系统冲激响应h(t);对h(t)等间隔采样得到h (n )=h (n T);由h (n )获得数字滤波器的系统响应H (Z)。
这种方法非常直观,其算法宗旨是保证所设计的IIR 滤波器的脉冲响应和模拟滤波器的脉冲响应在采样点上完全一致。
而双线性变换法的设计准则是使数字滤波器的频率响应与参考模拟滤波器的频率响应相似。
脉冲响应不变法一个重要的特点是频率坐标的变换是线性的(),其确定是有频谱的周期延拓效应,存在频谱混叠的现象。
为了克服脉冲响应不变法可能产生的频谱混叠,提出了双线性变换法,它依靠双线性变换式:, , 其中 ,建立其S 平面和Z 平面的单值映射关系,数字域频率和模拟域频率的关系是: , (3-1) 由上面的关系式可知,当时,终止在折叠频率处,整个轴单值的对应于单位圆的一周。
因此双线性变换法不同于脉冲响应不变法,不存在频谱混叠的问题。
从式(3-1)还可以看出,两者的频率不是线性关系。
这种非线性关系使得通带截至频率、过渡带的边缘频率的相对位置都发生了非线性畸变。
这种频率的畸变可以通过预畸变来校正。
用双线性变换法设计数字滤波器时,一般总是先将数字滤波器的个临界频率经过式(3-1)的频率预畸变,求得相应参考模拟滤波器的个临界频率,然后设计参考模拟滤波器的传递函数,最后通过双T Ω=ω1111--+-=z z s s s z -+=11Ω+=j s σωj re z =)2/(ωtg =Ω)(2Ω=arctg ω∞→Ωωπω=Ωj线性变换式求得数字滤波器的传递函数。
数字信号处理实验三
数字信号处理实验三数字信号处理实验三是针对数字信号处理课程的一项实践性任务。
本实验旨在通过实际操作,加深对数字信号处理理论的理解,并培养学生的实验能力和问题解决能力。
在本实验中,我们将学习和实践以下内容:1. 实验目的本实验的目的是通过使用MATLAB软件进行数字信号处理,加深对数字信号处理基本概念和算法的理解,掌握数字信号的采样、量化、滤波等基本操作。
2. 实验器材在本实验中,我们将使用以下器材:- 个人计算机- MATLAB软件3. 实验步骤本实验的具体步骤如下:步骤一:信号生成首先,我们需要生成一个模拟信号,可以是正弦信号、方波信号或其他类型的信号。
在MATLAB中,我们可以使用相关函数生成这些信号。
生成信号的目的是为了后续的数字信号处理操作提供输入。
步骤二:信号采样在本步骤中,我们将对生成的模拟信号进行采样。
采样是指在一定的时间间隔内对信号进行离散化处理,得到离散时间上的信号序列。
在MATLAB中,我们可以使用采样函数对信号进行采样。
步骤三:信号量化在本步骤中,我们将对采样后的信号进行量化。
量化是指将连续的信号离散化为一组离散的幅值。
在MATLAB中,我们可以使用量化函数对信号进行量化。
步骤四:信号滤波在本步骤中,我们将对量化后的信号进行滤波。
滤波是指通过一系列滤波器对信号进行处理,以去除不需要的频率成分或噪声。
在MATLAB中,我们可以使用滤波函数对信号进行滤波。
步骤五:信号重构在本步骤中,我们将对滤波后的信号进行重构。
重构是指将离散化的信号恢复为连续的信号。
在MATLAB中,我们可以使用重构函数对信号进行重构。
步骤六:信号分析在本步骤中,我们将对重构后的信号进行分析。
分析是指对信号的频谱、功率等特性进行分析,以了解信号的特点和性能。
在MATLAB中,我们可以使用分析函数对信号进行分析。
4. 实验结果在完成以上步骤后,我们可以得到经过数字信号处理的结果。
这些结果可以是经过采样、量化、滤波和重构后的信号波形,也可以是信号的频谱、功率等特性。
数字信号处理--实验三 时域及频域采样定理
学生实验报告开课学院及实验室:电子楼317 2013 年 4 月 8 日N为周期进行周期延拓后的主值区序列,(一) 时域采样定理实验1. 给定模拟信号如下:0()sin()()at a x t Ae t u t -=Ω假设式中A=444.128,250π=a , 2500π=Ωrad/s ,将这些参数代入上式中,对()a x t 进行傅立叶变换,得到()a X j Ω,画出它的幅频特性()~a X jf f,如图3.1所示。
根据该曲线可以选择采样频率。
图3.1()a x t 的幅频特性曲线2. 按照选定的采样频率对模拟信号进行采样,得到时域离散信号()x n :0()()sin()()anT a x n x nT Ae nT u nT ==Ω这里给定采样频率如下:1s f kHz =,300Hz ,200Hz 。
分别用这些采样频率形成时域离散信号,按顺序分别用1()x n 、2()x n 、3()x n 表示。
选择观测时间50p T ms=。
3. 计算()x n 的傅立叶变换()jwX e :100()[()]sin()i i n anT jw j ni n X e FT x n Ae nT e ω--===Ω∑ (3.6)式中,1,2,3i =,分别对应三种采样频率的情况123111(,,)1000300200T s T s T s ===。
采样点数用下式计算:pi i T n T =(3.7)(3.6)式中,ω是连续变量。
为用计算机进行数值计算,改用下式计算:100()[()]sin()i k i k n jw anT jw n M i n X e DFT x n Ae nT e --===Ω∑ (3.8)式中,2k kM πω=,0,1,2,3...k =,1M -;64M =。
可以调用MATLAB 函数fft 计算3.8式。
4. 打印三种采样频率的幅度曲线()~k jw kX e w ,0,1,2,3...k =,1M -;64M =。
数字信号处理实验三报告 数字信号处理上机实验报告.doc
数字信号处理实验三报告数字信号处理上机实验报告实验一系统响应及系统稳定性一、实验目的(1)掌握求系统响应的方法。
(2)掌握时域离散系统的时域特性。
(3)分析、观察及检验系统的稳定性。
二、实验内容(1)给定一个低通滤波器的差分方程为y(n)=0.05x(n)+0.05x(n-1)+0.9y(n-1)输入信号x1(n)=R8(n)x2(n)=u(n)(a) 分别求出系统对x1(n)=R8(n) 和x2(n)=u(n)的响应序列,并画出其波形。
(b) 求出系统的单位冲响应,画出其波形。
实验程序:A=[1,-0.9];B=[0.05,0.05]; %%系统差分方程系数向量 B 和 Ax1n=[1 1 1 1 1 1 1 1 zeros(1,50)]; %产生信号 x1(n)=R8(n)x2n=ones(1,8); %产生信号 x2(n)=u(n)y1n=filter(B,A,x1n); %求系统对 x1(n)的响应 y1(n)n=0:length(y1n)-1;subplot(2,2,1);stem(n,y1n,".");title("(a) 系统对 R_8(n)的响应y_1(n)");xlabel("n");ylabel("y_1(n)");y2n=filter(B,A,x2n); %求系统对 x2(n)的响应 y2(n) n=0:length(y2n)-1;subplot(2,2,2);stem(n,y2n,".");title("(b) 系统对 u(n)的响应y_2(n)");xlabel("n");ylabel("y_2(n)");hn=impz(B,A,58); %求系统单位脉冲响应 h(n)n=0:length(hn)-1;subplot(2,2,3);y=hn;stem(n,hn,".");title("(c) 系统单位脉冲响应h(n)");xlabel("n");ylabel("h(n)");运行结果图:(2)给定系统的单位脉冲响应为h1(n)=R10(n)h2(n)= δ(n)+2.5δ(n-1)+2.5δ(n-2)+δ(n-3)用线性卷积法分别求系统h1(n)和h2(n)对x1(n)=R8(n)的输出响应,波形。
数字信号处理实验三
实验报告课程名称: 数字信号处理院系部:电气与电子工程学院专业班级:信息1002学生姓名:王萌学号: 1101200219同组人:实验台号:指导教师:范杰清成绩:华北电力大学(北京)实验二 时域抽样与频域抽样一、实验目的加深理解连续时间信号的离散化过程中的数学概念和物理概念,掌握时域抽样定理的基本内容。
掌握由抽样序列重建原连续信号的基本原理与实现方法,理解其工程概念。
加深理解频谱离散化过程中的数学概念和物理概念,掌握频域抽样定理的基本内容。
二、 实验原理时域抽样定理给出了连续信号抽样过程中信号不失真的约束条件:对于基带信号,信号抽样频率fsam 大于等于2倍的信号最高频率fm ,即 fsam 2fm 。
时域抽样是把连续信号x(t)变成适于数字系统处理的离散信号x[k] ;信号重建是将离散信号x[k]转换为连续时间信号x(t)。
非周期离散信号的频谱是连续的周期谱。
计算机在分析离散信号的频谱时,必须将其连续频谱离散化。
频域抽样定理给出了连续频谱抽样过程中信号不失真的约束条件。
三、实验内容:1、利用MATLAB 实现对 的抽样)20π2cos()(t t x ⨯=程序代码:自己设计:w0=2*pi*20;t=0:0.0001:0.1;x=cos(w0*t);plot(t,x);hold on;t=0:0.01:0.1;x=cos(w0*t);stem(t,x);hold off;所给代码:t0 = 0:0.001:0.1;x0 =cos(2*pi*20*t0);plot(t0,x0,'r')hold on%信号最高频率fm为20 Hz,%按100 Hz抽样得到序列。
Fs = 100;00.010.020.030.040.050.060.070.080.090.1-1-0.8-0.6-0.4-0.20.20.40.60.81连续信号及其抽样信号t=0:1/Fs:0.1;x=cos(2*pi*20*t);stem(t,x);hold offtitle('连续信号及其抽样信号')自己设计的程序结果截图:实际截图:2、已知序列}2,1,0;1,1,1{][==kkx对其频谱X(ejW)进行抽样。
中南大学数字信号处理实验报告(详
课程名称:数字信号处理姓名:贺维佳成绩:班级:电子信息1201 学号:0909120925 日期:2014年5月13日地点:综合实验楼指导老师:张昊目录实验一信号、系统及系统响应1.实验目的 (3)2.实验原理与方法 (3)3.实验内容 (4)实验步骤 (4)程序框图 (6)4.实验结论 (7)实验代码 (7)实验截图 (11)实验二用FFT作谱分析1.实验目的 (14)2.实验原理 (14)3.实验步骤 (16)4.上机实验内容 (17)5.实验结果 (17)实验代码 (18)实验截图 (19)1.实验目的(1)熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解。
(2)熟悉是与离散系统的时域特性。
(3)利用卷积方法观察并分析系统的时域特性。
(4)掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对连续信号、离散信号及系统响应进行频域分析。
2. 实验原理与方法(1)采样是连续信号数字处理的第一个关键环节。
对一个信号X a(t)进行理想采样过程如下:其中为的理想采样,p(t)为周期冲激脉冲,即的傅里叶变换为将p(t)代入并进行傅里叶变换其中就是采样后得到的序列X(n),即X(n)的傅里叶变换为由上两式得(2)在数字计算机上观察分析各种序列的频域特性,通常对在[0,2π]上进行M点采样来观察分析。
对长度为N的有限长序列X(n),有其中一个时域离散线性非事变系统的输入/输出关系为上述积分也可以在频域实现:3. 实验内容实验步骤:(1)信号产生子程序,用于产生试验中要用到的下列信号序列:a.采样信号序列:对下面连续信号:进行采样,可得到采样序列:其中A为幅度因子,a为衰减因子,是模拟角频率,T为采样间隔,这些参数在实验过程中由键盘输入,产生不同的和。
b.单位脉冲序列:c.矩形序列:(2)系统单位脉冲相应序列产生子程序。
本实验要用到两种FIR系统。
a.b.(3)有限长序列线性卷积子程序,用于完成两个给定长度的序列的卷积。
《数字信号处理》实验指导书(正文)
实验一 离散时间信号分析一、实验目的1.掌握各种常用的序列,理解其数学表达式和波形表示。
2.掌握在计算机中生成及绘制数字信号波形的方法。
3.掌握序列的相加、相乘、移位、反褶等基本运算及计算机实现与作用。
4.掌握线性卷积软件实现的方法。
5.掌握计算机的使用方法和常用系统软件及应用软件的使用。
6.通过编程,上机调试程序,进一步增强使用计算机解决问题的能力。
二、实验原理1.序列的基本概念离散时间信号在数学上可用时间序列来表示,其中代表序列的第n 个数字,n 代表时间的序列,n 的取值范围为∞<<∞-n 的整数,n 取其它值)(n x 没有意义。
离散时间信号可以是由模拟信号通过采样得到,例如对)(t x a 模拟信号进行等间隔采样,采样间隔为T ,得到一个{})(nT x a 有序的数字序列就是离散时间信号,简称序列。
2.常用序列常用序列有:单位脉冲序列(单位采样))(n δ、单位阶跃序列)(n u 、矩形序列)(n R N 、实指数序列、复指数序列、正弦型序列等。
3.序列的基本运算序列的运算包括移位、反褶、和、积、标乘、累加、差分运算等。
4.序列的卷积运算∑∞∞-*=-=)()()()()(n h n x m n h m x n y上式的运算关系称为卷积运算,式中代表两个序列卷积运算。
两个序列的卷积是一个序列与另一个序列反褶后逐次移位乘积之和,故称为离散卷积,也称两序列的线性卷积。
其计算的过程包括以下4个步骤。
(1)反褶:先将)(n x 和)(n h 的变量n 换成m ,变成)(m x 和)(m h ,再将)(m h 以纵轴为对称轴反褶成)(m h -。
(2)移位:将)(m h -移位n ,得)(m n h -。
当n 为正数时,右移n 位;当n 为负数时,左移n 位。
(3)相乘:将)(m n h -和)(m x 的对应点值相乘。
(4)求和:将以上所有对应点的乘积累加起来,即得)(n y 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告
实验名称用双线性变换法设计IIR数字滤波器课程名称数字信号处理
姓名成绩
班级学号
日期 2014年5月24号地点综合实验楼机房备注:
1.实验目的
(1)熟悉用双线性变换法设计IIR 数字滤波器的原理与方法;
(2)掌握数字滤波器的计算机仿真方法;
(3)通过观察对实际心电图信号的滤波作用,获得数字滤波的感性知识。
2.实验环境
应用MATLAB 6.5软件
操作系统:windows XP
3.实验内容及原理
(1)用双线性变换法设计一个巴特沃斯低通IIR 数字滤波器。
设计指标参数为:在通带内截止频率低于0.2π时,最大衰减小于1dB ;在阻带内[0.3π,π]频率区间上,最小衰减大于15dB 。
(2)以0.02π为采样间隔,打印出数字滤波器在频率区间[0,π/2]上的幅频响应特性曲线。
(3)用所设计的滤波器对实际心电图信号采样序列进行仿真滤波处理,并分别打印出滤波前后的心电图信号波形图,观察总结滤波作用与效果。
教材例中已求出满足本实验要求的数字滤波系统函数:
∏==3
1)()(k k z H z H ,
3,2,1,1)21()(2121=--++=----k z
C z B z z A z H k k k 式中 A=0.09036,
2155
.0,9044.03583.0,0106.17051
.0,2686.1332211-==-==-==C B C B C B
4.实验结果
心电图信号采样序列
一级滤波后的心电图信号:
三级滤波后的心电图信号:
滤波器的幅频响应曲线:
00.050.10.150.2
0.250.30.350.40.450.5-50-40
-30
-20
-10
10
w/pi 20l g |H (j w )|滤波器的幅频响应曲线
5.思考题 用双线性变换法设计数字滤波器过程中,变换公式
中T 的取值,对设计结果有无影响? 为什么?
答:对设计结果没有影响。
因为
,
只于信号本身有关,即s 与T 无关。
6.实验结论
双线性变换法的特点:
对频率的压缩符合下列公式:
1
1
112--+-=z z T s s T
s
T z -+=22
这样的变换叫做双线性变换。
用双线性变换法来设计数字滤波器,由于从s面映射到s1面具有非线性频率压缩的特点,因此不可能产生频率混叠现象,而且转换成的H(z)是因果稳定的,这是双线性变换法的最大优点。
其缺点是w与 之间的非线性关系直接影响数字滤波器频香逼真的模仿模拟滤波器的频响。
数字滤波器的输入和输出均为数字信号,通过一定的运算关系改变输入信号所含频率成分的相对比例或者滤除某些频率成分。
数字滤波器可以通过模拟其网络传输函数进行实现。
如图中所示,滤波器对其高于截止频率的频段产生很高的衰减,所得信号较之原信号剔除了高频的成分。
附件--实验代码
x=[-4,-2,0,-4,-6,-4,-2,-4,-6,-6,-4,-4,-6,-6,-2,6,12,8,0,-16,-38,-60,-84,-90,-66 ,-32,-4,-2,-4,8,12,12,10,6,6,6,4,0,0,0,0,0,-2,-4,0,0,0,-2,-2,0,0,-2,-2,-2,-2,0] ;
n=0:55;
subplot(1,1,1);
stem(n,x,'.');
axis([0 55 -100 50]);
xlabel('n');
ylabel('x(n)');
title('心电图信号采样序列x(n)');
N=56;
A=[0.09036 2*0.09036 0.09036];
B=[1 -1.2686 0.7051];
B1=[1 -1.0106 0.3583];
B2=[1 -0.9044 0.2155];
y1=filter(A,B,x);
n=0:55;
figure;
subplot(1,1,1);
stem(n,y1,'.');
xlabel('n');
ylabel('y1(n)');
title('一级滤波后的心电图信号');
y2=filter(A,B1,y1);
n=0:55;
figure;
subplot(1,1,1);
stem(n,y2,'.');
xlabel('n');
ylabel('y2(n)');
title('二级滤波后的心电图信号');
y3=filter(A,B2,y2);
n=0:55;figure;
subplot(1,1,1);
stem(n,y3,'.');
xlabel('n');
ylabel('y3(n)');
title('三级滤波后的心电图信号');
A=[0.09036 2*0.09036 0.09036];
B1=[1 -1.2686 0.7051];
B2=[1 -1.0106 0.3583];
B3=[1 -0.9044 0.2155];
[H1,w]=freqz(A,B1,100);
[H2,w]=freqz(A,B2,100);
[H3,w]=freqz(A,B3,100);
H4=H1.*(H2);
H=H4.*(H3);
mag=abs(H);
db=20*log10((mag+eps)/max(mag)); figure;
subplot(1,1,1);
plot(w/pi,db);
axis([0 0.5 -50 10]);
xlabel('w/pi');
ylabel('20lg|H(jw)|');
title('滤波器的幅频响应曲线');。