第一章第二章习题课
电化学原理习题课
26
(1)理想条件下,扩散区和对流区可截然分开了。 而在真实的条件下,扩散区和对流区没有明确界 限,不能截然分开,它们之间有相互重叠区域。
(2)在理想扩散条件下,扩散层有确定的厚度,其 厚度等于毛细管的长度 ;而在真实体系中,由于 对流作用于的存在,只能根据一定的理论来近似 地求解扩散层的有效厚度。
4
6、影响电解质溶液导电性的因素有哪些?为什么?
答:①电解质溶液的几何因素。对单位体积溶液,电
解质溶液的导电性与离子在电场作用下迁移的路程和
通过的溶液截面积有关,这同单位体积金属导体受其
长度和横截面积的影响类似。
②离子运动速度。离子运动速度越大,传递电量就越
快,导电能力就越强。离子运动速度又受到离子本性、
电化学原理作业
1
第一章 绪论
思考题 1、第一类导体和第二类导体有什么区别? 答:区别:载流子的不同。第一类导体载流子为物
体内部自由电子或空穴,第二类导体的载流子为 正负离子。 问题:①不要漏掉空穴,②部分同学认为载流子在 各自导体间导电过程涉及化学变化。这是不对的 ,只有在两类导体界面上传递时才会出现化学反 应。
8
设计电池时要写对电池组。
4(1) 欲求下列电极的标准电极电位,试设计出
相应的电池,写出电池反应和计算标准电位的公
式:
Ag | Ag
解:电池: ()Zn | ZnSO4 || Ag | AgNO3()
电极反应:(–) Zn 2e Zn2
(+) 2Ag 2e 2Ag 电池反应: Zn 2Ag Zn2 2Ag
平
0 Ag AgNO 3
RT F lna Ag
0.7991 0.0591log0.002 0.64V
第一二章习题课
0
27 e (c) ψ = πa
2 1s 3
−
6 r a0
r
也最大。 不能为0( 时 e 最大,因而 ψ 1s 也最大。但实际上 不能为 (电 子不可能落到原子核上), ),因此更确切的说法是 趋近于0时 子不可能落到原子核上),因此更确切的说法是 趋近于 时 1s电子的几率密度最大。 电子的几率密度最大。 电子的几率密度最大
−
2
6 r a0 最大,因而 最大,
r
r
为单电子“原子” (d)Li2+为单电子“原子”,组态的能量只与主量子数 ) 有关,所以2s和 态简并 态简并, 有关,所以 和2p态简并,即即 E 2s= E 2p. 原子的基组态为(1s)2(2s)1 。.对2s电子来说,1s电 电子来说, 电 (e)Li原子的基组态为 ) 原子的基组态为 对 电子来说 子为其相邻内一组电子, 子为其相邻内一组电子,σ=0.85。因而: 。因而:
结构化学第一二章习题课
章节知识要点 例题及部分课后习题
第一章知识要点
波粒二象性。 1、实物微粒的运动特征——波粒二象性。 实物微粒的运动特征 波粒二象性
其波动性被称为德布罗意波,它是统计性的几率波。 其波动性被称为德布罗意波,它是统计性的几率波。
E = hν
p = h /λ
光波的粒性体现在用光子学说圆满的解释光电效应 上:
E2s
(3 − 0.85 × 2)2 = −13.6 ×
2
2
= −5.75eV
根据Koopmann定理,占据轨道的轨道能量近似等于此轨 定理, 根据 定理 道电离能的负值. Li原子的第一电离能为: 原子的第一电离能为: 原子的第一电离能为
I 1 = − E 2 s = 5 .75 eV
数学物理方程第一章、第二章习题全解
18
数学物理方程与特殊函数导教·导学·导考
2δρ ut ( x , 0 ) = k ( c - δ≤ x ≤ c + δ) 在这个小段外,初速度仍为零, 我们想得到的是 x = c 处受到冲 击的初速度 , 所 以 最后 还 要 令 δ→ 0。此 外 , 弦是 没 有 初 位 移的 , 即 u( x, 0) = 0 , 于是初始条件为
3. 有一均匀杆 , 只要杆中任一小段有纵向位移或速度 , 必导致 邻段的压缩或伸长, 这种伸缩传开去, 就有纵波沿着杆传播, 试推导 杆的纵振动方程。
解 如图 1 9 所示, 取杆
长方向为 x 轴正向, 垂直于杆长
方向的 各截 面 均 用 它 的 平 衡 位 置 x 标记 , 在时刻 t, 此截面相对
u( x, 0) = 0 0,
ut ( x , 0 ) = δkρ,
| x - c| >δ | x - c | ≤ δ (δ→ 0)
所以定解问题为
utt - a2 uxx = 0
u(0 , t) = u( l, t) = 0 u( x, 0) = 0 , ut ( x , 0 ) =
0, | x - c| > δ δkρ, | x - c | ≤ δ (δ→ 0 )
16
数学物理方程与特殊函数导教·导学·导考
第一章 课后习题全解
1 .4 习题全解
1. 长为 l 的均匀杆 , 侧面绝缘 , 一端温度为零 , 另一端有恒定热
流 q进入 ( 即单位时间内通过单位截面积流入的热量为 q) , 杆的初始
温度分布是 x( l 2
x) ,试写出相应的定解问题。
解 见图 1 8, 该问题是一维热传导方程, 初始条件题中已给
u x
控制工程基础习题课
按输出量的变化规律:
恒值控制系统(自动调节系统): 系统的输出为恒定值。如恒温箱、液面控制等 此类系统同时也是闭环系统 程序控制系统: 系统的输出按规定程序变化。如数控加工系统 此类系统同时也是闭环系统
随动系统:
系统的输出相应于输入按任意规律变化。如炮瞄雷达系统 此类系统可以是开环系统,也可以是闭环系统
脉冲信号
等速和等加速信号
自动控制系统方框图的绘制步骤
• 分析控制系统的工作原理,找出被控对象; • 分清系统的输入量、输出量; • 按照控制系统各环节的定义,找出相应的 各个环节; • 按信息流动方向将各个环节用原件方框和 连线连接起来。
试说明如题图 (a)所示液面自动控 制系统的工作原理。若将系统的结 构改为如题图 (b)所示,将对系统 工作有何影响?
线性化的定义:
将一些非线性方程在一定的工作范围内用近似的线性方程来 代替,使之成为线性定常微分方程
2.2 系统的传递函数
传递函数:复数域中描述系统特性的数学模型
2.2 系统的传递函数
传递函数:复数域中描述系统特性的数学模型
E.g. 3 机械系统传递函数的建立:求图式所示系统的传递函数
1 确定系统的输入和输出:输入为f,输出为y。
1.4 自动控制系统的研究方法
基本问题:建立数学模型 、系统性能分析、控制器设计
分析: 在给定系统的条件下,将物理系统抽象成数学模型, 然后用已经成熟的数学方法和先进的计算工具来定性或 定量地对系统进行动、静态的性能分析。 综合: 在已知被控对象和给定性能指标的前提下,寻求控 制规律,建立一个能使被控对象满足性能要求的系统。 典型控制信号: 正弦信号 阶跃信号
1.2 反馈控制系统及其组成
闭环控制系统的组成:给定环节、测量环节、比较环节、放大及运算环 节、执行环节 给定环节:
物理八年级上第一章 第二章知识点汇总及习题册(含答案)
第一章 机械运动知识点1.长度的测量1. 长度单位及换算常用的长度单位由大到小排列为km 、m 、dm 、cm 、mm 、µm 、nm .记忆它们之间的换算关系时,有以下方法:按单位的大小顺序记忆:先记住长度单位大小的排列顺序;再记住相邻单位之间的换算关系(如下图所示);需进行单位换算时,根据上图便可算出所需换算的两单位之间换算关系:如要知道km 与cm 之间的换算关系,则可由图得出:3113+1+151km=101010cm=10cm=10cm ⨯⨯;又如要知道nm 与dm 之间的换算关系,则可由图得出:3311331181nm=10101010dm=10dm=10dm ---------⨯⨯⨯.知识点2.正确选择、使用刻度尺、认识长度 测量长度的工具是刻度尺。
(1)使用刻度尺测量物体长度前,首先要弄清刻度尺的量程、分度值和零刻线的位置。
(2)选择刻度尺时应根据测量的要求来选择。
(例如:要测量一支钢笔的长度,精确到mm ,则可选用分度值是1mm 、量程是150mm 左右的刻度尺;而在体育课上要测量跳远的长度,则可选用分度值是1cm 的皮卷尺。
)(3)使用刻度尺测量物体长度时,刻度线要紧贴被测物体,被测长度的一端要与刻度尺的零刻线对齐(若零刻线已磨损,则选择刻度尺上另一完好的刻度线),读数时视线要与尺面垂直,且正对刻度线读数。
知识点3.测量结果的记录 测量结果是由数字和单位组成的。
其中数字部分由准确值加上一位估计值组成。
测量结果在书写的时候一定要估读到分度值的下一位。
知识点4.实验误差(1)误差与错误:首先误差不是错误。
错误,是指由于实验方法不正确或实验时违反操作造成的,错误是能够避免的。
误差,是指测量值与真实值之间的差异。
我们不能消除误差,只能尽量减小误差。
错误与误差的最大区别是,错误可以避免,误差不能消除。
(2)误差产生的原因3种:测量仪器不够精密、测量方法不够完善、测量的人为因素。
《人工智能》课后答案
《人工智能》课后答案第一章课后习题1、对N=5、k≤3时,求解传教士和野人问题的产生式系统各组成部分进行描述(给出综合数据库、规则集合的形式化描述,给出初始状态和目标条件的描述),并画出状态空间图。
2、对量水问题给出产生式系统描述,并画出状态空间图。
有两个无刻度标志的水壶,分别可装5升和2升的水。
设另有一水缸,可用来向水壶灌水或倒出水,两个水壶之间,水也可以相互倾灌。
已知5升壶为满壶,2升壶为空壶,问如何通过倒水或灌水操作,使能在2升的壶中量出一升的水来。
3、对梵塔问题给出产生式系统描述,并讨论N为任意时状态空间的规模。
相传古代某处一庙宇中,有三根立柱,柱子上可套放直径不等的N个圆盘,开始时所有圆盘都放在第一根柱子上,且小盘处在大盘之上,即从下向上直径是递减的。
和尚们的任务是把所有圆盘一次一个地搬到另一个柱子上去(不许暂搁地上等),且小盘只许在大盘之上。
问和尚们如何搬法最后能完成将所有的盘子都移到第三根柱子上(其余两根柱子,有一根可作过渡盘子使用)。
求N=2时,求解该问题的产生式系统描述,给出其状态空间图。
讨论N为任意时,状态空间的规模。
4、对猴子摘香蕉问题,给出产生式系统描述。
一个房间里,天花板上挂有一串香蕉,有一只猴子可在房间里任意活动(到处走动,推移箱子,攀登箱子等)。
设房间里还有一只可被猴子移动的箱子,且猴子登上箱子时才能摘到香蕉,问猴子在某一状态下(设猴子位置为a,箱子位置为b,香蕉位置为c),如何行动可摘取到香蕉。
5、对三枚钱币问题给出产生式系统描述及状态空间图。
设有三枚钱币,其排列处在"正、正、反"状态,现允许每次可翻动其中任意一个钱币,问只许操作三次的情况下,如何翻动钱币使其变成"正、正、正"或"反、反、反"状态。
6、说明怎样才能用一个产生式系统把十进制数转换为二进制数,并通过转换141.125这个数为二进制数,阐明其运行过程。
高分子化学习题课
1
由公式 Pc =[r+r(f-2)]12
PC 2
3 X
在这一条件下,如果只形成支化的聚合物而 不发生交联的话,则必须满足Pc≥1,解方程 得X≤3/4。即这时所得产物是端基为羟基的 非交联聚合物。
.
② 当X≥3/2,这时是羧基过量,则r=3/(2X)
( r≤1 )同理得
PC
X 3
在这一条件下,如果只形成支化的聚合物而 不发生交联的话,则必须满足Pc≥1,解方程 得X≥3。即在时所得产物是端基为羧基的非 交联聚合物。 ③ ¾<X<3时,得到的产物是交联的体形 大分子。
尼龙610 第一个数字表示二元胺的碳原子数; 第二个数字表示二元酸的分子数 聚癸二酰己二胺 聚(亚氨已二酰亚氨十亚甲基)
.
4、环状化合物的命名
H 2C
环
O
醚
H 2C
类
环氧乙烷
H2 C
O
O
H 2C
CH2
O
ห้องสมุดไป่ตู้
三聚甲醛
H H2C C
O
CH3
.
环氧丙烷
H2 C
H2C
CH2 O
H2C O
C H2
CH2Cl CH2Cl
证明: 设:Mi为i聚体的相对分子质量,则:
.
(M iM n)2Ni 0 M i2NiM2 n Ni2M n NiM n0
Mw •Mn
Ni 1
NiMi Mn
M w•M nM n•M n0
所以只有是单分散性高分子,质均分子量与数均分
子量才相等,其它埸合质均分子量均大于数均分子
量。
.
3、聚酰胺的命名方法: 例:以己二胺与癸二酸缩聚形成的聚合物:
有机化学习题课(1-3章)
➢若环上连有支链时,支链作为取代基,其所在位次即 是环上碳原子的位次号,最后将取代基的位次和名称放 在“螺”之前。
16
桥环烷烃的命名:
和螺环烷烃的相似。
不同之处:
✓环上的编号是从一个桥头碳原子开始,沿最 长的桥到另一个桥头碳原子,再沿次长的桥编 回到开始的桥头碳原子,最短桥上的碳原子最 后编号。 ✓各桥的碳原子数由大到小分别用数字表示。
其中,CH3OCH3的C-O-C键角不是180°。
5
九、化合物按碳架和官能团分类(P23)
(1)脂肪族 卤代烷 (2)脂肪族 羧酸
(3)杂环族,四氢吡咯 (4)脂环族,酮
(5)芳香族,醚
(6)芳香族,醛
(7)脂肪族,胺
(8)脂肪族,炔
(9)脂环族,醇
例如: 呋喃
呋喃甲醛 (糠醛)
吡啶
(参见第十七章)
24
1、烯炔的命名——特别注意两点
① 所有烯炔的名称中主链的碳数必须放在烯前。 ② 若双键和三键处于相同的位次供选择时,优先给 双键最低编号。 例如:
1-戊烯-4-炔
25
习题 3.1 命名下列化合物(P73)
(1)
(2)
2,5-二甲基-3-己烯
2,6-二甲基-4-辛烯
(3)
3-己炔 (二乙基乙炔)
(1)E>A>B>C>D
(2)F>G>E>H>D>C>B>A
(3)D>B>C>A 14
第二章 脂环烃
命名规则不清
15
螺环烷烃命名:
➢两个碳环共有的碳原子称为螺原子,以螺作为词头, 按成环的碳原子总数称为“某烷”。
电化学原理习题课-资料
(+) Ag eAg
02.3F RT lo1g0 (.4)0 02.3F RT lo1g0 (.7)2
E 2 .3 R[T l1 o 0 .4 g) 0 (lo 0 .1 g 0 .7 () 2 0 .0V 44 F
设计电池时要写对电池组。
0(P|S t 2 n , S4 n)0.15 V4
E 0 0 ( P |F 3 , t F 2 e ) 0 e ( P |S 2 , t S n 4 ) n 0 . 7 0 . 1 7 0 . 5 6 1 V 4 1
所以,E E 0 2 .3 RlT o c S2 g n c F 23 e 0 .6 1 0 .0 75 lo 0 9 .0 g 1 0 (0 .0 1 )21 0 .6V 5
2 F cc 2 S4 n F 2 e
2 0 .0 ( 1 0 .0)2 01
问题:
2.3RT
① 200C时, F 0.0581 250C 时,2.3RT 0.0591
同时第6章习题F4也有类似情况。
②能斯特方程“+”“-”号, 平衡电位——氧化态、还原态 电动势——反应物、生成物
③活度计算公式
所以电极表面带正电。 ①当电极在零电荷电位时电极表面无双电层结构,界面层
中正负离子浓度相等,电位为0,如下图所示。
0
C+=C—
a 0
X
X
②电极在平衡电位时,其双电层结构示意图和双电层内离 子浓度分布与电位分布图如下图。
a
a 1
注意:①画图紧密层厚度为d; ②外电位写法为ψ1 ,而不是φ1。
子平均活度系数 0.544
近世代数基础习题课答案到 题
第一章 第二章第一章1. 如果在群G 中任意元素,a b 都满足222()ab a b =, 则G 是交换群. 证明: 对任意,a b G ∈有abab aabb =. 由消去律有ab ba =. □2. 如果在群G 中任意元素a 都满足2a e =,则G 是交换群.证明: 对任意,a b G ∈有222()ab e a b ==. 由上题即得. □3. 设G 是一个非空有限集合, 它上面的一个乘法满足:(1) ()()a bc ab c =, 任意,,a b c G ∈.(2) 若ab ac =则b c =.(3) 若ac bc =则a b =.求证: G 关于这个乘法是一个群.证明: 任取a G ∈, 考虑2{,,,}a a G ⋯⊆. 由于||G <∞必然存在最小的i +∈ 使得i a a =. 如果对任意a G ∈, 上述i 都是1,即, 对任意x G ∈都有2x x =, 我们断言G 只有一个元,从而是幺群. 事实上, 对任意,a b G ∈, 此时有:()()()ab ab a ba b ab ==, 由消去律, 2bab b b ==; 2ab b b ==,再由消去律, 得到a b =, 从而证明了此时G 只有一个元,从而是幺群.所以我们设G 中至少有一个元素a 满足: 对于满足i a a =的最小正整数i 有1i >. 定义e G ∈为1i e a -=, 往证e为一个单位元. 事实上, 对任意b G ∈, 由||G <∞, 存在最小的k +∈ 使得k ba ba =. 由消去律和i 的定义知k i =:i ba ba =, 即be b =.最后, 对任意x G ∈, 前面已经证明了有最小的正整数k使得k x x =. 如果1k =, 则2x x xe ==, 由消去律有x e =从而22x e e ==, 此时x 有逆, 即它自身.如果1k >, 则11k k k x x xe xx x x --====, 此时x 也有逆:1k x -. □注: 也可以用下面的第4题来证明.4. 设G 是一个非空集合, G 上有满足结合律的乘法. 如果该乘法还满足: 对任意,a b G ∈, 方程ax b =和ya b =在G 上有解, 证明: G 关于该乘法是一个群.证明: 取定a G ∈. 记ax a =的在G 中的一个解为e . 往证e 是G的单位元. 对任意b G ∈, 取ya b =的一个解c G ∈: ca b =.于是: ()()be ca e c ae ca b ====. 得证.对任意g G ∈, 由gx e =即得g 的逆. □5. 找两个元素3,x y S ∈使得222()xy x y =/.解: 取(12)x =, (13)y =. □6. 对于整数2n >, 作出一个阶为2n 的非交换群.解: 二面体群n D . □7. 设G 是一个群. 如果,a b G ∈满足1r a ba b -=, 其中r 是正整数, 证明: ii i r a ba b -=, i 是非负整数.证明: 对i 作数学归纳. □8. 证明: 群G 是一个交换群当且仅当映射1x x - 是群同构.证明: 直接验证. □9. 设S 是群G 的一个非空集合. 在G 上定义关系 为: ~a b 当且仅当1ab S -∈. 证明: 这个关系是一个等价关系当且仅当S G ≤. 证明: 直接验证. □10. 设n 是正整数. 证明: n 是 的子群且与 同构.证明: 直接验证. □11. 证明: 4S 的子集{(1),(12)(34),(13)(24),(14)(23)}B =是一个子群, 而且B 与4U 不同构. (n U 是全体n 次单位根关于复数的乘法组成的群).证明: 用定义验证B 是4S 的子群. 由于4U 中有4阶元而B 中的元的阶只能是1或2, 所以它们不可能同构. □12.证明: 2n 阶群的n 阶子群必然是正规子群.证明: 用正规子群的定义验证. □13. 设群G 的阶为偶数. 证明: G 中必有2阶元.证明: 否则, G 中的任意非单位元和它的逆成对出现, 从而, G的阶为奇数, 矛盾. □14. 设0110A ⎛⎫= ⎪⎝⎭, 2i 2i 0e e 0n n B ππ-⎛⎫ ⎪= ⎪ ⎪⎝⎭. 证明: 集合 22:{,,,,,,,}n n G B B B AB AB AB =⋯⋯关于矩阵的乘法是一个群, 而且这个群与二面体群n D 同构.证明: n D 有如下的表现: 21,|1,n n D T S T S TS ST -=〈===〉. 作2:GL ()n D ϕ→ : S A , T B . 直接验证ϕ是群单同态,而且im G ϕ=. □15. 设群G 满足: 存在正整数i 使得对任意,a b G ∈都有()k k k ab a b =, 其中,1,2k i i i =++. 证明: G 是一个交换群.证明: 由()i i i ab a b =和111()i i i ab a b +++=得:111()()()()()i i i i i i ab a b ab ab ab a b +++===, 从而, 1i i i i ba b a b +=, 即:i i ba a b =.同理可得: 11i i ba a b ++=. 于是:11()()i i i i a ba ba a b a ab ++===, 即: ab ba =. □16. 在群2()SL 中, 证明元素0110a -⎛⎫= ⎪⎝⎭的阶为4, 元素1101b --⎛⎫= ⎪-⎝⎭的 阶为3, 而ab 的阶为∞.证明: 直接验证. □17. 如果群G 为一个交换群, 证明G 的全体有限阶元素组成一个子群.证明: 设{|()}H g G o g =∈<∞. 显然e H ∈, 从而H 不是空集. 对任意,a b H ∈, 设()o a m =, ()o b n =, 则1()o b n -=;11()()mn m n ab a b e --==, 即: 1ab H -∈. □18. 如果群G 只有有限多个子群, 证明G 是有限群.证明: 首先证明: 对任意a G ∈有()o a <∞. 事实上, 设k a 〈〉为G 的由k a 生成的子群, 其中, 1k ≥是整数. 则242m a a a a 〈〉⊇〈〉⊇〈〉⊇⊇〈〉⊇ . 由于G 只有有限多 个子群, 所以必然存在m 使得2(1)22(2)m m m a a a ++〈〉=〈〉=〈〉= ,即 22(1)m t m a a +=.由消去律即得()o a <∞.于是G 的任意元素都包含在某个有限子群里, 而G 只有有限多个子群, 所以||G <∞. □19. 写出群n D 的全部正规子群.解: 已知: 212121{,,,,1,,,,,,|1},n n n n n D T T T T S ST ST ST S T S T TS ST ---=⋯=⋯〈====〉设H 是n D 的子群. 如果1H =则H 当然是n D 的正规子群.I (1) 设k H T =〈〉. 由于1k k k k ST S ST S SST T H ---===∈和k k TT T T H =∈. 所以k T 〈〉是n D 的正规子群.(2) 设{1,}H S S =〈〉=. 由于SSS S =和12TST ST --=, 所以{1,}H S S =〈〉=是n D 的正规子群当且仅当2n =.(3) 设k H ST =〈〉. 注意到()()1k k ST ST =, 所以{1,}k k H ST ST =〈〉=. 由于1k k TST T ST -=和()k k S ST S ST -=,所以{1,}k k H ST ST =〈〉=是n D 的正规子群当且仅当|2n k .II (1) 设,k k H T T '=〈〉. 则(,')k k H T =〈〉. 归结为I (1)的情形, 从而是n D 的正规子群. 一般地,1212(,,,),,,t t k k k k k k H T T T T ⋯=〈⋯〉=〈〉也是n D 的正规子群.(2) 设,k H S T =〈〉. 由于1k k TT T T -=, 12TST ST --=, k k ST S T -=, 所以,k H S T =〈〉是n D 的正规子群当且仅当存在m ∈ 使得|(2)n mk +. (注: 当1k =时,k n H S T D =〈〉=). 一般地, 设1,,,t k k H S T T =〈⋯〉. 则12(,,,),t k k k H S T ⋯=〈〉, 归结为刚讨论的情形.(3) 设,k k H ST ST '=〈〉. 或者, 更一般地,1212(,,,),,,t t k k k k k k H ST ST ST ST ⋯=〈⋯〉=〈〉. 归结为I (3)的情形,即: 1212(,,,),,,t tk k k k k k H ST ST ST ST ⋯=〈⋯〉=〈〉是n D 的正规子群 当且仅当12|2(,,,)t n k k k ⋯.□20. 设,H K 是群G 的子群. 证明: HK 为G 的子群当且仅当HK KH =. 证明: HK 为G 的子群当且仅当111()HK HK K H KH ---===. □21. 设,H K 是群G 的有限子群. 证明: ||||||||H K HK H K =⋂. 证明: 首先, HK 是形如Hk 的不交并; 其中k K ∈. 又, 12Hk Hk =当且仅当112k k K H -∈⋂. 所以, 这样的右陪集共有||||K H K ⋂ 个. 于是: ||||||||K HK H K H =⋂. □ 22. 设,M N 是群G 的正规子群, 证明:(1) MN NM =.(2) MN 是G 的正规子群.(3) 如果{}M N e ⋂=, 那么/MN N 与M 同构.证明: (1) 由1MNM N -⊆得MN NM ⊆. 同理, NM MN ⊆.(2) 由(1)和第20题, MN 确实是子群. 对任意g G ∈有111()()()g MN g gMg gNg MN ---=⊆. 所以MN 是G 的正规子群.(3) 如果mn m n ''=则11(){}m m n n M N e --''=∈⋂=, 从而,m m n n ''==. 即: MN 中的元素可以唯一地写为,,mn m M n N ∈∈的形式. 于是可以定义映射: :MN M σ→为mn m . 由于,M N 都是正规子群, 对任 意,m M n N ∈∈有111()(){}mn nm mnm n M N e ---=∈⋂=, 所 以mn nm =: 即此时, M 中的元素与N 中的元素可交 换. 由此可以验证σ是群同态. 显然σ是满的, 而且 ker N σ=. □23. 设G 是一个群, S 是G 的一个非空子集. 令(){|,}C S x G xa ax a S =∈=∀∈; 1(){|}N S x G x Sx S -=∈=. 证明: (1) (),()C S N S 都是G 的子群.(2) ()C S 是()N S 的正规子群.证明: 直接用定义验证. 以(2)为例. 对任意(),(),c C S n N S s S ∈∈∈,111111()()()()ncn s ncn nc n sn c n ------=. 设1n sn s S -'=∈, 即: 1s ns n -'=. 所以,1111111()()()()ncn s ncn nc n sn c n ns n s -------'===. 此即表明: 1()ncn C S -∈. □24. 证明: 任意2阶群都与乘法群{1,1}-同构. 证明: 设{,}G e a =. 作:{1,1}G σ→-为1e , 1a - . □25. 试定出所有的互不同构的4阶群.解: 设群G 的阶为4. 如果G 有4阶元, 则4G . 如果G 没有4阶元, 则G 的非单位元的阶都为2. 设{,,,}G e a b c =. 考虑第11题中的4S 的子群(Klein 四元群):{(1),(12),(34),(12)(34)}K =. 作映射: :G K σ→为:(1),(12),(34),(12)(34)e b a c . 则σ为群同构. 综上, 在同构意义下, 4阶群只能是4 或Klein 四元群. □26. 设p 是素数. 证明任意两个p 阶群都同构.证明: 只需证明任意p 阶群G 都同构于p . 由Lagrange 定理, G的任意非单位元a 的阶都为p , 从而21{,,,,}p G e a a a -=⋯, 从 而有良定的映射:p G σ→ 为: 1a . 此即为一个群同构.□27. 在集合S =⨯ 上定义(,)(,):(,);(,)(,):(,)a b c d a c b d a b c d ac bd ad bc +=++=++. 证明: S 在这两个运算下是一个有单位元的环. 证明: 直接验证. 零元素为(0,0), 单位元为(1,0). □28. 在 上重新定义加法⊕和 为: :,:a b ab a b a b ⊕==+ . 问 关于这两个运算是否是一个环.解: 不是. 关于⊕不是一个abel 群. □29. 设L 是一个有单位元的交换环. 在L 中定义: :1a b a b ⊕=+-,:a b a b ab =+- . 证明: 在这两个新的运算下, L 仍然是一个环, 且与原来的环同构.证明: 直接验证满足环的定义中的条件. 作:(,,)(,,)L L σ+→⊕ 为:1a a - . 验证σ是环同构. □30. 给出满足如下条件的环L 和子环S 的例子:(1) L 有单位元, 而S 没有单位元.(2) L 没有单位元, 而S 有单位元.(3) ,L S 都有单位元, 但不相同.(4) L 不交换, 但S 可交换.解: (1) ;2L S == .(2) 0|,20a L a b b ⎧⎫⎛⎫=∈∈⎨⎬⎪⎝⎭⎩⎭ , 0|00a S a ⎧⎫⎛⎫=∈⎨⎬ ⎪⎝⎭⎩⎭ . (3) 0|,0a L a b b ⎧⎫⎛⎫=∈∈⎨⎬ ⎪⎝⎭⎩⎭, 0|00a S a ⎧⎫⎛⎫=∈⎨⎬ ⎪⎝⎭⎩⎭ . (4) |,,,a L a b b c d c d ⎧⎫⎛⎫=∈⎨⎬⎪⎝⎭⎩⎭ , 0|0a S a a ⎧⎫⎛⎫=∈⎨⎬ ⎪⎝⎭⎩⎭ . 31. 环R 中的一个元L e 为一个左单位元, 如果对任意r R ∈有L e r r =.类似地可定义右单位元. 证明:(1) 如果环R 既有左单位元, 又有右单位元, 则R 有单位元.(2) 如果环R 有左单位元, 没有零因子, 则R 有单位元.(3) 如果环R 有左单位元但没有右单位元, 则R 至少有两个左单位元.证明: (1) 设,L R e e 分别为R 的左, 右单位元. 则L L R R e e e e ==为R的单位元.(2) 设L e 为R 的一个左单位元. 对任意0x R =∈/, 由22()0L xe x x x x -=-=得: L xe x =, 即L e 为R 的一个右单 位元. 由(1)即得.(3) 设L e 为R 的一个左单位元, 由于R 没有右单位元, 所以存在0z R =∈/使得L ze z =/. 令: :L L L f e z ze =+-. 则 L L f e =/且, 对任意r R ∈有0L L L f r e r zr ze r r r =+-=+=, 即: L f 为R 的另一个单位元. □32. 设F 为一个域. 证明: F 没有非平凡的双边理想.证明: 设0I F =⊆/为F 的一个理想. 取0x I =∈/, 有11x x F -=∈, 从而I F =. □33. 设R 是一个交换环, a R ∈.(1) 证明{|}Ra ra r R =∈是R 的一个理想.(2) 举例说明, 如果R 不是交换环, 那么Ra 不一定是一个(双边)理想.证明: (1) 直接验证.(2) 设|,,,a b R a b c d c d ⎧⎫⎛⎫=∈⎨⎬⎪⎝⎭⎩⎭ , 1010a ⎛⎫= ⎪⎝⎭. 则 0|,0r s Ra r s ⎧⎫⎛⎫=∈⎨⎬ ⎪⎝⎭⎩⎭. 显然, Ra 不是一个理想, 比如: 01010101a Ra ⎛⎫⎛⎫=∉ ⎪ ⎪⎝⎭⎝⎭. □34. 设I 为交换环R 的一个理想, 令: rad {|,}n I r I r I n +=∈∈∈ . 证明:rad I 为R 的理想, 称为I 的根.证明: 对任意,rad a b I ∈. 则存在正整数,m n 使得,m n a b I ∈. 由于 ()m n a b I +-∈, 从而rad a b I -∈.对任意rad a I ∈和r R ∈, 存在正整数m 使得m a I ∈. 从而()m m m ra r a I =∈, 即: rad ra I ∈. □35. 设F 为一个有单位元的交换环. 证明: 如果F 没有非平凡理想,则F 是一个域.证明: 对任意0a F =∈/, 由第33题(1)知, Fa 是F 的一个非零理想.由于F 没有非平凡理想, 所以Fa F =. 特别1Fa ∈, 即: 存在 b F ∈使得1ba =. □36. 设 是有理数域, ()n 是全体n 阶 上的矩阵组成的环. 证明:()n 没有非平凡的理想(没有非平凡理想的环称为单环). 证明: 设0I =/为()n 的一个理想. 取0A I =∈/. 则A 至少有一个 非零元素, 设为ij a . 由于I 是一个理想, 所以1ij ij ij ij E AE E I a ⎛⎫=∈ ⎪ ⎪⎝⎭, 其中ij E 表示(,)i j -元为1而其余元为0的基本矩阵. 由基本矩阵的乘法性质, ij jk ik E E E I =∈, 从而ki ik kk E E E I =∈, 1,2,,k n =⋯. 于是单位阵1nn kk k E E I ==∈∑, 从而()n I = . □37. 设R 是一个环, 0a R =∈/. 证明: 如果存在0b R ≠∈使得0aba =, 那么a 是一个左零因子或右零因子.证明: 由于0aba =, 所以, 如果0ba =/则a 是一个左零因子; 如果0ba =, 则a 是一个右零因子. □38. 环的一个元素a 成为幂零的, 如果存在正整数n 使得0n a =. 证明:对于有单位元环R 的任意幂零元a , 1a -是可逆的.证明: 21(1)(1)11n n a a a a a --+++⋯+=-=. □39. 证明: 在交换环中, 全部幂零元素组成一个理想.证明: 用定义直接验证: 在交换环中, 幂零元的差、积仍然幂零.□40. 设R 是有单位元的有限环. 如果,x y R ∈满足1xy =, 证明: 1yx =.证明: 作映射: ::f R R z yz → . 则f 是单射: 事实上, 如果 12yz yz =, 则12xyz xyz =, 即12z z =. 由于R 是有限集, 所以f是满射, 从而存在0z R ∈使得001()f z yz ==. 只需证明:0z x =. 事实上, 00001()()1z z xy z x yz x x ===== . □41. 设R 是一个有单位元的环. 证明: 如果存在,a b R ∈满足1ab =但1ba =/, 那么有无穷多x R ∈使得1ax =.证明: 注意到111()1n n n n a b ba a ab aba a ab ++++-=+-==, n ∈ . 所以只需证明1n n ba a +- (n ∈ )互不相同. 注意到1m m a b aa abb b =⋯⋯=, 对任意m ∈ 都成立.如果11n n k k ba a ba a ++-=-, (n k >). 则11111()0n n k k k k k ba a b ba b a b b b +++++-=-=-=, 即0n k n k ba a b ---=. 如果1n k -=则1ba ab ==, 矛盾.所以1n k ->. 从而10n k n k ba a ----=;11)(10n k n k n k ba a b b a ------=-=, 也得到矛盾. □42. 设R 是满足如下条件的环: R 至少有两个元素而且对任意0a R =∈/都存在唯一的元素b R ∈使得aba a =. 证明:(1) R 没有零因子.(2) bab b =.(3) R 有单位元.(4) R 是一个体.证明: (1) 设0a R =∈/使得0ax =. 由已知, 对于a 有唯一的b R ∈使得aba a =. 于是()a b x a aba +=. 由唯一性, b x b +=, 即: 0x =; 从而a 不是左零因子. 即: R 中的任意非零元都不 是左零因子; 从而R 也没有右零因子.(2) 由于()()a bab a ab aba aba ==, 再由唯一性即得bab b =.(3) 任取0a R =∈/, 取那个唯一的b R ∈使得aba a =. 往证ab就是一个单位元. 对任意0x R =∈/, 取那个唯一的y R ∈ 使得xyx x =. 由(2)有:()0b ab xy x babx bxyx bx bx -=-=-=.由(1), 0ab xy -=. 从而abx xyx x ==, 此即证明了ab 是左 单位元. 保持记号. 类似地有:()0a ba xy x abax axyx ax ax -=-=-=, 从而ba xy =, 于是xab xyx x ==, 此即证明了ab 是右单位元.(4) 由(3)可知, R 的每个非零元都有逆. □43. 设[0,1]C 是[0,1]上的连续函数组成的环. 证明:(1) 对于[0,1]C 的任意非平凡理想I , 都存在一个[0,1]θ∈使得对任意()f x I ∈都有()0f θ=.(2) ()[0,1]f x C ∈是一个零因子当且仅当零点集{[0,1]|()0}x f x ∈= 包含一个开区间.证明: (1) 若不然, 对任意[0,1]θ∈都存在()[0,1]g x C θ∈使得()0g θ=/. 由连续性, 存在一个包含θ的开区间[0,1]J θ⊆使得()g x θ在 J θ上恒为正或恒为负(0J 实际上是左闭右开的; 1J 实际上是左开右闭的). 另一方面, 由开覆盖定理, 存在有限多个i J θ, 使得[0,1]i i J θ=⋃. 定义2():(())ii g x g x θ=∑. 则 ()g x I ∈, 而且()0g x >. 于是11()()g x I g x =∈ , 与I 是非平凡理 想矛盾.(2) “⇒”: 设()f x 是[0,1]C 中的一个零因子: 存在0()[0,1]g x C =∈/使得()()0,[0,1]g x f x x ≡∈. 由于()0g x =/, 所以 存在[0,1]上的开区间J 使得()g x 在J 上恒为正或恒为负; 从而, ()f x 在J 上恒为0.“⇐”: 设存在[0,1]上的开区间J 使得()f x 在J 上恒为0. 作连 续函数()g x 使得: ()g x 在J 上恒不为0, 而在J 上恒为0, 从 而()()0f x g x ≡: 即()f x 是[0,1]C 中的一个零因子. □44. 设p = 为素域. (1) 求环()n 的元素个数.(2) 求群()n GL 的元素个数.(1) 解: 由于2dim ()n n = , 所以()n 的元素个数为2n p .(2) 解: 取定向量空间n 的一个基, 则()n GL 中的元与n 上 的可逆线性变换一一对应, 而可逆线性变换把基映为基. 所以, 只需求n 的基的个数. 注意到n 的元素个数为n p . 任取n 的一 个非零向量1α, 这样的取法有1n p -种. 取2n α∈ 使得12,αα线性 无关. 这样的2α能且只能从1n α-〈〉 中选取. 所以2α的选取方法有n p p -种. 类似地, 取3n α∈ 使得312,,ααα线性无关. 这样的3α 能且只能从12,n αα-〈〉 中选取. 所以3α的选取方法有2n p p -种(因为12,αα〈〉的维数是2). 继续这个过程, 我们得到n 的基的个 数为21()()()n n n n p p p p p p ---⋯-, 此即为所求. □45. 设K 是一个体, 0,a b K =∈/且1ab =/. 证明如下的华罗庚恒等式:1111(())a a b a aba -----+-=.证明: 由提示, 先证明引理: 对任意0,1x K =∈/,1111(1)(1(1))1(1)(((1)))x x x x x x -----+-=-+--11(1)(1)11x x x x x x -=-+--=-+=,所以, 111(1)(1)1x x ----=--成立. 注意到: 原恒等式等价于1111(1)(())a ba a b a -----=+-, 等价于11111(1)()ba a a b a ------=+-. 由引理,111111*********(1)((1)1)(1)((1))ba a a b a a a b a a a a b ----------------=-+=+-=+-111()a b a ---=+- 即为所要的等式. □第二章1. 设G 为有限群, N G , (||,|/|)1N G N =. 证明: 如果元素a G ∈的阶整除||N , 那么a N ∈.证明: 考虑自然满态: :/G G N π→. 记()a a π=. 由于()/o a a e G N =∈, 所以()|()o a o a . 如果()1o a =/, 则((),|/|)1o a G N =/, 矛盾. □2. 设c 为群G 的阶为rs 的元素, 其中(,)1r s =. 证明: c 可以表示成c ab =, 其中()o a r =, ()o b s =, 且,a b 都是c 的幂.证明: 由(,)1r s =知, 存在整数,u v 使得1ur vs +=. 于是1ur vs c c c c ==.令vs a c =和ur b c =. 则()()((),)(,)o c rs rs o a r o c vs rs vs s ====. 同理, ()o b s =. □3. 证明: 如果群G 中的元素a 的阶与正整数k 互素, 那么方程k x a =在 a 〈〉内恰有一解.证明: 设()o a n =. 于是存在整数,r s 使得1rn ks +=. (法一) 作映射::k f a a x x 〈〉→〈〉 . 只需证明f 是双射. 由于||a n 〈〉=<∞, 所以只需证明f 是单射. 若k k x y =, ,x y a ∈〈〉, 则1()1k xy -=. 从而1111()()rn ks s xy xy xy e e ----====, 即x y =.(法二) 首先1()s k rn a a a -==, 即方程k x a =在a 〈〉中有解. 若t a a ∈〈〉也是k x a =的一个解, 那么()t s k a e -=, 从而 1()()t s ks t s rn t s a e a a ----===, 即t s a a =. □4. 设G 是一个群. 证明: 对任意,a b G ∈有()()o ab o ba =. 证明: 注意到, 对任意正整数m , 1()()m m ab a ba b -=, 所以1()()m m ab a ba b e -==当且仅当1111()()m ba a b ba ----==当且仅当 ()m ba e =. □5. 设2n >. 证明: 有限群G 中阶为n 的元素个数是偶数. 证明: 注意到, 对任意g G ∈有1()()o g o g -=, 而且, ()2o g >当且仅当1g g -=/. □6. 证明: 当2n >时有(){}n Z S e =. 即: n S 是交换群当且仅当2n ≤. 证明: 注意到, 对任意n S σ∈和轮换12()r i i i ⋯有11212()(()()())r r i i i i i i σσσσσ-⋯=⋯. 设()n e z Z S =∈/, 则对任意 n S σ∈应该有1z z σσ-=. 不妨设z 分解为互不相交的轮换的乘积(必要的话, 可通过重新编号): (12)(...)...(...)z =⋯. 取 (23)σ=. 则()(1)3z σσ=但(1)2z =, 矛盾. □7. 证明: 有理数加群 的任意有限生成的子群是一个循环群. 证明: 设1212,,,n n n H m m m =〈⋯〉, 其中(,)1i i n m =, 1i ≤≤ . 令 12[,,,]t m m m =⋯ . 则1H t=〈〉. □ 8. 设G 是有限生成的交换群. 证明: 如果G 的这些生成元都是有限 阶的, 那么G 是一个有限群.证明: 设1,,n G a a =〈⋯〉且()i i o a m =. 则G 的任意元素具有形式:1212nt t t n a a a ⋯, 其中1i i t m ≤≤, 从而G 只有有限个元素. □ 9. 对任意群G 和正整数k , 令{|}k k G a a G =∈. 证明: 群G 是循环 群的成分必要条件是G 的任意非单位子群都是形如k G 的集合. 证明: 必要性. 设G g =〈〉. 则G 的任意非单位子群H 具有形式k H g =〈〉, 其中k 是某个正整数. 于是H 中的任意元素具有形 式()()k m m k g g =, 即k H G ⊆. 反之, k G 的任意元素具有形式 ()()m k k m g g =, 于是k H G =.充分性. 考虑12k k G G ≥-⋃.(i) 如果12k k G G ≥-⋃不是空集, 取12k k g G G ≥∈-⋃. 则G g =〈〉是无限循环群. 事实上, g e =/, 从而G 的子群g 〈〉形如k G . 如果2k ≥, 则k k g x G =∈, 与g 的选取矛盾. 所以1g G G 〈〉==. 另外, 如果此时G g =〈〉是有限群, 则2k k G G ≥=⋃, 也得到矛盾.(ii) 现在假设12k k G G ≥-⋃是空集. 则对任意e x G =∈/, 存在正整 数k 使得子群k x G 〈〉=. 若1k =则G x =〈〉是循环群. 特别,存在整数s 使得k s x x =, 此即表明, G 的任意元素都是有限阶的. (To be continued).。
课程习题
课 程 习 题第一章 绪论1.测量工作在国民经济和国防建设中起那些作用?在土木工程专业中有什么作用? 2.何谓大地水准面?它有什么特点?在测量中起什么作用? 3.什么是测量工作的基准面和基准线?4.测量上常用的坐标系有几种?各有什么特点?5.测量上的平面直角坐标和数学中的笛卡儿坐标有什么区别?为什么这样规定? 6.测量工作应遵循的原则是什么?7.小论文:浅谈土木工程测量的重要性。
第二章 水准测量1.水准测量测站检核的作用是什么?有哪几种方法?2.水准测量时,采用前、后视距相等,可以消除那些误差? 3.水准测量时,在什么立尺点上放尺垫?什么点上不能放尺垫?4.根据下图分别为附和水准路线和闭合水准路线的观测成果,请分别列表计算各待求点高程(按图根水准测量精度计算)。
BM.945678站+3.708-1.94710站-2.9805站-1.19511站+2.4566站BM.9BM.10H 9=39.845m450m h 1=+2.714h 2=-1.438621mh 3=-3.678462mh 4=+3.031639mH 10=40.467m1235.水准仪应满足那些几何条件?主要条件是什么?为什么?6.设地面有A、B两点相距60m,仪器在A、B间距A点3m处测得高差h AB=+0.468m,现将仪器搬到距B点3m处,测得A尺读数为1.694m,B尺读数为1.266m。
问:(1).A、B两点正确高差为多少?(2).视准轴与水准轴的夹角i为多少?(3).如何将视线调水平?(4).如何使仪器满足水准管轴平行视准轴?第三章角度测量1.何谓水平角?在同一竖直面内瞄准不同高度的点在水平度盘上的读数是否一样?为什么?2.何谓竖直角?在同一竖直面内瞄准不同高度的点在竖直度盘上的读数是否一样?为什么? 3.整理水平角观测记录和竖直角观测记录。
水平角观测记录(测回法)竖直角观测记录4.测量水平角为什么要用盘左和盘右两个位置观测?消除什么误差?为什么?5.经纬仪有哪几个几何轴?其意义如何?它们之间的正确关系是什么?6.检验时,发现水准管轴不垂直于竖轴,但校正螺丝已失效,能否将仪器整平?7.检验时,为什么水准器在某一方向整平后,照准部绕竖轴旋转180°,气泡偏离中央的格数,就是水准管轴不垂直于竖轴的偏角α的两倍角值?如何校正?8.检验视准轴垂直于横轴时,为什么目标要与仪器大致同高?而在检验横轴垂直于竖轴时,为什么目标要选得高一些?9.精确延长直线时为什么要用“正倒镜分中法”?10.设已测得从经纬仪到铁塔中心的水平距离为42.45m,对塔顶的仰角为+22°51′,对塔底中心的俯角为-1°49′,试计算铁塔的高度H。
自动控制理论第三版课后练习题含答案
自动控制理论第三版课后练习题含答案前言自动控制理论是现代自动控制技术的基础课程,课后练习题是巩固理论知识和巩固实践技能最重要的方法之一。
本文档整理了自动控制理论第三版的课后习题,提供了详细的解题思路和答案,希望能够帮助读者更好地掌握自动控制理论。
1. 第一章课后习题1.1 第一章习题1题目已知一个系统的开环传递函数为$G(s)=\\frac{1}{s(s+1)(s+2)}$,求该系统的稳定性。
解答该系统的零点为0。
该系统的极点为−1和−2。
因为系统的极点都在左半平面,没有极点在右半平面,所以该系统稳定。
1.2 第一章习题2题目已知一个系统的传递函数为$G(s)=\\frac{1}{(s+2)(s+3)}$,求该系统的单位阶跃响应。
解答该系统的传递函数可以表示为$G(s)=\\frac{A}{s+2}+\\frac{B}{s+3}$的形式,解得$A=\\frac{1}{s+3}$,$B=-\\frac{1}{s+2}$。
所以,该系统的单位阶跃响应为y(t)=1−e−2t−e−3t1.3 第一章习题3题目已知一个系统的传递函数为$G(s)=\\frac{1}{s^2+5s+6}$,求该系统的单位阶跃响应。
解答该系统的传递函数可以写成$G(s)=\\frac{1}{(s+2)(s+3)}$的形式。
所以,该系统的单位阶跃响应为$$ y(t)=1-\\frac{1}{2}e^{-2t}-\\frac{1}{3}e^{-3t} $$2. 第二章课后习题2.1 第二章习题1题目已知一个系统的传递函数为$G(s)=\\frac{1}{s^2+4s+3}$,求该系统的稳定性。
解答该系统的极点为−1和−3。
因为系统的极点都在左半平面,没有极点在右半平面,所以该系统稳定。
2.2 第二章习题2题目已知一个系统的传递函数为$G(s)=\\frac{1}{s^2+4s+3}$,求该系统的单位冲击响应。
解答该系统的传递函数可以写成$G(s)=\\frac{1}{(s+1)(s+3)}$的形式。
原子物理学习题课
原子物理学习题第一章 原子的核式结构1.选择题:(1)原子半径的数量级是:CA .10-10cm; B.10-8m C. 10-10m D.10-13m(2)原子核式结构模型的提出是根据α粒子散射实验中 DA. 绝大多数α粒子散射角接近180︒B.α粒子只偏2︒~3︒C. 以小角散射为主也存在大角散射D. 以大角散射为主也存在小角散射(3)进行卢瑟福理论实验验证时发现小角散射与实验不符这说明:DA. 原子不一定存在核式结构B. 散射物太厚C. 卢瑟福理论是错误的D. 小角散射时一次散射理论不成立(4)用相同能量的α粒子束和质子束分别与金箔正碰,测量金原子核半径的上限. 问用质子束所得结果是用α粒子束所得结果的几倍?BA. 1/4 B . 1/2 C . 1 D. 2(5)动能E K =40keV 的α粒子对心接近Pb(z=82)核而产生散射,则最小距离为(m ):DA.5.91010-⨯B.3.01210-⨯C.5.9⨯10-12D.5.9⨯10-15(6)如果用相同动能的质子和氘核同金箔产生散射,那么用质子作为入射粒子测得的金原子半径上限是用氘核子作为入射粒子测得的金原子半径上限的几倍?CA.2B.1/2C.1 D .42.简答题:(1)简述卢瑟福原子有核模型的要点.(2)简述α粒子散射实验. α粒子大角散射的结果说明了什么?(3)为什么说实验证实了卢瑟福公式的正确性,就是证实了原子的核式结构?(4)普朗能量子假说的基本内容是什么?与经典物理有何矛盾?(5)为什么说爱因斯坦的光量子假设是普朗克的能量子假设的发展.(6)何谓绝对黑体?下述各物体是否是绝对黑体?(a)不辐射可见光的物体;(b)不辐射任何光线的物体;(c)不能反射可见光的物体;(d)不能反射任何光线的物体;(e)开有小孔空腔.3.计算题:(1)当一束能量为4.8Mev 的α粒子垂直入射到厚度为4.0×10-5cm 的金箔上时探测器沿20°方向上每秒记录到2.0×104个α粒子试求:①仅改变探测器安置方位,沿60°方向每秒可记录到多少个α粒子?②若α粒子能量减少一半,则沿20°方向每秒可测得多少个α粒子?③α粒子能量仍为4.8MeV,而将金箔换成厚度的铝箔,则沿20°方向每秒可记录到多少个α粒子?(ρ金=19.3g/cm 3 ρ铅=27g /cm 3;A 金=179 ,A 铝=27,Z 金=79 Z 铝=13)解:由公式, )2/(sin /')()41('42220220θπεr S Mv Ze Nnt dN =)2/(sin /')2()41(422220θπεαr S E Ze Nnt = ①当︒=60θ时, 每秒可纪录到的α粒子2'dN 满足:01455.030sin 10sin )2/(sin )2/(sin ''44241412=︒︒==θθdN dN 故 241210909.210201455.0'01455.0'⨯=⨯⨯==dN dN (个)② 由于2/1'αE dN ∝,所以 413108'4'⨯==dN dN (个)③ 由于2'nZ dN ∝,故这时:31211342442112441410/10/''--⨯⨯==A Z N A Z N Z n Z n dN dN A A ρρ 55310227793.19197137.2''4221421112444=⨯⨯⨯⨯⨯⨯=⋅⋅=dN A Z A Z dN ρρ(个)(2)试证明:α粒子散射中α粒子与原子核对心碰撞时两者之间的最小距离是散射角为900时相对应的瞄准距离的两倍.证明:由库仑散射公式:2cot 2412020θπεMv Ze b =,当︒=90θ时,12cot =θ,这时2020241Mv Ze b πε= 而对心碰撞的最小距离:b Mv Ze Mv Ze r m 22241])2/sin(11[24120202020=⋅=+=πεθπε 证毕。
第一、二章习题课(概率论)
第二章 随机变量及其分布
♦1. 基本概念:随机变量,离散型随机变量,连续型随 基本概念:随机变量,离散型随机变量,
机变量 ♦2.离散型随机变量及其分布律 离散型随机变量及其分布律 (1)如何求解 ) 设离散型随机变量X的可能取值为 的可能取值为x 设离散型随机变量 的可能取值为 k (k=1,2,…),事 事 件 发生的概率为 pk ,
P ( A) = 0.3, P ( B ) = 0.8, P (C ) = 0.6, P ( A U B ) = 0.9,
n−1
P ( AC ) = 0.1, P ( BC ) = 0.6, P ( ABC ) = 0.1.
试求: 试求:(1) P ( AB ) ) (2) P ( A U B U C )
1.若事件 若事件A,B是互不相容的 且 P ( A) > 0, P ( B ) > 0 是互不相容的,且 若事件 是互不相容的 则事件A,B一定不相互独立 一定不相互独立. 则事件 一定不相互独立 2. 若事件 若事件A,B相互独立 且 P ( A) > 0, P ( B ) > 0 相互独立,且 相互独立 则事件A,B一定相容 一定相容. 则事件 一定相容
事件A发生但事件 不发生 称为事件A与事件 与事件B的 事件 发生但事件B不发生 称为事件 与事件 的 发生但事件 不发生, 差事件。 差事件。 A B
S
显然有: 显然有:
A− B −
对于任意两事件A, 总有如下分解 总有如下分解: 对于任意两事件 ,B总有如下分解:
5 AI B =∅
0
则称A和 是互不相容的或互斥的 指事件A与 不 是互不相容的或互斥的,指事件 则称 和B是互不相容的或互斥的 指事件 与B不 可能同时发生。 可能同时发生。
习题课
第一章第二章习题课中国石油大学能源与动力工程系China University of Petroleum Dept. of Energy and Power Engineering第一章基本概念及定义重点热力系统的选取,对工质状态的描述,状态与状态参数的关系,状态参数(p,T,V/v,U,H,S),平衡状态,状态方程,可逆过程。
注意1.孤立系统:系统与外界既无能量传递也无物质交换2.状态参数:描述工质状态特性的各种状态的宏观物理量。
状态参数的数学特性:1212d x x x -=⎰表明:状态的路径积分仅与初、终状态有关,而与状态变化的途径无关。
0d =⎰x 表明:状态参数的循环积分为零3. 正向循环热效率:12101q q q w t -==η4. 制冷循环:制冷系数:21202q q q w q -==ε5. 热泵循环:热泵系数(供热系数):21101q q q w q -=='ε注意:(1) 以上三式,适用于可逆循环和不可逆循环;(2) 式中q 1、q 2、w 0取绝对值。
第一章基本概念及定义第二章热力学第一定律重点热力学能U、焓H(U+pV)、热力学第一定律的实质、熟练应用热力学第一定律解决具体问题闭口系统能量方程W U Q +∆=适用于mkg 质量工质w u q +∆=适用于单位质量工质注意:该方程适用于闭口系统、任何工质、任何过程。
W U Q δd δ+=w u q δd δ+=微元过程可逆过程有δd δd w p v q T s==vp u s T v p u q d d d d d δ+=+=第二章热力学第一定律循环过程第一定律表达式⎰⎰=w q δδ结论:第一类永动机不可能制造出来对于理想气体:Tc u vd d =理想气体可逆过程:vp T c s T v p T c q v v d d d d d δ+=+=第二章热力学第一定律开口系统能量方程质量守恒原理:进入控制体的质量一离开控制体的质量=控制体中质量的增量能量守恒原理:进入控制体的能量一控制体输出的能量=控制体中储存能的增量icv W m gz c h m gz c h E Q δδ)21(δ)21(d δ1121122222+++-+++=注意:本方程适用于任何工质,稳态稳流、不稳定流动的一切过程第二章热力学第一定律稳定流动能量方程i w z g c h q δd d 21d δ2+++=适用于任何工质,稳定流动热力过程引入技术功:it w z g c w δd d 21δ2++=t t w h q w h q δd δ+=+∆=上式变为:可逆过程:p v w t d δ-=p v h s T p v h q d d d d d δ-=-=理想气体可逆过程pv T c s T p v T c q p p d d d d d δ-=-=第二章热力学第一定律功和技术功在p-V图上的表示思考题1、当真空表指示数值愈大时,表明被测对象的实际压力愈大还是愈小?答:真空表指示数值愈大时,表明被测对象的实际压力愈小。
数理方程第一章、第二章习题全解
u( 0 , t) = u( l, t) = 0 现考虑初始条件,当冲量 k 作用于 x = c处时, 就相当于在这点 给出了一个初速度 , 我们考虑以 c点为中心 , 长为 2δ的一小段弦 ( c δ, c + δ) , 设弦是均匀的 , 其线密度为 ρ, 则这 一小段 弦的质量 为 2δρ, 受冲击时速度为 ut ( x, 0) , 由动量定理得
h c
x
l
h -
c(
l
-
x)
(0 ≤ x ≤ c) ( c < x ≤ l)
ut ( x, 0) = ψ( x ) = 0
则 u( x, t) 是下列定解问题的解 :
utt - a2 uxx = 0
( 0 < x < l, t > 0)
u( x, 0) = φ( x ) , ut ( x, 0 ) = ψ( x )
2 .4 习题全解
1. 设弦的两端固定于 x = 0 及 x = l, 弦的初始位称如图 2 2 所 示,初速度为零, 又设有外力作用, 求弦作横向振动时的位移函数 u( x, t) 。
解 如图 2 2 所示, 弦作横向振动时初始条件为
62
数学物理方程与特殊函数导教·导学·导考
图2 2
u( x, 0) = φ( x ) =
5. 若 F( z) , G( z) 是任意两个二次连续可微函数 , 验证
u = F( x + at ) + G( x - at )
满足方程
2u t2
=
a2
2x2u。
解 作自变量代换ξ= x + at,η= x - at, 由复合函数求导法则
有
所以 于是
u t
近世代数基础习题课答案到 题
第一章 第二章第一章1. 如果在群G 中任意元素,a b 都满足222()ab a b =, 则G 是交换群. 证明: 对任意,a b G ∈有abab aabb =. 由消去律有ab ba =. □2. 如果在群G 中任意元素a 都满足2a e =,则G 是交换群.证明: 对任意,a b G ∈有222()ab e a b ==. 由上题即得. □3. 设G 是一个非空有限集合, 它上面的一个乘法满足:(1) ()()a bc ab c =, 任意,,a b c G ∈.(2) 若ab ac =则b c =.(3) 若ac bc =则a b =.求证: G 关于这个乘法是一个群.证明: 任取a G ∈, 考虑2{,,,}a a G ⋯⊆. 由于||G <∞必然存在最小的i +∈ 使得i a a =. 如果对任意a G ∈, 上述i 都是1,即, 对任意x G ∈都有2x x =, 我们断言G 只有一个元,从而是幺群. 事实上, 对任意,a b G ∈, 此时有:()()()ab ab a ba b ab ==, 由消去律, 2bab b b ==; 2ab b b ==,再由消去律, 得到a b =, 从而证明了此时G 只有一个元,从而是幺群.所以我们设G 中至少有一个元素a 满足: 对于满足i a a =的最小正整数i 有1i >. 定义e G ∈为1i e a -=, 往证e为一个单位元. 事实上, 对任意b G ∈, 由||G <∞, 存在最小的k +∈ 使得k ba ba =. 由消去律和i 的定义知k i =:i ba ba =, 即be b =.最后, 对任意x G ∈, 前面已经证明了有最小的正整数k使得k x x =. 如果1k =, 则2x x xe ==, 由消去律有x e =从而22x e e ==, 此时x 有逆, 即它自身.如果1k >, 则11k k k x x xe xx x x --====, 此时x 也有逆:1k x -. □注: 也可以用下面的第4题来证明.4. 设G 是一个非空集合, G 上有满足结合律的乘法. 如果该乘法还满足: 对任意,a b G ∈, 方程ax b =和ya b =在G 上有解, 证明: G 关于该乘法是一个群.证明: 取定a G ∈. 记ax a =的在G 中的一个解为e . 往证e 是G的单位元. 对任意b G ∈, 取ya b =的一个解c G ∈: ca b =.于是: ()()be ca e c ae ca b ====. 得证.对任意g G ∈, 由gx e =即得g 的逆. □5. 找两个元素3,x y S ∈使得222()xy x y =/.解: 取(12)x =, (13)y =. □6. 对于整数2n >, 作出一个阶为2n 的非交换群.解: 二面体群n D . □7. 设G 是一个群. 如果,a b G ∈满足1r a ba b -=, 其中r 是正整数, 证明: ii i r a ba b -=, i 是非负整数.证明: 对i 作数学归纳. □8. 证明: 群G 是一个交换群当且仅当映射1x x - 是群同构.证明: 直接验证. □9. 设S 是群G 的一个非空集合. 在G 上定义关系 为: ~a b 当且仅当1ab S -∈. 证明: 这个关系是一个等价关系当且仅当S G ≤. 证明: 直接验证. □10. 设n 是正整数. 证明: n 是 的子群且与 同构.证明: 直接验证. □11. 证明: 4S 的子集{(1),(12)(34),(13)(24),(14)(23)}B =是一个子群, 而且B 与4U 不同构. (n U 是全体n 次单位根关于复数的乘法组成的群).证明: 用定义验证B 是4S 的子群. 由于4U 中有4阶元而B 中的元的阶只能是1或2, 所以它们不可能同构. □12.证明: 2n 阶群的n 阶子群必然是正规子群.证明: 用正规子群的定义验证. □13. 设群G 的阶为偶数. 证明: G 中必有2阶元.证明: 否则, G 中的任意非单位元和它的逆成对出现, 从而, G的阶为奇数, 矛盾. □14. 设0110A ⎛⎫= ⎪⎝⎭, 2i 2i 0e e 0n n B ππ-⎛⎫ ⎪= ⎪ ⎪⎝⎭. 证明: 集合 22:{,,,,,,,}n n G B B B AB AB AB =⋯⋯关于矩阵的乘法是一个群, 而且这个群与二面体群n D 同构.证明: n D 有如下的表现: 21,|1,n n D T S T S TS ST -=〈===〉. 作2:GL ()n D ϕ→ : S A , T B . 直接验证ϕ是群单同态,而且im G ϕ=. □15. 设群G 满足: 存在正整数i 使得对任意,a b G ∈都有()k k k ab a b =, 其中,1,2k i i i =++. 证明: G 是一个交换群.证明: 由()i i i ab a b =和111()i i i ab a b +++=得:111()()()()()i i i i i i ab a b ab ab ab a b +++===, 从而, 1i i i i ba b a b +=, 即:i i ba a b =.同理可得: 11i i ba a b ++=. 于是:11()()i i i i a ba ba a b a ab ++===, 即: ab ba =. □16. 在群2()SL 中, 证明元素0110a -⎛⎫= ⎪⎝⎭的阶为4, 元素1101b --⎛⎫= ⎪-⎝⎭的 阶为3, 而ab 的阶为∞.证明: 直接验证. □17. 如果群G 为一个交换群, 证明G 的全体有限阶元素组成一个子群.证明: 设{|()}H g G o g =∈<∞. 显然e H ∈, 从而H 不是空集. 对任意,a b H ∈, 设()o a m =, ()o b n =, 则1()o b n -=;11()()mn m n ab a b e --==, 即: 1ab H -∈. □18. 如果群G 只有有限多个子群, 证明G 是有限群.证明: 首先证明: 对任意a G ∈有()o a <∞. 事实上, 设k a 〈〉为G 的由k a 生成的子群, 其中, 1k ≥是整数. 则242m a a a a 〈〉⊇〈〉⊇〈〉⊇⊇〈〉⊇ . 由于G 只有有限多 个子群, 所以必然存在m 使得2(1)22(2)m m m a a a ++〈〉=〈〉=〈〉= ,即 22(1)m t m a a +=.由消去律即得()o a <∞.于是G 的任意元素都包含在某个有限子群里, 而G 只有有限多个子群, 所以||G <∞. □19. 写出群n D 的全部正规子群.解: 已知: 212121{,,,,1,,,,,,|1},n n n n n D T T T T S ST ST ST S T S T TS ST ---=⋯=⋯〈====〉设H 是n D 的子群. 如果1H =则H 当然是n D 的正规子群.I (1) 设k H T =〈〉. 由于1k k k k ST S ST S SST T H ---===∈和k k TT T T H =∈. 所以k T 〈〉是n D 的正规子群.(2) 设{1,}H S S =〈〉=. 由于SSS S =和12TST ST --=, 所以{1,}H S S =〈〉=是n D 的正规子群当且仅当2n =.(3) 设k H ST =〈〉. 注意到()()1k k ST ST =, 所以{1,}k k H ST ST =〈〉=. 由于1k k TST T ST -=和()k k S ST S ST -=,所以{1,}k k H ST ST =〈〉=是n D 的正规子群当且仅当|2n k .II (1) 设,k k H T T '=〈〉. 则(,')k k H T =〈〉. 归结为I (1)的情形, 从而是n D 的正规子群. 一般地,1212(,,,),,,t t k k k k k k H T T T T ⋯=〈⋯〉=〈〉也是n D 的正规子群.(2) 设,k H S T =〈〉. 由于1k k TT T T -=, 12TST ST --=, k k ST S T -=, 所以,k H S T =〈〉是n D 的正规子群当且仅当存在m ∈ 使得|(2)n mk +. (注: 当1k =时,k n H S T D =〈〉=). 一般地, 设1,,,t k k H S T T =〈⋯〉. 则12(,,,),t k k k H S T ⋯=〈〉, 归结为刚讨论的情形.(3) 设,k k H ST ST '=〈〉. 或者, 更一般地,1212(,,,),,,t t k k k k k k H ST ST ST ST ⋯=〈⋯〉=〈〉. 归结为I (3)的情形,即: 1212(,,,),,,t tk k k k k k H ST ST ST ST ⋯=〈⋯〉=〈〉是n D 的正规子群 当且仅当12|2(,,,)t n k k k ⋯.□20. 设,H K 是群G 的子群. 证明: HK 为G 的子群当且仅当HK KH =. 证明: HK 为G 的子群当且仅当111()HK HK K H KH ---===. □21. 设,H K 是群G 的有限子群. 证明: ||||||||H K HK H K =⋂. 证明: 首先, HK 是形如Hk 的不交并; 其中k K ∈. 又, 12Hk Hk =当且仅当112k k K H -∈⋂. 所以, 这样的右陪集共有||||K H K ⋂ 个. 于是: ||||||||K HK H K H =⋂. □ 22. 设,M N 是群G 的正规子群, 证明:(1) MN NM =.(2) MN 是G 的正规子群.(3) 如果{}M N e ⋂=, 那么/MN N 与M 同构.证明: (1) 由1MNM N -⊆得MN NM ⊆. 同理, NM MN ⊆.(2) 由(1)和第20题, MN 确实是子群. 对任意g G ∈有111()()()g MN g gMg gNg MN ---=⊆. 所以MN 是G 的正规子群.(3) 如果mn m n ''=则11(){}m m n n M N e --''=∈⋂=, 从而,m m n n ''==. 即: MN 中的元素可以唯一地写为,,mn m M n N ∈∈的形式. 于是可以定义映射: :MN M σ→为mn m . 由于,M N 都是正规子群, 对任 意,m M n N ∈∈有111()(){}mn nm mnm n M N e ---=∈⋂=, 所 以mn nm =: 即此时, M 中的元素与N 中的元素可交 换. 由此可以验证σ是群同态. 显然σ是满的, 而且 ker N σ=. □23. 设G 是一个群, S 是G 的一个非空子集. 令(){|,}C S x G xa ax a S =∈=∀∈; 1(){|}N S x G x Sx S -=∈=. 证明: (1) (),()C S N S 都是G 的子群.(2) ()C S 是()N S 的正规子群.证明: 直接用定义验证. 以(2)为例. 对任意(),(),c C S n N S s S ∈∈∈,111111()()()()ncn s ncn nc n sn c n ------=. 设1n sn s S -'=∈, 即: 1s ns n -'=. 所以,1111111()()()()ncn s ncn nc n sn c n ns n s -------'===. 此即表明: 1()ncn C S -∈. □24. 证明: 任意2阶群都与乘法群{1,1}-同构. 证明: 设{,}G e a =. 作:{1,1}G σ→-为1e , 1a - . □25. 试定出所有的互不同构的4阶群.解: 设群G 的阶为4. 如果G 有4阶元, 则4G . 如果G 没有4阶元, 则G 的非单位元的阶都为2. 设{,,,}G e a b c =. 考虑第11题中的4S 的子群(Klein 四元群):{(1),(12),(34),(12)(34)}K =. 作映射: :G K σ→为:(1),(12),(34),(12)(34)e b a c . 则σ为群同构. 综上, 在同构意义下, 4阶群只能是4 或Klein 四元群. □26. 设p 是素数. 证明任意两个p 阶群都同构.证明: 只需证明任意p 阶群G 都同构于p . 由Lagrange 定理, G的任意非单位元a 的阶都为p , 从而21{,,,,}p G e a a a -=⋯, 从 而有良定的映射:p G σ→ 为: 1a . 此即为一个群同构.□27. 在集合S =⨯ 上定义(,)(,):(,);(,)(,):(,)a b c d a c b d a b c d ac bd ad bc +=++=++. 证明: S 在这两个运算下是一个有单位元的环. 证明: 直接验证. 零元素为(0,0), 单位元为(1,0). □28. 在 上重新定义加法⊕和 为: :,:a b ab a b a b ⊕==+ . 问 关于这两个运算是否是一个环.解: 不是. 关于⊕不是一个abel 群. □29. 设L 是一个有单位元的交换环. 在L 中定义: :1a b a b ⊕=+-,:a b a b ab =+- . 证明: 在这两个新的运算下, L 仍然是一个环, 且与原来的环同构.证明: 直接验证满足环的定义中的条件. 作:(,,)(,,)L L σ+→⊕ 为:1a a - . 验证σ是环同构. □30. 给出满足如下条件的环L 和子环S 的例子:(1) L 有单位元, 而S 没有单位元.(2) L 没有单位元, 而S 有单位元.(3) ,L S 都有单位元, 但不相同.(4) L 不交换, 但S 可交换.解: (1) ;2L S == .(2) 0|,20a L a b b ⎧⎫⎛⎫=∈∈⎨⎬⎪⎝⎭⎩⎭ , 0|00a S a ⎧⎫⎛⎫=∈⎨⎬ ⎪⎝⎭⎩⎭ . (3) 0|,0a L a b b ⎧⎫⎛⎫=∈∈⎨⎬ ⎪⎝⎭⎩⎭, 0|00a S a ⎧⎫⎛⎫=∈⎨⎬ ⎪⎝⎭⎩⎭ . (4) |,,,a L a b b c d c d ⎧⎫⎛⎫=∈⎨⎬⎪⎝⎭⎩⎭ , 0|0a S a a ⎧⎫⎛⎫=∈⎨⎬ ⎪⎝⎭⎩⎭ . 31. 环R 中的一个元L e 为一个左单位元, 如果对任意r R ∈有L e r r =.类似地可定义右单位元. 证明:(1) 如果环R 既有左单位元, 又有右单位元, 则R 有单位元.(2) 如果环R 有左单位元, 没有零因子, 则R 有单位元.(3) 如果环R 有左单位元但没有右单位元, 则R 至少有两个左单位元.证明: (1) 设,L R e e 分别为R 的左, 右单位元. 则L L R R e e e e ==为R的单位元.(2) 设L e 为R 的一个左单位元. 对任意0x R =∈/, 由22()0L xe x x x x -=-=得: L xe x =, 即L e 为R 的一个右单 位元. 由(1)即得.(3) 设L e 为R 的一个左单位元, 由于R 没有右单位元, 所以存在0z R =∈/使得L ze z =/. 令: :L L L f e z ze =+-. 则 L L f e =/且, 对任意r R ∈有0L L L f r e r zr ze r r r =+-=+=, 即: L f 为R 的另一个单位元. □32. 设F 为一个域. 证明: F 没有非平凡的双边理想.证明: 设0I F =⊆/为F 的一个理想. 取0x I =∈/, 有11x x F -=∈, 从而I F =. □33. 设R 是一个交换环, a R ∈.(1) 证明{|}Ra ra r R =∈是R 的一个理想.(2) 举例说明, 如果R 不是交换环, 那么Ra 不一定是一个(双边)理想.证明: (1) 直接验证.(2) 设|,,,a b R a b c d c d ⎧⎫⎛⎫=∈⎨⎬⎪⎝⎭⎩⎭ , 1010a ⎛⎫= ⎪⎝⎭. 则 0|,0r s Ra r s ⎧⎫⎛⎫=∈⎨⎬ ⎪⎝⎭⎩⎭. 显然, Ra 不是一个理想, 比如: 01010101a Ra ⎛⎫⎛⎫=∉ ⎪ ⎪⎝⎭⎝⎭. □34. 设I 为交换环R 的一个理想, 令: rad {|,}n I r I r I n +=∈∈∈ . 证明:rad I 为R 的理想, 称为I 的根.证明: 对任意,rad a b I ∈. 则存在正整数,m n 使得,m n a b I ∈. 由于 ()m n a b I +-∈, 从而rad a b I -∈.对任意rad a I ∈和r R ∈, 存在正整数m 使得m a I ∈. 从而()m m m ra r a I =∈, 即: rad ra I ∈. □35. 设F 为一个有单位元的交换环. 证明: 如果F 没有非平凡理想,则F 是一个域.证明: 对任意0a F =∈/, 由第33题(1)知, Fa 是F 的一个非零理想.由于F 没有非平凡理想, 所以Fa F =. 特别1Fa ∈, 即: 存在 b F ∈使得1ba =. □36. 设 是有理数域, ()n 是全体n 阶 上的矩阵组成的环. 证明:()n 没有非平凡的理想(没有非平凡理想的环称为单环). 证明: 设0I =/为()n 的一个理想. 取0A I =∈/. 则A 至少有一个 非零元素, 设为ij a . 由于I 是一个理想, 所以1ij ij ij ij E AE E I a ⎛⎫=∈ ⎪ ⎪⎝⎭, 其中ij E 表示(,)i j -元为1而其余元为0的基本矩阵. 由基本矩阵的乘法性质, ij jk ik E E E I =∈, 从而ki ik kk E E E I =∈, 1,2,,k n =⋯. 于是单位阵1nn kk k E E I ==∈∑, 从而()n I = . □37. 设R 是一个环, 0a R =∈/. 证明: 如果存在0b R ≠∈使得0aba =, 那么a 是一个左零因子或右零因子.证明: 由于0aba =, 所以, 如果0ba =/则a 是一个左零因子; 如果0ba =, 则a 是一个右零因子. □38. 环的一个元素a 成为幂零的, 如果存在正整数n 使得0n a =. 证明:对于有单位元环R 的任意幂零元a , 1a -是可逆的.证明: 21(1)(1)11n n a a a a a --+++⋯+=-=. □39. 证明: 在交换环中, 全部幂零元素组成一个理想.证明: 用定义直接验证: 在交换环中, 幂零元的差、积仍然幂零.□40. 设R 是有单位元的有限环. 如果,x y R ∈满足1xy =, 证明: 1yx =.证明: 作映射: ::f R R z yz → . 则f 是单射: 事实上, 如果 12yz yz =, 则12xyz xyz =, 即12z z =. 由于R 是有限集, 所以f是满射, 从而存在0z R ∈使得001()f z yz ==. 只需证明:0z x =. 事实上, 00001()()1z z xy z x yz x x ===== . □41. 设R 是一个有单位元的环. 证明: 如果存在,a b R ∈满足1ab =但1ba =/, 那么有无穷多x R ∈使得1ax =.证明: 注意到111()1n n n n a b ba a ab aba a ab ++++-=+-==, n ∈ . 所以只需证明1n n ba a +- (n ∈ )互不相同. 注意到1m m a b aa abb b =⋯⋯=, 对任意m ∈ 都成立.如果11n n k k ba a ba a ++-=-, (n k >). 则11111()0n n k k k k k ba a b ba b a b b b +++++-=-=-=, 即0n k n k ba a b ---=. 如果1n k -=则1ba ab ==, 矛盾.所以1n k ->. 从而10n k n k ba a ----=;11)(10n k n k n k ba a b b a ------=-=, 也得到矛盾. □42. 设R 是满足如下条件的环: R 至少有两个元素而且对任意0a R =∈/都存在唯一的元素b R ∈使得aba a =. 证明:(1) R 没有零因子.(2) bab b =.(3) R 有单位元.(4) R 是一个体.证明: (1) 设0a R =∈/使得0ax =. 由已知, 对于a 有唯一的b R ∈使得aba a =. 于是()a b x a aba +=. 由唯一性, b x b +=, 即: 0x =; 从而a 不是左零因子. 即: R 中的任意非零元都不 是左零因子; 从而R 也没有右零因子.(2) 由于()()a bab a ab aba aba ==, 再由唯一性即得bab b =.(3) 任取0a R =∈/, 取那个唯一的b R ∈使得aba a =. 往证ab就是一个单位元. 对任意0x R =∈/, 取那个唯一的y R ∈ 使得xyx x =. 由(2)有:()0b ab xy x babx bxyx bx bx -=-=-=.由(1), 0ab xy -=. 从而abx xyx x ==, 此即证明了ab 是左 单位元. 保持记号. 类似地有:()0a ba xy x abax axyx ax ax -=-=-=, 从而ba xy =, 于是xab xyx x ==, 此即证明了ab 是右单位元.(4) 由(3)可知, R 的每个非零元都有逆. □43. 设[0,1]C 是[0,1]上的连续函数组成的环. 证明:(1) 对于[0,1]C 的任意非平凡理想I , 都存在一个[0,1]θ∈使得对任意()f x I ∈都有()0f θ=.(2) ()[0,1]f x C ∈是一个零因子当且仅当零点集{[0,1]|()0}x f x ∈= 包含一个开区间.证明: (1) 若不然, 对任意[0,1]θ∈都存在()[0,1]g x C θ∈使得()0g θ=/. 由连续性, 存在一个包含θ的开区间[0,1]J θ⊆使得()g x θ在 J θ上恒为正或恒为负(0J 实际上是左闭右开的; 1J 实际上是左开右闭的). 另一方面, 由开覆盖定理, 存在有限多个i J θ, 使得[0,1]i i J θ=⋃. 定义2():(())ii g x g x θ=∑. 则 ()g x I ∈, 而且()0g x >. 于是11()()g x I g x =∈ , 与I 是非平凡理 想矛盾.(2) “⇒”: 设()f x 是[0,1]C 中的一个零因子: 存在0()[0,1]g x C =∈/使得()()0,[0,1]g x f x x ≡∈. 由于()0g x =/, 所以 存在[0,1]上的开区间J 使得()g x 在J 上恒为正或恒为负; 从而, ()f x 在J 上恒为0.“⇐”: 设存在[0,1]上的开区间J 使得()f x 在J 上恒为0. 作连 续函数()g x 使得: ()g x 在J 上恒不为0, 而在J 上恒为0, 从 而()()0f x g x ≡: 即()f x 是[0,1]C 中的一个零因子. □44. 设p = 为素域. (1) 求环()n 的元素个数.(2) 求群()n GL 的元素个数.(1) 解: 由于2dim ()n n = , 所以()n 的元素个数为2n p .(2) 解: 取定向量空间n 的一个基, 则()n GL 中的元与n 上 的可逆线性变换一一对应, 而可逆线性变换把基映为基. 所以, 只需求n 的基的个数. 注意到n 的元素个数为n p . 任取n 的一 个非零向量1α, 这样的取法有1n p -种. 取2n α∈ 使得12,αα线性 无关. 这样的2α能且只能从1n α-〈〉 中选取. 所以2α的选取方法有n p p -种. 类似地, 取3n α∈ 使得312,,ααα线性无关. 这样的3α 能且只能从12,n αα-〈〉 中选取. 所以3α的选取方法有2n p p -种(因为12,αα〈〉的维数是2). 继续这个过程, 我们得到n 的基的个 数为21()()()n n n n p p p p p p ---⋯-, 此即为所求. □45. 设K 是一个体, 0,a b K =∈/且1ab =/. 证明如下的华罗庚恒等式:1111(())a a b a aba -----+-=.证明: 由提示, 先证明引理: 对任意0,1x K =∈/,1111(1)(1(1))1(1)(((1)))x x x x x x -----+-=-+--11(1)(1)11x x x x x x -=-+--=-+=,所以, 111(1)(1)1x x ----=--成立. 注意到: 原恒等式等价于1111(1)(())a ba a b a -----=+-, 等价于11111(1)()ba a a b a ------=+-. 由引理,111111*********(1)((1)1)(1)((1))ba a a b a a a b a a a a b ----------------=-+=+-=+-111()a b a ---=+- 即为所要的等式. □第二章1. 设G 为有限群, N G , (||,|/|)1N G N =. 证明: 如果元素a G ∈的阶整除||N , 那么a N ∈.证明: 考虑自然满态: :/G G N π→. 记()a a π=. 由于()/o a a e G N =∈, 所以()|()o a o a . 如果()1o a =/, 则((),|/|)1o a G N =/, 矛盾. □2. 设c 为群G 的阶为rs 的元素, 其中(,)1r s =. 证明: c 可以表示成c ab =, 其中()o a r =, ()o b s =, 且,a b 都是c 的幂.证明: 由(,)1r s =知, 存在整数,u v 使得1ur vs +=. 于是1ur vs c c c c ==.令vs a c =和ur b c =. 则()()((),)(,)o c rs rs o a r o c vs rs vs s ====. 同理, ()o b s =. □3. 证明: 如果群G 中的元素a 的阶与正整数k 互素, 那么方程k x a =在 a 〈〉内恰有一解.证明: 设()o a n =. 于是存在整数,r s 使得1rn ks +=. (法一) 作映射::k f a a x x 〈〉→〈〉 . 只需证明f 是双射. 由于||a n 〈〉=<∞, 所以只需证明f 是单射. 若k k x y =, ,x y a ∈〈〉, 则1()1k xy -=. 从而1111()()rn ks s xy xy xy e e ----====, 即x y =.(法二) 首先1()s k rn a a a -==, 即方程k x a =在a 〈〉中有解. 若t a a ∈〈〉也是k x a =的一个解, 那么()t s k a e -=, 从而 1()()t s ks t s rn t s a e a a ----===, 即t s a a =. □4. 设G 是一个群. 证明: 对任意,a b G ∈有()()o ab o ba =. 证明: 注意到, 对任意正整数m , 1()()m m ab a ba b -=, 所以1()()m m ab a ba b e -==当且仅当1111()()m ba a b ba ----==当且仅当 ()m ba e =. □5. 设2n >. 证明: 有限群G 中阶为n 的元素个数是偶数. 证明: 注意到, 对任意g G ∈有1()()o g o g -=, 而且, ()2o g >当且仅当1g g -=/. □6. 证明: 当2n >时有(){}n Z S e =. 即: n S 是交换群当且仅当2n ≤. 证明: 注意到, 对任意n S σ∈和轮换12()r i i i ⋯有11212()(()()())r r i i i i i i σσσσσ-⋯=⋯. 设()n e z Z S =∈/, 则对任意 n S σ∈应该有1z z σσ-=. 不妨设z 分解为互不相交的轮换的乘积(必要的话, 可通过重新编号): (12)(...)...(...)z =⋯. 取 (23)σ=. 则()(1)3z σσ=但(1)2z =, 矛盾. □7. 证明: 有理数加群 的任意有限生成的子群是一个循环群. 证明: 设1212,,,n n n H m m m =〈⋯〉, 其中(,)1i i n m =, 1i ≤≤ . 令 12[,,,]t m m m =⋯ . 则1H t=〈〉. □ 8. 设G 是有限生成的交换群. 证明: 如果G 的这些生成元都是有限 阶的, 那么G 是一个有限群.证明: 设1,,n G a a =〈⋯〉且()i i o a m =. 则G 的任意元素具有形式:1212nt t t n a a a ⋯, 其中1i i t m ≤≤, 从而G 只有有限个元素. □ 9. 对任意群G 和正整数k , 令{|}k k G a a G =∈. 证明: 群G 是循环 群的成分必要条件是G 的任意非单位子群都是形如k G 的集合. 证明: 必要性. 设G g =〈〉. 则G 的任意非单位子群H 具有形式k H g =〈〉, 其中k 是某个正整数. 于是H 中的任意元素具有形 式()()k m m k g g =, 即k H G ⊆. 反之, k G 的任意元素具有形式 ()()m k k m g g =, 于是k H G =.充分性. 考虑12k k G G ≥-⋃.(i) 如果12k k G G ≥-⋃不是空集, 取12k k g G G ≥∈-⋃. 则G g =〈〉是无限循环群. 事实上, g e =/, 从而G 的子群g 〈〉形如k G . 如果2k ≥, 则k k g x G =∈, 与g 的选取矛盾. 所以1g G G 〈〉==. 另外, 如果此时G g =〈〉是有限群, 则2k k G G ≥=⋃, 也得到矛盾.(ii) 现在假设12k k G G ≥-⋃是空集. 则对任意e x G =∈/, 存在正整 数k 使得子群k x G 〈〉=. 若1k =则G x =〈〉是循环群. 特别,存在整数s 使得k s x x =, 此即表明, G 的任意元素都是有限阶的. (To be continued).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分析:写出可能的缺陷反应式及固溶体分子式,然后计算相应的 理论密度,最后把计算密度与实测密度相比确定缺陷形式。
解:缺陷反应式
2CaO ZrO2CaZr Cai•• 2OO 或
2 : 1:1
CaO ZrO2CaZr VO•• OO
1 : 1:1
0.25 : 0.125 : 0.125 固溶分子式: Zr0.875Ca0.25O2
a
2TiO2
Al2O3
2Ti
• Al
Oi
3OO
3T iO2
Al2O3 3Ti
• Al
VAl
6OO
b CaO ThO2CaTh VO•• OO
2CaO ThO2CaTh Cai•• 2OO
c Y2O3 MgO 2YM• g VMg 3OO
Y2O3 MgO 2YM• g Oi 2OO
d Al2O3 ZrO2 2AlZr VO•• 3OO
2Al2O3 ZrO2 3AlZr Ali••• 6OO
3. 高温结构材料Al2O3可以用ZrO2来实现增韧,也可以用MgO来促进Al2O3的烧 结。 (a) 如加入0.2mol% ZrO2,试写出缺陷反应式和固溶分子式。
即 Al1.9946Ni0.005Cr0.0004O2.9975
7. 填空题
(1) 晶体产生Frankel缺陷时,晶体体积
,晶体密度
;
而有Schottky缺陷时,晶体体积
,晶体密度 。一般说离
子晶体中正、负离子半径相差不大时,
是主要的;两种离子
半径相差大时,
是主要的。
(2) AgBr在适当温度时产生Frankel缺陷时,用缺陷反应表示
(b)如加入0.3mol% ZrO2和Xmol%MgO对进行复合取代,试写出缺陷反 应式、固溶分子式及求出X值。
解:(a) 缺陷反应式:2ZrO2 Al2O32ZrA•l Oi 3OO 2 : 2 :1
0.002 : 0.002 : 0.001
所以固溶分子式为:Al1.998Zr0.002O3.001
1.7010-4
(b) 2Y F (S ) CaF2 2Y •. V 6F
3
Ca
Ca
F
由此可知 VCa 杂质 1/ 2YF3 0.5 10-6
而在1873K时VCa 热=1.7010-4 所以此时热缺陷占优势。
2. 试写出下列缺陷方程
为
,[Agi.]=
;在MgO中形成Schottky缺陷时,缺陷反应
式为
,VMg =
。
(3) 少量CaCl2在KCl中形成固溶体后,实测密度值随
Ca2+离子数/K+离子数比值增加而减少,由此可判断其
缺陷反应式为
。
(4) 写出缺陷反应式 La2O3 CeO2(负离子空位) ZrO2 Y2O3(负离子间隙)
解:缺陷反应式为
2NiO Al2O3 2NiAl VO•• 2OO
2:
2 :1
0.5% : 0.5% : 0.25%
Cr2O3 Al2O3 2CrAl 3OO
1
:2
0.02% : 0.04%
固溶体的化学式为:
Al2-0.5%-0.04%Ni0.5%Cr0.04%O3-0.25%
0.3% : X : X/2 : 0.15%
根据电中性原则 X=0.3% 所以固溶分子式为Al1.994Zr0.003Mg0.003O3
4. 非化学计量化合物FexO中,Fe3+/Fe2+=0.1,求FexO中空位浓度及 x值。
分析: FexO是Fe2O3溶解在FeO中的非化学计量化合物,先写出 缺陷方程式,然后根据Fe3+/Fe2+=0.1计算。
1、缺陷的分类 2、书写缺陷反应式应遵循的原则 3、缺陷浓度计算 4、固溶体的分类及形成条件 5、研究固溶体的方法 6、非化学计量化合物
点缺陷
热缺陷 杂 质 缺陷
Frankel缺陷 Schottky缺陷
非化学计量结构缺陷(电荷缺陷)
非化学计量化合物类型: 阴离子缺位型 阳离子填隙型 阴离子间隙型 阳离子空位型
由 n exp( GF ) 知,
N
2KT
Frankel缺陷浓度高,因而 是主要的。
在298K时,
n N
exp(2-21.8.381.1600-22310-29198)=2.0610-24
在1873K时,
n N
exp(
-2.8 1.602 2 1.3810-23
10-19 ) 1873
2ClCl
(4) La2O3 CeO2 2LaC e VO•• 3OO
ZrO2 Y2O3 2ZrY• Oi 3OO
简答:
从结构的角度论述,何谓固溶体、置换 固溶体,并讨论置换固溶体的形成条件。
0.25 : 0.25 : 0.25 固溶分子式: Zr0.75Ca0.25O1.75
d计算1=aZ0M3 N10
d计算2=aZ0M3 N20
比较,看谁与接近即为所对应的缺陷类型。
6. 一块金黄色的人造刚玉,化学分析结果认为,是在Al2O3中添加了0.5mol%NiO 和0.02mol%Cr2O3。试写出缺陷反应方程(置换型)及化学式。
(b) 缺陷反应式为 2MgO Al2O32MgAl VO•• OO
2 : 2 :1
X : X : X/2
复合取代反应式为
ZrO2
MgO
Al2O3 ZrA•l
MgAl
1 2
Oi
12VO••
5 2
OO
1 :1
1 : 1 : 1/2 : 1/2
0.3%: X
1. (a) 在CaF2晶体中,Frankel缺陷形成能为2.8eV,Schottky缺陷的生成能为
5.5eV,计算在25℃和1600℃时热缺陷的浓度?
(b) 如果CaF2晶体中,含有10-6的YF3杂质,则在1600℃时, CaF2晶体中是热 缺陷占优势还是杂质缺陷占优势?说明原因。
解:(a) 由题可知, Frankel缺陷形成能 < Schottky缺陷的生成能
答案:(1) 不变 不变 变大 变小 Schottky缺陷
Frankel缺陷
(2) AgAg Vi Agi• VAg [ Agi• ] K exp(G f / 2kT)
MgO VMg VO••
Kexp(-Gf/2RT)
(3)
CaCl2
KCl
Ca
• K
VK
解:缺陷反应式:
Fe2O3
FeO
Hale Waihona Puke 2Fe• Fe VFe
3OO
1
: 2 :1
a
: 2a : a
其化学式为: Fe1-2a-aFe2a O
2a/1-3a=0.1
a = 0.044
X=1-a =0.956
[VFe
]
a 1 X
2.25 10-2
注:1+X为正常结点数。
5. 用ZrO2和0.25molCaO 制成固溶体,测得晶胞参数 缺a0陷=形0.5式15是3n何m种,?密度为=5.184g/cm3, ZrO2为萤石结构,问主要