新人教第九章《不等式与不等式组》单元测试题及答案

合集下载

人教版九年级下册第九章 不等式与不等式组单元练习题(含答案)

人教版九年级下册第九章 不等式与不等式组单元练习题(含答案)

第九章不等式与不等式组一、选择题1.下列不等式中,解集是x>1的不等式是()A.-3x>-3B.-2x-3>-5C. 2x+3>5D.x+4>32.如图所示,在数轴上表示了某不等式的解集,则这个不等式可能是()A.x≤1B.x≤-1C.x≥1D.x≥-13.不等式组的最小整数解是()A. 0B.-1C. 1D. 24.不等式5-x>2的解集是()A.x>-3B.x>3C.x<-7D.x<35.如果(a+1)x<a+1的解集是x>1,那么a的取值范围是()A.a<0B.a<-1C.a>-1D.a是任意有理数6.已知0≤a-b≤1且1≤a+b≤4,则a的取值范围是()A.1≤a≤2B.2≤a≤3C.≤a≤D.≤a≤7.宜宾市某化工厂,现有A种原料52千克,B种原料64千克,现用这些原料生产甲、乙两种产品共20件.已知生产1件甲种产品需要A种原料3千克,B种原料2千克;生产1件乙种产品需要A种原料2千克,B种原料4千克,则生产方案的种数为()A. 4B. 5C. 6D. 78.x与y的差的5倍与2的和是一个非负数,可表示为()A. 5(x-y)+2>0B. 5(x-y)+2≥0C.x-5y+2≥0D. 5x-2y+2≤09.使不等式x-2≥-3与2x+3<5同时成立的x的整数值是()A.-2,-1,0B. 0,1C.-1,0D.不存在10.下列不等式组无解的是()A.B.C.D.二、填空题11.当x取正整数________时,不等式x+3>6与不等式2x-1<10都成立.12.若不等式组有解,则m的取值范围是____________.13.为了节省空间,家里的饭碗一般是摞起来存放的.如果6只饭碗摞起来的高度为15 cm,9只饭碗摞起来的高度为20 cm,李老师家的碗橱每格的高度为28 cm,则李老师一摞碗最对只能放______只.14.如果2x-5<2y-5,那么-x______-y.(填“<、>、或=”)15.已知3x+4≤2(3+x),则|x+1|的最小值为______.16.满足5(x-1)≤4x+8<5x的整数x为______________________.17.关于x的不等式组的解集为1<x<4,则a的值为________.18.关于x的不等式组的解集是5<x<22,则a=_____,b=______.19.用不等式表示:x的3倍与4的差是非负数________.20.不等式2(x+1)≥5x-4的非负整数解有________.三、解答题21.已知方程组的解x为非正数,y为负数.(1)求a的取值范围;(2)在a的取值范围中,当a为何整数时,不等式2ax+x>2a+1的解为x<1.22.解不等式组:并求它的整数解的和.23.若不等式3(x-1)>2(x+1)的解都是不等式ax>b的解,请问a,b应满足什么关系?24.关于x的不等式组(1)若不等式组的解集是1<x<2,求a的值;(2)若不等式组无解,求a的取值范围.25.指出下列各式成立的条件:(1)由mx<n,得x>(2)由a<b,得m2a<m2b;(3)由a>-2,得a2≤-2a.26.判断下列式子中,哪些是一元一次不等式组?(1);(2);(3);(4);(5).27.某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数.28.解不等式组并求出它所有的非负整数解.答案解析1.【答案】C【解析】A.解得x<1,所以A选项错误;B.-2x>-5+3,则x<1,所以B选项错误;C.2x+3>5,则2x>5-3,解得x>1,所以C选项正确;D.x>3-4,解得x>-1,所以D选项错误.故选C.2.【答案】C【解析】由题意,得x≥1,故选C.3.【答案】A【解析】不等式组整理得解得-<x≤4,则不等式组的最小整数解是0,故选A.4.【答案】D【解析】5-x>2,-x>2-5,x<3.故选D.5.【答案】B【解析】如果(a+1)x<a+1的解集是x>1,得a+1<0,a<-1,故选B.6.【答案】C【解析】0≤a-b≤1,①1≤a+b≤4,②①+②,得1≤2a≤5,0.5≤a≤2.5,故选C.7.【答案】B【解析】设生产甲产品x件,则乙产品(20-x)件,根据题意得解得8≤x≤12,∵x为整数,∴x=8,9,10,11,12,∴有5种生产方案:方案1,A产品8件,B产品12件;方案2,A产品9件,B产品11件;方案3,A产品10件,B产品10件;方案4,A产品11件,B产品9件;方案5,A产品12件,B产品8件;故选B.8.【答案】B【解析】根据题意,得5(x-y)+2≥0.故选B.9.【答案】C【解析】解不等式x-2≥-3,得x≥-1,解2x+3<5,得x<1.则公共部分是-1≤x<1.则整数值是-1,0.故选C.10.【答案】D【解析】A.解两个不等式分别得到x<2,x<-1,则不等式组的解集是x<-1,故选项错误;B.解两个不等式分别得到x<1,x>-2,则不等式组的解集是-2<x<1,故选项错误;C.解两个不等式分别得到x>-1,x>2,则不等式组的解集是x>2,故选项错误;D.解两个不等式分别得到x<-1,x>2,则不等式组无解,故选项正确.故选D.11.【答案】4或5【解析】解不等式得3<x<5.5,所以正整数x为4或5,故答案为4或5.12.【答案】m<2【解析】解不等式3+x>2m,得x>2m-3,解不等式2x-m≤0,得x≤,∵不等式组有解,∴>2m-3,解得m<2,故答案为m<2.13.【答案】13【解析】设碗底的高度为x cm,碗身的高度为y cm,由题意得解得设李老师一摞碗能放a只碗,a+5≤28,解得a≤.故李老师一摞碗最多只能放13只碗.故答案为13.14.【答案】>【解析】如果2x-5<2y-5,两边都加5可得2x<2y;同除以(-2)可得-x>-y.15.【答案】0.【解析】3x+4≤6+2x,3x-2x≤6-4,解得x≤2.∴当x=-1时,|x+1|的最小值为0,故答案为0.16.【答案】9,10,11,12,13.【解析】根据题意得解①得x≤13,解②得x>8,所以不等式组的解集为8<x≤13,所以不等式组的整数解为9,10,11,12,13.故答案为9,10,11,12,13.17.【答案】5【解析】解不等式2x+1>3,得x>1,解不等式a-x>1,得x<a-1,∵不等式组的解集为1<x<4,∴a-1=4,即a=5,故答案为5.18.【答案】【解析】解①得x<5a,解②得x>,根据题意得解得故答案是,.19.【答案】3x-4≥0【解析】非负数就是大于等于0的数,故答案为3x-4≥0.20.【答案】0,1,2.【解析】去括号得2x+2≥5x-4,移项得2x-5x≥-4-2,合并得-3x≥-6,系数化为1得x≤2,所以不等式的非负整数解为0,1,2.故答案为0,1,2.21.【答案】解:(1)解这个方程组的解为由题意,得不等式①的解集是a≤3,不等式②的解集是a>-2,则原不等式组的解集为-2<a≤3;(2)∵不等式(2a+1)x>(2a+1)的解为x<1,∴2a+1<0且-2<a≤3,∴在-2<a<-范围内的整数a=-1.【解析】(1)先把a当作已知求出x、y的值,再根据x、y的取值范围得到关于a的一元一次不等式组,求出a的取值范围即可;(2)根据不等式2ax+x>2a+1的解为x<1,得出2a+1<0且-2<a≤3,解此不等式得到关于a 取值范围,找出符合条件的a的值.22.【答案】解:由①得x>-2,由②得x≤1,∴不等式组的解集为-2<x≤1,∴不等式组的整数解的和为-1+0+1=0.【解析】先求出不等式组中每个不等式的解集,然后求出其公共解集,进而求其整数解,最后求它的整数解的和即可.23.【答案】解:解不等式3(x-1)>2(x+1),去括号,得3x-3>2x+2,移项,得3x-2x>3+2,合并同类项,得x>5.不等式ax>b的系数化成1,则两边同时除以a,则a,b的关系是≤5,且a>0.【解析】首先解不等式3(x-1)>2(x+1),求得x的范围,然后根据不等式ax>b的解的关系即可求得.24.【答案】解:(1)解不等式2x+1>3,得x>1,解不等式a-x>1,得x<a-1,∵不等式组的解集是1<x<2,∴a-1=2,解得a=3;(2)∵不等式组无解,∴a-1≤1,解得a≤2.【解析】(1)解不等式组中两个不等式后根据不等式组的解集可得关于a的方程,解之可得;(2)根据“大小小大无解了”可确定关于a的不等式,解之可得.25.【答案】解:(1)当m<0时,由mx<n,得x>;(2)当m≠0时,由a<b,得m2a<m2b;(3)当a≤0时,由a>-2,得a2≤-2a.【解析】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案.26.【答案】解:(1)中x=42是方程,不是不等式,故不是一元一次不等式组;(2)中x2<81是一元二次不等式,故不是一元一次不等式组;(3)符合一元一次不等式组的定义,是一元一次不等式组;(4)含有两个未知数,是二元一次不等式组,故不是一元一次不等式组;(5)符合一元一次不等式组的定义,是一元一次不等式组.综上,可知(3)(5)是一元一次不等式组.【解析】根据一元一次不等式组的定义作答.27.【答案】解:设宿舍有x间,则学生数有(4x+20)人,依题意得解得5<x<7.∵x为整数,∴x=6.答:有宿舍6间,寄宿学生数44人.【解析】根据“如果每间住4人,那么有20人无法安排”,即说明人数与宿间数之间的关系,若设有x间宿舍,则住宿学生有(4x+20)人.“如果每间住8人,那么有一间宿舍不空也不满”即说明学生的人数与(x-1)间宿舍住的学生数的差,应该大于或等于1,并且小于8.28.【答案】解由①得x>-2,由②得x≤2,∴原不等式组的解是-2<x≤2,∴不等式组的非负整数解为0,1,2.【解析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其非负整数解即可.。

人教版初中数学七年级下册第九章《不等式与不等式组》单元测试题(含答案)

人教版初中数学七年级下册第九章《不等式与不等式组》单元测试题(含答案)

第九章《不等式与不等式组》检测题一、选择题(每小题只有一个正确答案)1.给出下面5个式子:①30>;②430x y +≠;③3x =;④1x -;⑤23x +≤,其中不等式有( ).A. 2个B. 3个C. 4个D. 5个2.如果a b <,下列各式中正确的是( )A. 22ac bc <B. 11a b >C. 33a b ->-D. 44a b > 3.如图,点A 表示的数是a ,则数a ,–a ,2a 的大小顺序是( )A. a <–a <2aB. 2a < a <–aC. –a <a <2aD. –a < 2a <a4.根据数量关系: 2x 减去10不大于10,用不等式表示为( )A. 21010x ->B. 21010x -≤C. 21010x -≥D. 21010x -<5.不等式2x -5≥-1的解集在数轴上表示正确的是( ).A. B. C. D.6.现用 甲、乙两种运输车将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,安排车辆不超过10辆,则甲种运输车至少应安排( ) .A. 4辆B. 5辆C. 6辆D. 7辆7.不等式组10{ 420x x -≥->的解集在数轴上表示为( ) A. B. C. D.8.关于x 的方程2111ax x x -=++的解为非正数,且关于x 的不等式组22{ 533a x x +≤+≥无解,那么满足条件的所有整数a 的和是( )A. ﹣19B. ﹣15C. ﹣13D. ﹣99.在不等式22135x x +-≥的变形过程中,出现错误的步骤是( ) A. 5(2+x )≥3(2x ﹣1) B. 10+5x≥6x﹣3 C. 5x ﹣6x≥﹣3﹣10 D. x≥13 10.不等式组10,{2x x -≤-<的整数解的个数为( )A. 0个B. 2个C. 3个D. 无数个11.某次“迎奥运”知识竞赛中共20道题,对于每一道题,答对得10分,答错或不答扣5分,选手至少要答对( )道题,其得分才会不少于95分?A. 14B. 13C. 12D. 1112.不等式组的解集是( )二、填空题13.2x+10>2的解集是_____.14.写出不等式()5332x x +<+所有的非负整数解__________.15.如果5a ﹣3x 2+a >1是关于x 的一元一次不等式,则其解集为________16.已知a 、b 为常数,若0ax b +>的解集是 13x <,则bx-a<0的解集是_____________。

七年级数学下册《第九章不等式与不等式组》单元测试卷及答案(人教版)

七年级数学下册《第九章不等式与不等式组》单元测试卷及答案(人教版)

七年级数学下册《第九章不等式与不等式组》单元测试卷及答案(人教版)班级:___________姓名:___________考号:_____________一、选择题1. 在数学表达式:-3<0,4x+3y>0,x=3,x≠5,x+2>y+3中,是不等式的有个.( )A. 1B. 2C. 3D. 42. 已知m>n,下列变形一定正确的是( )A. m−4<n−4B. ma2>na2C. m+n>0D. m−n>03. 如果关于x的不等式(m+1)x>m+1的解集为x<1,则m的取值范围是.( )A. m<0B. m<−1C. m>1D. m>−14. 今年我市空气质量优良指数排名入围全国城市前十,空气污染指数API值不超过50时,说明空气质量为优,相当于达到国家空气质量一级标准,其中API值不超过50时可以表示为( )A. API≤50B. API≥50C. API<50D. API>505. 关于x的不等式x−b>0恰有两个负整数解,则b的取值范围是( )A. −3<b<−2B. −3<b≤−2C. −3≤b≤−2D. −3≤b<−26. 关于x的一元一次不等式m−2x3≤−2的解集为x≥4,则m的值为( )A. 14B. 7C. −2D. 27. 已知关于x的不等式组{x>2a−32x⩾3(x−2)+5仅有三个整数解,则a的取值范围是( )A. 12⩽a<1 B. 12⩽a⩽1 C. 12<a⩽1 D. a<18. 某大型音乐会在艺术中心举行.观众在门口等候检票进入大厅,且排队的观众按照一定的速度增加.检票速度一定,当开放一个大门时,需用半小时待检观众才能全部进入大厅;当开放两个大门时,只需十分钟.现在想提前开演,必须在五分钟内全部检完票,则音乐厅应至少同时开放的大门数是( )A. 3个B. 4个C. 5个D. 6个二、填空题(本大题共4小题,共12.0分)9. 若a>b,则−3a+1−3b+1.(填“<”或“>”)10. 已知实数x,y,a满足x+3y+a=4,x−y−3a=0若−1≤a≤1,则2x+y的取值范围是___________.11. 若不等式x+52>−x−72的解都能使不等式(m−6)x<2m+1成立,则实数m的取值范围是______.12. 世纪公园的门票是每人5元,一次购门票满40张,每张门票可少1元.若少于40人时,一个团队至少要有______人进公园,买40张门票反而合算.三、计算题(本大题共1小题,共6.0分)13. 解不等式组{2x≥5x−3 4x+23>x四、解答题14.关于x的不等式组{x<3a+2,x>a−4无解,求a的取值范围.15. 若关于x的方程2x−3m=2m−4x+4的解不小于78−1−m3,求m的最小值.16.已知关于x的不等式2m−mx2>12x−1.(1)当m=1时,求该不等式的正整数解;(2)m取何值时,该不等式有解,并求出其解集.17.为加快复工复产,某企业需运输一批物资.据调查得知,2辆大货车与3辆小货车一次可以运输600箱;5辆大货车与6辆小货车一次可以运输1350箱.(1)求1辆大货车和1辆小货车一次可以分别运输多少箱物资;(2)计划用两种货车共12辆运输这批物资,每辆大货车一次需费用5000元,每辆小货车一次需费用3000元.若运输物资不少于1500箱,且总费用小于54000元.请你列出所有运输方案,并指出哪种方案所需费用最少.最少费用是多少?18. 已知关于x、y的二元一次方程组{2x−y=3k−22x+y=1−k(k为常数).(1)求这个二元一次方程组的解(用含k的代数式表示);(2)若方程组的解x、y满足x+y>5,求k的取值范围;(3)若k≤1,设m=2x−3y,且m为正整数,求m的值.19.阅读下列材料:我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离,即|x|=|x−0|,也就是说,|x1−x2|表示在数轴上数x1与数x2对应的点之间的距离;例1.解方程|x|=2,因为在数轴上到原点的距离为2的点对应的数为±2,所以方程|x|=2的解为x=±2.例2.解不等式|x−1|>2,在数轴上找出|x−1|=2的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为−1或3,所以方程|x−1|=2的解为x=−1或x=3,因此不等式|x−1|>2的解集为x<−1或x>3.参考阅读材料,解答下列问题:(1)方程|x+3|=5的解为__________;(2)解不等式:|x−2|≤3;(3)解不等式:|x−4|+|x+2|>8.参考答案1.D2.D3.B4.A5.D6.D7.A8.B9.<10.0≤2x +y ≤611.236≤m ≤612.3313.解:{2x ≥5x −3①4x+23>x② 由①得:x ≤1;由②得:x >−2;∴−2<x ≤1,14.解:∵不等式组{x <3a +2,x >a −4无解 ∴a −4≥3a +2移项得a −4−(3a +2)≥0解得a ≤−3.故答案为a ≤−3.15.解:关于x 的方程2x −3m =2m −4x +4的解为:x =5m+46 根据题意,得5m+46≥78−1−m 3去分母,得4(5m +4)≥21−8(1−m)去括号,得20m +16≥21−8+8m移项,合并同类项得12m ≥−3系数化为1,得m ≥−14.所以当m ≥−14时,方程的解不小于78−1−m 3,m 的最小值为−14. 16.解:(1)当m =1时,原不等式为2−x 2>12x −1去分母,得2−x >x −2.移项,得−x−x>−2−2合并同类项,得−2x>−4解得x<2.所以它的正整数解为1.(2)2m−mx2>12x−1去分母,得2m−mx>x−2.移项,合并同类项,得(m+1)x<2(m+1).所以当m≠−1时,不等式有解当m>−1时,原不等式的解集为x<2;当m<−1时,原不等式的解集为x>2.17.解:(1)设1辆大货车一次运输x箱物资,1辆小货车一次运输y箱物资由题意可得:{2x+3y=600 5x+6y=1350解得:{x=150 y=100答:1辆大货车一次运输150箱物资,1辆小货车一次运输100箱物资(2)设有a辆大货车,(12−a)辆小货车由题意可得:{150a+100(12−a)≥15005000a+3000(12−a)<54000∴6≤a<9∴整数a=6,7,8;当有6辆大货车,6辆小货车时,费用=5000×6+3000×6=48000元当有7辆大货车,5辆小货车时,费用=5000×7+3000×5=50000元当有8辆大货车,4辆小货车时,费用=5000×8+3000×4=52000元∵48000<50000<52000∴当有6辆大货车,6辆小货车时,费用最少,最少费用为48000元.18.解(1){2x−y=3k−2①2x+y=1−k②①+②得:4x=2k−1x=2k−1 4①−②得:−2y=4k−3y=3−4k 2∴{x=2k−14 y=3−4k2(2)∵方程组的解x、y满足x+y>5∴2k−14+3−4k2>5解得:k<−52 (3)设m=2x−3y则m=2(2k−1)4−3(3−4k)2解得k=m+57∵k≤1∴m+57≤1∴m≤2∵m为正整数∴m=1或219.解:(1)x=2或x=−8;(2)在数轴上找出|x−2|=3的解.因为在数轴上到2对应的点的距离等于3的点对应的数为−1或5所以方程|x−2|=3的解为x=−1或x=5所以不等式|x−2|≤3的解集为−1≤x≤5.(3)在数轴上找出|x−4|+|x+2|=8的解.由绝对值的几何意义知,该方程就是求在数轴上到4和−2对应的点的距离之和等于8的点对应的x的值.因为在数轴上4和−2对应的点的距离为6所以满足方程的x对应的点在4的右边或−2的左边.若x对应的点在4的右边,可得x=5;若x对应的点在−2的左边,可得x=−3所以方程|x−4|+|x+2|=8的解是x=5或x=−3所以不等式|x−4|+|x+2|>8的解集为x>5或x<−3.。

人教版数学七年级下册:第九章《不等式与不等式组》单元测试卷含答案

人教版数学七年级下册:第九章《不等式与不等式组》单元测试卷含答案

第九章 单元测试卷(时间:120分钟 满分:150分)一、选择题(每题4分,共40分)1、下列各式:(1)5x -≥;(2)30y x -<;(3)50xπ+<;(4)23x x +≠; (5)333x x+≤;(6)20x +<是一元一次不等式的有( ) A. 2个 B. 3个 C. 4个 D. 5个 2、下列命题正确的是( )A. 若a b >,b c <,则a c >B. 若a b >,则ac bc >C. 若a b >,则22ac bc >D. 若22ac bc >,则a b >3、若点P (21m +,312m -)在第四象限,则m 的取值范围是( ) A.14m < B.12m > C.1123m -<< D.1123m -≤≤4、如图,A ,B 两点在数轴上表示的数分别为a ,b ,下列式子成立的是( )A.0ab >B.0a b +<C.(1)(1)0b a -+>D.(1)(1)0b a -->5、不等式组1(1)2,2331xx x ⎧+≤⎪⎨⎪-<+⎩的解集在数轴上表示正确的是( )6、已知2x =是不等式(5)(32)0x ax a --+≤的解,且1x =不是这个不等式的解,则实数a 的取值范围是( )A.1a > B .2a ≤ C.12a <≤ D.12a ≤≤ 7、若0a b +<,且0b <,则a ,b ,a -,b -的大小关系为( )A.a b b a -<-<<B.a b b a -<<-< C .a b a b -<-<< D.a b b a <<-<-8、已知4,221x y k x y k +=⎧⎨+=+⎩且10x y -<-<,则k 的取值范围为( )A.112k -<<-B.102k <<C. 01k <<D.112k <<9、若不等式组1,1x x m <⎧⎨>-⎩恰有两个整数解,则m 的取值范围是( )A.10m -≤< B .10m -<≤ C. 10m -≤≤ D .10m -<< 10、若人要完成2.1千米的路程,并要在18分钟内到达,已知他每分钟走90米,若跑步每分钟可跑210米,问这人完成这段路程,至少要跑多少分钟?设要跑x 分钟,则列出的不等式为( )A. 21090(18)2100x x +-≥B. 90210(18)2100x x +-≤C. 21090(18) 2.1x x +-≤D. 21090(18) 2.1x x +-> 二、填空题(每题5分,共20分) 11、若不等式组0,122x a x x +≥⎧⎨->-⎩有解,则a 的取值范围是___________.12、已知实数x ,y 满足234x y -=,并且1x ≥-,2y <,现有k x y =+,则k 的取值范围是____________. 13、若不等式组20,x b x a -≥⎧⎨+≤⎩的解集为34x ≤≤,则不等式ax b +<0的解集为____________.14、某商品的标价比成本价高m%,根据市场需要,该商品需降价n%出售,为了不亏本,n 应满足________________.三、解答题(15—18,每题8分;19、20每题10分;21、22每题12分;23题14分) 15、解不等式(组),并把解集在数轴上表示. (1) 122362x x x -+-<- (2)53362x-≤<16、已知实数a 是不等于3的常数,解不等式组233,11(2)022x x a x -+≥-⎧⎪⎨-+<⎪⎩,并依据a 的取值情况写出其解集.17、已知关于x ,y 的方程组2,2324x y m x y m -=⎧⎨+=+⎩的解满足不等式组30,50x y x y +≤⎧⎨+>⎩求满足条件的m 的整数值.18、小明早上7点骑自行车从家出发,以每小时12千米的速度到距家4千米的学校上课,行至距学校1千米的地方时,自行车突然发生故障,小明只得改为步行前往学校,如果他想在7点30分之前赶到学校,那么他步行的速度至少应为多少?19、已知关于x 的不等式(2)50a b x a b -+->的解集是107x <,求关于x 的不等式ax b >的解集.20、甲、乙两个厂家生产的办公桌和办公椅的质量、价格一致,每张办公桌800元,每把椅子80元.甲、乙两个厂家推出各自销售的优惠方案,甲厂家:买一张桌子送三把椅子;乙厂家:桌子和椅子全部按原价的八折优惠.现某公司要购买3张办公桌和若干把椅子,若购买的椅子数为x 把(9x ≥).(1)分别用含x 的式子表示到甲、乙两个厂家购买桌椅所需的金额; (2)请你说出到哪家购买更划算?21、为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设某工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540 m 3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作.租赁公司提供的挖掘机有关信息如下表所示:(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?(2)如果每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有哪几种不同的租用方案?22、对x ,y 定义一种新运算T ,规定(,)2ax byx y x y+T =+(其中a ,b 均为非零常数),这里等式右边是通常的四则运算,例:1(0,1)201a b b b ⨯+⨯T ==⨯+ .已知(1,1)2T -=-,(4,2)1T =. (1)求a ,b 的值;(2)若关于m 的不等式组(2,54)4,(,32)m m m m p T -≤⎧⎨T ->⎩恰好有3个整数解,求实数p 的取值范围.23、为极大地满足人民生活的需求,丰富市场供应,某区农村温棚设施农业迅速发展,温棚种植面积在不断扩大.在耕地上培成一行一行的长方形土埂,按顺序间隔种植不同农作物的方法叫分垄间隔套种.科学研究表明:在塑料温棚中分垄间隔套种高、矮不同的蔬菜和水果(同一种紧挨在一起种植不超过两垄),可增加它们的光合作用,提高单位面积的产量和经济效益.现有一个种植总面积为540 m 2的长方形塑料温棚,分垄间隔套种草莓和西红柿共24垄,种植的草莓或西红柿单种农作物的总垄数不低于10垄,又不超过14垄(垄数为正整数),它们的占地面积、产量、利润分别如下:(1)若设草莓共种植了x 垄,通过计算说明共有几种种植方案,分别是哪几种; (2)在这几种种植方案中,哪种方案获得的利润最大?最大利润是多少?答 案一、选择题二、填空题11. 1a >- 12. 13k ≤< 13.32x > 14.100100mn m≤+ 三、解答题15.(1)4x > (2)7322x -<≤ (解集在数轴上表示略)16.解:233,11(2)0,22x x a x -+≥-⎧⎪⎨-+<⎪⎩①② 解不等式①,得3x ≤. 解不等式②,得x a <. ∵a 是不等于3的常数,∴当3a >时,不等式组的解集为3x ≤. 当3a <时,不等式组的解集为x a <. 17.解:2,2324,x y m x y m -=⎧⎨+=+⎩①②①+②,得334x y m +=+.②-①,得54x y m +=+.依题意,得340,40,m m +≤⎧⎨+>⎩解得443m -<≤-. 当m 为整数时,m =-3或m =-2.18.解:设他步行的速度为x 千米/时.由题意,得13()1212x -≥,解得x ≥4. 答:他步行的速度至少应为4千米/时. 19.解:原不等式可化为(2)5a b x b a ->-.而该不等式的解集为107x <, 说明20a b -<,且51027b a a b -=-.7(5)10(2)b a a b -=-,4527b a =,53b a =,35b a =,所以35b a =.因为20a b -<,所以3205a a -<,705a <, 所以0a <.在ax b >中,因为0a <,所以b x a <,即35x <.所以关于x 的不等式ax b >的解集为35x <.20.解:(1)到甲厂家购买桌椅所需金额为380080(9)(168080)x x ⨯+-=+(元).到乙厂家购买桌椅所需金额为(380080)0.8(192064)x x ⨯+⨯=+(元). (2)若168080192064x x +>+,解得15x >. ∵x 为整数,∴16x ≥.若168080192064x x +=+,解得15x =; 若168080192064x x +<+,解得15x <. ∵x 为整数,∴14x ≤.所以当买的椅子至少16把时,到乙厂家购买更划算; 当买的椅子为16把时,到两家厂家购买费用一样; 当买的椅子不多于14把时,到乙厂家购买更划算.21.解:(1)设租用甲型号的挖掘机x 台,乙型号的挖掘机y 台,根据题意,得8,6080540x y x y +=⎧⎨+=⎩解得5,3x y =⎧⎨=⎩答:甲、乙两种型号的挖掘机各需5台、3台.(2)设租用甲型号的挖掘机m 台,则租用乙型号的挖掘机5406080m-台,根据题意,得5406010012085080mm -+⨯≤,解得4m ≤. 又m 为非负整数, ∴0m =或1或2或3或4.将m 的值分别代入5406080m-,可知,只有当m =1时,54060680m-=,为整数,符合题意.∴符合条件的租用方案只有一种,即租用甲型号的挖掘机1台,乙型号的挖掘机6台. 22.解:(1)由,(4,2)1T =,得1(1)2211a b ⨯+⨯-=-⨯-,421242a b ⨯+⨯=⨯+,即2,4210,a b a b -=-⎧⎨+=⎩解得1,3.a b =⎧⎨=⎩即a ,b 的值分别为1,3.(2)由(1)得3(,)2x yx y x y +T =+,则不等式组(2,54)4,(,32)m m m m p T -≤⎧⎨T ->⎩可化为105,539,m m p -≤⎧⎨->-⎩解得19325p m --≤<. ∵不等式组(2,54)4,(,32)m m m m pT -≤⎧⎨T ->⎩恰好有3个整数解,∴93235p -<≤,解得123p -≤<-. 23.解:(1)根据题意可知西红柿种了(24)x -垄,则1530(24)540x x +-≤,解得12x ≥.又因为14x ≤,且x 是正整数,所以x =12,13,14. 故共有三种种植方案,分别是:方案一:草莓种植12垄,西红柿种植12垄;方案二:草莓种植13垄,西红柿种植11垄;方案三:草莓种植14垄,西红柿种植10垄.(2)方案一获得的利润:12×50×1.6+12×160×1.1=3072(元),方案二获得的利润:13×50×1.6+11×160×1.1=2976(元),方案三获得的利润:14×50×1.6+10×160×1.1=2880(元).由计算可知,方案一即种植西红柿和草莓各12垄,获得的利润最大,最大利润是3072元.。

人教版七年级下册 第九章 不等式与不等式组单元测试卷及答案

人教版七年级下册 第九章 不等式与不等式组单元测试卷及答案

第九章 不等式与不等式组单元测试试题考试时间:90分钟;总分:120分一、单选题(将唯一正确答案的代号填在题后括号内,每题3分,共30分)1.下列各式中:①57-<:②360y ->:③6a =:④23x y -;⑤a 2≠:⑥762y y ->+,不等式有( ) A .2个 B .3个 C .4个 D .5个2.若m >n ,则下列不等式正确的是( )A .22m n -<-B .88m n ->-C .66m n <D .44m n > 3.如图,数轴表示的不等式的解集是( )A .1x >-B .0x <C .2x ≤D .2x <4.下列各数中,为不等式组23040x x ->⎧⎨-<⎩的解的是( ) A .-1 B .2 C .4 D .85.在﹣2、3、﹣4、0、1、32、﹣103中能使不等式x ﹣2>2x 成立的有( ) A .4个B .3个C .2个D .1个 6.不等式2132x x --<的解集是( ) A .1x <- B .2x > C .1x >- D .2x <7.如图,不等式组1239x x -<⎧⎨-≤⎩的解集在数轴上表示正确的是( ) A .B .C .D . 8.如果关于x 的方程2435x a x b ++=的解是负值,那么a 与b 的关系是( ) A .35a b > B .35b a ≥ C .53a b ≥ D .53a b <9.已知关于x ,y 的二元一次方程组3351x y m x y m +=-⎧⎨-=-⎩,若x+y >3,则m 的取值范围是( ) A .m >1B .m <2C .m >3D .m >510.若关于x的一元一次不等式组112x axx->⎧⎪⎨->-⎪⎩无解,且方程()()2132x a x x-+=--的解是非负数,则满足条件的整数a的值有( )个.A.1B.2C.3D.4二、填空题(将正确答案填在题中横线上,每题3分,共24分)11.某品牌的食品,外包装标明:净含量为340±10g,表明该包装的食品净含量x的范围用不等式表示为.12.根据不等式的基本性质,若将“ba>2”变形为“b<2a”,则a的取值范围为_______.13.不等式-3x>-6的正整数解为x=______.14.已知a<0,-1<b<0,那么将a,ab,ab2,从小到大依次排列的顺序是______(用“<”连接) 15.商场有一种小商品进价为8元,出售标价为12元,后来由于积压,准备打折销售,但要保证利润率不低于5%,则最多可打__________折.16.若不等式组x a,52x3x1>⎧⎨+<+⎩的解集为x>4,则a的取值范围是_____.17.关于x,y的二元一次方程组23224x y mx y+=-+⎧⎨+=⎩的解满足x+y>﹣1,则m的取值范围是_____.18.已知方程组3133x y kx y+=+⎧⎨+=⎩的解x、y,且2<k<4,则x-y的取值范围是_______.三、解答题(本题共有8小题,共66分)19.(本题8分)用适当的符号表示下列关系:(1)一枚炮弹的杀伤半径不小于300米;(2)三件上衣与四条长裤的总价钱不高于268元;(3)明天下雨的可能性不小于70%;20.(本题8分)解不等式8-(x-3)≤2(x+1),并把解集在数轴上表示出来.21.(本题8分)解不等式组:2311 25123x xxx+≤+⎧⎪+⎨--⎪⎩>.22.(本题8分)某中学计划为地理兴趣小组购买大、小两种地球仪,若购买1个大地球仪和3个小地球仪需要136元;若购买2个大地球仪和1个小地球仪需要132元.(1)求每个大地球仪和每个小地球仪各多少元;(2)某中学决定购买以上两种地球仪共30个,总费用不超过960元,那么该中学最多可以购买多少个大地球仪.23.(本题8分)解不等式组3(2)2513212x xxx+≥+⎧⎪⎨+-<⎪⎩,并把不等式组的解集在数轴上表示出来.24.(本题8分)阅读下列材料,并完成填空.你能比较20152 016和20162 015的大小吗?为了解决这个问题,先把问题一般化,比较n n+1和(n+1)n(n≥1,且n为整数)的大小.然后从分析n=1,n=2,n=3…的简单情形入手,从中发现规律,经过归纳、猜想得出结论.(1)通过计算(可用计算器)比较下列①~⑦组两数的大小:(在横线上填上“>”“=”或“<”)①12____21;②23_____32;③34_____43;④45_____54;⑤56____65;⑥67_____76;⑦78_____87;(2)归纳第(1)问的结果,可以猜想出n n+1和(n+1)n的大小关系;(3)根据以上结论,可以得出20162017和20172016的大小关系.25.(本题8分)某班为参加学校的大课间活动比赛,准备购进一批跳绳,已知2根A型跳绳和1根B 型跳绳共需56元,1根A型跳绳和2根B型跳绳共需82元.(1)求一根A型跳绳和一根B型跳绳的售价各是多少元?(2)学校准备购买50根跳绳,如果A型跳绳的数量不多于B型跳绳数量的3倍,那么A型跳绳最多能买多少条?26.(本题10分)某汉堡店员工小聪去两户家庭外送汉堡和橙汁,第一家送3袋汉堡和2袋橙汁,向顾客收取32元;第二家送2袋汉堡和3袋橙汁,向顾客收取28元.⑴求汉堡和橙汁的单价;⑵若某顾客恰好用完36元钱,同时购买汉堡和橙汁,请你帮助小聪设计配送方案;⑶若某顾客同时购买汉堡和橙汁共10袋,付款不超过55元,问该顾客最多购买汉堡多少袋?参考答案1.C. 解析:数学表达式①-5<7;②3y -6>0;⑤a≠2;⑥7y -6>y+2是不等式, ③6a =是等式,④23x y -是代数式.故选:C .2.D. 解析:A 、将m>n 两边都减2得:m -2>n -2,此选项错误;B 、将m>n 两边都乘以-8,得:-8m<-8n,此选项错误C 、将m>n 两边都乘以6得:6m>6n,此选项错误;D 、将m>n 两边都除以4得:44m n >,此选项正确;; 故选:D.3.C. 解析:如图所示,不等式的解集为:x≤2.故选:C . 4.B.解析:解23040x x ->⎧⎨-<⎩得342x <<,因为3242<<,所以2为不等式组的解. 故选:B.5.C. 解析:x ﹣2>2x ,解得:x <﹣2,故符合题意的有:﹣4,﹣103共2个.故选:C . 6.C. 解析:()()2231x x -<-2433x x -<-,2334x x -<-+,1x -<,1x >-,故选C.7.A. 解析:1239x x -⎧⎨-≤⎩<①② 由①,得x <3;由②,得x≥-3;故不等式组的解集是:-3≤x <3;表示在数轴上如图所示:故选:A .8.D. 解析:2435x a xb++=,105123x a x b +=+,253x a b =-,532a bx -=, ∵解是负值,∴5302a b-<,即53a b <.故选:D .9.D. 解析:解关于x 、y 的方程组 3351x y m x y m +=-⎧⎨-=-⎩ ,得23212m x y -⎧=⎪⎪⎨⎪=-⎪⎩ ,∵x+y>3,∴231322m -->,解得:5m >.故选D .10.C. 解析:0112x a xx ->⎧⎪⎨->-⎪⎩①②,由①得:x>a ,由②得:x<1,由于不等式组无解,所以a≥1;解方程()()2132x a x x -+=--得x=722a-,由方程()()2132x a x x -+=--的解是非负数,则有722a-≥0,解得:a ≤72,所以a 的取值范围为1≤a ≤72,所以满足条件的整数a 为1、2、3,共3个,故选C .11.330≤x ≤350.解析:∵净含量为340g±10g ,∴330≤x≤350. 故答案为:330≤x≤350.12.a <0. 解析:∵当2ba >时,2b a <,∴0a <. 故答案为:0a <.13.1. 解析:∵36x ->-,∴x 2<,∴正整数解是:1;故答案为:1.14.2a ab ab <<. 解析:∵0a <,10b -<<,∴0ab >,201b <<,∴20a ab <<,∴2a ab ab <<,故答案为:2a ab ab <<.15.7. 解析:设该商品打x 折销售,根据题意得:12×x10-8≥8×5%,解得:x≥7,故答案为:7.16.a ≤4. 解析:解不等式x a >得x a >,解不等式5231x x +<+得:4x >;∵不等式组,5231x a x x >⎧⎨+<+⎩的解集为4x >,∴4a ≤. 故答案为:4a ≤.17.m <3. 解析:23224x y m x y +=-+⎧⎨+=⎩,两个方程相加得:3336x y m +=-+,即2x y m +=-+,由题意得:21m -+>-,解得3m <,故答案为:3m <.18.0<x−y <1. 解析:3133x y k x y +=+⎧⎨+=⎩①②,①−②得,2x−2y =k−2,整理得,k =2(x−y )+2,∵2<k <4,∴2<2(x−y )+2<4,∴0<x−y <1,故答案为:0<x−y <1.19.解:(1)设炮弹的杀伤半径为r 米,则应有r≥300;(2)设每件上衣为a 元,每条长裤是b 元,应有3a +4b ≤268;(3)用P 表示明天下雨的可能性,则有P ≥70%.20.解:()()8321x x --≤+8322x x -+≤+39x -≤-∴原不等式的解集为:3x ≥在数轴上表示不等式的解集:21.解:231125123x x x x +≤+⎧⎪⎨+--⎪⎩①>②由①得:x≤8,由②得:x>45 , ∴原不等式组的解集是45<x≤8.22.解:(1)设每个大地球仪x 元,每个小地球仪y 元,由题意可得31362132x y x y +=⎧⎨+=⎩,解得:5228x y =⎧⎨=⎩,答:每个大地球仪52元,每个小地球仪28元;(2)设某中学可以购买m 个大地球仪,则购买小地球仪(30-m)个,根据题意得52m+28(30-m)≤960,解得m≤5∴该中学最多可以购买5个大地球仪.23.解:3(2)2513212x x xx +≥+⎧⎪⎨+-<⎪⎩①②,解不等式①,得:x ≥–1,解不等式②,得:x <3,则不等式组的解集为–1≤x <3,将不等式组的解集表示在数轴上如下:24.解:(1)①∵211=12=2,, ∴2212<;②∵322839==,,∴3223<;③∵43381464==,,∴4334>;④∵54410245625,==,∴5445>;⑤∵655156256=7776=,,∴6556>;⑥∵7662799367=117649=,,∴7667>;⑦∵877576480182097152==,,∴8778>;(2)观察、分析(1)中比较结果可知:当12n ≤≤时,1(1)n n n n +<+;当3n ≥时,1(1)n n n n +>+;(3)由(2)中结论可知:2017201620162017>.25.解:(1)设一根A 型跳绳售价是x 元,一根B 型跳绳的售价是y 元,根据题意,得:256282x y x y +=⎧⎨+=⎩,解得:1036x y =⎧⎨=⎩,答:一根A 型跳绳售价是10元,一根B 型跳绳的售价是36元; (2)设购进A 型跳绳m 根,依题意得:m≤3(50﹣m ),解得:m≤37.5,而m 为正整数,所以m 最大值=37.答:A 型跳绳最多能买37条.26.解:(1)设每个汉堡x 元,每杯橙汁y 元,由题意得:32322328x y x y +=⎧⎨+=⎩,解得:84x y =⎧⎨=⎩,答:每个汉堡8元,每杯橙汁4元。

最新人教版七年级数学下册第九章《不等式与不等式组》单元测试卷(含答案)

最新人教版七年级数学下册第九章《不等式与不等式组》单元测试卷(含答案)

人教版七年级数学下册第九章不等式与不等式组实质应用专题研究人教版七年级数学下册第九章不等式与不等式组实质应用专题研究一.规律与方法:1. 成立不等式 ( 组 ) 模型解决生产、生活中的实质问题是一种重要的数学思想和数学方法,要建立不等式 ( 组 ) 模型,重点是剖析题意,弄清题目中的数目关系,经过题目中的重点词,如:“多”、“少”、“大于”、“小于”、“超出”等,找出各量之间的不等关系,成立不等式( 组 )模型.2.列不等式 ( 组 ) 解应用题可按以下步骤进行:①审题:弄清题意,找出题目中的各样数目关系;②设未知数:一般问什么设什么,也可间接设;③依据题目中的不等关系,列出不等式( 组 ) ;④解不等式 ( 组 ) ,并考证解的正确性;⑤作答.二.利用一元一次不等式的简单应用1. 例题.为了举行班级晚会,孔明准备去商铺购买20 个乒乓球做道具,并买一些乒乓球拍作奖品,已知乒乓球每个 1.5 元,球拍每个 22 元,假如购买金额不超出 200 元,且买的球拍尽可能多,那么孔明应当买多少个球拍?解:设孔明应当买x 个球拍,依据题意,得85× 20+ 22x≤ 200,解得 x≤ 711.因为x取整数,故x 的最大值为7.答:孔明应当买7 个球拍.2.对应训练:(1)某经销商销售一批电话腕表,第一个月以550 元 / 块的价钱售出60 块,第二个月起降价,以 500 元 / 块的价钱将这批电话腕表所有售出,销售总数超出了 5.5 万元.这批电话手表起码有 ( )A.103块B.104块C.105块D.106块(2)小明准备用22 元钱买笔和笔录本,已知每支笔 3 元,每本笔录本 2 元,他买了 3 本笔记本后,用节余的钱来买笔,那么他最多能够买( )A.3支笔B.4支笔C.5支笔D.6支笔(3)有 10 名菜农,每人可种茄子 3 亩或辣椒 2 亩,已知茄子每亩可收入0.5 万元,辣椒每亩可收入0.8 万元,要使总收入不低于15.6 万元,则最多只好安排____人种茄子.三.利用一元一次不等式设计方案1.例题:某商铺 5 月 1 日举行促销优惠活动,当日到该商铺购买商品有两种方案.方案一:用 168 元购买会员卡成为会员后,凭会员卡购买商铺内任何商品,一律按商品价钱的8折优惠;方案二:若不购买会员卡,则购买商铺内任何商品,一律按商品价钱的 9.5 折优惠.已知小敏 5 月 1 日前不是该商铺的会员.1) 若小敏不购买会员卡,所购买商品的价钱为120 元时,实质应支付多少元?2)请帮小敏算一算,所购买商品的价钱在什么范围内时,采纳方案一更合算?解: 1)120 × 0.95 = 114( 元 ) .答:实质应支付 114 元.2)设购买商品的价钱为 x 元,由题意得0. 8x+ 168< 0.95x ,解得 x>1 120.答:当购买商品的价钱超出 1 120 元时,采纳方案一更合算2.对应训练:(1)为响应市政府“创立国家丛林城市”的呼吁,某小区计划购进 A、B 两种树苗共 17 棵,已知A 种树苗每棵 80 元, B 种树苗每棵 60 元.1)若购进 A、 B 两种树苗恰巧用去 1 220 元,问购进 A、 B 两种树苗各多少棵?2)若购买 B 种树苗的数目少于 A 种树苗的数目,请你给出一种花费最省的方案,并求出该方案所需花费.(2).某蔬菜加工厂肩负出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱.供应这类纸箱有两种方案可供选择:方案一:从纸箱厂定制购买,每个纸箱价钱为 4 元;方案二:由蔬菜加工厂租借机器自己加工制作这类纸箱,机器租借费按生产纸箱数收取.工厂需要一次性投入机器安装等花费16 000 元,每加工一个纸箱还需成本费 2.4 元.假定你是决议者,你以为应当选择哪一种方案?并说明原由.四.利用一元一次不等式(组)解决图表问题1. 例题.某体育用品商场采买员要到厂家批发购进篮球和排球共100 个,付款总数不得超过 11 815 元.已知厂家两种球的批发价和商场两种球的零售价以下表,试解答以下问题:品名厂家批发价 ( 元/ 个)商场零售价 ( 元/ 个)篮球130160排球100120(1)该采买员最多可购进篮球多少个?(2) 若该商场把这100 个球所有以零售价售出,为使商场获取的收益不低于 2 580 元,则采买员起码要购篮球多少个?该商场最多可盈余多少元?解: (1) 设采买员最多可购进篮球x 个,则排球是(100 - x) 个,依题意,得130x+100(100 - x) ≤ 11 815.解得 x≤ 60.5.∵ x 是整数,∴ x 最大取 60.答:该采买员最多可购进篮球60 个.(2)设篮球 x 个,则排球是 (100 -x) 个,则(160 -130)x + (120 - 100)(100 -x) ≥ 2 580.解得 x≥ 58.又由第 (1) 问得 x≤ 60.5 ,∴正整数 x 的取值为58,59, 60. 即采买员起码要购篮球58 个.∵篮球的收益大于排球的收益,∴这 100 个球中,当篮球最多时,商场可盈余最多,故篮球60 个,排球 40 个,此时商场可盈余 (160 - 130) ×60+ (120 - 100) × 40= 1 800 +800= 2 600( 元 ) ,即该商场最多可盈利 2600 元.2.对应训练:(1).甲、乙两商场以相同价钱销售相同的商品,而且又各自推出不一样的优惠方案:在甲商场累计购物超出100 元后,高出 100 元的部分按 90%收费;在乙商场累计购物超出50 元后,高出 50 元的部分按95%收费,设小红在同一商场累计购物x 元,此中x> 100.1)依据题意,填写下表 ( 单位:元 )累物花130290⋯x在甲商127271⋯0.9x +10在乙商126278⋯0.95x+ 2.52)当 x 取何值时,小红在甲、乙两商场的实质花销相同?3)当小红在同一商场累计购物超出100 元时,在哪家商场的实质花销少?(2). 学校为了奖赏初三优异毕业生,计划购买一批平板电脑和一批学习机,经招标,购买1 台平板电脑 3 000 元,购买 1 台学习机800 元.1) 学校依据实质状况,决定购买平板电脑和学习机共100 台,要求购买的总花费不超出168 000 元,则购买平板电脑最多多少台?2) 在 (1) 的条件下,购买学习机的台数不超出平板电脑台数的 1.7 倍.请问有哪几种购买方案?哪一种方案最省钱?(3). 2018 年 5 月 20 日是第 24 此中国学生营养日,某校社会实践小组在这日展开活动,检查快餐营养状况.他们从食品安全监察部门获取了一份快餐的信息( 如图 ) ,依据信息,解答以下问题.1)求这份快餐中所含脂肪的质量;2)若碳水化合物占快餐总质量的40%,求这份快餐所含蛋白质的质量;3)若这份快餐中蛋白质和碳水化合物所占百分比的和不高于 85%,求此中所含碳水化合物质量的最大值.五.综合题1.某商品的标价比成本价高m%,依据市场需要,该商品需降价n%销售,为了不赔本,n 应知足(). n≤m.n≤ 100mA B100+ m. n≤m. n≤100mC100+ n D100- m2.“一方有难,八方增援”,雅安芦山 4· 20 地震后,某单位为一中学捐献了一批新桌椅,学校组织初一年级200 名学生搬桌椅.规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅( 一桌一椅为一套) 的套数为 ( )A.60B.70C.80D.903. 铁路部门规定游客免费携带行李箱的长、宽、高之和不超出160 cm,某厂家生产切合该规定的行李箱,已知行李箱的高为30 cm,长与宽的比为3∶ 2,则该行李箱的长的最大值为____________cm.4.2018 年的 5 月 20 日是第 18 个学生营养日,我市某校社会实践小组在这日展开活动,调查快餐营养状况.他们从食品安全监察部门获取了一份快餐的信息( 如图一矩形内 ) .若这份快餐中所含的蛋白质与碳水化合物的质量之和不高于这份快餐总质量的70%,求这份快餐最多含有多少克的蛋白质?信息1).快餐成分:蛋白质、脂肪、碳水化合物和其余.2).快餐总质量为 400 克.3).碳水化合物质量是蛋白质质量的 4 倍.5.某商品的进价是 500 元,标价是 750 元,商铺要求以收益不低于5%的售价打折销售,售货员最低能够打 ____折销售此商品.6.为加强市民的节能意识,我市试行阶梯电价.从2013 年开始,依据每户每年的用电量分三个品位计费,详细规定见右图.小明统计了自家2013 年前 5 个月的实质用电量为 1 300度,请帮助小明剖析下边问题.(1) 若小明家计划 2013 年整年的用电量不超出2520 度,则 6 至 12 月份小明家均匀每个月用电量最多为多少度?( 保存整数 )(2) 若小明家2013 年 6 至 12 月份均匀每个月用电量等于前5 个月的均匀每个月用电量,则小明家2013 年应交总电费多少元?7.冷饮店每日需配制甲、乙两种饮料共50 瓶,已知甲饮料每瓶需糖14 克,柠檬酸 5 克;乙饮料每瓶需糖 6 克,柠檬酸10 克.现有糖500 克,柠檬酸400 克.请计算有几种配制方案能知足冷饮店的要求?5 本,那8. 把一些书分给几名同学,假如每人分 3 本,那么余 8 本;假如前方的每名同学分么最后一个就分不到 3 本,这些书有多少本?共有多少人?9. .某地教育行政部门计划今年暑期组织部分教师到外处进行学习,预定旅馆住宿时,有住宿条件相同的甲、乙两家旅馆供选择,其收费标准均为每人每日 120 元,而且各自推出不一样的优惠方案.甲家是 35 人 ( 含 35 人) 之内的按标准收费,超出 35 人的,高出部分按九折收费;乙家是 45 人( 含 45 人 ) 之内的按标准收费,超出 45 人的,高出部分按八折收费.假如你是这个部门的负责人,你应选哪家旅馆更优惠些?10.小明家准备用 15 000 元装饰房屋,新房的使用面积包含居室、客堂、洗手间和厨房共1002,洗手间和厨房共102,厨房和洗手间装饰工料费为每平方米200 元,为洗手间和m m厨房配套卫生洁具和厨房厨具还要用去400 元,则居室和客堂的装饰工料费每平方米用多少元才能不超出估算?11.某货运码头,有稻谷和棉花共2680t ,此中稻谷比棉花多380t.⑴求稻谷和棉花各是多少?⑵现安排甲、乙两种不一样规格的集装箱共50 个,将这批稻谷和棉花运往外处,已知稻谷35t 和棉花 15t 可装满一个甲型集装箱;稻谷25t和棉花35t可装满一个乙型集装箱.按此要求安排甲、乙两种集装箱的个数,有哪几种方案?12.某学校将周三“阳光体育”项目定为跳绳活动,为此学校准备购买长、短两种跳绳若干.已知长跳绳的单价比短跳绳单价的两倍多 4 元,且购买 2 条长跳绳与购买 5 条短跳绳的花费相同 .(1)两种跳绳的单价各是多少元?(2)若学校准备用不超出 2000 元的现金购买 200 条长、短跳绳,且短跳绳的条数不超出长跳绳的6 倍,问学校有几种购买方案可供选择?13.海中游泳馆每年 6~8 月销售夏天会员证,每张会员证 80 元,只限自己使用,凭据购入场券每张 1 元,不凭据购入场券每张 3 元。

人教版七年级数学下册 《第9章 不等式与不等式组》单元测试试卷 含答案解析02

人教版七年级数学下册 《第9章 不等式与不等式组》单元测试试卷 含答案解析02

人教版七年级下册数学《第9章不等式与不等式组》单元测试一、选择题1.已知a<b,则下列选项错误的是()A.a+2<b+2B.a﹣1<b﹣1C.<D.﹣3a<﹣3b2.不等式(a+1)x>a+1的解集是x<1,则a必满足()A.a<0B.a>﹣1C.a<﹣1D.a≤13.下列说法中,错误的是()A.不等式x<5有无数多个整数解B.不等式x>﹣5的负整数解有4个C.不等式﹣2x<8的解集是x<﹣4D.﹣10是不等式2x<﹣8的一个解4.满足不等式,﹣2x+3≤7的整数解有()A.6个B.4个C.5个D.无数个5.已知关于x的一元一次不等式组有2个整数解,若a为整数,则a的值为()A.5B.6C.6或7D.7或86.若不等式组无解,则实数a的取值范围是()A.a≥﹣1B.a<﹣1C.a≤1D.a≤﹣17.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过120分,他至少要答对多少道题?如果设小明答对x道题,则他答错或不答的题数为20﹣x.根据题意得()A.10x﹣5(20﹣x)≥120B.10x﹣5(20﹣x)≤120C.10x﹣5(20﹣x)>120D.10x﹣5(20﹣x)<120二、填空题8.若2a+6是非负数,则a的取值范围是.9.若x>y,则8﹣5x8﹣5y.(填“>”或“=”或“<”)10.不等式2x﹣m≤0的非负整数解只有3个,则m的取值范围是11.已知关于x的不等式组,解不等式①得;解不等式②得;若不等式组的整数解共4个,则m的取值范围是.12.若|﹣a|>﹣a,则a0.(请用“>,<,≥,≤或=”号填空)13.若方程组的解满足条件0<x+y<2,则k的取值范围是.14.已知a,b为实数,若不等式组的解集为﹣1<x<1,那么(a﹣1)(b﹣1)的值等于.15.关于x的不等式1+>+与关于x的不等式x+1>的解集相同,整数m 是,不等式的解集是.16.若关于x,y的方程组的解是一对负数,则|2m+1|﹣|﹣6m+2|=.三、解答题17.解不等式(组)(Ⅰ)解不等式5x﹣2≥3(x+1),并把它的解集在数轴上表示出来.(Ⅱ)解不等式组请结合题意填空,完成本题的解答.解不等式①,得;解不等式②,得;把不等式①和②的解集在数轴上表示出来:原不等式组的解集为.18.若不等式2(x+1)﹣5<3(x﹣1)+4的最小整数解是方程的解,求代数式a2﹣2a﹣11的值.19.已知方程组的解满足x为非正数,y为负数.(1)求m的取值范围;(2)化简:|m﹣5|﹣|m+2|;(3)在m的取值范围内,当m为何整数时,不等式2mx+x<2m+1的解为x>1.20.某小区为了绿化环境,计划分两次购进A、B两种树苗,第一次分别购进A、B两种树苗30棵和15棵,共花费675元;第二次分别购进A、B两种树苗12棵和5棵,共花费265元.两次购进的A、B两种树苗价格均分别相同.(1)A、B两种树苗每棵的价格分别是多少元?解:设A种树苗每棵x元,B种树苗每棵y元根据题意列方程组,得:解这个方程组,得:答:.(2)若购买A、B两种树苗共31棵,且购买树苗的总费用不超过320元,则最多可以购买A种树苗多少棵?21.接种新冠病毒疫苗,建立全民免疫屏障,是战胜病毒的重要手段.北京科兴中维需运输一批疫苗到我市疾控中心,据调查得知,2辆A型冷链运输车与3辆B型冷链运输车一次可以运输600盒;5辆A型冷链运输车与6辆B型冷链运输车一次可以运输1350盒.(1)求每辆A型车和每辆B型车一次可以分别运输多少盒疫苗.(2)计划用两种冷链运输车共12辆运输这批疫苗,A型车一次需费用5000元,B型车一次需费用3000元.若运输物资不少于1500盒,且总费用小于54000元.请你列出所有运输方案,并指出哪种方案所需费用最少,最少费用是多少?参考答案一、选择题1.D2.C3.C4.C5.D6.D7.C 二、填空题8.a≥﹣3.9.<.10.4≤m<6.11.x<m;x≥3;6<m≤7.12.>.13.﹣4<k<614.6.15.m=7x>1.16.8m﹣1.三、解答题17.解:(Ⅰ)去括号,得:5x﹣2≥3x+3,移项,得:5x﹣3x≥3+2,合并同类项,得:2x≥5,系数化为1,得:x≥,将不等式解集表示在数轴上如下:(Ⅱ)解不等式①,得x<3;解不等式②,得x≥﹣;把不等式①和②的解集在数轴上表示出来:原不等式组的解集为﹣≤x<3.故答案为:x<3、x≥﹣、﹣≤x<3.18.解:解不等式2(x+1)﹣5<3(x﹣1)+4,得x>﹣4,∵大于﹣4的最小整数是﹣3,∴x=﹣3是方程的解.把x=﹣3代入中,得:,解得a=2.当a=2时,a2﹣2a﹣11=22﹣2×2﹣11=﹣11.∴代数式a2﹣2a﹣11的值为﹣11.19.解:(1)解方程组得:,∵x为非正数,y为负数,∴,解得﹣2<m≤3;(2)∵﹣2<m≤3,∴m﹣5<0,m+2>0,则原式=5﹣m﹣m﹣2=3﹣2m(3)由不等式2mx+x<2m+1的解为x>1,知2m+1<0;所以,又因为﹣2<m<3,所以,因为m为整数,所以m=﹣1.20.解:(1)设A种树苗每棵x元,B种树苗每棵y元,根据题意列方程组,得:,解这个方程组,得:.答:A种树苗每棵20元,B种树苗每棵5元.故答案为:;;A种树苗每棵20元,B种树苗每棵5元.(2)设购买A种树苗m棵,则购买B种树苗(31﹣m)棵,依题意,得:20m+5(31﹣m)≤320,解得:m≤11.答:最多可以购买A种树苗11棵.21.解:(1)设每辆A型车和每辆B型车一次可以分别运输x盒疫苗、y盒疫苗,由题意可得,,解得,答:每辆A型车和每辆B型车一次可以分别运输150盒疫苗、100盒疫苗;(2)设A型车a辆,则B型车(12﹣a)辆,由题意可得,,解得6≤a<9,∵a为正整数,∴a=6,7,8,∴共有三种运输方案,方案一:A型车6辆,B型车6辆,方案二:A型车7辆,B型车5辆,方案三:A型车8辆,B型车4辆,∵A型车一次需费用5000元,B型车一次需费用3000元,计划用两种冷链运输车共12辆运输这批疫苗,∴A型车辆数越少,费用越低,∴方案一所需费用最少,此时的费用为5000×6+3000×6=48000(元),答:方案一:A型车6辆,B型车6辆,方案二:A型车7辆,B型车5辆,方案三:A 型车8辆,B型车4辆,其中方案一所需费用最少,最少费用是48000元.。

人教版数学七年级下册第九章不等式与不等式组 单元测试(含答案)

人教版数学七年级下册第九章不等式与不等式组 单元测试(含答案)

人教版数学七年级下册第九章不等式与不等式组一、单选题1.以下表达式:①4x+3y≤0;②a>3;③x2+xy;④a2+b2=c2;⑤x≠5.其中不等式有()A.4个B.3个C.2个D.1个2.关于m的不等式−m>1的解为().A.m>0B.m<0C.m<−1D.m>−13.若(m−2)x2m+1−1>5是关于x的一元一次不等式,则该不等式的解集为()A.m=0B.x<−3C.x>−3D.m≠24.设a、b、c表示三种不同物体的质量,用天枰称两次,情况如图所示,则这三种物体的质量从小到大排序正确的是【】A.c<b<a B.b<c<a C.c<a<b D.b<a<c5.若式子3a−4的值不小于2,则a的取值范围是()A.a≥−23B.a≥2C.a<−23D.a<26.已知x<y,则下列不等式一定成立的是().A.x+5<y+2B.−2x+5<−2y+5C.x3>y3D.2x−3<2y−37.规定[x]为不大于x的最大整数,如[3.6]=3,[−2.1]=−3,若[x+12]=3且[3−2x]=−4,则x的取值范围为()A.52<x<72B.3<x<72C.3<x≤72D.52≤x<728.八年级某小组同学去植树,若每人平均植树7棵,则还剩9棵,若每人平均植树9棵,则有1位同学有植树但植树棵数不到3棵.则同学人数为()A.8人B.9人C.10人D.11人9.若不等式组{x +a−22≥−1,3x−22<x−12无解,则实数a 的取值范围是( )A .a ≥−1B .a <−1C .a ≤1D .a ≤−110.对一实数x 按如图所示程序进行操作,规定:程序运行从“输入一个实数x ”到“判断结果是否大于190?”为一次操作,如果操作恰好进行两次后停止,则x 的取值范围是( )A .x <64B .x >22C .22<x ≤64D .22<x <64二、填空题11.不等式3x +22<x 的解集是 .12.不等式2x>3的最小整数解是 .13.不等式组{2x−4≥0x 3<2的解集是.14.已知a <b,用“<”或“>”号填空: a−3 b−3; −4a −4b .15.用不等式表示“x 的一半减去3所得的差不大于1” .16.某品牌衬衫的进价为120元,标价为240元,如果商店打折销售但要保证利润不低于30%,则最少可以打折出售.17.若不等式组{2x +a−1>02x−a−1<0的解集为0<x <1,则a 的值为 .18.若整数m 使得关于x 的不等式组{2x +1≥5x +m ≤2无解,且使得关于x ,y 二元一次方程组{x +2y =2,3x−y =m +1 的解x ,y 均为正数,则符合条件的整数m 的和是 .三、解答题19.(1)解不等式:x +12−x−13≤1,并把它的解集在数轴上表示出来.(2)解不等式组:{3x +2≥4x−54x−3<2120.已知二元一次方程组{x+y=3a+9x−y=5a+1的解x,y均为正数.(1)求a的取值范围;(2)化简:|5a+5|−|a−4|21.如图,有一高度为20cm的容器,在容器中倒入100cm3的水,此时刻度显示为5cm,现将大小规格不同的两种玻璃球放入容器内,观察容器的体积变化测量玻璃球的体积.若每放入一个大玻璃球水面就上升0.5cm.(1)求一个大玻璃球的体积;(2)放入27个大玻璃球后,开始放入小玻璃球,若放入5颗,水面没有溢出,再放入一颗,水面会溢出容器,求一个小玻璃球体积的范围.22.关于x,y的二元一次方程组ax+by=c(a,b,c是常数),b=a+1,c=b+1.(1)当{x=3y=1时,求c的值.(2)当a=1时,求满足|x|<5,|y|<5的方程的整数解.2(3)若a是正整数,求证:仅当a=1时,该方程有正整数解.23.为了防控甲型H1N1流感,某校积极进行校园的环境消毒,为此购买了甲、乙两种消毒液,现已知过去两次购买这两种消毒液的瓶数和总费用如表所示:甲种消毒液(瓶)乙种消毒液(瓶)总费用(元)第一次4060660第二次8030690(1)求每瓶甲种消毒和每瓶乙种消毒液各多少元?(2)现在学校决定购买甲乙两种消毒液共300瓶,要求甲乙两种的数量都不少于100瓶,,请你帮助学校计算购买时最低费用为多少?并且甲的数量不少于乙数量的3224.5月22日是第28个国际生物多样性日,为联合国《生物多样性公约》第十五次缔约方大会(COP15)在昆明顺利召开.营造良好氛围,昆明市在植物园举办主题宣传活动.某班开展了此项活动的知识竞赛.小明为班级购买奖品后与小颖对话如下:(1)请用方程的知识帮助小明计算一下,为什么小颖说他搞错了;(2)小明连忙拿出发票,发现自己的确错了,因为他还买了一本笔记本,但笔记本的单价已模糊不清,只能辨认出单价是小于10元的整数,那么笔记本的单价可能是多少元?参考答案1.B 2.C 3.B 4.A 5.B 6.D 7.B 8.A 9.D 10.C 11.x <-212.213.2≤x <614.< >15.12x−3≤116.6.517.118.1019.(1)x ≤1(2)x <620.(1)−54<a <4;(2)当−5<a ≤−1时,−4a−9;当−1<a <4时,6a +121.(1)一个大玻璃球的体积为10cm 3;(2)一个小玻璃球体积的大于5cm 3且不大于6cm 3.22.c =73;(2){x =2y =1 ,{x =−1y =2 {x =−4y =323.(1)甲种消毒每瓶6元,乙种消毒液每瓶7元;(2)最低费用1900元.24.2元或6元。

人教版初中数学七年级下册第9章《不等式与不等式组》测试题及答案

人教版初中数学七年级下册第9章《不等式与不等式组》测试题及答案

人教版初中数学七年级下册第9章《不等式与不等式组》测试题(一)一、选择题:1,下列各式中,是一元一次不等式的是( ) A.5+4>8 B.2x -1 C.2x ≤5D.1x-3x ≥0 2,已知a<b,则下列不等式中不正确的是( )A. 4a<4bB. a+4<b+4C. -4a<-4bD. a-4<b-4 3,下列数中:76, 73,79, 80, 74.9, 75.1, 90, 60,是不等式23x >50的解的有( ) A.5个 B.6个 C.7个 D.8个 4,若t>0,那么12a+12t 与a 的大小关系是( ) A .2a +t>2a B .12a+t>12a C .12a+t ≥12a D .无法确定5,如图,a 、b 、c 分别表示苹果、梨、桃子的质量.同类水果质量相等 则下列关系正确的是( )A .a >c >bB .b >a >cC .a >b >cD .c >a >b6,若a<0关于x 的不等式ax+1>0的解集是( )A .x>1a B .x<1a C .x>-1a D .x<-1a7,不等式组31027x x +>⎧⎨<⎩的整数解的个数是( )A .1个B .2个C .3个D .4个8,从甲地到乙地有16千米,某人以4千米/时~8千米/时的速度由甲到乙,则他用的时间大约为( )A 1小时~2小时 B2小时~3小时 C3小时~4小时 D2小时~4小时9,某种出租车的收费标准:起步价7元(即行使距离不超过3千米都须付7元车费),超过3千米以后,每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费19元,那么甲地到乙地路程的最大值是( )A .5千米 B.7千米 C.8千米 D.15千米 10,在方程组2122x y mx y +=-⎧⎨+=⎩中若未知数x 、y 满足x+y ≥0,则m 的取值范围在数轴上表示应是( )二、填空题11,不等号填空:若a<b<0 ,则5a -5b -;a1 b 1;12-a 12-b .12,满足2n-1>1-3n 的最小整数值是________.13,若不等式ax+b<0的解集是x>-1,则a 、b 应满足的条件有______.14,满足不等式组122113x x x -⎧>-⎪⎪⎨-⎪-≥⎪⎩的整数x 为__________.15,若|12x --5|=5-12x -,则x 的取值范围是________.16,某种品牌的八宝粥,外包装标明:净含量为330g ±10g ,表明了这罐八宝粥的净含量x 的范围是 .17,小芳上午10时开始以每小时4km 的速度从甲地赶往乙地,•到达时已超过下午1时,但不到1时45分,则甲、乙两地距离的范围是_________. 18,代数式x-1与x-2的值符号相同,则x 的取值范围________.三、解答题19,解不等式组,并把它的解集在数轴上表示出来.(1)9-4(x-5)<7x+4; (2)0.10.81120.63x x x ++-<-;(3)523(1),317;22x x x x ->+⎧⎪⎨-≤-⎪⎩ (4)6432,2111.32x x x x +≥+⎧⎪+-⎨>+⎪⎩20,代数式213 1--x的值不大于321x-的值,求x的范围21,方程组3,23x yx y a-=⎧⎨+=-⎩的解为负数,求a的范围.22,已知,x满足3351,11.4x xx+>-⎧⎪⎨+>-⎪⎩化简:52++-xx.23,已知│3a+5│+(a-2b+52)2=0,求关于x的不等式3ax-12(x+1)<-4b(x-2)的最小非负整数解.24,是否存在这样的整数m,使方程组24563x y mx y m+=+⎧⎨-=+⎩的解x、y为非负数,若存在,求m•的取值?若不存在,则说明理由.25,有一群猴子,一天结伴去偷桃子.分桃子时,如果每只猴子分3个,那么还剩下59个;如果每个猴子分5个,就都分得桃子,但有一个猴子分得的桃子不够5个.你能求出有几只猴子,几个桃子吗?参考答案一、1,C;2,C;3,A;4,A.解:不等式t>0利用不等式基本性质1,两边都加上12a得12a+t>12a.5,C.6,D.解:不等式ax+1>0,ax>-1,∵a<0,∴x<-1a因此答案应选D.7,D.解:先求不等式组解集-13<x<72,则整数x=0,1,2,3共4个.8,D;9,C.10,D.解:2122x y m x y+=-⎧⎨+=⎩①+②,得3x+3y=3-m,∴x+y=33m-,∵x+y≥0,∴33m-≥0,∴m≤3在数轴上表示3为实心点.射线向左,因此选D.二、11,>、>、<;12,1.解:先求解集n>25,再利用数轴找到最小整数n=1.13,a<0,a=b 解析:ax+b<0,ax<-b,而不等式解集x>-1不等号改变了方向.因此可以确定运用不等式性质3,所以a<0,而-ab=-1,∴b=a.14,-2,-1,0,1 解析:先求不等式组解集-3<x≤1,故整数x=0,1,-1,-2.15,x≤11 解析:∵│a│=-a时a≤0,∴12x--5≤0,解得x≤11.16,320≤x≤340.17,(12~15)km.解:设甲乙两地距离为xkm,依题意可得4×(13-10)<x<4•×(134560-10),即12<x<15.18,x>2或x<1 解析:由已知可得10102020 x xx x->-<⎧⎧⎨⎨->-<⎩⎩或者.三、19,(1)9-4(x-5)<7x+4.解:去括号9-4x+20<7x+4,移项合并11x>25,化系数为1,x>2511.(2)0.10.81120.63x x x++-<-.解:811263x x x++-<-,去分母 3x-(x+8)<6-2(x+1),去括号 3x-x-8<6-2x-2,移项合并 4x<12,化系数为1,x<3.(3)523(1)31722x xxx->+⎧⎪⎨-≤-⎪⎩解:解不等式①得 x>52,解不等式②得 x≤4,∴不等式组的解集52<x ≤4. (4)6432211132x x x x+≥+⎧⎪+-⎨>+⎪⎩解:解不等式①得x ≥-23,解不等式②得x>1,∴不等式组的解集为x>1. 20,57≥x ;21,a<-3;22,7; 23,解:由已知可得535035520212a a ab b ⎧+==-⎧⎪⎪⎪⎨⎨-+=⎪⎪=⎩⎪⎩解得代入不等式得-5x-12(x+1)<-53(x-2),解之得 x>-1,∴最小非负整数解x=0.24,解:24563x y m x y m +=+⎧⎨-=+⎩得11139529m x m y +⎧=⎪⎪⎨-⎪=⎪⎩∵x ,y 为非负数00x y ≥⎧⎨≥⎩∴1113095209m m +⎧≥⎪⎪⎨-⎪≥⎪⎩解得-1311≤m ≤52,∵m 为整数,∴m=-1,0,1,2.答:存在这样的整数m=-1,0,1,2,可使方程24563x y m x y m +=+⎧⎨-=+⎩的解为非负数.点拨:先求到方程组的解,再根据题意设存在使方程组的解00x y ≥⎧⎨≥⎩的m ,•从而建立关于m 为未知数的一元一次不等式组,求解m 的取值范围,选取整数解.25,设有x 只猴子,则有(3x+59)只桃子,根据题意得:0<(3x+59)-5(x-1)<5,解得29.5<x<32,因为x 为整数,所以x=30或x=31,当x=30时,(3x+59)=149,当x=31时,(3x+59)=152.答:有30只猴子,149只桃子或有31只猴子,152只桃子.1. 将不等式组13x x ⎧⎨⎩≥≤的解集在数轴上表示出来,应是 ( )2. 下面给出的不等式组中①23x x >-⎧⎨<⎩②020x x >⎧⎨+>⎩③22124x x x ⎧>+⎪⎨+>⎪⎩④307x x +>⎧⎨<-⎩⑤101x y x +>⎧⎨-<⎩其中是一元一次不等式组的个数是( ) A.2个B.3个C.4个D.5个3. 不等式组24030x x ->⎧⎨->⎩,的解集为( )A.23x << B. 3x > C. 2x <D. 23x x ><-或4. 下列不等式中哪一个不是一元一次不等式( )A.3x >B.1y y -+>C.12x> D.21x >5. 下列关系式是不等式的是( )A.25x += B.2x + C.25x +>D.235+=6. 若使代数式312x -的值在1-和2之间,x 可以取的整数有( ) A.1个B.2个C.3个D.4个7. 不等式组2030x x -<⎧⎨->⎩的正整数解是( )A.0和1 B.2和3 C.1和3 D.1和2 8. 下列选项中,同时适合不等式57x +<和220x +>的数是( )A.3 B.3- C.1- D.19. 不等式211133x ax +-+>的解集是53x <,则a 应满足( ) A.5a > B.5a = C.5a >- D.5a =-10. a 是一个整数,比较a 与3a 的大小是( )C1DA3BA.3a a >B.3a a <C.3a a =D.无法确定二、填空题(每题3分,共30分) 11. 不等式(3)1a x ->的解集是13x a <-,则a 的取值范围 . 12. 某商品进价是1000元,售价为1500元.为促销,商店决定降价出售,但保证利润率不低于5%,则商店最多降 元出售商品.13. 一个两位数,十位数字与个位数字的和为6,且这个两位数不大于42,则这样的两位数有 ______个. 14. 若a b >,则22____ac bc .15. 关于x 的方程32x k +=的解是非负数,则k 的取值范围是 . 16. 若(1)20mm x++>是关于x 的一元一次不等式,则m 的取值是 .17. 关于x 的方程4132x m x -+=-的解是负数,则m 的取值范围 .18. 若0m n <<,则222x m x n x n >⎧⎪>-⎨⎪<⎩的解集为 .19. 不等式15x +<的正整数解是 .20. 不等式组⎩⎨⎧-<+<632a x a x 的解集是32+<a x ,则a 的取值 .三、解答题(21、22每小题8分,23、24第小题10分,共36分) 21. 解不等式5(1)33x x x +->+22. 解不等式组3(2)41214x x x x --⎧⎪⎨-<-⎪⎩≤23. 关于x ,y 的方程组322441x y k x y k +=+⎧⎨+=-⎩的解x ,y 满足x y >,求k 的取值范围.24.有学生若干人,住若干间宿舍,若每间住4人,则有20人无法安排住宿;若每间住8 人,则有一间宿舍不满也不空,问宿舍间数和学生人数分别是多少?25.喷灌是一种先进的田间灌水技术.雾化指标P是它的技术要素之一.当喷嘴的直径d(mm).喷头的工作压强为h(kPa)时.雾化指标P=100hd.如果树喷灌时要求3000≤P≤4000.若d=4mm.求h的范围.四、解答题(本题共2小题,每题12分,共24分)26.某同学在A,B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包的单价的4倍少8元.(1)求该同学看中的随身听和书包的单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样商品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?27.在“512大地震”灾民安置工作中,某企业接到一批生产甲种板材240002m和乙种板材120002m的任务.(1)已知该企业安排140人生产这两种板材,每人每天能生产甲种板材302m或乙种板材202m .问:应分别安排多少人生产甲种板材和乙种板材,才能确保他们用相同的时间完成各自的生产任务?(2)某灾民安置点计划用该企业生产的这批板材搭建A B ,两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建一间A 型板房和一间B 型板房所需板材问:这400间板房最多能安置多少灾民?参考答案:一、选择题:1. B2. B.3. A4. C.5. C.6. B7. D.8. D.9. B.10. D. 二、填空题:11. 3a <. 12. 450元. 13. 4个. 14. ≥. 15. 2k ≤. 16. 1m =.17. 3m <. 18. 无解. 19. 1,2,3. 20..a ≤ -9 三、解不等式(组):21. 2x >-. 22. 312x <≤ 23. 1k > 24.解:设宿舍间数为x ,学生人数为y. 由题意得⎪⎩⎪⎨⎧>--<--+=0)1(88)1(8204x y x y x y解得: 5 < x < 7∵x 是正整数 ∴ x = 6 故y=44 答:宿舍间数为6,学生人数为44 . 24.解:把d=4代入公式P=100h d 中得P=1004h,即P=25h ,又∵3000≤P≤4000,∴3000≤25h≤4000,120≤h≤160,故h 的范围为120~160(kPa )26. (1)随身听的单价为360元,书包单价为92元.(2)在超市A 购买更省钱. 27.(1)设安排x 人生产甲种板材,应安排80人生产甲种板材,60人生产乙种板材.(2)设建造A 型板房m 间,则建造B 型板房为(400)m -间,由题意有:5478(400)240002641(400)12000m m m m +-⎧⎨+-⎩≤≤,.解得300m ≥.又0400m ≤≤,300400m ∴≤≤.这400间板房可安置灾民58(400)33200w m m m =+-=-+. ∴当300m =时,w 取得最大值2300名.答:这400间板房最多能安置灾民2300名.。

新人教版七年级数学下册第九章《不等式与不等式组》单元测试卷(含答案)(1)

新人教版七年级数学下册第九章《不等式与不等式组》单元测试卷(含答案)(1)

人教版七年级数学下册第九章不等式与不等式组复习测试题含答案一、选择题 1.以下式子:① x +2≤ 3;② x =3;③ 4x +3y >0;④ x -1 ≠ 5;⑤ 3 >0 是不等式的有 ()A. 2个B. 3 个C. 4 个D. 5个2.以下说法不必定建立的是()A. 若 a>b ,则 a + c>b + cB.若 a + c>b + c ,则 a>bC. 若 a>b ,则 ac 2>bc 2D. 若 ac 2>bc 2,则 a>b3.以下解不等式 2+x > 2x - 1的过程中,出现错误的一步是()3 5①去分母,得 5(x + 2) >3(2x -1); ②去括号,得 5x + 10> 6x - 3; ③移项,得 5x - 6x >- 10- 3; ④归并同类项、系数化为 1,得 x > 13.A. ①B.② C.③ D. ④ 4.不等式组的解集表示在数轴上正确的选项是()5.在对于 x ,y 的方程组 中,未知数知足 x ≥0, y > 0,那么 m 的取值范围在数轴上应表示为( )6.若不等式组 2x -1>3( x -1), x<m 的解集是 x < 2,则 m 的取值范围是()A. m =2B. m>2C. m< 2D. m≥ 27.假如对于 x 的不等式组无解,那么 m 的取值范围为( )A. m ≤- 1B. m<- 1C.- 1<m ≤0D.-1≤m < 08.若对于 x 的不等式组 的解集中起码有 5 个整数解,则正数 a 的最小值是()A. 3B. 2C. 1D.2 39.“一方有难,八方增援”,某单位为一灾区中学捐献了一批新桌椅,学校组织初一年级 200名学生搬桌椅 . 规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅 ( 一桌一椅为一套 ) 的套数为()A. 60B. 70C. 80D. 9010.某市出租车的收费标准是:起步价 8元( 即行驶距离不超出3千米都需付 8 元车资 ) ,超过 3 千米此后,每增添 1 千米,加收 2.6元(不足 1千米按 1千米计 ). 某人打车从甲地到乙地经过的行程是x 千米,出租车资为21 元,那么 x 的最大值是()A. 11B. 8C. 7D. 5二、填空题。

七年级数学下册《第九章-不等式与不等式组》单元测试卷带答案-人教版

七年级数学下册《第九章-不等式与不等式组》单元测试卷带答案-人教版

七年级数学下册《第九章 不等式与不等式组》单元测试卷带答案-人教版学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.若a <b ,则下列变形正确的是( )A .2a <3bB .33a b >C .a ﹣3<b ﹣3D .3﹣a <3﹣b2.某人要完成2.1千米的路程,并要在18分钟内到达,已知他每分钟走90米.若跑步每分钟可跑210米,问这人完成这段路程,至少要跑多少分钟?设要跑x 分钟,则列出的不等式为( )A .210x+90(18﹣x )≥2100B .90x+210(18﹣x )≤2100C .210x+90(18﹣x )≥2.1D .210x+90(18﹣x )>2.13.已知不等式:①1x >,②40x ->,③112x <,④21x ->-,从这四个不等式中取两个,构成正整数解是2的不等式组是( )A .①与②B .②与③C .③与④D .①与④4.疫情复课之前,某校七年级(1)班购置了一批防疫物资,其中有10支水银温度计,若干支额温枪.水银温度计每支5元,额温枪每支230元,如果总费用超过1000元,那么额温枪至少有( )A .3支B .4支C .5支D .6支5.不等式组3651702x x ->⎧⎪⎨--≤⎪⎩的解集在数轴上表示正确的是( ) A . B .C .D .6.已知关于x 的不等式组 221x a b x a b -≥⎧⎨-<+⎩ 的解集是 35x ≤< ,则 b a 的值是( ) A .-2 B .12- C .-4 D .14- 7.关于 x 的不等式组 12x x m⎧≤-⎪⎨⎪>⎩ 的所有整数解的积为2,则 m 的取值范围为( ) A .3m >- B .2m <- C .32m -≤<- D .32m -<≤-8.已知关于x ,y 的方程组343x y t x y t -=-⎧⎨+=⎩,其中31t -≤≤,给出下列结论:①11x y =⎧⎨=-⎩是方程组的解;②若3x y -=,则2t =-;③若2M x y t =--.则M 的最小值为3-;④若1y ≥-时,则03x ≤≤;其中正确的有( )A .①②B .①③C .①②③D .①③④二、填空题:(本题共5小题,每小题3分,共15分.)9.用不等式表示“m 的4倍与7的和是负数”是 . 10.若 x y > ,()()33a x a y -<-则a 的取值范围为 .11.x 为整数,且满足5x ﹣57>4x+7与8x ﹣3<4x+50,则整数x= 12.某次数学测验中共有16道题目,评分办法:答对一道得6分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对 道题,成绩才能在60分以上.13.若方程组342232x y k x y +=⎧⎨-=-⎩的解满足52x y +<,则实数k 的取值范围是 . 三、解答题:(本题共5题,共45分)14.解不等式组:3(2)412 1.3x x x x --≥-⎧⎪-⎨>-⎪⎩,15.解不等式组: ()211324x x x x ->+⎧⎨--≤⎩,并求出它的所有整数解的和.16.已知关于x 、y 的方程组 24221x y m x y m +=⎧⎨+=+⎩(m 为常数).若-l ≤x -y ≤5,求m 的取值范围.17.某中学计划购买A 型和B 型课桌凳共200套,经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元.(1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,求该校本次至少购买A 型课桌凳多少套?18.某中学为落实《教育部办公厅关于进一步加强中小学生体质管理的通知》文件要求,决定增设篮球、足球两门选修课程,需要购进一批篮球和足球.已知购买2个篮球和3个足球共需费用510元;购买3个篮球和5个足球共需费用810元.(1)求篮球和足球的单价分别是多少元;(2)学校计划采购篮球、足球共50个,并要求篮球不少于30个,且总费用不超过5500元.那么有哪几种购买方案?并求出最省钱的购买方案参考答案:1.【答案】C 2.【答案】A 3.【答案】D 4.【答案】C 5.【答案】B 6.【答案】A 7.【答案】C 8.【答案】B9.【答案】4m+7<0 10.【答案】3a < 11.【答案】8,9,10,11,12,1312.【答案】1213.【答案】2k < 14.【答案】解:3(2)41213x x x x --≥-⎧⎪⎨->-⎪⎩①② 解不等式①,得:1x ≤. 解不等式②,得:45x <. ∴不等式组的解集为45x <. 15.【答案】解: ()211324x x x x ->+⎧⎨--≤⎩①② 解不等式①得x >2,解不等式②得x ≤5,∴原不等式组的解集是2<x ≤5,∴原不等式组的整数解是3,4,5,∴所有整数解的和3+4+5=1216.【答案】解:对方程组 24221x y m x y m +=⎧⎨+=+⎩①② ,①-②,得 21x y m -=-∵-l ≤x -y ≤5∴-l ≤2m -1≤5解得:0≤m ≤3.17.【答案】(1)解:设A 型课桌凳需x 元,由题意得:()45401820x x ++=解得180x =40220x +=.答:购买一套A 型课桌凳和一套B 型课桌凳各需180元和220元.(2)解:设购买A 型课桌凳a 套,则购买B 型课桌凳()200a -套. 由题意得()18022020040880a a +-≤解得:78a ≤答:该校本次至少购买A 型课桌凳78套.18.【答案】(1)解:设篮球的单价为x 元,足球的单价为y 元由题意可得:2351035810x y x y +=⎧⎨+=⎩解得:12090x y =⎧⎨=⎩答:篮球的单价为120元,足球的单价为90元;(2)解:设采购篮球m 个,则采购足球为()50m -个∵要求篮球不少于30个,且总费用不超过5500元∴()3012090505500m m m ≥⎧⎨+-≤⎩ 解得:130333x ≤≤ ∵x 为整数∴x 的值可为30,31,32,33∴共有四种购买方案方案一:采购篮球30个,采购足球20个;方案二:采购篮球31个,采购足球19个;方案三:采购篮球32个,采购足球18个;方案四:采购篮球33个,采购足球17个.所需购买费用为:()1209050304500m m m +-=+由代数式的值可得:当m 的值最小时,费用最小方案一最省钱,费用为:3030+45005400⨯=(元)。

七年级数学下册《第九章不等式与不等式组》单元测试卷-附答案(人教版)

七年级数学下册《第九章不等式与不等式组》单元测试卷-附答案(人教版)

七年级数学下册《第九章不等式与不等式组》单元测试卷-附答案(人教版)一、单选题1.若a<b ,则下列各式中不成立的是( )A .22a b +<+B .22a b < C .22a b -<- D .22a b -<-2.不等式10x -<的解集是( )A .1x >B .1x >-C .1x <D .1x <-3.不等式组 233412x x x +>⎧⎪⎨-≤-⎪⎩ 的解集在数轴上应表示为( )A .B .C .D .4.在平面直角坐标系中,点M (1+m ,2m ﹣3)不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限5.若(m ﹣1)x >m ﹣1 的解集是 x <1,则 m 的取值范围是( )A .m >1B .m≤﹣1C .m <1D .m≥16.如图所示,在数轴上表示了某不等式的解集,则这个不等式可能是( )A .x≤1B .x≤-1C .x≥1D .x≥-17.一次知识竞赛共有15道题.竞赛规则是:答对1题记8分,答错1题扣4分,不答记0分.若甲同学总分超过了85分,且有1道题没答,则甲同学至少答对了() A .11道题B .12道题C .13道题D .14道题8.关于x 的不等式23x m +>的解如图所示,则m 的值为( ).A .1-B .5-C .1D .59.不等式组{5x −1>3x −4−13x ≤23−x的整数解的和为( )A .1B .0C .29D .3010.把一些书分给几名同学,如果每人分3本,那么余8本;如果前面的每名同学分5本,那么最后一人就分不到3本,共有()名同学. A .5B .6C .7D .8二、填空题11.用不等号填空:如果>0a b -,那么a b .12.某测试共有20道题,每答对一道得5分,每答错或不答一道题扣1分,设小明答对了x 道题,若小明得分要超过80分,则小明至少要答对 道题.13.如果不等式组4x x m≥⎧⎨<⎩有解,那么m 的取值范围是 .14.在平面直角坐标系中,已知点P (m ﹣3,4﹣2m ),m 是任意实数.(1)当m =0时,点P 在第 象限.(2)当点P 在第三象限时,求m 的取值范围 .三、计算题15.解不等式:215132x x -+-≤1. 16.解不等式组:()53133143x x x x ⎧-<-⎪⎨-+≥-⎪⎩四、解答题17.已知一种卡车每辆至多能载3吨货物.现有100吨黄豆,若要一次运完这批黄豆,至少需要这种卡车多少辆?18.解不等式:2 (3x -1)≤x +3,并把它的解集在数轴上表示出来.19.解不等式组()()2810433112x x x x ⎧+≤--⎪⎨+-<⎪⎩,并写出它的所有整数解. 五、综合题20.(1)若x>y ,请比较2-3x 与 2-3y 的大小,并说明理由. (2)若x>y ,请比较(a -3)x 与(a -3)y 的大小.21.2022年是富川县大力发展香芋种植的一年,某香芋种植大户聘请了一些临时工帮种植一批香芋,每个工人每天可以种植一亩香芋,计划9天种完,种植3天后由于气象台预测几天后将会有暴雨,为使香芋的种植不受到暴雨的影响,所以该种植大户又聘请了5个工人一起种植香芋,恰好提前两天完成了种植任务.(1)问该香芋种植大户种植了多少亩香芋?第一批请了多少个工人帮种植香芋?(2)种植过程中每天中午都要给每个工人提供一份快餐,已知烧鹅饭每个21元,排骨蒸饭每个18元,在种植的最后一天,该种植大户计划帮工人们订快餐的总花费不超过300元,则最多能订多少个烧鹅饭?22.先阅读理解下面的例题,再按要求解答下列问题.例题:解不等式()()330x x -+>.解:由有理数的乘法法则“两数相乘,同号得正,异号得负”,得3030x x -<⎧⎨+<⎩①,3030x x ->⎧⎨+>⎩②解不等式组①,得3x <-,解不等式组②,得3x >,()()330x x ∴-+>的解集为3x >或3x <-.(1)满足()()22310x x -+>的x 的取值范围是 ;(2)仿照材料,解不等式()()3150x x -+<.参考答案与解析1.【答案】C【解析】【解答】解:A 、∵a <b∴a+2<b+2,故本选项不符合题意; B 、∵a <b ∴22a b< ,故本选项不符合题意; C 、∵a <b∴-2a >-2b ,故本选项符合题意; D 、∵a <b∴a-2<b-2,故本选项不符合题意; 故答案为:C .【分析】根据不等式的性质,即不等式两边同加上或同减去同一个数,不等号方向不变,不等式两边同乘以或同除以同一个正数,不等号方向不变,同乘以或同除以同一个负数,不等号方向改变,据此分别判断即可.2.【答案】A【解析】【解答】解:10x -<1x -<- 1x >故答案为:A.【分析】根据不等式的性质两边同时减1、再两边同时除以-1,把不等式的系数化为1,即可解答.3.【答案】C【解析】【解答】解: 233412x x x +>⎧⎪⎨-≤-⎪⎩①② 解①得 1x > 解②得 2x ≤∴不等式组的解集为 12x <≤ 将解集表示在数轴上如C 选项所示 故答案为:C .【分析】先解不等式组,然后按照大于向右画,小于向左画,有等号是实心圆点,无等号是空心圆点的原则即可确定答案.4.【答案】B【解析】【解答】解:A.由 10230m m +>⎧⎨->⎩ 知m > 32 ,此时点M 在第一象限;B.由 10230m m +<⎧⎨->⎩知m 无解,即点M 不可能在第二象限;C.由 10230m m +<⎧⎨-<⎩知m <﹣1,此时点M 在第三象限;D.由 10230m m +>⎧⎨-<⎩ 知﹣1<m < 32 ,此时点M 在第四象限;故答案为:B.【分析】根据各象限内点的坐标符号特点列出关于m 的不等式组,解之求出m 的范围,从而得出答案.5.【答案】C【解析】【解答】解:∵(m-1)x >m-1的解集是 x <1∴m-1<0∴m<1. 故答案为:C.【分析】根据不等式的性质可得m-1<0,求解可得m 的范围.6.【答案】C【解析】【解答】由题意得x≥1.故答案为:C.【分析】根据数轴直接写出不等式的解集即可。

新人教版七年级数学下册第九章《不等式与不等式组》测试卷(含答案)

新人教版七年级数学下册第九章《不等式与不等式组》测试卷(含答案)

人教版七年级下册第九章《不等式与不等式组》测试题一、单项选择题(每题只有一个正确答案)1.以下各式中:①:②:③:④;⑤:⑥,不等式有()A.2 个B.3 个C.4 个D.5 个2.若,则以下各式中必定建立的是( )A.B.C.D.3.以下各数中,能使不等式x–3>0建立的是()A.– 3B. 5C. 3D.24.以下说法中,错误的选项是()A.不等式 x< 5 的整数解有无数多个B.不等式 x>- 5 的负整数解集有有限个C.不等式- 2x< 8 的解集是 x<- 4D.- 40 是不等式2x<- 8 的一个解5.四个小朋友在公园玩跷跷板,他们的体重分别为P,Q,R,S,由图可知,这四个小朋友体重的大小关系是()A.P>R>S>Q B.Q>S>P>R C.S>P>Q>R D.S> P>R> Q6.以下式子① 7>2> 2x;⑤ > 4 中,是一元一次不等式的有()4;② 3x ≥2π +1;③ x+y > 1;④ x +3A.4 个B.3 个C.2 个D.1 个7.“x的 3 倍与 2 的差不大于 7”列出不等式是 ()A. 3x-2>7B. 3x-2<7 C .3x- 2≥7D. 3x- 2≤78.不等式组的解集在数轴上表示为()A.B.C.D.9.若对于x 的不等式( a– 1)x> a– 1 的解集是x> 1,则 a 的取值范围是()A. a<0B. a> 0C. a<1D.a> 110.某次知识比赛共有30 道题,每一题答对得 5 分,答错或不答都扣 3 分,小亮得分要超出70 分,他起码要答对多少道题?假如设小亮答对了x 道题,依据题意列式得()A. 5x﹣ 3(30﹣ x)> 70B. 5x+3( 30﹣ x)≤ 70C. 5x﹣ 3(30+x)≥ 70D. 5x+3( 30﹣ x)> 7011.已知点在第四象限,则的取值范围在数轴上表示正确的选项是()mA. B . C . D .12.若对于x的不等式组有 6 个整数解,则m的取值范围是()A. -4 <m≤-3 B. - 3≤m<-2 C. - 4≤m<-3 D. -3 <m≤-2二、填空题13.请你写出一个知足不等式2x-1 < 6 的正整数 x 的值: ________.14.不等式 12- 4x≥0的非负整数解是 _______15. x 的与 12 的差是负数,用不等式表示为________.16.某种商品的进价为每件100 元,商场按进价提升 60%后标价,为增添销量,准备打折销售,但要保证收益率不低于 20%,则至多能够打 ________折.17.已知对于 X 的不等式组2的解集为 -1<x< 2,则 (m+n)2019的值是 _______.三、解答题18.用不等式表示:(1)7x 与 1 的差小于4;(2)x的一半比y 的 2 倍大;(3)a 的 9 倍与 b 的的和是正数.19.解以下不等式( 或组 ) ,并把解集表示在数轴上.①②③(④20.解不等式组:并写出它的所有整数解.21.小诚响应“低碳环保,绿色出行”的呼吁,向来坚持跑步与步行相联合的上学方式已知小诚家距离学校2200米,他步行的均匀速度为80 米分,跑步的均匀速度为200 米分若他要在不超出20 分钟的时间内从家抵达学校,起码需要跑步多少分钟?22.某单位需要将一批商品封装入库,所以打算购进个 B 型包装盒共需 550 元,且 A型包装盒的单价是每个 B 型包装盒可容纳 200 件该商品。

新人教版七年级下《第9章不等式和不等式组》单元测试含答案解析(word版)

新人教版七年级下《第9章不等式和不等式组》单元测试含答案解析(word版)

《第9章不等式与不等式组》一、选择题1.已知a<b,则下列不等式中不正确的是()A.4a<4b B.a+4<b+4 C.﹣4a<﹣4b D.a﹣4<b﹣42.如图,天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围,在数轴上可表示为()A.B.C.D.3.在平面直角坐标系中,若点P(x﹣2,x)在第二象限,则x的取值范围为()A.x>0 B.x<2 C.0<x<2 D.x>24.不等式组的解集是()A.x<3 B.x>2 C.2<x<3 D.无解5.若m>n,则下列不等式中成立的是()A.m+a<n+b B.ma<nb C.ma2>na2D.a﹣m<a﹣n二、填空题6.x的与5的差不小于3,用不等式表示为.7.某饮料瓶上有这样的字样:Eatable Date 18 months.如果用x(单位:月)表示Eatable Date(保质期),那么该饮料的保质期可以用不等式表示为.8.当x时,式子3x﹣5的值大于5x+3的值.9.若m<n,则不等式组的解集是.10.不等式(x﹣m)>2﹣m的解集为x>2,则m的值是.三、解答题11.解下列不等式,并把解集在数轴上表示出来.(1)5(x﹣1)≤3(x+1)(2)﹣>﹣2(3).14.已知x满足,化简|x﹣2|+|x﹣5|.15.求不等式组的整数解.16.已知方程组,当m为何值时,x>y?17.一个工程队原定在10天内至少要挖土600m3,在前两天一共完成了12021,由于整个工程调整工期,要求提前两天完成挖土任务.问以后几天内,平均每天至少要挖土多少m3?18.某班有住宿生若干人,分住若干间宿舍,若每间住4人,则还余2021宿舍住;若每间住8人,则有一间宿舍不空也不满,求该班住宿生人数和宿舍间数.19.某工厂现有甲种原料226kg,乙种原料250kg,计划利用这两种原料生产A、B两种的产品共40件,生产A、B两种产品用料情况如下表:需要用甲原料需要用乙原料一件A种产品7kg4kg一件B种产品3kg10kg若设生产A产品x件,求x的值,并说明有哪几种符合题意的生产方案.2021次球赛每队均需参赛16场,胜一场得3分,平一场得1分,负一场得0分.已知东方队参加完比赛后负了3场,积分超过了30分,问这支球队至少胜了多少场?21.某射击运动员在雅典奥运会射击比赛时前6次射击中61.8环(满环为10.9环),如果他要打破104.8环(10次射击)的记录,第7次射击不能少于多少环?22.小明和小刚要进行一次百米赛跑,两人来到百米起点,同时起跑,结果小明以领先3m的优势获胜,也就是说,当小明跑到百米终点时,小刚才跑了97m.小刚说:“这次不算,你本来跑得就快,这次当然你胜,如果你在离起跑线后3m的地方起跑,我仍从起跑线开始,也就是说你比我多跑3m,这样你要赢了我,我就心服口服了.”小明想了想,自信地说:“行!”如果两人的速度都不变,小明的自信有根据吗?他还能取胜吗?23.某次篮球联赛中,大海队与高山队要争夺一个出线权(获胜场数多的队出线;两队获胜场数相等时,根据他们之间的比赛结果确定出线队),大海队目前的战绩是14胜10负(其中有1场以3分之差负于高山队),后面还要比赛6场(其中包括再与高山队比赛1场);高山队目前的战绩是12胜13负,后面还要比赛5场.讨论:(1)为确保出线,大海队在后面的比赛中至少要胜多少场?(2)如果大海队在后面对高山队1场比赛中至少胜高山队4分,那么他在后面的比赛中至少胜几场就一定能出线?(3)如果高山队在后面的比赛中3胜(包括胜大海队1场)2负,那么大海队在后面的比赛中至少要胜几场才能确保出线?(4)如果大海队在后面的比赛中2胜4负,未能出线,那么高山队在后面的比赛中战果如何?24.当关于x、y的二元一次方程组的解x为正数,y为负数,则求此时m 的取值范围?25.一个汽车零件制造车间有工人2021已知每名工人每天可制造甲种零件6个或乙种零件5个,且每制造一个甲种零件可获利润150元,每制造一个乙种零件可获利润260元,车间每天安排x名工人制造甲种零件,其余工人制造乙种零件.(1)请写出此车间每天所获利润y(元)与x(名)之间的函数关系式;(2)若要使车间每天所获利润不低于24000元,你认为至少要派多少名工人去制造乙种零件才合适?《第9章不等式与不等式组》参考答案与试题解析一、选择题1.已知a<b,则下列不等式中不正确的是()A.4a<4b B.a+4<b+4 C.﹣4a<﹣4b D.a﹣4<b﹣4【考点】不等式的性质.【分析】根据不等式的性质1,可判断B、D,根据不等式的性质2,可判断A,根据不等式的性质3,可判断C.【解答】解:A、不等式的两边都乘以一个正数,不等号的方向不变,故A正确;B、不等式的两边都加或都减同一个整式,不等号的方向不变,故B正确;C、不等式的两边都乘以同一个负数,不等号的方向改变,故C错误;D、不等式的两边都加或都减同一个整式,不等号的方向不变,故D正确;故选:C.【点评】本题考查了不等式的性质,不等式的两边都乘以同一个负数,不等号的方向改变.2.如图,天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围,在数轴上可表示为()A.B.C.D.【考点】一元一次不等式的应用;在数轴上表示不等式的解集.【分析】根据图形就可以得到重物A,与砝码的关系,得到重物A的范围.【解答】解:由图中左边的天平可得m>1,由右边的天平可得m<2,即1<m<2,在数轴上表示为:故选:A.【点评】此题考查了不等式的解集在数轴上的表示方法,在数轴上表示解集时,注意空心圆圈和失信圆点的区别.还要注意确定不等式组解集的规律:大小小大中间跑.3.在平面直角坐标系中,若点P(x﹣2,x)在第二象限,则x的取值范围为()A.x>0 B.x<2 C.0<x<2 D.x>2【考点】点的坐标;解一元一次不等式组.【分析】点在第二象限的条件是:横坐标是负数,纵坐标是正数,可得x﹣2<0,x>0,求不等式组的解即可.【解答】解:∵点P(x﹣2,x)在第二象限,∴,解得:0<x<2,故选:C.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式组,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).4.不等式组的解集是()A.x<3 B.x>2 C.2<x<3 D.无解【考点】不等式的解集.【专题】计算题.【分析】求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).【解答】解:由“大小小大中间找”可知不等式组的解集2<x<3.故选:C.【点评】主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.5.若m>n,则下列不等式中成立的是()A.m+a<n+b B.ma<nb C.ma2>na2D.a﹣m<a﹣n【考点】不等式的性质.【分析】看各不等式是加(减)什么数,或乘(除以)哪个数得到的,用不用变号.【解答】解:A、不等式两边加的数不同,错误;B、不等式两边乘的数不同,错误;C、当a=0时,错误;D、不等式两边都乘﹣1,不等号的方向改变,都加a,不等号的方向不变,正确;故选D.【点评】不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.二、填空题6.x的与5的差不小于3,用不等式表示为x﹣5≥3.【考点】由实际问题抽象出一元一次不等式.【分析】不小于就是大于或等于,根据题意可列出不等式.【解答】解:根据题意得:x﹣5≥3.故答案为:x﹣5≥3.【点评】本题考查由实际问题抽象出一元一次不等式,根据关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.7.某饮料瓶上有这样的字样:Eatable Date 18 months.如果用x(单位:月)表示EatableDate(保质期),那么该饮料的保质期可以用不等式表示为0<x≤18.【考点】一元一次不等式的应用.【专题】计算题;转化思想.【分析】将现实生活中的事件与数学思想联系起来,读懂题列出不等关系式即可.【解答】解:一般饮料和食品应在保质期内,即不超过保质期的时间内食用,那么该饮料的保质期可以用不等式表示为0<x≤18.【点评】此题是一道与生活联系紧密的题目,解答起来较容易.8.当x<﹣4时,式子3x﹣5的值大于5x+3的值.【考点】解一元一次不等式.【专题】计算题.【分析】由式子3x﹣5的值大于5x+3可得到一个关于x的不等式3x﹣5>5x+3,解这个不等式即可.【解答】解:不等式3x﹣5>5x+3,先移项得,3x﹣5x>3+5,合并同类项得,﹣2x>8,即x<﹣4.【点评】解决本题的关键是根据已知条件列出不等式,再根据不等式的性质解不等式.特别注意两边同除以负数时符号的改变.9.若m<n,则不等式组的解集是x<m.【考点】不等式的解集.【专题】计算题.【分析】本题比较简单,根据小小取小的原则即可得出答案.【解答】解:∵m<n,∴不等式组的解集是x<m.故答案为:x<m.【点评】本题考查不等式的解集,解答此题要根据不等式组解集的求法解答.求不等式组的解集,应注意:同大取较大,同小取较小,小大大小中间找,大大小小解不了.10.不等式(x﹣m)>2﹣m的解集为x>2,则m的值是2.【考点】解一元一次不等式.【专题】计算题.【分析】先用m表示出不等式的解集,再根据不等式的解集是x>2求出m的值即可.【解答】解:不等式的两边同时乘以3得,x﹣m>6﹣3m,移项,合并同类项得,x>6﹣2m,∵不等式的解集是x>2,∴6﹣2m=2,解得m=2.故答案为:2.【点评】本题考查的是解一元一次不等式,先把m当作已知条件表示出x的取值范围是解答此题的关键.三、解答题11.解下列不等式,并把解集在数轴上表示出来.(1)5(x﹣1)≤3(x+1)(2)﹣>﹣2(3).【考点】解一元一次不等式组;在数轴上表示不等式的解集;解一元一次不等式.【专题】计算题.【分析】(1)去括号,移项,合并同类项,系数化成1即可;(2)去分母,去括号,移项,合并同类项,系数化成1即可;(3)求出两个不等式的解集,找出不等式组的解集,再在数轴上表示出来即可.【解答】解:(1)5(x﹣1)≤3(x+1)5x﹣5≤3x+35x﹣3x≤3+52x≤8x≤4,在数轴上表示不等式的解集是:;(2)2(x﹣1)﹣3(5x+4)>﹣122x﹣2﹣15x﹣12>﹣122x﹣15x>﹣12+12+2﹣13x>2x<﹣,在数轴上表示不等式的解集为:;(3)∵解不等式①得:x≥﹣1,解不等式②得:x<2,∴不等式组的解集是﹣1≤x<2,在数轴上表示为:.【点评】本题考查了解一元一次不等式(组),在数轴上表示不等式的解集得应用,主要考查学生的计算能力.14.已知x满足,化简|x﹣2|+|x﹣5|.【考点】解一元一次不等式组;绝对值;整式的加减.【专题】计算题.【分析】求出两个不等式的解集,再找出不等式组的解集,最后根据不等式组的解集去掉绝对值符号求出即可.【解答】解:∵解不等式3+3x>5x﹣1得:x<2,解不等式>﹣1得:x>﹣5,∴不等式组的解集是﹣5<x<2,∴|x﹣2|+|x﹣5|=2﹣x+5﹣x=7﹣2x.【点评】本题考查了一元一次不等式,绝对值,一元一次不等式组的应用,主要考查了学生的计算能力,关键是求出不等式组的解集.15.求不等式组的整数解.【考点】一元一次不等式组的整数解.【专题】计算题.【分析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.【解答】解:由题意可得不等式组,由(1)得x≤3,由(2)得x≥﹣2,其解集为﹣2≤x≤3,所以不等式组的整数解为﹣2,﹣1,0,1,2,3.【点评】考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.16.已知方程组,当m为何值时,x>y?【考点】解一元一次不等式组;解二元一次方程组.【分析】解此题首先要把字母m看做常数,然后解得x、y的值,结合题意,列得一元一次不等式,解不等式即可.【解答】解:,②×2﹣①得:x=m﹣3③,将③代入②得:y=﹣m+5,。

人教版七年级数学下册《第9章 不等式与不等式组》测试题(有答案)

人教版七年级数学下册《第9章 不等式与不等式组》测试题(有答案)

人教新版《第9章不等式与不等式组》单元测试题一.选择题1.“x为负数”的表达式是()A.x>0B.x<0C.x≥0D.x≤02.下列不等式组中无解的是()A.B.C.D.3.下列各项表示的是不等式的解集,其中错误的是()A.B.C.D.4.下列式子中,是一元一次不等式是()(1)x2+x<1,(2),(3)x﹣3>y+4,(4)2x+3<8.A.1个B.2个C.3个D.4个5.一次知识竞赛共有30道题,规定答对一道得4分,打错或不答得﹣1分,在这次竞赛中,小明获得优(90分或90分以上),则小明至少答对()道题.A.23B.24C.25D.266.下列说法中错误的是()A.m的2倍不小于n的,可表示为2m>B.x的与y的和是非负数,可表示为x+y≥0C.a是非负数,可表示为a≥0D.x是负数,可表示为x<07.下列不等式组中,是一元一次不等式组的是()A.B.C.D.8.若不等式组的整数解有5个,则a的取值范围()A.a<﹣3B.a>﹣4C.a>﹣3D.﹣4<a≤﹣3 9.下列命题错误的是()A.若a<b<0,则>B.若m﹣3n<0,则m<3nC.若a>b,则ac2>bc2D.若ac2>bc2,则a>b10.已知y满足不等式﹣y>2+,化简|y+1|+|2y﹣1|的结果是()A.﹣3y B.3y C.y D.﹣y+2二.填空题11.同时满足2x﹣1<0和﹣3x<1的整数x为.12.如果代数式2x﹣的值大于x+的值,那么x.13.由2﹣a>0,得a>2;.14.已知线段AB=12cm,点P是线段AB的中点,点C在线段AB上,若AC 的长是xcm,且x满足6cm<x<12cm,则点C在点和之间.15.用不等式表示“x与3的和不小于x的2倍”为.16.已知一个球队共打了14场,恰好赢的场比平的场数和输的场数都要少,那么这个球队最多赢了场.17.写出一个解为x<5的不等式(要求x的系数不为1).18.某品牌袋装奶粉,袋上注有“净含量400g”“每百克中含有蛋白质≥18.9g”,那么这样的一袋奶粉中蛋白质的含量不少于g.19.写出一个不等式组,使它的解集为﹣1<x<2:.20.已知(m+4)x|m|﹣3+6>0是关于x的一元一次不等式,则m=.三.解答题21.在数轴上表示不等式﹣3≤x<6的解集和x的下列值:﹣4,﹣2,0,,7,并利用数轴说明x的这些数值中,哪些满足不等式﹣3≤x<6,哪些不满足?22.求不等式组的整数解.23.解下列不等式,并将解集在数轴上表示出来.(1)2(x﹣6)+4<3x﹣5;(2)﹣1≤.24.解下列不等式(组).(1)≤2x;(2).25.若不等式组无解,那么不等式组有没有解?若有解,请求出不等式组的解集;若没有请说明理由?26.a克糖水中有b克糖(a>b>0),则糖的质量与糖水的质量比为;若再加c克糖(c>0),则糖的质量与糖水的质量比为.生活常识告诉我们:加的糖完全溶解后,糖水会更甜,请根据所列式子及这个生活常识提炼一个不等式.27.某工厂组织旅游活动.如果租用了54座的客车若干辆,恰好坐满;如果租用72座的客车则可少租2辆,并且有1辆车剩余了一半以下的座位.已知租用54座的客车每辆2000元,租用72座客车每辆3000元,怎样租车合算?参考答案一.选择题1.解:负数即为小于0的数,∴可表达为x<0,故选:B.2.解:A、无解,本选项符合题意;B、解集为﹣5<x<﹣2,本选项不合题意;C、解集为﹣2<x<5,本选项不合题意;D、解集为﹣5<x<2,本选项不合题意.故选:A.3.解:A、数轴表示的不等式的解集为:x≤2,所以正确;B、数轴表示的不等式的解集为:x>1,所以正确;C、数轴表示的不等式的解集为:x≠0,所以正确;D、数轴表示的不等式的解集为:x<1,所以不正确.故选:D.4.解:(1)不等式x2+x<1的未知数的最高次数是2,所以它不是一元一次不等式;(2)是分式不等式,所以它不是一元一次不等式;(3)不等式x﹣3>y+4中含有两个未知数,所以它不是一元一次不等式;(4)不等式2x+3<8中只有一个未知数x,且x的次数是1,所以它是一元一次不等式;综上所述,以上式子中是一元一次不等式的只有(4).故选:A.5.解:设在这次竞赛中小明答对x道题.依题意可得:4x﹣(30﹣x)≥90,解得:x≥24,∴小明至少答对24道题.故选:B.6.解:A、m的2倍不小于n的,可表示为2m≥,故A错.B、x的与y的和是非负数,可表示为x+y≥0,故B正确.C、a是非负数,可表示为a≥0,故C正确.D、x是负数,可表示为x<0,故D正确.故选:A.7.解:A、含有2个未知数,不是一元一次不等式组,故本选项错误;B、含有分式,不是一元一次不等式组,故本选项错误;C、符合一元一次不等式组的定义,故本选项正确;D、最高次数是2,不是一元一次不等式组,故本选项错误.故选:C.8.解:解不等式①得:x≥a,解不等式②得:x<2,∵不等式组的整数解有5个,∴整数解为﹣3,﹣2,﹣1,0,1,∴﹣4<a<﹣3;∵当a=﹣4时,不等式组的解集为﹣4≤x<2,此时不等式组有6个整数解,舍去,当a=﹣3时,不等式组的解集为﹣3≤a<2,此时有5个整数解,符合要求,∴a的取值范围﹣4<a≤﹣3.故选:D.9.解:A、两个同号的分子相等的分数,分母大的反而小,故该选项正确;B、根据不等式的基本性质1,在不等式的两边同加上3n,不等号的方向不变,故该选项正确;C、当c2=0时,则不等式不成立,故该选项错误;D、根据已知的不等式,知c2>0,则根据不等式的基本性质2,不等号的方向不变,故该选项正确.故选:C.10.解:﹣y>2+,去分母得,3+3y﹣6y>12+4+2y,解得,y<﹣.所以y+1<0,2y﹣1<0,|y+1|+|2y﹣1|=﹣y﹣1﹣2y+1=﹣3y.故选:A.二.填空题11.解:由题意可得不等式组,由(1)得<,由(2)得x>﹣,其解集是﹣<x<,∴同时满足2x﹣1<0和﹣3x<1的整数x=0.12.解:∵代数式2x﹣的值大于x+的值,∴2x﹣>x+,解得x>.故答案为:>.13.解:∵2﹣a>0,得a<2,故此解法错误.故答案为:错误.14.解:∵线段AB=12cm,点P是线段AB的中点,∴AP=12÷2=6cm,∵点C在线段AB上,若AC的长是xcm,且x满足6cm<x<12cm,∴点C在点P和B之间.故答案为:P,B.15.解:x与3的和不小于x的2倍,即x+3≥2x.故答案为:x+3≥2x.16.解:设赢了x场,∵这一球队共打了14场,而且恰好赢的场数比平的场数和输的场数都要少,∴有x<,∴可知这个球队最多赢了4场.17.解:由题意可得:2x<10.故填:2x<10.18.解:由题意,得这样的一袋奶粉中蛋白质的含量不少于:18.9×400÷100=75.6(g).故答案为75.6.19.解:.答案不唯一.20.解:根据题意|m|﹣3=1,m+4≠0解得|m|=4,m≠﹣4所以m=4三.解答题21.解:根据上图可知:x的下列值:﹣2,0,满足不等式;x的下列值:﹣4,7不满足不等式.22.解:,解①得:x<3,解②得:x≥,则不等式组的解集是:3.则不等式组的整数解是:2.23.解:(1)2(x﹣6)+4<3x﹣5,去括号得,2x﹣12+4<3x﹣5,移项、合并同类项得,﹣x<3,解得,x>﹣3.将不等式的解集在数轴上表示如下:;(2)﹣1≤,去分母得,3x﹣6≤2(7﹣x),去括号得,3x﹣6≤14﹣2x,移项、合并同类项得,5x≤20,解得,x≤4.将不等式的解集在数轴上表示如下:.24.解:(1)≤2x,5x﹣1≤4x,5x﹣4x≤1,x≤1;(2),解不等式①得:x>﹣1,解不等式②得:x≤2,故不等式组的解集为﹣1<x≤2.25.解:由已知条件知﹣a≥a,得a≤0;所以a+1<1﹣a,故不等式组,有解,解集为a+1<x<1﹣a.当a=0时,无解.26.解:根据题意,得a克糖水中有b克糖,则糖的质量与糖水的质量比为;若再加c克糖,则糖的质量与糖水的质量比为;根据加的糖完全溶解后,糖水会更甜,得.27.解:设单独租用54座客车需x辆.根据题意列一元一次不等式组可得:,解得8<x<10,由于车辆数必须为整数,所以x=9,54×9=486(人),∵≈37(元),≈41,∴租用54座的客车越多越省钱,∴当租用9辆54座的客车时,正好坐满,而且最省钱.。

新人教版七年级数学下册第九章《不等式与不等式组》单元测试题(含答案解析)

新人教版七年级数学下册第九章《不等式与不等式组》单元测试题(含答案解析)

人教版七年级下册数学单元练习卷:第九章 不等式与不等式组一、填空题(本大题共10小题,每小题3分,共30分) 1.如果1<x <2,那么(x –1)(x –2)__________0.(填写“>”、“<”或“=”)2.写出一个解集为x <–1,且未知数的系数为2的一元一次不等式:__________. 3.当x __________时,式子–2(x –1)的值小于8.4.不等式组1023x x x -<⎧⎨+>⎩的解集是__________.5.不等式2x +5>4x –1的正整数解是__________.6.一件商品的进价是500元,标价为600元,打折销售后要保证获利不低于8%,则此商品最少打__________折.7.某商品的售价是528元,商家出售一件这样的商品可获利润是进价的10%~20%,设进价为x 元,则x 的取值范围是__________.8.已知关于x 的不等式组12634x x a -<⎧⎨+≤⎩只有两个整数解,则a 的取值范围__________.9.2x ≥的最小值是a ,6x ≤-的最大值是b ,则a +b =__________. 10.已知不等式组1x a x b ≥--⎧⎨-≥-⎩①②在同一条数轴上表示不等式①②的解集如图,则b –a的值为__________.二、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 11.不等式x +1>3的解集是 A .x >1B .x >–2C .x >2D .x <212.在数轴上表示不等式x –1≤0的解集,正确的是 A .B .C .D .13.x 与3的和的一半是负数,用不等式表示为A .12x +3>0 B .12x +3<0 C .12(x +3)<0D .12(x +3)>014.下列说法中,错误的是 A .x =1是不等式x <2的解B .–2是不等式2x –1<0的一个解C .不等式–3x >9的解集是x =–3D .不等式x <10的整数解有无数个 15.若–12a ≥b ,则a ≤–2b ,其根据是 A .不等式的两边加(或减)同一个数(或式子),不等号的方向不变 B .不等式的两边乘(或除以)同一个正数,不等号的方向不变 C .不等式的两边乘(或除以)同一个负数,不等号的方向改变 D .以上答案均不对16.下列不等式中,不含有1x =-这个解的是 A .213x +≤- B .213x -≥-C .213x -+≥D .213x --≤17.不等式组()1132230x x x ⎧+≥-⎪⎨⎪-->⎩的最大整数解为A .8B .6C .5D .418.关于x 的不等式组()3141x x x m⎧->-⎨<⎩的解集为x <3,那么m 的取值范围为A .m =3B .m >3C .m <3D .m ≥319.一次智力测验,有20道选择题.评分标准是:对1题给5分,错1题扣2分,不答题不给分也不扣分.小明有两道题未答.至少答对几道题,总分才不会低于60分?则小明至少答对的题数是 A .11道 B .12道C .13道D .14道20.阅读理解:我们把a b c d 称作二阶行列式,规定它的运算法则为a cad bc b d=-,例如1324=1423=2⨯-⨯-,如果231xx-0>,则x 的取值范围是A .x >1B .x <–1C .x >3D .x <–3三、解答题(本大题共8小题,共60分.解答应写出文字说明、证明过程或演算步骤) 21.解不等式()2263x x -≤-,并写出它的正整数解.22.解不等式组26623212x x x x -<-⎧⎪⎨++>⎪⎩,并写出它的整数解.23.已知关于x 的不等式x a <7的解也是不等式2752x a a->–1的解,求a 的取值范围.24.解不等式组:()262311x x x x ⎧-≤⎪>-⎨⎪-<+⎩①②③.请结合题意,完成本题的解答.(1)解不等式①,得__________,依据是:__________. (2)解不等式③,得__________.(3)把不等式①,②和③的解集在数轴上表示出来.(4)从图中可以找出三个不等式解集的公共部分,得不等式组的解集.25.根据等式和不等式的基本性质,我们可以得到比较两数大小的方法:(1)若a –b >0,则a __________b ; (2)若a –b =0,则a __________b ; (3)若a –b <0,则a __________b .这种比较大小的方法称为“求差法比较大小”. 请运用这种方法尝试解决下面的问题:比较4+3a 2–2b +b 2与3a 2–2b +1的大小.26.分子、分母都是整式,并且分母中含有未知数的不等式叫做分式不等式.小亮在解分式不等式253xx+->0时,是这样思考的:根据“两数相除,同号得正,异号得负”,原分式不等式可转化为下面两个不等式组:①25030xx+>⎧⎨->⎩或②25030xx+<⎧⎨-<⎩,解不等式组①,得x>3,解不等式组②,得x<–5 2 .所以原分式不等式的解集为x>3或x<–5 2 .请你参考小亮思考问题的方法,解分式不等式342xx--<0.27.如果一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.(1)在方程①3x–1=0,②2103x+=,③x–(3x+1)=–5中,不等式组25312x xx x-+>-⎧⎨->-+⎩的关联方程是________;(2)若不等式组112132xx x⎧-<⎪⎨⎪+>-+⎩的一个关联方程的根是整数,则这个关联方程可以是________(写出一个即可);(3)若方程3–x=2x,3+x=122x⎛⎫+⎪⎝⎭都是关于x的不等式组22x x mx m<-⎧⎨-≤⎩的关联方程,直接写出m的取值范围.28.为降低空气污染,启东飞鹤公交公司决定全部更换节能环保的燃气公交车.计划购买A 型和B型两种公交车共10辆,其中每台的价格,年载客量如表:若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B 型公交车1辆,共需350万元.(1)求a,b的值;(2)如果该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客量总和不少于680万人次.请你设计一个方案,使得购车总费用最少.参考答案1.【答案】<2.【答案】2x <–2(答案不唯一) 3.【答案】>–3 4.【答案】31x -<< 5.【答案】1,2 6.【答案】9 7.【答案】440≤x ≤480 8.【答案】4<a ≤7 9.【答案】–4 10.【答案】1311.【答案】C 12.【答案】D 13.【答案】C 14.【答案】C 15.【答案】C 16.【答案】A 17.【答案】C 18.【答案】D 19.【答案】D 20.【答案】A21.【解析】去括号得:2x –4≤6–3x ,移项得:2x +3x ≤6+4, 整理解得:x ≤2, 正整数解为1,2.22.【解析】由不等式2x –6<6–2x 得:x <3.由不等式2x +1>32x +得:13x >. ∴不等式组的解集为133x <<.又x 为整数,∴x =1,2.∴原不等式组的整数解为1,2.23.【解析】解不等式27152x a a-->人教版七年级数学下册第九章不等式与不等式组单元测试题一、 选择题。

人教版七年级数学下册《第9章 不等式与不等式组》测试卷及答案解析

人教版七年级数学下册《第9章 不等式与不等式组》测试卷及答案解析

人教新版七年级下册《第9章不等式与不等式组》单元测试(1)一、选择题(每小题0分)1.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有()A.103块B.104块C.105块D.106块2.语句“x的与x的和不超过5”可以表示为()A.+x≤5B.+x≥5C.≤5D.+x=53.点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论:甲:b﹣a<0乙:a+b>0丙:|a|<|b|丁:>0其中正确的是()A.甲乙B.丙丁C.甲丙D.乙丁4.某种商品的进价为80元,标价为100元,后由于该商品积压,商店准备打折销售,要保证利润率不低于12.5%,该种商品最多可打()A.九折B.八折C.七折D.六折5.已知点M(1﹣2m,m﹣1)关于x轴的对称点在第一象限,则m的取值范围在数轴上表示正确的是()A.B.C.D.6.如果x>2,那么下列四个式子中:①x2>2x,②xy>2y,③2x>x,④,正确的式子的个数共有()A.4个B.3个C.2个D.1个7.表为小洁打算在某电信公司购买一支MAT手机与搭配一个门号的两种方案.此公司每个月收取通话费与月租费的方式如下:若通话费超过月租费,只收通话费;若通话费不超过月租费,只收月租费.若小洁每个月的通话费均为x元,x为400到600之间的整数,则在不考虑其他费用并使用两年的情况下,x至少为多少才会使得选择乙方案的总花费比甲方案便宜?()甲方案乙方案门号的月租费(元)400600MAT手机价格(元)1500013000注意事项:以上方案两年内不可变更月租费A.500B.516C.517D.6008.如果关于x的方程x+2m﹣3=3x+7解为不大于2的非负数,那么()A.m=6B.m=5,6,7C.5<m<7D.5≤m≤7二、填空题(每小题0分)9.不等式﹣x+3<0的解集是.10.商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗.为了避免亏本,售价至少应定为元/千克.11.下列说法中,正确的有个①﹣2x<8的解集是x>﹣4;②﹣4是2x<﹣8的解;③x<8的整数解有无数个;④不等式>﹣1的负整数解只有5个.12.在平面直角坐标系中,点P(m,m﹣2)在第一象限内,则m的取值范围是.13.不等式组的解集是.14.某童装店按每套88元的价格购进1000套童装,应缴纳的税费为销售额的10%,如果要获得不低于20000元的纯利润,则每套童装至少售价元.15.对非负实数x“四舍五入”到个位的值记为(x),即当n为非负整数时,若n﹣0.5≤x <n+0.5,则(x)=n.如(1.34)=1,(4.86)=5.若(0.5x﹣1)=6,则实数x的取值范围是.16.已知有理数x满足:,若|3﹣x|﹣|x+2|的最小值为a,最大值为b,则ab=.三、解答题17.用不等式表示下列数量的不等关系(1)x的与6的差大于2;(2)y的与4的和小于x(3)a的3倍与b的的差是非负数(4)x与5的和的30%不大于﹣2.18.解不等式组,并把它的解集表示在数轴上.19.福林制衣厂现有24名制作服装的工人,每天都制作某种品牌的衬衫和裤子,每人每天可制作这种衬衫3件或裤子5条.(1)若该厂要求每天制作的衬衫和裤子数量相等,则应各安排多少人制作衬衫和裤子?(2)已知制作一件衬衫可获得利润30元,制作一条裤子可获得利润16元,若该厂要求每天获得利润2100元,则需要安排多少名工人制作衬衫?20.解不等式:x+>1﹣.21.解不等式组.22.1<|3x+8|≤3.23.解不等式组.24.解不等式:|x﹣2|≤2x﹣10.人教新版七年级下册《第9章不等式与不等式组》单元测试(1)参考答案与试题解析一、选择题(每小题0分)1.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有()A.103块B.104块C.105块D.106块【考点】一元一次不等式的应用.【分析】根据题意设出未知数,列出相应的不等式,从而可以解答本题.【解答】解:设这批手表有x块,550×60+(x﹣60)×500>55000解得,x>104∴这批电话手表至少有105块,故选:C.2.语句“x的与x的和不超过5”可以表示为()A.+x≤5B.+x≥5C.≤5D.+x=5【考点】由实际问题抽象出一元一次不等式.【分析】x的即x,不超过5是小于或等于5的数,按语言叙述列出式子即可.【解答】解:“x的与x的和不超过5”用不等式表示为x+x≤5.故选:A.3.点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论:甲:b﹣a<0乙:a+b>0丙:|a|<|b|丁:>0其中正确的是()A.甲乙B.丙丁C.甲丙D.乙丁【考点】绝对值;数轴.【分析】根据有理数的加法法则判断两数的和、差及积的符号,用两个负数比较大小的方法判断.【解答】解:甲:由数轴有,0<a<3,b<﹣3,∴b﹣a<0,甲的说法正确,乙:∵0<a<3,b<﹣3,∴a+b<0乙的说法错误,丙:∵0<a<3,b<﹣3,∴|a|<|b|,丙的说法正确,丁:∵0<a<3,b<﹣3,∴<0,丁的说法错误.故选:C.4.某种商品的进价为80元,标价为100元,后由于该商品积压,商店准备打折销售,要保证利润率不低于12.5%,该种商品最多可打()A.九折B.八折C.七折D.六折【考点】一元一次不等式的应用.【分析】设该种商品打x折出售,根据利润=售价﹣进价结合利润率不低于12.5%,即可得出关于x的一元一次不等式,解之取其最大值即可得出结论.【解答】解:设该种商品打x折出售,依题意,得:100×﹣80≥80×12.5%,解得:x≥9.故选:A.5.已知点M(1﹣2m,m﹣1)关于x轴的对称点在第一象限,则m的取值范围在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组;点的坐标;关于x轴、y 轴对称的点的坐标.【分析】先得出点M关于x轴对称点的坐标为(1﹣2m,1﹣m),再由第一象限的点的横、纵坐标均为正可得出关于m的不等式,继而可得出m的范围,在数轴上表示出来即可.【解答】解:由题意得,点M关于x轴对称的点的坐标为:(1﹣2m,1﹣m),又∵M(1﹣2m,m﹣1)关于x轴的对称点在第一象限,∴,解得:,在数轴上表示为:.故选:A.6.如果x>2,那么下列四个式子中:①x2>2x,②xy>2y,③2x>x,④,正确的式子的个数共有()A.4个B.3个C.2个D.1个【考点】不等式的性质.【分析】根据不等式性质依次判断即可【解答】解:∵x>2>0,∴x•x>2×x.∴①正确.∵x>2,当y<0时,xy<2y.∴②错误.∵x>2>0,∴2x﹣x=x>0,∴2x>x,∴③正确.∵x>2>0,∴﹣=<0,∴<.∴④正确.∴(1)①、③、④正确,故选:B.7.表为小洁打算在某电信公司购买一支MAT手机与搭配一个门号的两种方案.此公司每个月收取通话费与月租费的方式如下:若通话费超过月租费,只收通话费;若通话费不超过月租费,只收月租费.若小洁每个月的通话费均为x元,x为400到600之间的整数,则在不考虑其他费用并使用两年的情况下,x至少为多少才会使得选择乙方案的总花费比甲方案便宜?()甲方案乙方案门号的月租费(元)400600MAT手机价格(元)1500013000注意事项:以上方案两年内不可变更月租费A.500B.516C.517D.600【考点】一元一次不等式的应用;一次函数的应用.【分析】由x的取值范围,结合题意找出甲、乙两种方案下两年的总花费各是多少,再由乙方案比甲方案便宜得出关于x的一元一次不等式,解不等式即可得出结论.【解答】解:∵x为400到600之间的整数,∴若小洁选择甲方案,需以通话费计算,若小洁选择乙方案,需以月租费计算,甲方案使用两年总花费=24x+15000;乙方案使用两年总花费=24×600+13000=27400.由已知得:24x+15000>27400,解得:x>516,即x至少为517.故选:C.8.如果关于x的方程x+2m﹣3=3x+7解为不大于2的非负数,那么()A.m=6B.m=5,6,7C.5<m<7D.5≤m≤7【考点】一元一次方程的解;解一元一次不等式.【分析】由题意关于x的方程x+2m﹣3=3x+7解为不>2的非负数,说明方程的解0≤x ≤2,将方程移项、系数化为1,求出x的表达式,再根据0≤x≤2,从而求出m的范围.【解答】解:将方程x+2m﹣3=3x+7,移项得,2x=2m﹣3﹣7,∴x=m﹣5,∵0≤x≤2,∴0≤m﹣5≤2,解得5≤m≤7,故选:D.二、填空题(每小题0分)9.不等式﹣x+3<0的解集是x>6.【考点】解一元一次不等式.【分析】移项、系数化成1即可求解.【解答】解:移项,得﹣x<﹣3,系数化为1得x>6.故答案是:x>6.10.商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗.为了避免亏本,售价至少应定为10元/千克.【考点】一元一次不等式的应用.【分析】设商家把售价应该定为每千克x元,因为销售中有5%的水果正常损耗,故每千克水果损耗后的价格为x(1﹣5%),根据题意列出不等式即可.【解答】解:设商家把售价应该定为每千克x元,根据题意得:x(1﹣5%)≥,解得,x≥10,故为避免亏本,商家把售价应该至少定为每千克10元.故答案为:10.11.下列说法中,正确的有3个①﹣2x<8的解集是x>﹣4;②﹣4是2x<﹣8的解;③x<8的整数解有无数个;④不等式>﹣1的负整数解只有5个.【考点】一元一次不等式的整数解;不等式的解集.【分析】根据解一元一次不等式及不等式的整数解、解的定义求解可得.【解答】解:①由﹣2x<8得x>﹣4,此结论正确;②当x=﹣4时,﹣2x=﹣8,此结论错误;③x<8的整数解有无数个,此结论正确;④不等式>﹣1的负整数解只有﹣5、﹣4、﹣3、﹣2、﹣1这5个,此结论正确;故答案为:3.12.在平面直角坐标系中,点P(m,m﹣2)在第一象限内,则m的取值范围是m>2.【考点】点的坐标;解一元一次不等式组.【分析】根据第一象限的点的坐标,横坐标为正,纵坐标为正,可得出m的范围.【解答】解:由第一象限点的坐标的特点可得:,解得:m>2.故答案为:m>2.13.不等式组的解集是﹣3<x≤1.【考点】解一元一次不等式组.【分析】分别解两个不等式得到x≤1和x>﹣3,然后利用大小小大中间找确定不等式组的解集.【解答】解:,解①得x≤1,解②得x>﹣3,所以不等式组的解集为﹣3<x≤1.故答案为﹣3<x≤1.14.某童装店按每套88元的价格购进1000套童装,应缴纳的税费为销售额的10%,如果要获得不低于20000元的纯利润,则每套童装至少售价120元.【考点】一元一次不等式的应用.【分析】设每套童装的售价为x元,根据利润=销售收入﹣税费﹣进货成本结合利润不低于20000元,即可得出关于x的一元一次不等式,解之取其最小值即可得出结论.【解答】解:设每套童装的售价为x元,依题意,得:1000x﹣10%×1000x﹣88×1000≥20000,解得:x≥120.故答案为:120.15.对非负实数x“四舍五入”到个位的值记为(x),即当n为非负整数时,若n﹣0.5≤x <n+0.5,则(x)=n.如(1.34)=1,(4.86)=5.若(0.5x﹣1)=6,则实数x的取值范围是13≤x<15.【考点】一元一次不等式组的应用.【分析】根据题意得到:6﹣0.5≤0.5x﹣1<6+0.5,据此求得x的取值范围.【解答】解:依题意得:6﹣0.5≤0.5x﹣1<6+0.5解得13≤x<15.故答案是:13≤x<15.16.已知有理数x满足:,若|3﹣x|﹣|x+2|的最小值为a,最大值为b,则ab=5.【考点】解一元一次不等式;绝对值.【分析】首先解不等式:,即可求得x的范围,即可根据x的范围去掉|3﹣x|﹣|x+2|中的绝对值符号,即可确定最大与最小值,从而求得.【解答】解:解不等式:不等式两边同时乘以6得:3(3x﹣1)﹣14≥6x﹣2(5+2x)去括号得:9x﹣3﹣14≥6x﹣10﹣4x移项得:9x﹣14﹣6x+4x≥3﹣10即7x≥7∴x≥1∴x+2>0,当1≤x≤3时,x+2>0,则|3﹣x|﹣|x+2|=3﹣x﹣(x+2)=﹣2x+1则最大值是﹣1,最小值是﹣5;当x>3时,x+2>0,则|3﹣x|﹣|x+2|=x﹣3﹣(x+2)=x﹣3﹣x﹣2=﹣5,是一定值.总之,a=﹣5,b=﹣1,∴ab=5故答案是:5.三、解答题17.用不等式表示下列数量的不等关系(1)x的与6的差大于2;(2)y的与4的和小于x(3)a的3倍与b的的差是非负数(4)x与5的和的30%不大于﹣2.【考点】由实际问题抽象出一元一次不等式.【分析】(1)首先表示x的与6的差为x﹣6,再表示大于可得x﹣6>2;(2)首先表示y的与4的和为y+4,再表示小于可得y+4<x;(3)首先表示a的3倍与b的的差为3a﹣b,再表示“是非负数”即可;(4)首先表示x与5的和的30%为30%(x+5),再表示“不大于”即可.【解答】解:(1)x﹣6>2;(2)y+4<x;(3)3a﹣b≥0;(4)30%(x+5)≤﹣2.18.解不等式组,并把它的解集表示在数轴上.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】对不等式3x﹣1>4移项系数化为1得x>,对不等式2x<x+2移项得x<2,再根据求不等式组解集的口诀:大小小大中间找,来求出不等式组的解集,并把它表示在数轴上.【解答】解:由3x﹣1>4移项得,3x>5,∴x>;由2x<x+2,移项整理得,x<2,∴不等式的解集为:<x<2.把它表示在数轴上如下图:19.福林制衣厂现有24名制作服装的工人,每天都制作某种品牌的衬衫和裤子,每人每天可制作这种衬衫3件或裤子5条.(1)若该厂要求每天制作的衬衫和裤子数量相等,则应各安排多少人制作衬衫和裤子?(2)已知制作一件衬衫可获得利润30元,制作一条裤子可获得利润16元,若该厂要求每天获得利润2100元,则需要安排多少名工人制作衬衫?【考点】二元一次方程组的应用.【分析】设安排x人制作衬衫,安排y人制作裤子.由关键语句“现有24名制作服装的工人”和“每天制作的衬衫和裤子数量相等”,可得到等量关系.再另外分开设制作衬衫和裤子的人数为a,b求出未知数.【解答】解:设制作衬衫和裤子的人为x,y.可得方程组解得答:制作衬衫和裤子的人为15,9.(2)设安排a人制作衬衫,b人制作裤子,可获得要求的利润2100元.可列方程组解得所以必须安排18名工人制作衬衫.答:需要安排18名工人制作衬衫.20.解不等式:x+>1﹣.【考点】解一元一次不等式.【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:去分母,得:8x+3(x+1)>8﹣4(x﹣5),去括号,得:8x+3x+3>8﹣4x+20,移项、合并同类项,得:15x>25,系数化为1,得:x>.21.解不等式组.【考点】解一元一次不等式组.【分析】不等式组整理后,分别求出两个不等式的解集,找出两解集的公共部分即可.【解答】解:原不等式组可写成,由①得:x<,由②得:x≥﹣,则不等式组的解集为﹣≤x<.22.1<|3x+8|≤3.【考点】绝对值.【分析】先去掉绝对值,分为两个不等式进行求解即可.【解答】解:∵1<|3x+8|≤3,∴1<3x+8≤3或﹣3≤3x+8<﹣1,当1<3x+8≤3时,解得:,当﹣3≤3x+8<﹣1时,解得:,综上,不等式的解集为:或.23.解不等式组.【考点】解一元一次不等式组.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集即可.【解答】解:解不等式①,得x为任意实数;解不等式②,得.∴原不等式组的解集为.24.解不等式:|x﹣2|≤2x﹣10.【考点】解一元一次不等式.【分析】去掉绝对值符号,转化成已学过的不等式(组)来解决.【解答】解:①当x<2时,原不等式变形为:,该不等式组无解;②当x≥2时,原不等式变形为:,解不等式组得:x≥8;综合①②可得,原不等式的解集为x≥8.。

新七年级数学下册第九章《不等式与不等式组》单元检测试卷(含答案)

新七年级数学下册第九章《不等式与不等式组》单元检测试卷(含答案)

人教版数学七年级下册第9章《不等式与不等式组》检测题(含答案)人教版七年级数学下册第九章不等式与不等式组单元测试题检测题一、单选题(每小题只有一个正确答案)1.下列各式是一元一次不等式的是()A.B.C.D.2.若a>b,则下列各式中一定成立的是()A.ma>mb B.c2a>c2b C.(1+c2)a>(1+c2)b D.1﹣a>1﹣b 3.如果的解集是,那么的取值范围是()A.B.C.D.4.如图,天平左盘中物体A的质量为,,天平右盘中每个砝码的质量都是1g,则的取值范围在数轴上可表示为()A.B.C.D.5.已知不等式组有解,则的取值范围为()A.a>-2 B.a≥-2 C.a<2 D.a≥26.将不等式组的解集在轴上表示出来,应是( )A. B.C. D.>的整数解的个数为()7.不等式组A.0个B.2个C.3个D.无数个8.已知不等式组的解集是2<x<3,则关于x的方程ax+b=0的解为( ) A.x=B.x=C.x=D.x=9.已知0≤a–b≤1且1≤a+b≤4,则a的取值范围是( )A.1≤a≤2B.2≤a≤3C.≤a≤D.≤a≤10.已知(m+4)x|m|–3+6>0是关于x的一元一次不等式,则m的值为()A.4 B.±4 C.3 D.±311.若点M(2m﹣1,m+3)在第二象限,则m取值范围是()A.m> B.m<﹣3 C.﹣3<m< D.m<12.某校组织开展“校园安全”的知识竞赛,共有20道题,答对一题记10分,答错(或不答)一题记-5分.小明参加本次竞赛得分要超过100分,他至少要答对题()A.13道 B.14道 C.15道 D.16道二、填空题13.不等式组的解集是____________;14.若,则比较大小:________.15.如果三个连续自然数的和不大于9,那么这样自然数共有_____组.16.不等式3(x﹣1)≤5﹣x的非负整数解有_____个.17.在实数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=2a+3b.如:1⊕5=2×1+3×5=17.则不等式x⊕4<0的解集为_____.三、解答题18.求不等式的解集,并把解集在数学轴表示出来(1)3x+2<2x+4(2)19.解下列不等式组,并把它们的解集在数轴上表示出来.(1)><; (2)<20.已知2x+3=2a,y-2a=4,并且a-<x+y≤2a+,求a的取值范围.21.某慈善组织租用甲、乙两种货车共16辆,把蔬菜266吨、水果169吨全部运到灾区,已知一辆甲种货车同时可装蔬菜18吨、水果10吨;一辆乙种货车同时可装蔬菜16吨、水果11吨.(1)若将这批货物一次性运到灾区,有哪几种租车方案?(2)若甲种货车每辆需付燃油费1500元,乙种货车每辆需付燃油费1200元,应选(1)中的哪种方案,才能使所付的燃油费最少?最少的燃油费是多少元?22.由于雾霾天气持续笼罩某地区,口罩市场出现热卖.某商店用8000元购进甲、乙两种口罩,销售完后共获利2800元,其进价和售价如下表:(1)求该商店购进甲、乙两种口罩各多少袋?(2)该商店第二次仍以原价购进甲、乙两种口罩,购进乙种口罩袋数不变,而购进甲种口罩袋数是第一次的2倍,甲种口罩按原售价出售,而乙种口罩让利销售.若两种口罩销售完毕,要使第二次销售活动获利不少于3680元,则乙种口罩最低售价为每袋多少元?23.已知实数是一个不等于的常数,解不等式组,并根据的取值情况写出其解集.24.阅读下列材料:解答“已知,且,,试确定的取值范围”的过程如下:解:,又,,又,同理得:由得,的取值范围是请按照上述方法,解答下列问题:若,且,,求的取值范围;若,且,,求最大值.参考答案1.B2.C3.B4.D5.C6.C7.C8.D9.C10.A11.C12.B 13.﹣9<x≤﹣3 14.> 15.3组. 16.3 17.18.(1)x<2;(2)x ≤-5.19.(1)不等式组的解集为x>3;(2)不等式组的解集为-1≤x人教版年级数学下册第九章 不等式与不等式组单元测试题 人教版七年级数学下册第九章 不等式与不等式组单元测试题一、选择题1.设a >b >0,c 为常数,给出下列不等式:①a-b >0;②ac>bc ;③1a <1b ;④b 2>ab ,其中正确的不等式有( ) A .1个B .2个C .3个D .4个2.已知,下列式子不成立的是( )A .B .C .D .如果,那么3.在关于x ,y 的方程组⎩⎪⎨⎪⎧2x +y =m +7,x +2y =8-m 中,未知数满足x≥0,y >0,那么m 的取值范围在数轴上应表示为( )4.方程组中,若未知数、满足,则的取值范围是( )A .B .C .D .5.某市自来水公司按如下标准收取水费:若每户每月用水不超过,则每立方米收费元;若每户每月用水超过,则超过部分每立方米收费元,小颖家某月的水费不少于元,那么她家这个月的用水量(吨数为整数)至少是( ) A .B .C .D .6.甲、乙两人从相距24km 的A ,B 两地沿着同一条公路相向而行,已知甲的速度是乙的速度的两倍,若要保证在2h 以内相遇,则甲的速度应( )A .小于8km/hB .大于8km/hC .小于4km/hD .大于4km/h7.把一些图书分给几名同学,如果每人分3本,那么余8本;如果前面的同学每人分5本,那么最后一人就分不到3本.则这些图书有( )A .23本B .24本C .25本D .26本8.定义[x ]为不超过x 的最大整数,如[3.6]=3,[0.6]=0,[-3.6]=-4.对于任意实数x ,下列式子中错误的是( )A .[x ]=x (x 为整数)B .0≤x -[x ]<1C .[x +y ]≤[x ]+[y ]D .[n +x ]=n +[x ](n 为整数)9.某射击运动员在一次比赛中(共10次射击,每次射击最多是10环),前6次射击共中52环.如果他要打破89环的记录,那么第7次射击不能少于( ) A .5环B .6环C .7环D .8环10.某班组织20名同学去春游,同时租用两种型号的车辆,一种车每辆有8个座位,另一种车每辆有4个座位,要求租用的车辆不留空座,也不能超载.租车方案共有( )种.A. 2B. 3C. 4D. 5二、填空题1.若点A (x +3,2)在第二象限,则x 的取值范围是________. 2.当x ________时,式子3+x 的值大于式子12x -1的值.3.某班级从文化用品市场购买了签字笔和圆珠笔共15支,所付金额大于26元,但小于27元.已知签字笔每支2元,圆珠笔每支1.5元,则其中签字笔购买了________支.4.定义一种法则“”如下:a b =⎩⎪⎨⎪⎧a (a >b ),b (a ≤b ).例如:=2.若(-2m -=3,则m 的取值范围是__________.5.按下面程序计算,若开始输入x 的值为正数,最后输出的结果为656,则满足条件的所有x 的值是______________.6.不等式组⎩⎪⎨⎪⎧x +1>3(1-x ),1+2x 3≤x 的解集是____________.三、解答题1.解不等式,并把解集在数轴上表示出来:(1)2(x +1)-1≥3x+2;(2)2x -13-9x +26≤1.2.已知关于x 的方程4(x +2)-2=5+3a 的解不小于方程(3a +1)x 3=a (2x +3)2的解,试求a 的取值范围.3.已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +2y =1,①x -y =m.②(1)求这个方程组的解(用含m 的式子表示);(2)当m 取何值时,这个方程组的解中,x 大于1,y 不小于-1.4.小诚响应“低碳环保,绿色出行”的号召,一直坚持跑步与步行相结合的上学方式.已知小诚家距离学校2 200米,他步行的平均速度为80米/分,跑步的平均速度为200米/分.若他要在不超过20分钟的时间内从家到达学校,至少需要跑步多少分钟?5.某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条.(1)若x=30,通过计算可知方案一购买较为合算;(只填“方案一”或“方案二”,不要求解题过程)(2)当x>20时,①该客户按方案一购买,需付款(40x+3__200)元;(用含x的式子表示)②该客户按方案二购买,需付款(36x+3__600)元;(用含x的式子表示)③这两种方案中,哪一种方案更省钱?参考答案: 一、选择题。

最新人教版七年级数学下册第九章《不等式与不等式组》测试卷(含答案解析)

最新人教版七年级数学下册第九章《不等式与不等式组》测试卷(含答案解析)

七年级数学第9章《不等式和不等式组》同步测试一、选择题(每题3分,共30分):1、若a >b ,则下列各式中一定成立的是( ) A .ma >mbB .c 2a >c 2bC .(1+c 2)a >(1+c 2)b D .1﹣a >1﹣b2、在数轴上表示不等式x >-2的解集,正确的是( )3、不等式a >b ,两边同时乘m 得am <bm ,则一定有( ) A .m =0B .m <0C .m >0D .m 为任何实数4、下列说法中,错误的是( ) A .x =1是不等式x <2的解B .-2是不等式2x -1<0的一个解C .不等式-3x >9的解集是x =-3D .不等式x <10的整数解有无数个5、已知实数a ,b 满足a +1>b +1,则下列选项错误的为( ) A .a >bB .a +2>b +2C .-a <-bD .2a >3b6、已知不等式组 有解,则 的取值范围为( )A .a>-2B .a≥-2C .a<2D .a≥27、如果不等式组⎩⎪⎨⎪⎧2x -1>3(x -1),x<m 的解集是x <2,那么m 的取值范围是( )A .m =2B .m >2C .m <2D .m≥28、小明准备用自己今年的零花钱买一台价值300元的英语学习机.现在他已存有45元,如果从现在起每月节省30元,设x 个月后他存够了所需钱数,则x 应满足的关系式是( ) A. 30x-45≥300 B. 30x+45≥300 C. 30x-45≤300 D. 30x+45≤3009、对于实数x ,我们规定[x]表示不大于x 的最大整数,例如[1.2]=1,[3]=3,[-2.5]=-3.若[x +410]=5,则x 的取值可以是( )A .40B .45C .51D .5610、若关于x 的不等式组⎩⎪⎨⎪⎧x -a≤0,2x +3a >0的解集中至少有5个整数解,则正数a 的最小值是( )A .3B .2C .1D.23二、填空题(每题3分,共15分):11、不等式3(x ﹣1)≤5﹣x 的非负整数解有_____个. 12、已知0≤a–b≤1且1≤a+b≤4,则a 的取值范围是13、已知关于x 的不等式组⎩⎪⎨⎪⎧5-3x≥-1,a -x <0无解,则a 的取值范围是 .14、若实数3是不等式2x -a -2<0的一个解,则a 可取的最小正整数为 . 15、某校规定期中考试成绩的40%和期末考试成绩的60%的和作为学生成绩总成绩.该校李红同学期中数学考了85分,她希望自己学期总成绩不低于90分,则她在期末考试中数学至少应得多少分?设她在期末应考x 分,可列不等式为 . 三、解答题(共55分):16、(6分)在爆破时,如果导火索燃烧的速度是每秒钟0.8 cm ,人跑开的速度是每秒钟4 m ,为了使点导火索的人在爆破时能够跑到100 m 以外的安全地区,设导火索的长为s cm. (1)用不等式表示题中的数量关系;(2) 要使人能跑到安全地区,则导火索的长度至少多长?17、(6分)已知关于x 的不等式ax <-b 的解集是x >1,求关于y 的不等式by >a 的解集.18、(8分)已知关于x 的不等式2m -mx 2>12x -1.(1)当m =1时,求该不等式的解集;(2)m 取何值时,该不等式有解,并求出解集.19、(8分)某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案.方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元? (2)请帮小敏算一算,所购买商品的价格在什么范围内时,采用方案一更合算?20、(10分)解不等式组并在数轴上表示解集.(1)⎩⎪⎨⎪⎧2x<5,①3(x +2)≥x+4,②(2) ⎩⎪⎨⎪⎧x -32(2x -1)≤4,①1+3x 2>2x -1,②21、(8分)春平中学要为学校科技活动小组提供实验器材,计划购买A 型、B 型两种型号的放大镜.若购买8个A 型放大镜和5个B 型放大镜需用220元;购买4个A 型放大镜和6个B 型放大镜需用152元.(1)求每个A 型放大镜和每个B 型放大镜各多少元;(2)春平中学决定购买A 型放大镜和B 型放大镜共75个,总费用不超过1 180元,那么最多可以购买多少个A 型放大镜?22、(9分)某科技有限公司准备购进A 和B 两种机器人来搬运化工材料,已知购进A 种机器人2个和B 种机器人3个共需16万元,购进A 种机器人3个和B 种机器人2个共需14万元,请解答下列问题:(1)求A 、B 两种机器人每个的进价;(2)已知该公司购买B 种机器人的个数比购买A 种机器人的个数的2倍多4个,如果需要购买A 、B 两种机器人的总个数不少于28个,且该公司购买的A 、B 两种机器人的总费用不超过106万元,那么该公司有哪几种购买方案?参考答案: 一、选择题:1、C2、C3、B4、C5、D6、C7、D8、B9、C 10、B 二、填空题: 11、3 12、≤a≤13、a≥2 14、515、40%×85+60%x≥90 三、解答题:16、(1)4×s0.8>100.(2)25 cm17、∵不等式ax <-b 的解集是x >1,∴a<0,-ba =1.∴b=-a ,b >0.∴不等式by >a 的解集为y >ab =-1,即不等式by >a 的解集为y >-1.18、(1)当m =1时,该不等式为2-x 2>12x -1,解得x <2.(2)∵2m -mx 2>12x -1,∴2m-mx >x -2.∴-mx -x >-2-2m.∴(m+1)x <2(1+m). ∵该不等式有解,∴m+1≠0,即m≠-1. 当m >-1时,不等式的解集为x <2; 当x <-1时,不等式的解集为x >2. 19、(1)120×0.95=114(元).(2)设购买商品的价格为x 元.由题意,得0.8x +168<0.95x.解得x >1 120. 当购买商品的价格超过1 120元时,采用方案一更合算. 20、(1)解不等式①,得x <52人教版七年级数学下册 第九章 不等式与不等式组 单元测试题(解析版)一、选择题(共10小题,每小题3分,共30分)1.2019年2月1日某市最高气温是8℃,最低气温是-2℃,则当天该市气温变化范围t (℃)是( )A .t >8B .t <2C . -2<t <8D . -2≤t ≤82.下列x 的值中,是不等式x >3的解的是( )A . -3B . 0C . 2D . 43.下列不等式变形正确的是( )A . 由a >b ,得ac >bcB . 由a >b ,得a -2<b -2C . 由-21>-1,得-2a>-a D . 由a >b ,得c -a <c -b4.如果a +b <0,且b >0,那么a ,b ,-a ,-b 的大小关系为( ) A .a <b <-a <-b B . -b <a <-a <b C .a <-b <-a <b D .a <-b <b <-a5.定义运算:a *b ,当a >b 时,有a *b =a ,当a <b 时,有a *b =b ,如果(x +3)*2x =x +3,那么x 的取值范围是( )A .x <3B .x >3C .x <1D . 1<x <36.若关于x 、y 的二元一次方程组的解满足x -y >-2,则a 的取值范围是( )A .a <4B . 0<a <4C . 0<a <10D .a <107.已知点M (1-2m ,m -1)在第四象限内,那么m 的取值范围是( ) A .m >1 B .m <21 C .21<m <1D .m <21或m >18.已知不等式组有解,则a 的取值范围为( )A .a >-2B .a ≥-2C .a <2D .a ≥29.在关于x 、y 的方程组中,未知数满足x ≥0,y >0,那么m 的取值范围在数轴上应表示为( ) A . B .C .D .10.为了举行班级晚会,小张同学准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品.已知乒乓球每个1.5元,球拍每个25元,如果购买金额不超过200元,且买的球拍尽可能多,那么小张同学应该买的球拍的个数是( )A . 5B . 6C . 7D . 8二、填空题(共8小题,每小题3分,共24分)11.某不等式的解集在数轴上的表示如图所示,则该不等式的解集是___________.12.如果2x -5<2y -5,那么-x ______-y .(填“<、>、或=”) 13.若关于x 的不等式(a -2)x >a -2解集为x <1,化简|a -3|=______. 14.关于x 的方程3(x +2)=k +2的解是正数,则k 的取值范围是________. 15.不等式组:的解集是________.16.关于x 的不等式组的解集为1<x <4,则a 的值为________.17.把m 个练习本分给n 个学生.若每人分3本,则余80本;若每人分5本,则最后一个同学有练习本但不足5本.那么n =________.18.圣诞节班主任老师购买了一批贺卡准备送给学生,若每人三张,那么还余59张,若每人5张,那么最后一个学生分到贺卡,但不足四张,班主任购买的贺卡共______张.三、解答题(共7小题,共66分) 19.(8分)解不等式:6x -1≤5;把解集在数轴上表示出来.20. (8分)阅读理解:我们把称作二阶行列式,规定他的运算法则为=ad -bc .如=2×5-3×4=-2.如果有>0,求x 的解集.21. (8分)已知方程组的解为非负数,求整数a 的值.22. (8分)若关于x 的方程2x -3m =2m -4x +4的解不小于87-,求m 的最小值.23. (10分)解不等式组:并把解集在数轴上表示出来.24. (12分)某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?25. (12分)学校计划利用校友慈善基金购买一些平板电脑和打印机.经市场调查,已知购买1台平板电脑比购买3台打印机多花费600元,购买2台平板电脑和3台打印机共需8 400元.(1)求购买1台平板电脑和1台打印机各需多少元?(2)学校根据实际情况,决定购买平板电脑和打印机共100台,要求购买的总费用不超过168 000元,且购买打印机的台数不低于购买平板电脑台数的2倍.请问最多能购买平板电脑多少台?答案解析1.【答案】D【解析】由题意得-2≤t ≤8.故选D. 2.【答案】D【解析】∵不等式x >3的解集是所有大于3的数,∴4是不等式的解.故选D. 3.【答案】D【解析】A.由a >b ,得ac >bc (c >0),故此选项错误; B .由a >b ,得a -2>b -2,故此选项错误; C .由-21>-1,得-2a>-a (a >0),故此选项错误; D .由a >b ,得c -a <c -b ,此选项正确.故选D. 4.【答案】D【解析】∵设b =1,a =-2,则有-b =-1,-a =2,a <-b <b <-a .故选D. 5.【答案】A【解析】∵(x +3)*2x =x +3,∴x +3>2x ,x <3,故选A. 6.【答案】D【解析】在关于x 、y 的二元一次方程组中,①+②,得4x -4y =2-a ,即x -y =21-4a, ∵x -y >-2,∴21-4a>-2,解得a <10,故选D. 7.【答案】B【解析】根据题意,可得解不等式①,得m <21,解不等式②,得m <1,∴m <21,故选B. 8.【答案】C 【解析】不等式组由(1)得x ≥a ,由(2)得x <2,故原不等式组的解集为a ≤x <2, ∵不等式组有解,∴a 的取值范围为a <2.故选C.9.【答案】C【解析】①×2-②,得3x=3m+6,即x=m+2,把x=m+2代入②,得y=3-m,由x≥0,y>0,得到解得-2≤m<3,表示在数轴上,如图所示:,故选C.10.【答案】B【解析】设小张同学应该买的球拍的个数为x,根据题意得20×1.5+25x≤200,解得x≤6.8,所以x的最大整数值为6,所以小张同学应该买的球拍的个数是6个.故选B.11.【答案】x>-2【解析】观察数轴可得该不等式的解集为x>-2.故答案为x>-2.12.【答案】>【解析】如果2x-5<2y-5,两边都加5可得2x<2y;同除以(-2)可得-x>-y.13.【答案】3-a【解析】∵关于x的不等式(a-2)x>a-2解集为x<1,∴a-2<0,即a<2,∴原式=3-a.故答案为3-a.14.【答案】k>4【解析】由方程3(x+2)=k+2去括号移项,得3x=k-4,∴x=,∵关于x的方程3(x+2)=k+2的解是正数,∴x=>0,∴k>4.15.【答案】x>5【解析】解①得x>1,解②得x>5,所以不等式组的解集为x>5.故答案为x>5.16.【答案】5【解析】解不等式2x+1>3,得x>1,解不等式a-x>1,得x<a-1,∵不等式组的解集为1<x <4,∴a -1=4,即a =5,故答案为5.17.【答案】41或42 【解析】根据题意得解得40<n <42.5,∵n 为整数,∴n 的值为41或42.故答案为41或42.18.【答案】152【解析】设本班有x 人(x 是正整数),最后的学生得到的贺卡为y (y 是整数,0<y ≤3), 根据题意有3x +59=5(x -1)+y ,解得x =32-21y ,由于x 取正整数,y 为整数,0<y ≤3,∴y 只能取2,∴x =32-1=31,那么班主任购买的贺卡数为3x +59=152(张),故填152.19.【答案】6x -1≤5,6x ≤6,x ≤1,在数轴上表示为【解析】利用不等式的性质1及性质2求出解集.20.【答案】解:由题意得2x -(3-x )>0,去括号得2x -3+x >0,移项合并同类项得3x >3,把x 的系数化为1得x >1.【解析】首先看懂题目所给的运算法则,再根据法则得到2x -(3-x )>0,然后去括号、移项、合并同类项,再把x 的系数化为1即可.21.【答案】解: ①×3+②,得5x =6a +5-a ,即x =a +1≥0,解得a ≥-1; ②-①×2,得5y =5-a -4a ,即y =1-a ≥0,解得a ≤1; 则-1≤a ≤1,即a 的整数值为-1,0,1.【解析】用加减消元法解方程组,求出x 和y (x 和y 均为含有a 的代数式),再根据x 、y 的取值即可列出关于a 的不等式组,即可求出a 的取值范围,进一步即可求解.22.【答案】解:关于x 的方程2x -3m =2m -4x +4的解为x =,根据题意,得≥87-,去分母,得4(5m +4)≥21-8(1-m ),去括号,得20m +16≥21-8+8m ,移项,合并同类项,得12m ≥-3,系数化为1,得m ≥-41.所以当m ≥-41时,方程的解不小于87-,m 的最小值为-41. 【解析】首先求解关于x 的方程2x -3m =2m -4x +4,即可求得x 的值,根据方程的解的解不小于87-,即可得到关于m 的不等式,即可求得m 的范围,从而求解. 23.【答案】解:解不等式①,得x <2,解不等式②,得x ≥-1,在数轴上表示为:∴不等式组的解集为-1≤x <2.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了,确定不等式组的解集.24.【答案】解:(1)每辆A 型车和B 型车的售价分别是x 万元,y 万元. 则解得答:每辆A 型车的售价为18万元,每辆B 型车的售价为26万元;(2)设购买A 型车a 辆,则购买B 型车(6-a )辆, 则依题意得解得2≤a ≤341. ∵a 是正整数,∴a =2或a =3.∴共有两种方案:方案一:购买2辆A 型车和4辆B 型车; 人教版数学七年级下册单元测试卷:第9章 一元一次不等式(组)人教版七年级数学下册第九章 不等式与不等式组单元测试题一、选择题(本大题共8小题,每小题3分,共32分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九章不等式及不等式组测试题
1.满足不等式45
)
31(22≤--x π
的整数是 ( ) A .-1,0,1,2,3 B. 0,1,2,3 C .0,1 D. -3,-2,-1,0,1 2.同时使不等式x x 52)1(3-+-φ与
x x 2
3
7121-≤-成立的所有整数积是 ( ) A .12 B. 3 C. 7 D. 24 3. 已知x 和y 满足1,243πy x y x -=+,则 ( ) A .76=
x B. 71-=y C. 76φx D.7
1
-φy 4. 已知a<b<0,下列不等式中一定成立的是 ( )
A.
a 1<
b 1 B. a
b >1. C. 3a>2b. D. 2
a >ab. 5、不等式组 的整数解的和是 ( )
A.1 B.2 C.0 D.-2
6. 若 为非负数,则x 的取值范围是( )
A.x ≥1 B.x ≥-1/2 C.x >1 D.x >-1/2 7.下列各式中是一元一次不等式的是( )
A.5+4>8 B.2x-1 C.2x-5≤1 D.1/x-3x ≥0
8.若│a │>-a,则a 的取值范围是( )
A.a>0
B.a ≥0
C.a<0
D.自然数
9. 不等式组5
3
x x ≤⎧⎨
>⎩的解集在数轴上表示,正确的是( ) x
3
5
A
x
35
B x
35
C x
3
5
D
_ D
_ C
_ B
_ A
10.设
.表示三种不同的物体,用天平比较它们质量的大小,情况如图,那么
这三种物体按质量从大到小的顺序为( )
11.用恰当的不等号表示下列关系:
①a 的5倍与8的和比b 的3倍小:_______________; ②x 比y 大4:______________.
12.不等式3(x+1)≥5x-3的正整数解是_________;
13.若a<1,则不等式(a-1)x>1的解集为___ .
14.若x=3是方程
2x a --2=x-1的解,则不等式(5-a)x<1
2
的解集是_______. 15.若不等式组21
23
x a x b -<⎧⎨
->⎩的解集为-1<x<1,则a=_______,b=_______.
16.2001年某省体育事业成绩显著,据统计,•在有关大赛中获是奖牌数如下表所示(单位:枚),如果只获得1枚奖牌的选手有57•人,•那么荣获3•枚奖牌的选手最多有______人.
17.解下列不等式(组)(每小题3分,共6分)
(1)5(x+2)≥1-2(x-1) (2) 2731205
y y y +>-⎧⎪
-⎨≥⎪⎩
(3) 1)1(2
2<---x x ,. (4)
⎪⎩⎪
⎨⎧-≤-+>-x x x x 23712
1)1(325,并求其整数解.
18. 关于x 的不等式a-2x<-1的解集如图所示.求a.
19. (1)若x<-3,,求|3+x|的值;
(2)若2<x<4,求|x-1|+|x-5|.
20. x 取哪些正整数时,不等式x+3>6与2x-1<10都成立?
21.已知多项式a2-5a-7减去多项式a2-11a+9的差等于不等式5-4x<0的最小正整数解,求a 的值。

22..一件由黄金与白银制成的首饰重a 克,商家称其中黄金含量不低于90%,黄金和白银的密度分别是
19.33/cm g 和10.53
/cm g ,列出不等式表示这件首饰的体积应满足什么条件.(提示:质量=密度×体积.)
23.某自行车保管站在某个星期日接受保管的自行车共有3500辆次,其中变速车保管费是每辆0.5元,一般车的保管费是每辆0.3元.
(1)一般车停次的辆次数为x,总的保管费为y 元,试写出y 与x 的关系式;
(2)若估计前来停放的3500辆自行车中,变速车的辆次不小于25%,但不大于40%,试求该保管站这个星期日收入保管费总数的范围.(8分)
24.某种客货车车费起点是2km 以内2.8元.往后每增加455m 车费增加0.5元.现从A 处到B 处,共支出车费9.8元;如果从A 到B,先步行了300m 然后乘车也是9.8元,求AB 的中点C 到B 处需要共付多少车费?(10分)
参考答案
1.D
2. A
3. D
4. D
5. C
6. B
7. C
8. A
9. B 10. A
11.(1)b a 385π+ (2)4πy x - 12. 1 13. 1
1-a x π 14.20
1
π
x 15. 1;-2 16. 4人 17. (1) x ≥-1 (2)2≤y<8 (3)x>-2 (4).解不等式①得:x>2.5
解不等式②得:x ≤4, 所以不等式组的解集2.5<x ≤4,整数解为:4,3
18.7-=a 19.(1)-3-x (2) 4 20. 5.43ππx ,x 取正整数,4=∴x 21.3=a
22.解:如果其中黄金的含量为90%,则首饰的体积V(3
cm )为
5
.101.03.199.0a
a +
. 如果其中黄金的含量为100%(注意仅仅是如果!),则首饰的体积V(3
cm )为3
.19a .
∴3
.19a
<V<5.101.03.199.0a a +
.
23.①y=1750-0.2x ②1125元至1330元
24.设走xm 需付车费y 元,n 为增加455m 的次数.
∴y=2.8+0.5n,可得n=
7
0.5
=14 ∴2000+455×13<x ≤2000+455×14 即7915<x ≤8370,又7915<x-300≤8370 ∴8215<x ≤8670, 故8215<x ≤8370,
CB 为
2x ,且4107.5<2x
≤4185, 4107.52000455-=4.63<5,41852000455
-=4.8<5,
∴n=5代入y=2.8+0.5×5=5.3(元)
∴从C 到B 需支付车费5.3元.。

相关文档
最新文档