概率论练习册
概率论与数理统计练习册答案(1-4)全解
概率论与数理统计练习册答案(1-4单元)第一单元 A 卷1解(1)有两种可能性30 30 10,50 10 10 P=2112525331035712024C CC CC ?==(2)用对立事件做 P=111532310314C C CC创-=2解: 由题意产品的合格率为96%合格产品中的一等品率为75%则出厂产品的一等品率P=96%*75%=72%所以在该厂产品中任取一件是一等品的概率为72%。
3解: 乙选手输掉一分有两种情况:第一种是乙第一次回球就失误,所以P1=0.3;第二种是乙第二次回球才失误,所以P2=0.7*0.6*0.5=0.21; 因此乙选手输掉一分的概率P=P1+P2=0.51。
4. 解: P(AUBUC)=P(A)+P(B)+P(C)-P(AB)-P(BC)-P(AC)+P(ABC) =1/4+1/4+1/4-1/6-1/6=5/12则A 、B 、C 全不发生的概率为1-P(AUBUC)=1-5/12=7/12。
5解:令事件B 为被射中事件A 1表示甲射中乙没中 事件A 2表示乙射中甲没中 事件A 3表示俩人都中 则P (13()A A B+)=13()()()P A B P A B P B +=1133112233()()()()()()()()()()P B A P A P B A P A P B A P A P B A P A P B A P A ? ?? =0.60.60.50.40.50.60.5?? =0.757.解:设A i 为第一次抽到的新球个数。
B 为3只球为新球。
P (A 0)=0396315C C C ,P (A 1)=1296315C CCP (A 2)=2196315C C C ´,P (A 3)=3096315C C C ´P (0A B )=31539CC,P (1A B )=31538CCP (2A B )=31537CC,P (3A B )=31536CCP (B )=P (0A B )´P (A 0)+P (1A B )´P (A 1)+P (2AB )´P (A 2)+P (3AB )´P (A 3)=0.089四.1.证明重要公式:P(A-B)=P(A)P - (AB);(或P(AB)=P(A) -P(AB));2.设P(A)=0.7,P(A -B)=0.3,求P(AB ) 解:1.证明:因为A=A B ÈAB所以P (AB )= P (AB AB È)= P (AB )+P (AB )P - (AB ÇAB)又因为ABÇAB=Æ所以P (A )= P (AB )+P (AB )所以P (AB )= P (A )- P (AB )即P (A -B )=P (A )-P (AB ) 2.由1可得,P (AB )= P (A )-P (A -B )=0.4 所以P(AB )=1-P(AB)=0.6(画图可帮助解题)五.解:设事件A 为取到白球球分放在箱子中一共有四种情况:I. 一只箱子中没球,另一只箱子中4个球:P (A )=1/2*2/4=1/4 II. 一只箱子中1只白球,另一只箱子中其他三只球:P (A )=1/2+1/2*1/3=7/12III. 一只箱子中一只黑球,另一只箱子中其他三只球:P (A )=1/2*2/3=1/3IV.一只箱子中2只白球,另一只箱子中两只黑球:P (A )=1/2B 卷三、计算题1、① P=C 110C 4924/C 206=0.52 先从10双中取1双,再从剩下的9双中取4双,最后从4双中取每双中的一只② P=1-C 61026/C 620=0.653 考虑对立面,即没有两只能够配成对,先从10双中取6双,再从6双取每双的一只2解:由P(B|A )=)()(A P A B P =1.0)(A B P =0.4得()A B P =0.04,又由)(A B P =P(B)-P(AB)=0.75-P(AB)=0.04 故 P (AB )=0.713、解:记“甲获胜”为事件A,“乙获胜”为事件B 由题意得P(A)=23211151515()()()()...()()6666666n n -++++ P(B)= 223315151515()()()()()()...()()66666666n n++++两式相比得()5()6P A P B =故65(),()1111P A P B ==4解:若采用第一种 设A 为“不产出废品”P(A )=97%⨯96%⨯95%=0.88464若采用第二种 设B 为“不产出废品” P(B)=93%⨯93%=0.8649P(A)>P(B) 应采用第一种 5 P (A 0)=121211221122()()nnn n m n m nm n m n ?++++121212121112211221122()()()P m n nm m n n m A m n m nm n m nm n m n +=??++++++ 1212211221122()()()P m m m m A m n m nm n m n =?++++ )|(0A B P =0)|(1A B P =211)|(2=A B P P(B)=)(0A P )|(0A B P +)|()()|()(2211A A A A B P P B P P +=121221112222()()m m m n m n m n m n ++++6.解:设1A 表示取出的一只元件为正品,2A 表示取出的为次品。
概率论与数理统计综合练习册
2012.9目录综合练习一 (1)综合练习二 (5)综合练习三 (7)综合练习四 (9)综合练习五 (11)综合练习六 (13)综合练习七 (15)综合练习八 (17)综合练习一一、填空题(3×4=12分)1. 设3.0)(=A P ,5.0)(=B P ,7.0)(=B A P ,则=)|(B A P _____________.2. 设随机变量ξ服从参数为λ的泊松分布,且}2{}1{===ξξP P ,则=≥}1{ξP _________.3. 从标有号码1,2,…,9的9张卡片中任取2张,用ξ表示取到的号码的平均值,则=)(ξE _______.4.设总体)3.0,0(~2N ξ,nξξξ,,,21 是总体样本,则=⎭⎬⎫⎩⎨⎧>∑=44.11012i i P ξ________________. 二、选择题(3×4=12分)1. 设321,,x x x 是总体ξ的样本,则下列统计量中,是总体均值的最小方差无偏估计的是[ ]. (A)321613121x x x ++; (B) )(31321x x x ++; (C) 321x x x -+; (D) )(2121x x +. 2. 设A ,B 是两个事件,则“这两个事件至少有一个没发生”可表示为[ ]. (A) AB ; (B) B A B A ; (C) B A ; (D) B A .3. 设随机变量ξ在[0,5]上服从均匀分布,则方程02442=+++ξξx x 有实根的概率为[ ]. (A)53; (B) 52; (C) 1; (D) 31. 4. 设随机变量ξ与η相互独立,其概率分布为和则下列式子中,正确的是[ ].(A) ηξ=; (B) 1}{==ηξP ; (C) 95}{==ηξP ; (D) 0}{==ηξP . 三、完成下列各题(6×8=48分)1. 已知10个元件中有7个合格品及3个次品,每次随机抽取1个测试,测试后不放回,直至将3个次品都找到为止,求需要测试次数ξ的概率分布.2. 设),0(~2σξN ,求||ξη=的概率密度.3. 甲、乙、丙3门炮向某一目标射击,每次射击时,甲、乙、丙击中目标的概率分别是0.l ,0.2,0.3,问3门炮需齐射多少次,方能使目标被击中的概率不小于99%?(设各炮各次射击时是否击中目标是相互独立的.)4. 某厂生产的某种设备的寿命ξ(单位:年)服从指数分布,其概率密度为⎪⎩⎪⎨⎧≤>=-0041)(4x x ex f x,工厂规定,若出售的设备在1年内损坏,则可予以调换,已知工厂售出1台设备获利100元,调换1台设备厂方需花费300元,试求厂方出售1台设备净获利的数学期望.5. 设某厂生产的灯泡的寿命),1600(~2σξN ,如要求975.0}1200{≥>ξP ,问σ应满足什么条件?6. 设某种零件的长度服从正态分布),(2σμN ,测得8个零件长度(单位:mm)为97,99,94,102,103,97,98,102. (1)若已知μ=100,求2σ的置信区间; (2)未知μ,求2σ的置信区间.(均取α=0.05)7. 计算机在做加法运算时,对每个加数取整(取为最接近它的整数),设所有的取整数误差是相互独立的,且它们都在(-0.5,0.5)上服从均匀分布,如将1500个数相加,问误差总和的绝对值超过15的概率是多少?8. 设总体ξ的样本观察值为n x x x ,,,21 ,证明:∑-=+--=11212)()1(21ˆn i i i x x n σ是总体方差的无偏估计.四、(9分)设(ξ,η)的概率密度⎩⎨⎧≤≤≤≤=其他,00,10,15),(2xy x xy y x ϕ,(1)求ξ,η的边缘概率密度,说明ξ,η是否独立;(2)求ξ,η的协方差.五、(9分)在长度为L 的线段上随机取一点,这点把该线段分成两段,求较短的一段与较长的一段长度之比小于41的概率. 六、(10分)在8件产品中,次品数从0到4是等可能的,检查其中任意4件,发现3件是合格品,l 件是次品,问在剩下的4件产品中,再任取2件来检查,这2件都是合格品的概率是多少?综合练习二一、填空题(3×4=12分)1. 设事件A ,B 相互独立2.0)(=A P ,4.0)(=B P ,则=)(B A B A P _____________. 2. 设),(~2σμξN ,k ,h 为常数,0≠k ,h k +=ξη,则相关系数=||ξηρ____________.3. 将3个球随机放到5个盒子中去,则有球的盒子数的数学期望为_______________.4. 将6张同排连号的电影票随机分给3个男生,3个女生,则男女生相间而坐的概率为_______________. 二、选择题(3×4=12分)1. 袋中有3个白球,2个红球,现从中依次取出2个(取后不放回),则第2次取到红球的概率为[ ].(A)52; (B) 43; (C) 42; (D) 53. 2. 已知事件A 及B 的概率都是21,则下列结论中,一定正确的是[ ].(A) 1)(=B A P ; (B) 41)(=AB P ; (C) )()(B A P AB P =; (D)21)(=AB P .3. 设随机变量),(~p n B ξ,已知E (ξ)=0.5,D (ξ)=0.45,则n ,p 的值为[ ]. (A) n =5,p =0.3; (B) n =10,p =0.05; (C) n =1,p =0.5; (D) n =5,p =0.1.4. 若随机变量ξ与η满足D (ξ+η)=D (ξ-η),则下列式子中,正确的是[ ].(A) ξ与η相互独立; (B) ξ与η不相关; (C) D (ξ)=0; (D) D (ξ)·D (η)=0.三、完成下列各题(6×8=48分)1. 猎人在距离100m 处射击一动物,击中的概率为0.6,如果第1次未击中,则进行第2次射击,但由于动物逃跑而使距离变为150m ,如果第2次又未击中,则进行第3次射击,这时距离变为200m ,假定击中的概率与距离成反比,求猎人击中动物的概率.2. 测量到某一目标的距离时发生的随机误差ξ(m)具有概率密度3200)20(22401)(--=x ex πϕ,求在3次测量中,至少有一次误差的绝对值不超过30m 的概率.3. 每次射击时,击中目标的炮弹数的数学期望为2,标准差为1.5,求在100次射击中,有180到220发炮弹命中目标的概率.4. 设随机变量ξ,η相互独立,)21,2(~B ξ,)32,2(~B η,求ξ+η的概率分布及P {ξ>η}. 5. 设总体ξ的概率密度为)(21);(||+∞<<-∞=-x e x x θθθϕ,其中θ>0,若样本观测值为n x x x ,,,21 ,求θ的极大似然估计.6. 两批导线,从第一批中抽取4根,从第二批中抽取5根,测得它们的电阻(单位:Ω)如下第一批:0.143,0.142,0.143,0.137; 第二批:0.140,0.142,0.136,0.138,0.140.设两批导线的电阻分别服从正态分布),(211σμN 及),(222σμN ,其中,1μ,2μ,1σ,2σ都是未知参数,求这两批导线电阻的均值差1μ-2μ对应于置信概率0.95的置信区间(假定1σ=2σ).7. 为了估计灯泡使用时数的数学期望μ及标准差σ,试验10个灯泡,得到x =1500h ,s =20h ,设灯炮使用时数服从正态分布,求 (1)求μ的置信区间;(2)求σ的置信区间.(均取α=0.05)8. 设三事件A ,B ,C 相互独立,证明A -B 与C 也相互独立.四、(9分)甲、乙、丙3人各自加工1个产品,检验的结果是在3个产品中发现1个次品,设甲、乙、丙加工产品的次品率分别是0.1,0.2,0.3,分别求这个次品是甲、乙、丙加工的概率.五、(9分)甲、乙两人约定某日上午8:00~12:00在某地相会,设两人到达该地的时间是相互独立的,求两人相会前等待时间的数学期望及方差.六、(10分)甲、乙两人在某一局乒乓球比赛时,双方得分打成20:20平,按规定,在后面的比赛中,只有当某一方连得2分时,方能取得该局的胜利. 设在后面的比赛中,甲每个球得分的概率均为0.6,乙均为0.4,各球的胜负是相互独立的,求甲在该局获胜的概率.综合练习三一、填空题(3×4=12分)1. 设事件A ,B ,C 相互独立,P (A )=0.2,P (B )=0.4,P (C )=0.7,则)(C B A P =_______________.2. 设ξ~B (10,0.3),则在P {ξ=m }(m =0,l ,…,10)中,最大的值是_________________.3. 设ξ~N (2,σ2),P {2<ξ<4}=0.3,则P {ξ<0}=_____________.4. 设ξ服从泊松分布P (λ),抽取样本1x ,2x ,…,n x ,则样本均值x 的概率分布为_____________.二、选择题(3×4=12分)l. 从5双不同型号的鞋中任取4只,则至少有2只鞋配成1双的概率为[ ].(A) 211; (B) 2112; (C) 218; (D) 2113. 2. 设总体ξ~N (μ,σ2),其中σ2已知,则总体均值μ的置信区间长度L 与置信度1-α的关系是[ ].(A) 当1-α缩小时,L 缩短; (B) 当1-α缩小时,L 增长;(C) 当1-α缩小时,L 不变; (D) 以上说法都不对.3. 设离散型随机变量ξ的分布律为P {ξ=k }=αβk (k =1,2,…),且α>0,则β为[ ].(A) 11-=αβ; (B) 1+=ααβ; (C) 11+=αβ; (D) 1+=αβ. 4. 设两个相互独立的随机变量ξ和η的方差分别为6和3,则随机变量2ξ-3η的方差是[ ].(A) 51l ; (B) 21; (C) -3; (D) 36.三、完成下列各题(6×8=48分)1. 射击运动中,1次射击最多能得10环,设某运动员在1次射击中得10环的概率为0.4,得9环的概率为0.3,得8环的概率为0.2,求该运动员在5次独立射击中得到不少于48环的概率.2. 设ξ在[-2,2]上服从均匀分布,η=ξ2,求η的概率密度及D (η).3. 设二维随机变量(ξ,η)的概率密度为])()[(2122221221),(μμσπσϕ-+--=y x e y x ,其中σ>0,求随机变量U =a ξ+b η,V =a ξ-b η的相关系数r uv ,其中a ,b 为常数.4. a ,b ,c 3个盒子,a 盒中有1个白球和2个黑球,b 盒中有1个黑球和2个白球,c 盒中有3个白球和3个黑球,扔一骰子以决定选盒;若出现1,2,3点,则选a 盒;若出4点,则选b 盒;若出现5,6点,则选c 盒. 在选中的盒中任选1球,试求(1)选中白球的概率;(2)当选中的是白球时,问此自球来自a 盒的概率.5. 某系统备有30个电子元件a l ,a 2,…,a 30,先使用a l ,若a l 损坏,立即使用a 2;若a 2损坏,则立即使用a 3;…直至30个元件用尽. 设a i 的寿命(单位:h)服从参数为λ=0.1的指数分布,ξ为30个元件使用的总时间,求ξ超过350h 的概率.6. 设η服从参数为1的指数分布,ξ1,ξ2是0-l 分布, ⎩⎨⎧>≤=1,11,01ηηξ; ⎩⎨⎧>≤=.2,1;2,02ηηξ 求(ξ1,ξ2)的概率分布及E (ξ1ξ2).7. 在半径为R 的圆的某一直径上任取一点,过该点做垂直于该直径的弦,求弦长的数学期望及方差.8. 设随机变量ξ的数学期望为E (ξ),方差为D(ξ),证明对任意实数C ,均有)(])[(2ξξD C E ≥-.四、(9分)化工试验中要考虑温度对产品断裂力的影响,在70℃及80℃的条件下分别进行8次试验,测得产品断裂力(单位:kg)的数据如下70℃时,20.5,18.8,19.8,20.9,21.5,19.5,21.0,21.2;80℃时,17.7,20.3,20.0,18.8,19.0,20.1,20.2,19.1.已知产品断裂力服从正态分布,检验(1)两种温度下,产品断裂力的方差是否相等;(取α=0.05)(2)两种温度下,产品断裂力的平均值是否有显著差异. (取α=0.05)五、(9分)设ξ,η相互独立,ξ在[0,1]上服从均匀分布,η服从参数21=λ的指数分布,求方程022=++ηξt t 有实根的概率.六、(10分)甲、乙两排球队进行比赛,若有一队胜4场,则比赛结束. 假定甲队在每场比赛中获胜的概率均为0.6,乙均为0.4,求比赛场数的数学期望及甲队胜4场的概率.综合练习四一、填空题(3×4=12分)1. 一批产品,其中有10个正品和2个次品,任意抽取2次,每次抽1个,抽出后不再放回,则第2次抽出的是次品的概率为_______________.2. 在区间(0,l)中随机地取两个数,则事件“两数之和小于56”的概率为_____________________. 3. ξ的分布函数⎪⎪⎩⎪⎪⎨⎧≥<≤<≤--<=≤=.3,1;31,8.0;11,4.0;1,0}{)(x x x x x P x F ξ 则ξ的分布列为_________________________.4. ξ与η独立,且都服从N (0,32)分布,ξ1,ξ2,…,ξ9和η1,η2,…,η9分别是来自于总体ξ和η的随机样本,则统计量292191ηηξξ++++= U 服从______________分布.二、选择题(3×4=12分)1. 对于任意两个事件A ,B ,有P (A -B )=[ ].(A) P (A )-P (B ); (B) P (A )-P (B )+P (AB );(C) P (A )-P (AB ); (D) P (A )+P (B )-P (A B ).2. 设随机变量ξ~N (μ,σ2),则随σ的增大,P {|ξ−μ|<σ}[ ].(A) 单调增加; (B) 单调减小; (C) 保持不变; (D) 增减不定.3. 设两个随机变量ξ与η相互独立,且服从同分布P {ξ=-1}=P {η=-1}=21,P {ξ=1}=P {η=1}=21,则下面各式中,成立的是[ ]. (A) P {ξ=η}=21; (B) P {ξ=η}=1; (C) P {ξ+η=0}=41; (D) P {ξη}=41. 4. 设ξ和η的方差存在且不为零,则D (ξ+η)=D (ξ)+D (η)是ξ和η[ ].(A) 不相关的充分条件,但不是必要条件; (B) 独立的充分条件,但不是必要条件;(C) 不相关的充分必要条件; (D) 独立的充分必要条件.三、完成下列各题(6×8=48分)1. 设有一群高射炮,每一门击中飞机的概率都是0.6,今有一架敌机入侵领空,欲以99%的概率击中它,问需要多少高射炮射击.2. 把4个球随机地放入3个盒子中去,设ξ,η可分别表示第1个、第2个盒子中的球数,求(l)(ξ,η)的分布;(2)边缘分布;(3)已知η=1时ξ的条件分布.3. 做一件事情,一次成功的概率p =0.1,若进行100次重复独立试验,问事情最可能成功多少次,并求出其概率.4. 设ξ服从泊松分布 P {ξ=k }=!k e k λλ-(k =0,1,2,…),问当k 取何值时,P {ξ=k }为最大.5. 已知一本300页的书中每页印刷错误的个数服从泊松分布P (0.2),求这本书印刷错误的总数不超过70的概率.6. 已知高度表的误差的标准差σ=15m ,求飞机上应该有多少这样的仪器,才能使得以概率0.98保证平均高度x 的误差的绝对值小于30m ?假定高度表的误差服从正态分布.7. 求抛硬币多少次,才能使子样均值x 落在0.4和0.6之间的概率至少为0.9?8. 设(ξ,η)在区域D :0<x <1,|y |<x 内服从均匀分布,求(1)关于ξ的边缘分布密度;(2) η=2ξ+l 的方差.四、(9分)某箱装有100件产品,其中一、二、三等品分别为80,10和10件,现在从中随机抽取1件,记⎩⎨⎧=.,0;,1其他等品若抽取i i ξ (i =l ,2,3) 试求(1) ξ1和ξ2的联合分布;(2) ξ1和ξ2的相关系数.五、(9分)设ξ,η独立,证明D (ξ-η)=D (ξ)+D (η).六、(10分)某城市每天的耗电量不超过100万kW ·h ,每天的耗电量与百万kW ·h 的比值称为耗电率,设该城市的耗电率为ξ,其分布密度为 ⎩⎨⎧<<-=.0;10),1()(2其他x x A x ϕ 如果发电厂每天的供电量为80万kW ·h ,问任意一天供电量不足的概率为多少?综合练习五一、填空题(3×4=12分)1. 已知P (A )=P (B )=P (C )=41,P (AB )=0,P (AC )=P (BC )=81,则A ,B ,C 全不发生的概率为_________________.2. 设ξ的密度121)(-+-=x x e x πϕ,则ξ的期望为_______________,方差为_____________________.3. 设ξ服从参数为1的指数分布,则)(2ξξ-+e E =_______________________________.4. 设ξ1,ξ2,ξ3相互独立,其中ξ1在[0,6]上服从均匀分布,ξ2服从正态分布N (0, 22),ξ3服从参数λ=3的泊松分布,记η=ξ1+2ξ2+3ξ3,则D(η)=_________________________.二、选择题(3×4=12分)1. 设A ,B 为任意两个事件,且B A ⊂,P (B )>0,则下列选项中,必然成立的是[ ].(A) P (A )<P (A |B ); (B) P (A )≤P (A |B );(C) P (A )>P (A |B ); (D) P (A )≥P (A |B ).2. 设两个相互独立的随机变量ξ和η分别服从正态分布N (0, 1)和N (1, l),则[ ].(A) P {ξ+η≤0}=21; (B) P {ξ+η≤1}=21; (C) P {ξ-η≤0}=21; (D) P {ξ-η≤1}=21. 3. 设两个相互独立的随便机变量ξ和η的方差分别为4和2,则3ξ-2η的方差是[ ].(A) 8; (B) 16; (C) 28; (D)44.4. 设x 1,…,x n 是母体ξ的n 个子样. 21)(σ=x D ,∑==n i i x n x 11,∑=--=n i i x x n s 122)(11,则[ ].(A) s 是σ的无偏估计量; (B) s 是σ的极大似然会计量;(C) s 是σ的一致估计量; (D) s 与x 相互独立.三、完成下列各题(6×8=48分)1. 任取两个真分数,求它们乘积不大于41下的概率.2. 设ξ在]2,2[ππ-上服从均匀分布,求η=cos ξ的概率密度. 3. 一电子仪器由两个部件构成,以ξ和η分别表示两个部件的寿命(单位:h),已知ξ和η的联合分布函数为⎩⎨⎧≥≥+--=+---.,0;0,0,1),()(5.05.05.0其他y x e e e y x F y x y x 问(1) ξ与η是否独立;(2)求两个部件的寿命都超过100h 的概率.4. 在长为L 的线段上任取两点,求两点间距离的数学期望及均方差.5. 为了确定事件A 的概率,需要进行一系列的试验,在100次试验中,A 发生了36次;如果取频率0.36作为A 的概率p 的近似值,求误差小于0.05的概率.6.要求某种导线电阻的标准差不得超过0.005(Ω),今在生产的一批导线中取样品9根,测得s =0.007(Ω),设总体服从正态分布,问在水平α=0.05下,能否认为这批导线的标准差显著地偏大.7. 过半径为R 的圆周上的一点,任意做圆的弦,求这些弦的平均长度.8. 从南郊乘汽车前往北郊火车站乘火车,有两条路线可走.第一条穿过市区,路程较短,但交通拥挤,所需时间(单位:min)服从正态分布N (50, 102);第二条路沿环城公路走,路程较长,但意外阻塞较少,所需时间服从正态分布N (60, 42),若有70min 时间可用,问应走哪条路?四、(9分)2台同样的自动记录仪,每台记录仪无故障工作的时间服从参数为5的指数分布.首先开动其中1台,当其发生故障时,停用,而另1台自动开动.试求2台记录仪无故障工作的总时间T 的概率密度.五、(9分)设总体ξ服从指数分布,其密度 ⎩⎨⎧≤>=-.0,0;0,)(x x ae x ax ϕ (a>0为常数) 求子样均值x 的分布. 六、(10分)设一大型设备在任何长为t 的时间内发生故障的次数N (t )服从参数为λt 的泊松分布,试求(1)相继两次故障的时间间隔T 的概率分布;(2)求在设备已经无故障工作8h 的情况下,再无故障运行8h 的概率.综合练习六一、填空题(3×4=12分)1. 已知P (A)=0.5, P (B )=0.6, 以及P (B |A )=0.8, 则P (B A )=____________.2. 若ξ在(1, 6)上服从均匀分布, 则x 2+ξx +1=0有实根的概率是______________.3. 某灯泡使用时数在1000h 以上的概率为0.2, 今3个灯泡在使用1000h 以后最多只坏1个的概率为________.4. 设由来自正态总体ξ~N (μ, σ2), 容量为9的简单随机样本得样本均值x =5, 则未知参数μ的置信度为0.95的置信区间是___________________________.二、选择题(3×4=12分)1. 若两个事件A 和B 同时出现的概率P (AB )=0, 则[ ].(A) A 和B 互不相容; (B) AB 是不可能事件; (C) AB 未必是不可能事件; (D) P (A )=0或P (B )=0.2. 设随机变量ξ的密度函数φ(x ), 且φ(-x )=φ(x ), F (x )是ξ的分布函数, 则对任意数a , 有[ ].(A) F (-a )=1-⎰a dx x 0)(ϕ; (B) F (-a )=211-⎰a dx x 0)(ϕ; (C) F (-a )= F (a ); (D) F (-a )= F (a )-1.3. 设随机变量ξ与η相互独立, 其概率分布为和 则下式中, 正确的是[ ].(A) ξ=η; (B) P {ξ=η}=0; (C) P {ξ=η}=21; (D) P {ξ=η}=1. 4. 设x 1, …, x n 是来自正态总体N (μ, σ2)的简单随机样本, x 是平均值, 记∑=--=n i i x x n s 1221)(11; ∑=-=n i i x x n s 1222)(1; ∑=--=n i i x n s 1223)(11μ; ∑=-=ni i x n s 1224)(1μ. 则服从自由度为n -1的t 分布的随机变量是[ ].(A) 11--=n s x t μ; (B) 12--=n s x t μ; (C) n s x t 3μ-=; (D) n s x t 4μ-=.三、完成下列各题(6×8=48分)1. 第一箱中有10个球, 其中有8个白球和2个黑球. 第二箱中有20个球, 其中有4个白球和16个黑球. 现从每箱中任取1球, 然后从这两球中任取1球. 问取到白球的概率是多少?2. 某种型号的电子管的寿命ξ(单位:h)具有以下的概率密度: ⎪⎩⎪⎨⎧>=.,0;1000,1000)(2其他x x x ϕ现有一大批此种管子, 任取5只, 问其中有2只寿命大于1500h 的概率是多少?3. 某工厂生产过程中, 出现次品的概率为0.05, 每100个产品为一批. 检查产品质量时, 在每批中任取一半来检查, 若发现次品不多于1个, 则认为这批产品是合格的, 求一批产品被认为是合格的概率.4. 点随机地落在中心在原点, 半径为R 的圆周上, 并且对弧长是均匀分布的. 求这点的横坐标的概率密度.5. 设x 和y 分别是取正态总体N (μ, σ2)的容量为n 的两组子样(x 1, …, x n )和(y 1, …, y n )的均值, 试确定n , 使两组子样的均值之差超过σ的概率大约为0.01.6. 某计算机系统有120个终端, 每个终端有5%时间在使用, 若各个终端使用与否是相互独立的, 试求有10个或更多终端在使用的概率.7. 某转炉炼某特种钢, 每一炉钢的合格率为0.7, 现有若干个转炉同时冶炼, 若要求至少能够炼出一炉合格钢的把握为99%, 问同时至少要有几个转炉炼钢?8. 对某一目标连续射击, 直到命中n 次为止, 设每次射击的命中率为p , 求子弹消耗量的数学期望.四、(9分)设二维随机变量(ξ, η)的密度为 ⎩⎨⎧≤≤=.,0;1,),(22其他y x y cx y x ϕ (1)试确定常数c ; (2)求边缘概率密度.五、(9分)设总体ξ~P (λ), 抽取样本x 1, …, x n , 求样本均值x 的概率分布、数学期望及方差.六、(10分)设随机变量ξ1, ξ2, ξ3, ξ4, 相互独立, 且同分布. P (ξi =0)=0.6, P (ξi =1)=0.4(i =1, 2, 3, 4), 求行列式4321ξξξξη=的概率分布.综合练习七一、填空题1.已知P (A)=0.5, P (B )=0.6, 以及P (B |A )=0.8, 则P (B A )=____________.2.设事件A ,B ,C 相互独立,P (A )=0.2,P (B )=0.4,P (C )=0.7,则)(C B A P =_______________.3.一批产品,其中有10个正品和2个次品,任意抽取2次,每次抽1个,抽出后不再放回,则第2次抽出的是次品的概率为_______________.4.将3个球随机放到5个盒子中去,则有球的盒子数的数学期望为_______________.5.设X ~N (2,σ2),P {2<X <4}=0.3,则P {X <0}=_____________.6.设X 1,X 2,X 3相互独立,其中X 1在[0,6]上服从均匀分布,X 2服从正态分布N (0, 22),X 3服从参数λ=3的泊松分布,记Y =X 1+2X 2+3X 3,则D (Y )=_________________________.7.在区间(0,l)中随机地取两个数,则事件“两数之和小于56”的概率为_____________________.二、选择题1.对于任意两个事件A ,B ,有P (A -B )=[ ].(A) P (A )-P (B ); (B) P (A )-P (B )+P (AB ); (C) P (A )-P (AB ); (D) P (A )+P (B )-P (A B ).2.设随机变量X 在[0,5]上服从均匀分布,则方程02442=+++X Xx x 有实根的概率为[ ].(A) 53; (B) 52; (C) 1; (D) 31. 3.设随机变量X 与Y 相互独立, 其概率分布为和 (A)X =Y ; (B) P {X =Y }=0; (C) P {X =Y }=21; (D) P {X =Y }=1. 4.设A ,B 为任意两个事件,且B A ⊂,P (B )>0,则下列选项中,必然成立的是[ ].(A) P (A )<P (A |B ); (B) P (A )≤P (A |B ); (C) P (A )>P (A |B ); (D) P (A )≥P (A |B ).5.设两个相互独立的随便机变量X 和Y 的方差分别为4和2,则3X -2Y 的方差是[ ].(A) 8; (B) 16; (C) 28; (D)44.6.若随机变量X 与η满足D (X +Y )=D (X -Y ),则下列式子中,正确的是[ ].(A) X 与Y 相互独立; (B) X 与Y 不相关; (C) D (X )=0; (D) D (X )·D (Y )=0.7.设总体X ~N (μ,σ2),其中σ2已知,则总体均值μ的置信区间长度L 与置信度1-α的关系是[ ].(A) 当1-α缩小时,L 缩短; (B) 当1-α缩小时,L 增长;(C) 当1-α缩小时,L 不变; (D) 以上说法都不对.8.设随机变量),(~p n B X ,已知E (X )=0.5,D (X )=0.45,则n ,p 的值为[ ].(A) n =5,p =0.3; (B) n =10,p =0.05; (C) n =1,p =0.5; (D) n =5,p =0.1.三、完成下列各题1.a ,b ,c 3个盒子,a 盒中有1个白球和2个黑球,b 盒中有1个黑球和2个白球,c 盒中有3个白球和3个黑球,扔一骰子以决定选盒;若出现1,2,3点,则选a 盒;若出4点,则选b 盒;若出现5,6点,则选c 盒. 在选中的盒中任选1球,试求(1)选中白球的概率;(2)当选中的是白球时,问此自球来自a 盒的概率.2.某计算机系统有120个终端, 每个终端有5%时间在使用, 若各个终端使用与否是相互独立的, 试求有10个或更多终端在使用的概率.3.已知(X ,Y )的概率密度函数为 ⎩⎨⎧<<<<+=其它010,10),(y x y x y x f ,求:(1)相关系数XY ρ;(2)判断X 与Y 的独立性。
概率论练习册答案第三章
习题3-11.而且12{0}1P X X ==. 求X 1和X 2的联合分布律.解 由12{0}1P X X ==知12{0}0P X X ≠=. 因此X 1和X 2的联合分布于是根据边缘概率密度和联合概率分布的关系有X 1和X 2的联合分布律(2) 注意到12{0,0}0P X X ===, 而121{0}{0}04P X P X =⋅==≠, 所以X 1和X 2不独立.2. 一盒子中有3只黑球、2只红球和2只白球, 在其中任取4只球. 以X 表示取到黑球的只数, 以Y 表示取到红球的只数. 求X 和Y 的联合分布律.解 从7只球中取4球只有3547=C 种取法. 在4只球中, 黑球有i 只, 红球有j 只(余下为白球4i j --只)的取法为4322i j i j C C C --,0,1,2,3,0,1,2,i j i j ==+≤4.于是有0223221{0,2}3535P X Y C C C ====,1113226{1,1}3535P X Y C C C ====,1213226{1,2}3535P X Y C C C ====,2023223{2,0}3535P X Y C C C ====,21132212{2,1}3535P X Y C C C ====,2203223{2,2}3535P X Y C C C ====,3013222{3,0}3535P X Y C C C ====, 3103222{3,1}3535P X Y C C C ====,{0,0}{0,1}{1,0}{3,2}0P X Y P X Y P X Y P X Y ============.3. (,)(6),02,24,0,.f x y k x y x y =--<<<<⎧⎨⎩其它求: (1) 常数k ; (2) {1,3}P X Y <<; (3) { 1.5}P X <; (4) {4}P X Y +≤.解 (1) 由(,)d d 1f x y x y +∞+∞-∞-∞=⎰⎰, 得2424222204211d (6)d (6)d (10)82y k x y x k y x x y k y y k =--=--=-=⎡⎤⎢⎥⎣⎦⎰⎰⎰, 所以 18k =. (2) 3121,31{1,3}d (6)d 8(,)d d x y P X Y y x y x f x y x y <<<<==--⎰⎰⎰⎰1322011(6)d 82y x x y =--⎡⎤⎢⎥⎣⎦⎰321113()d 828y y =-=⎰. (3) 1.51.5{ 1.5}d (,)d ()d X P X x f x y y f x x +∞-∞-∞-∞<==⎰⎰⎰4 1.521d (6)d 8y x y x --=⎰⎰1.5422011(6)d 82y x x y =--⎡⎤⎢⎥⎣⎦⎰ 421633()d 882y y =-⎰ 2732=. (4) 作直线4x y +=, 并记此直线下方区域与(,)0f x y ≠的矩形区域(0,2)(0,4)⨯的交集为G . 即:02,0G x y <<<≤4x -.见图3-8. 因此{P X Y +≤4}{(,)}P X Y G =∈(,)d d Gf x y x y =⎰⎰44201d (6)d 8x y x y x -=--⎰⎰ 4422011(6)d 82xy x x y -=--⎡⎤⎢⎥⎣⎦⎰ 42211[(6)(4)(4)]d 82y y y y =----⎰ 42211[2(4)(4)]d 82y y y =-+-⎰423211(4)(4)86y y =----⎡⎤⎢⎥⎣⎦23=. 图3-8 第4题积分区域4. 二维随机变量(,)X Y 的概率密度为2(,),1,01,0,f x y kxy x y x =⎧⎨⎩≤≤≤≤其它. 试确定k , 并求2{(,)},:,01P X Y G G x y x x ∈≤≤≤≤.解 由21114001(,)d d d (1)d 26x k kf x y xdy x kxy y x x x +∞+∞-∞-∞====-⎰⎰⎰⎰⎰,解得6=k .因而 2112401{(,)}d 6d 3()d 4x xP X Y G x xy y x x x x ∈==-=⎰⎰⎰. 5. 设二维随机变量(X , Y )概率密度为4.8(2),01,0,(,)0,.y x x y x f x y -=⎧⎨⎩≤≤≤≤其它 求关于X 和Y 边缘概率密度.解 (,)X Y 的概率密度(,)f x y 在区域:0G ≤x ≤1,0≤y ≤x 外取零值.因而, 有24.8(2)d ,01,()(,)d 0,2.4(2),01,0,x X y x y x f x f x y y x x x +∞-∞-<<==-<<=⎧⎪⎨⎪⎩⎧⎨⎩⎰⎰其它.其它.124.8(2)d ,01,()(,)d 0,2.4(34),01,0,yY y x x y f y f x y x y y y y +∞-∞-<<==-+<<=⎧⎪⎨⎪⎩⎧⎨⎩⎰⎰其它.其它. 6. 假设随机变量U 在区间[-2, 2]上服从均匀分布, 随机变量 1,1,1,1,U X U --=>-⎧⎨⎩若≤若 1,1,1, 1.U Y U -=>⎧⎨⎩若≤若试求:(1) X 和Y 的联合概率分布;(2){P X Y +≤1}.解(2){P X Y +≤1}1{1}P X Y =-+>1{1,1}P X Y =-==12133=-=. 习题3-21. 设(X , Y )的分布律为求: (1) 在条件X =2下Y 的条件分布律;(2){22}P X Y ≥≤.解 (1) 由于6.02.01.003.0}2{=+++==X P ,所以在条件X =2下Y 的条件分布律为216.03.0}2{}1,2{}2|1{========X P Y X P X Y P ,06.00}2{}2,2{}2|2{========X P Y X P X Y P ,616.01.0}2{}3,2{}2|3{========X P Y X P X Y P ,316.02.0}2{}4,2{}2|4{========X P Y X P X Y P ,{P Y ≤2}{1}{2}P Y P Y ==+==0.10.3000.20.6++++=. 而{2,2}{2,1}{2,2}{3,1}{3,2}P X Y P X Y P X Y P X Y P X Y ===+==+==+==≥≤0.3000.20.5=+++=.因此{2,2}{22}{2}P X Y P X Y P Y =≥≤≤≥≤0.550.66==. 2. 设平面区域D 由曲线1y x=及直线20,1,e y x x ===所围成, 二维随机变量(X , Y )在区域D 上服从均匀分布, 求(X , Y )关于X 的边缘概率密度在x =2处的值.解 由题设知D 的面积为22e e111d ln 2D S x x x ===⎰. 因此, (X ,Y )的密度为 1,(,),(,)20x y D f x y ∈=⎧⎪⎨⎪⎩,其它.由此可得关于X 的边缘概率密度 ()(,)d X f x f x y y +∞-∞=⎰.显然, 当x ≤1或x ≥e 2时,()0X f x =; 当21e x <<时,111()d 22x X f x y x==⎰.故(2)14X f =. 3. 设二维随机变量(X , Y )的概率密度为(,)1,01,02,0,.f x y x y x =<<<<⎧⎨⎩其它求:(1) (X , Y )的边缘概率密度(),()X Y f x f y ;(2)11{}.22P Y X ≤≤ 解 (1) 当01x <<时,20()(,)d d 2xX f x f x y y y x +∞-∞===⎰⎰;当x ≤0时或x ≥1时, ()0X f x =. 故 2,01,()0,其它.X x x f x <<=⎧⎨⎩当0<y <2时,12()(,)d d 12y Y y f y f x y x x +∞-∞===-⎰⎰;当y ≤0时或y ≥2时, ()0Y f y =.故 1,02,()20,.Y yy f y -<<=⎧⎪⎨⎪⎩其它(2) 当z ≤0时,()0Z F z =; 当z ≥2时,1)(=z F Z ;当0<z <2时, (){2Z F z P X Y =-≤2}(,)d d x y zz f x y x y -=⎰⎰≤2x12202-2d 1d d 1d zxz x zx y x y =⋅+⋅⎰⎰⎰⎰24z z =-.故 1,02,()20,.()其它Z z zz f z F z -<<'==⎧⎪⎨⎪⎩(3) {}{}11311322161122442≤,≤≤≤≤P X Y P Y X P X ===⎧⎫⎨⎬⎩⎭. 4. 设G 是由直线y =x , y =3,x =1所围成的三角形区域, 二维随机变量(,)X Y 在G 上服从二维均匀分布.求:(1) (X , Y )的联合概率密度;(2) {1}P Y X -≤;(3) 关于X 的边缘概率密度. 解 (1)由于三角形区域G 的面积等于2, 所以(,)X Y 的概率密度为⎪⎩⎪⎨⎧∉∈=.),(,0,),(,21),(G y x G y x y x f (2)记区域x y y x D -=|),{(≤}1与G 的交集为0G ,则{1}P Y X -≤0011113d d (2)22224G G x y S ===-=⎰⎰.其中0G S 为G 0的面积.(3) X 的边缘概率密度()(,)d X f x f x y y +∞-∞=⎰. 所以,当]3,1[∈x 时, 311()d (3)22X xf x y x ==-⎰. 当1<x 或3>x 时, 0)(=x f X .因此 ⎪⎩⎪⎨⎧∈-=.,0],3,1[),1(21)(其它x x x f X习题3-31. 设X 与Y 相互独立, 且分布律分别为下表:求二维随机变量(,)X Y 的分布律.解 由于X 与Y 相互独立, 所以有}{}{},{j i j i y Y P x X P y Y x X P =⋅====,6,5,2,0;0,21,1=--=j i .因此可得二维随机变量(,)X Y 的联合分布律2. 设(X , Y )的分布律如下表:问,αβ为何值时X 与Y 相互独立? 解由于边缘分布满足23111,1i j i j p p ⋅⋅====∑∑, 又X , Y 相互独立的等价条件为 p ij = p i . p .j (i =1,2; j =1,2,3).故可得方程组 21,3111().939αβα++==⋅+⎧⎪⎪⎨⎪⎪⎩解得29α=,19β=.经检验, 当29α=,19β=时, 对于所有的i =1,2; j =1,2,3均有p ij = p i . p .j 成立.因此当29α=,19β=时, X 与Y 相互独立..3. 设随机变量X 与Y 的概率密度为()e (,)0,.,01,0,x y b f x y x y -+=⎧<<>⎨⎩其它(1) 试确定常数b .(2) 求边缘概率密度()X f x , ()Y f y . (3) 问X 与Y 是否相互独立? 解 (1) 由11()101(,)d d e d d e d e d (1e )x y y x f x y x y b y x b y x b +∞+∞+∞+∞-+----∞-∞====-⎰⎰⎰⎰⎰⎰,得 111eb -=-.(2) ()(,)d X f x f x y y ∞-∞=⎰1e ,01,1e 0,xx --<<=-⎧⎪⎨⎪⎩其它.()(,)d Y f y f x y x ∞-∞=⎰e ,0,0,y y ->=⎧⎨⎩其它.(3) 由于(,)()()X Y f x y f x f y =⋅,所以X 与Y 相互独立.4. 设X 和Y 是两个相互独立的随机变量, X 在(0, 1)上服从均匀分布, Y 的概率密度为21e ,0,()2Y yy f y y ->=⎧⎪⎨⎪⎩,≤0.(1) 求X 和Y 的联合概率密度.(2) 设关于a 的二次方程为220a Xa Y ++=, 试求a 有实根的概率.解 (1) 由题设知X 和Y 的概率密度分别为1,01,()0,X x f x <<=⎧⎨⎩其它, 21e ,0,()20,.yY y f y ->=⎧⎪⎨⎪⎩其它 因X 和Y 相互独立, 故(X , Y )的联合概率密度为21e ,01,0(,)()()20,.yX Y x y f x y f x f y -<<>==⎧⎪⎨⎪⎩其它 (2) 方程有实根的充要条件是判别式大于等于零. 即244X Y ∆=-≥20X ⇔≥Y .因此事件{方程有实根}2{X =≥}Y .下面计算2{P X ≥}Y (参见图3-3).2{P X ≥}Y 2211221(,)d d e d (1e)d 2yxx Df x y xdy x y x --===-⎰⎰⎰⎰⎰2121ed 12[(1)(0)]0.1445xx πΦΦ-=-=--≈⎰.图3-3 第6题积分区域 习题3-41. 设二维随机变量(X ,Y )的概率分布为YX0 1若随机事件{X =0}与{X +Y =1}相互独立, 求常数a , b .解 首先, 由题设知0.40.11a b +++=. 由此得0.5a b +=. 此外,{0}0.4P X a ==+,{1}{0,1}{1,0}0.5P X Y P X Y P X Y a b +====+===+=, {0,1}{0,1}P X X Y P X Y a =+=====. 根据题意有{0,1}{0}{1}P X X Y P X P X Y =+===+=,即(0.4)0.5a a =+⨯. 解得0.4,0.1a b ==.2. 设两个相互独立的随机变量X ,Y 的分布律分别为求随机变量Z = X + Y 的分布律. 解 随机变量Z = X + Y 的可能取值为7,5,3.Z 的分布律为18.06.0.03}2,1{}3{=⨯=====Y X P Z P , {5}{1,4}{3,2}0.30.4070.60.54P Z P X Y P X Y ====+===⨯+⨯=,28.04.07.0}4,3{}7{=⨯=====Y X P Z P ,或写为3. 随机变量X 与Y 相互独立, 且均服从区间[0,3]上的均匀分布, 求{}max{,}1P X Y ≤.解 由题意知, X 与Y 的概率密度均为1,03,()30x f x =⎧⎪⎨⎪⎩≤≤,其它.又由独立性, 有P {max{X +Y }≤1}=P {X ≤1,Y ≤1}= P {X ≤1} P {Y ≤1}.而 P {X ≤1}= P {Y ≤1}11011()d d 33f x x x -∞===⎰⎰, 故 P {max{X +Y }≤1}=111339⨯=.4. 设X 和Y 是两个相互独立的随机变量, 且X 服从正态分布N (μ, σ2), Y 服从均匀分布U (-a , a )( a >0), 试求随机变量和Z =X +Y 的概率密度.解 已知X 和Y 的概率密度分别为22()2()e2x X f x μσπσ--=, ),(+∞-∞∈x ; ⎪⎩⎪⎨⎧-∉-∈=).,(,0),,(,21)(a a y a a y ay f Y .由于X 和Y 相互独立, 所以22()21()()()d e d 22z y aZ X Y a f z f z y f y y y a μσπσ---+∞-∞-=-=⎰⎰=1[()()]2z μa z μa ΦΦa σσ-+---. 10. 设随机变量X 和Y 的联合分布是正方形G={(x,y )|1≤x ≤3, 1≤y ≤3}上的均匀分布, 试求随机变量U=|X -Y|的概率密度f (u ).解 由题设知, X 和Y 的联合概率密度为111,3,3,(,)40,.x y f x y =⎧⎪⎨⎪⎩≤≤≤≤其它记()F u 为U 的分布函数, 参见图3-7, 则有 当u ≤0时,(){||F u P X Y =-≤u }=0; 当u ≥2时,()1F u =;当0< u <2时, 图3-7 第8题积分区域||(){}(,)d d x y uF u P U u f x y x y -==⎰⎰≤≤21[42(2)]412u =-⨯- 211(2)4u =--.故随机变量||U X Y =-的概率密度为1(2),02,()20,u u p u -<<=⎧⎪⎨⎪⎩其它..总习题三1. 设随机变量(X , Y )的概率密度为⎪⎩⎪⎨⎧<<<=.,0,10,||,1),(其它x x y y x f 求条件概率密度)|()|(||y x f x y f Y X X Y 和.解 首先2,01,()0,.(,)其它X x x f x f x y dy +∞-∞<<==⎧⎨⎩⎰1,01,()1,10,0,(,)≤其它.Y y y f y y y f x y dx +∞-∞-<<==+-<⎧⎪⎨⎪⎩⎰图3-9第1题积分区域当01y <<时, |1,1,1(|)0,X Y y x y f x y x <<-=⎧⎪⎨⎪⎩取其它值.当1y -<≤0时, |1,1,1(|)0,X Y y x y f x y x -<<+=⎧⎪⎨⎪⎩取其它值.当10<<x 时, |1,||,(|)20,Y X y x f y x x y <=⎧⎪⎨⎪⎩取其它值.2. 设随机变量X 与Y 相互独立, 下表列出二维随机变量(,)X Y 的分布律及关于X 和关于Y 的边缘分布律中部分数值, 试将其余数值填入表中空白处 .解 首先, 由于11121{}{,}{,}P Y y P X x Y y P X x Y y ====+==, 所以有11121111{,}{}{,}6824P X x Y y P Y y P X x Y y ====-===-=.在此基础上利用X 和Y 的独立性, 有11111{,}124{}1{}46P X x Y y P X x P Y y =======.于是 2113{}1{}144P X x P X x ==-==-=.再次, 利用X 和Y 的独立性, 有12211{,}18{}1{}24P X x Y y P Y y P X x =======.于是 312111{}1{}{}1623P Y y P Y y P Y y ==-=-==--=.最后, 利用X 和Y 的独立性, 有2222313{,}{}{}428P X x Y y P X x P Y y ======⨯=; 2323311{,}{}{}434P X x Y y P X x P Y y ======⨯=;1313111{,}{}{}4312P X x Y y P X x P Y y ======⨯=.因此得到下表3. (34)e (,)0,.,0,0,x y k f x y x y -+=⎧>>⎨⎩其它 (1) 求常数k ;(2) 求(X ,Y )的分布函数;(3) 计算{01,02}P X Y <<≤≤; (4) 计算(),x f x ()y f y ;(5) 问随机变量X 与Y 是否相互独立? 解 (1)由3401(,)d d e d e d 12xy kf x y x y k x y +∞+∞+∞+∞---∞-∞===⎰⎰⎰⎰,可得12=k .(2) (X ,Y )的分布函数(,)(,)d d x y F x y f u v x y -∞-∞=⎰⎰.当x <0或y <0时,有 0),(=y x F ; 当0,0x y ≥≥时, 34340(,)12e d e d (1e )(1e )x yuv x y F x y u v ----==--⎰⎰.即 34(1e )(1e ),0,0,(,)0,.x y x y F x y --⎧--≥≥=⎨⎩其它(3) {01,02}P X Y <<≤≤38(1,2)(0,0)(1e )(1e )F F --=-=--. (4) (34)012ed ,0,()(,)d 0,其它.x y X y x f x f x y y +∞-++∞-∞⎧>⎪==⎨⎪⎩⎰⎰所以 33e ,0,()0,其它.x X x f x -⎧>=⎨⎩类似地, 有44e ,0,()0,其它.y Y y f y -⎧>=⎨⎩显然2),(),()(),(R y x y f x f y x f Y X ∈∀⋅=, 故X 与Y 相互独立. 4.解 已知的分布律为注意到41260}1{}1{=++====Y P X P , 而0}1,1{===Y X P ,可见P {X =1, Y =1}≠P {X =1}P {Y =1}. 因此X 与Y 不相互独立.(2) Z X Y =+的可能取值为3, 4, 5, 6, 且316161}1,2{}2,1{}3{=+===+====Y X P Y X P Z P , }1,3{}2,2{}3,1{}4{==+==+====Y X P Y X P Y X P Z P3112161121=++=, 316161}2,3{}3,2{}5{=+===+====Y X P Y X P Z P . 即Z X Y =+(3) V =21}2,2{}1,2{}2,1{}2{===+==+====Y X P Y X P Y X P V P , 21}2{1}3{==-==V P V P . 即max(,)V X Y =的分布律为(4) min{U =}3,1{}2,1{}1{==+====Y X P Y X P U P}1,2{}1,3{==+==+Y X P Y X P 21=, 21}1{1}2{==-==U P U P . 即min{,}U X Y =的分布律为(5) W U V =+31}1,2{}2,1{}2,1{}3{===+=======Y X P Y X P V U P W P ,}2,2{}3,1{}4{==+====V U P V U P W P31}2,2{}1,3{}3,1{===+==+===y X P Y X P Y X P ,31}2,3{}3,2{}3,2{}5{===+=======Y X P Y X P V U P W P .5. 2,01,01,(,)0,x y x y f x y --<<<<⎧=⎨⎩其它. (1) 求P {X >2Y }; (2) 求Z = X +Y 的概率密度f Z (z ).解 (1) 1120227{2}(,)d d d (2)d 24yx yP X Y f x y x y y x y x >>==--=⎰⎰⎰⎰. (2) 方法一: 先求Z 的分布函数:()()(,)d d Z x y zF z P X Y Z f x y x y +=+=⎰⎰≤≤.当z <0时, F Z (z )<0; 当0≤z <1时, 1()(,)d d d (2)d zz yZ D F z f x y x y y x y x -==--⎰⎰⎰⎰= z 2-13z 3; 当1≤z <2时, 2111()1(,)d d 1d (2)d Z z z yD F z f x y x y y x y x --=-=---⎰⎰⎰⎰= 1-13(2-z )3; 当z ≥2时, F Z (z ) = 1.故Z = X +Y 的概率密度为222,01,()()(2),12,0,Z Z z z z f z F z z z ⎧-<<⎪'==-<⎨⎪⎩≤其它.方法二: 利用公式()(,)d :Z f z f x z x x +∞-∞=-⎰2(),01,01,(,)0,x z x x z x f x z x ---<<<-<⎧-=⎨⎩其它 2,01,1,0,.z x x z x -<<<<+⎧=⎨⎩其它当z ≤0或z ≥2时, f Z (z ) = 0; 当0<z <1时, 0()(2)d (2);zZ f z z x z z =-=-⎰当1≤z <2时, 121()(2)d (2).Zz f z z x z -=-=-⎰故Z = X +Y 的概率密度为222,01,()(2),12,0,.Z z z z f z z z ⎧-<<⎪=-<⎨⎪⎩≤其它.6. 设随机变量(X , Y )得密度为21,01,02,(,)30,.其它x xy x y x y ϕ⎧+⎪=⎨⎪⎩≤≤≤≤试求: (1) (X , Y )的分布函数; (2) (X , Y )的两个边缘分布密度; (3) (X , Y )的两个条件密度; (4) 概率P {X +Y >1}, P {Y >X }及P {Y <12|X <12}.解 (1) 当x<0或y <0时, φ(x , y ) = 0, 所以 F (x , y ) = 0.当0≤x <1, 0≤y <2时, φ(x , y ) = x 2+13xy ,所以 201(,)(,)d d [()d ]d 3x yx yF x y u v u v u uv v u -∞-∞==+⎰⎰⎰⎰ϕ32211312x y x y =+. 当0≤x <1, 2≤y 时,2(,)(,)d d [(,)d ]d [(,)d ]d xyx y x F x y u v u v u v v u u v v u -∞-∞===⎰⎰⎰⎰⎰⎰ϕϕϕ22001[()d ]d 3xu uv v u =+⎰⎰21(21)3x x =+. 当1≤x , 0≤y <2时,1(,)(,)d d [(,)d ]d xyyF x y u v u v u v v u -∞-∞==⎰⎰⎰⎰ϕϕ12001[()d ]d 3yu uv v u =+⎰⎰1(4)12y y =+. 当1≤x , 2≤y 时,122001(,)[()d ]d 13F x y u uv v u =+=⎰⎰.综上所述, 分布函数为220,00,1(),01,02,341(,)(21),01,2,31(4),1,02,121,1, 2.x y y x y x x y F x y x x x y y y x y x y <<⎧⎪⎪+<<⎪⎪⎪=+≥⎨⎪⎪+≥⎪⎪≥≥⎪⎩或≤≤≤≤≤< (2) 当0≤x ≤1时,22202()(,)d ()d 2,33X xy x x y y x y x x ϕϕ+∞-∞==+=+⎰⎰故 222,01,()30,.其它≤≤X x x x x ϕ⎧+⎪=⎨⎪⎩当0≤y ≤2时,12011()(,)d ()d ,336Y xy y x y x x x y ϕϕ+∞-∞==+=+⎰⎰ 故 11,02,()360,.其它≤≤Y y y y ϕ⎧+⎪=⎨⎪⎩(3) 当0≤y ≤2时, X 关于Y = y 的条件概率密度为2(,)62(|).()2Y x y x xy x y y yϕϕϕ+==+当0≤x ≤1时, Y 关于X = x 的条件概率密度为(,)3(|).()62X x y x yy x y x ϕϕϕ+==+(4) 参见图3-10.图3-10 第9题积分区域 图3-11 第9题积分区域1{1}(,)d d x y P X Y x y x y ϕ+>+>=⎰⎰12201165d ()d .372xx x xy y -=+=⎰⎰ 同理, 参见图3-11.{}(,)d d y xP Y X x y x y ϕ>>=⎰⎰122117d ()d .324xx x xy y =+=⎰⎰ 1111{,}(,)112222{|}1122{}()22X P X Y F P Y X P X F <<<<==<211(,)221201()534.32()d |X y x y x x xϕ+==⎰。
概率论与数理统计练习册(最新)
院(系) 班 姓名 学号第一章 概率论的基本概念 练习1.1 随机试验与随机事件一、填空题1.样本空间是 .2.样本空间中各个基本事件之间是 关系.3.对立事件____ 不相容事件;不相容事件 对立事件.(填一定是,不是,不一定是)4.对立事件A 与A 在每一次试验中 发生.5.设随机事件A 与B ,若AB =A B ,则A 与B 的关系为___________6.设A ,B 为任意两个随机事件,请把下列事件化为最简式: (1)(A B)(A B)(A B)(A B)=______; (2)ABAB AB A B AB=______-;二、写出以下随机试验的样本空间:1.从两名男乒乓球选手B A ,和三名女乒乓球选手,,C D E 中选拔一对选手参加男女混合双打,观察选择结果。
2.10件产品中有4件次品,其余全是正品,从这10件产品中连续抽取产品,每次一件,直到抽到次品为止,记录抽出的正品件数。
三、有三位学生参加高考,以i A 表示第i 人考取(1,2,3i =).试用i A 表示以下事实: 1.至少有一个考取;2.至多有两人考取;3.恰好有两人落榜。
四、投掷一枚硬币5次,问下列事件A 的逆事件A 是怎样的事件?1. A 表示至少出现3次正面;2. A 表示至多出现3次正面;3. A 表示至少出现3次反面。
五、袋中有十个球,分别编有1至10共十个号码,从其中任取一个球,设事件A 表示“取得的球的号码是偶数”, 事件B 表示“取得的球的号码是奇数”, 事件C 表示“取得的球的号码小于5”,则,,,,,C A C AC A C A B AB ⋃-⋃分别表示什么事件?六、在某系的学生中任选一名学生,令事件A 表示“被选出者是女生”;事件B 表示“被选出者是三年级学生”;事件C 表示“被选出者是会弹钢琴”。
(1)说出事件C AB 的含义;(2)什么时候有恒等式C C B A = ; (3) 什么时候有关系式B C ⊆正确; (4)什么时候有等式B A =成立。
概率第二版练习册(1-7章)
8.一个工人看管三台机床,在一个小时内机床不需要人照看的概率:第一台为 0.9 ,第二台为 0.8 ,第三 台为 0.7 ,求在一个小时内三台机床中最多有一台需要工人照看的概率.
7
9.设每次射击的命中率为 0.2 ,问至少必须进行多少次独立射击,才能使至少击中一次的概率不小于 0.9 ?
概率论与数理统计练习册
姓名_______________________专业班级_______________________学号_______________________
第 1 章 随机事件和概率
一、填空题.
习题 1-1 随机事件
1.一批产品中有正品和次品,依次任取 3 件,令 Ai 表示“第 i 件为正品”, i 1, 2, 3 ,则
.
4.100 件产品中有 14 件次品,现随机抽取 10 件,观察 10 件中所含次品数,则样本空间元素数目
为
.
5.设甲乙两人进行象棋比赛,事件 A 表示“甲胜乙负”,则 A 表示
.
6 . 一 射 手 向 某 一 目 标 射 击 4 次 , Ai 表 示 “ 第 i 次 射 击 时 命 中 ” , 则 事 件 “ 至 多 击 中 三 次 ” 可 表 示
,
P(A B)
, P( AB)
, P(A | B)
.
3.已知 P(B) 0.4, P( A B) 0.5 ,则 P( A | B)
.
4.在 50 张彩票中有两张奖票,甲乙先后任意抽取其中一张(不放回),则甲中奖的概率为 ,若乙抽取
之前已知甲抽取的结果,则当甲中奖时,乙中奖的概率为
概率论与数理统计练习册(最新)
院(系) 班 姓名 学号第一章 概率论的基本概念 练习1.1 随机试验与随机事件一、填空题1.样本空间是 .2.样本空间中各个基本事件之间是 关系.3.对立事件____ 不相容事件;不相容事件 对立事件.(填一定是,不是,不一定是)4.对立事件A 与A 在每一次试验中 发生.5.设随机事件A 与B ,若AB =A B ,则A 与B 的关系为___________6.设A ,B 为任意两个随机事件,请把下列事件化为最简式: (1)(A B)(A B)(A B)(A B)=______; (2)ABAB AB A B AB=______-;二、写出以下随机试验的样本空间:1.从两名男乒乓球选手B A ,和三名女乒乓球选手,,C D E 中选拔一对选手参加男女混合双打,观察选择结果。
2.10件产品中有4件次品,其余全是正品,从这10件产品中连续抽取产品,每次一件,直到抽到次品为止,记录抽出的正品件数。
三、有三位学生参加高考,以i A 表示第i 人考取(1,2,3i =).试用i A 表示以下事实: 1.至少有一个考取;2.至多有两人考取;3.恰好有两人落榜。
四、投掷一枚硬币5次,问下列事件A 的逆事件A 是怎样的事件?1. A 表示至少出现3次正面;2. A 表示至多出现3次正面;3. A 表示至少出现3次反面。
五、袋中有十个球,分别编有1至10共十个号码,从其中任取一个球,设事件A 表示“取得的球的号码是偶数”, 事件B 表示“取得的球的号码是奇数”, 事件C 表示“取得的球的号码小于5”,则,,,,,C A C AC A C A B AB ⋃-⋃分别表示什么事件?六、在某系的学生中任选一名学生,令事件A 表示“被选出者是女生”;事件B 表示“被选出者是三年级学生”;事件C 表示“被选出者是会弹钢琴”。
(1)说出事件C AB 的含义;(2)什么时候有恒等式C C B A = ; (3) 什么时候有关系式B C ⊆正确; (4)什么时候有等式B A =成立。
概率论习题册
10.设随机变量 的相关系数为0.5, , ,则 。
11.设随机变量 的方差为2,用切比雪夫不等式估计 。
12.设袋内有5个红球、3个白球和2个黑球,从袋中任取3个球,则恰好取到1个红球、1个白球和1个黑球的概率为_________.
D、由(X,Y)的边缘概率密度可完全确定(X,Y)的概率密度
13.设随机变量X~N(1,4),F(x)为X的分布函数, (x)为标准正态分布函数,则F(3)=
A. (0.5)B. (0.75)
C. (1)D. (3)
14.设随机变量X的概率密度为f(x)= 则常数c=
A.-3B.-1
C.- D.1
15.设随机变量 与 相互独立,其概率分布分别为
13.设随机变量X的分布律为
X
-2
0
1
2
P
0.1
0.2
0.3
0.4
记Y=X2,则P{Y=4}=_________.
14.若 服从[0,2]上的均匀分布,则 =.
15.若随机变量X~B(4, ),则P{X≥1}=_________.
16.设随机变量X~N(0,4),则E(X2)=_________.
17.设随机变量X~N(0,1),Y~N(0,1),Cov(X,Y)=0.5,则D(X+Y)=_________.
《概率论与数理统计》练习册
一、填空题
1.设随机事件A与B相互独立,且P(A)=P(B)= ,则 =_________.
2.设A为随机事件,P(A)=0.3,则P( )=_________.
3.设随机变量X的分布函数为F(x)= 则当x>0时,X的概率密度f(x)=_________.
概率论与数理统计练习册—第一章答案
第一章 概率论的基本概念基础训练I一、选择题1. 以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为:( D )。
A )甲种产品滞销,乙种产品畅销;B )甲乙产品均畅销;C )甲种产品滞销;D )甲产品滞销或乙种产品畅销.2、设A ,B ,C 是三个事件,则C B A ⋃⋃表示( C )。
A ) A ,B ,C 都发生; B ) A ,B ,C 都不发生;C ) A ,B ,C 至少有一个发生;D ) A ,B ,C 不多于一个发生3、对于任意事件B A ,,有=-)(B A P ( C )。
A ))()(B P A P -; B ))()()(AB P B P A P +-;C ))()(AB P A P -;D ))()()(AB P B P A P -+。
4、已知5个人进行不放回抽签测试,袋中5道试题(3道易题,2道难题),问第3个人抽中易题的概率是( A ) 。
A ) 3/5;B )3/4;C )2/4;D )3/10.5、抛一枚硬币,反复掷4次,则恰有3次出现正面的概率是( D )。
A ) 1/16B ) 1/8C ) 1/10D ) 1/46、设()0.8P A =,()0.7P B =,(|)0.8P A B =,则下列结论正确的有( A )。
A )B A ,相互独立; B )B A ,互不相容;C )A B ⊃;D ))()()(B P A P B A P +=⋃。
二、填空题1.设C B A ,,是随机事件,则事件“A 、B 都不发生,C 发生”表示为C B A , “C B A ,,至少有两个发生”表示成BC AC AB ⋃⋃ 。
2.设A 、B 互不相容,4.0)(=A P ,7.0)(=⋃B A P ,则=)(B P 0.3 ;3. 某市有50%住户订日报,有65%住户订晚报,有85%的住户至少订这两种报纸中的一种,则同时订这两种的住户百分比是:30%;4.设4/1)()()(===C P B P A P ,0)()(==BC P AB P ,8/1)(=AC P ,则C B A 、、三件事至少有一个发生的概率为:5/8;5. 若A 、B 互不相容,且,0)(>A P 则=)/(A B P 0 ;若A 、B 相互独立,,且,0)(>A P 则=)/(A B P )(B P 。
概率论与数理统计练习册题目
第一章 概率论的基本概念 习题一 随机试验、随机事件 一、判断题1.()A B B A =⋃- ( )2.C B A C B A =⋃ ( )3.()φ=B A AB ( ) 4.若C B C A ⋃=⋃,则B A = ( ) 5.若B A ⊂,则AB A = ( ) 6.若A C AB ⊂=,φ,则φ=BC ( )7.袋中有1个白球,3个红球,今随机取出3个,则(1)事件“含有红球”为必然事件; ( ) (2)事件“不含白球”为不可能事件; ( ) (3)事件“含有白球”为随机事件; ( ) 8.互斥事件必为互逆事件 ( )二、填空题1. 一次掷两颗骰子,(1)若观察两颗骰子各自出现的点数搭配情况,这个随机试验的样本空间为 ; (2)若观察两颗骰子的点数之和,则这个随机试验的样本空间为 。
2.化简事件()()()=⋃⋃⋃B A B A B A 。
3.设A,B,C 为三事件,用A,B,C 交并补关系表示下列事件: (1)A 不发生,B 与C 都发生可表示为 ; (2)A 与B 都不发生,而C 发生可表示为 ;(3)A 发生,但B 与C 可能发生也可能不发生可表示为 ; (4)A,B,C 都发生或不发生可表示为 ; (5)A,B,C 中至少有一个发生可表示为 ; (6)A,B,C 中至多有一个发生可表示为 ; (7)A,B,C 中恰有一个发生可表示为 ; (8)A,B,C 中至少有两个发生可表示为 ; (9)A,B,C 中至多有两个发生可表示为 ; (10)A,B,C 中恰有两个发生可表示为 ; 三、选择题1.对飞机进行两次射击,每次射一弹,设A 表示“恰有一弹击中飞机”,B 表示“至少有一弹击中飞机”,C 表示“两弹都击中飞机”,D 表示“两弹都没击中飞机”,则下列说法中错误的是( )。
A 、A 与D 是互不相容的B 、A 与C 是相容的C 、B 与C 是相容的D 、B 与D 是相互对应的事件 2.下列关系中能导出“A 发生则B 与C 同时发生”的有( )A 、A ABC =;B 、AC B A =⋃⋃; C 、A BC ⊂ ;D 、C B A ⊂⊂四、写出下列随机试验的样本空间1.记录一个小班一次数学考试的平均分数(设以百分制记分);2.一个口袋中有5个外形相同的球,编号分别为1、2、3、4、5,从中同时取出3个球;3.某人射击一个目标,若击中目标,射击就停止,记录射击的次数。
概率练习册含答案
一、判断题(本大题共 5 题,每题 2 分,共 10 分)1.设A 为任一随机事件,则P(A)=1-P(A ) ( √ )2.设随机事件A 与B 相互独立,则A 与B 也相互独立 ( √ )3.设X ,Y 为随机变量,则E(XY)=E(X)E(Y) ( × )4.设随机变量X 与Y 的相关系数ρXY =0,则X 与Y 相互独立 ( × )5.设X 1,X 2,…X n 是总体X 的样本则X =1∑=ni iX1是总体期望μ无偏估计 ( √ )二、填空题(本大题共5题,每题 3 分,共15 分)1. 设P(A)=0.2,P(B)=0.5,P(AB)=0.05,则P(A ︱B)=0.1; P(B ︱A)=0.252. 设X ~N(30, 5),则 D(2X+3)= 203. 设X ~P(λ),E (X )=2,则λ= 24. 设总体X ~N(0,1), X 1,X 2,…,X 10是X 的样本,则统计量2χ=∑=1012i i X ~2(10)χ5.设X 1,X 2,…X n 是总体X 的样本,则总体方差σ2的矩估计是()2211ni i B X Xn ==-∑三、单项选择题(本大题共 5分,每题3 分,共 15 分)1.设A ,B 为随机事件,则B A =( B )A . AB ; B 。
A B ;C 。
AB ;D 。
A ∪B ;2.函数f(x)=1,0,a xb b a ì#ïí-ïî其它是( C )的分布密度函数A. 指数分布 ;B. 二项分布 ;C.均匀分布;D. 普阿松分布 ;3.在n 次独立重复试验中,P(A)= p, P(A )=q, 则事件A 发生k 次的概率是( C )A. p k; B .p k qn -k; C. C n k p k qn -k; D. q k pn -k;4. 设X 1,X 2,X 3是总体X ~N(μ,σ2)的样本,μ未知,σ2已知, 则下列( D)不是统计量A. X ;B. X 12+X 22+X 32; C. X 1X 2X 3+σ ; D. μ+ X 1/X 2;5. 若假设检验0H 为原假设,则下列说法正确的是( B )A.0H 为真时接收0H 是犯取伪错误 ;B. 0H 为真时拒绝0H 是犯弃真错误;C.0H 为假时接收0H 是犯弃真错误;D. 0H 为假时拒绝0H 是犯取伪错误 四、计算题(本大题共 4 题,每题 10分,共 40 分)1.设两台车床生产相同的零件,第一台的生产能力是第二台的2倍,且第一台的优质品率为0.6,第二台的优质品率为0.9, 现从混装的零件箱中任意抽取一个零件,求该零件是优质品的概率。
概率练习册答案
班级 学号 姓名(十七)随机事件及概率1、投掷一粒骰子的试验,我们将"出现偶数点"称为( D )A 、样本空间B 、必然事件C 、不可能事件D 、随机事件2、事件B A ,互为对立事件等价于( D )A 、B A ,互不相容 B 、B A ,相互独立C 、Ω=+B AD 、Φ=Ω=+AB B A 且3、设B A ,为两个事件,则__B A AB +=(C )A 、不可能事件B 、必然事件C 、AD 、B A + 4、B A ,为两事件,若()4.0)(,2.0)(,8.0__===+B P A P B A P ,则( B )A 、32.0____=⎪⎭⎫ ⎝⎛B A P B 、2.0____=⎪⎭⎫ ⎝⎛B A PC 、4.0)(=AB PD 、48.0)(____=AB P 因为:2.08.01)(1)(1)(=-=+-=-=B A P B A P B A P5、当__A 与__B 互不相容时,=+)(______B A P (C )A 、)(1A P -B 、)()(1B P A P --C 、0D 、)()(____B P A P 因为:0)Φ()()(===+P B A P B A P6、设有10个产品,其中3个次品,7个正品,现从中任取4个产品,则取到的4个产品都是正品的概率为( C ) A 、107 B 、44107 C 、41047C C D 、1074⨯ 7、设C B A ,,为三个事件,试用这三个事件表示下列事件:(1)C B A ,,三个事件至少有一个发生;(2)A 不发生,B 与C 均发生;(3)C B A ,,三个事件至少有2个发生;(4)C B A ,,三个事件中恰有一个发生;(5)A 发生,B 与C 都不发生。
解:(1)A+B+C ;(2)BC A ;(3)AB+AC+BC ;(4)C B A C B A C B A ++;(5)C B A 。
8、随机抽检三件产品,设A 表示“三件中至少有一件是废品”;B 表示“三件中至少有两件是废品”;C 表示“三件都是废品”。
概率练习册答案
概率练习册答案(总73页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2第一章 概率论的基本概念一、选择题1.将一枚硬币连抛两次,则此随机试验的样本空间为( ) A .{(正,正),(反,反),(一正一反)}B.{(反,正),(正,反),(正,正),(反,反)} C .{一次正面,两次正面,没有正面} D.{先得正面,先得反面}2.设A ,B 为任意两个事件,则事件(AUB)(Ω-AB)表示( ) A .必然事件 B .A 与B 恰有一个发生 C .不可能事件 D .A 与B 不同时发生3.设A ,B 为随机事件,则下列各式中正确的是( ). (AB)=P(A)P(B) (A-B)=P(A)-P(B) C.)()(B A P B A P -= (A+B)=P(A)+P(B)4.设A,B 为随机事件,则下列各式中不能恒成立的是( ). (A -B)=P(A)-P(AB) (AB)=P(B)P(A|B),其中P(B)>0 (A+B)=P(A)+P(B)(A)+P(A )=15.若φ≠AB ,则下列各式中错误的是( ). A .0)(≥AB P B.1)(≤AB P (A+B)=P(A)+P(B) (A-B)≤P(A)6.若φ≠AB ,则( ). A. A,B 为对立事件 B.B A =C.φ=B A(A-B)≤P(A)7.若,B A ⊂则下面答案错误的是( ).A. ()B P A P ≤)(B. ()0A -B P ≥ 未发生A 可能发生发生A 可能不发生38.(1,2,,)i A i n =为一列随机事件,且12()0n P A A A >,则下列叙述中错误的是( ).A.若诸i A 两两互斥,则∑∑===ni ini iA P A P 11)()(B.若诸i A 相互独立,则11()1(1())nniii i P A P A ===--∑∏C.若诸i A 相互独立,则11()()nni i i i P A P A ===∏D.)|()|()|()()(1231211-=Λ=n n ni iA A P A A P A AP A P A P9.袋中有a 个白球,b 个黑球,从中任取一个,则取得白球的概率是( ). A.21 B.ba +1 C.ba a + D.ba b + 10.设有r 个人,365≤r ,并设每个人的生日在一年365天中的每一天的可能性为均等的,则此r 个人中至少有某两个人生日相同的概率为( ).A.rr P 3651365-B. rr r C 365!365⋅ C. 365!1r -D.rr 365!1-11.设A,B,C 是三个相互独立的事件,且,1)(0<<C P 则下列给定的四对 事件中,不独立的是( ). A.C AUB 与 B. B A -与CC. C AC 与D. C AB 与12.当事件A 与B 同时发生时,事件C 也随之发生,则( ). A.1)()()(-+≤B P A P C P B.1)()()(-+≥B P A P C P (C)=P(AB)D.()()P C P AB =13.设,1)()|(,1)(0,1)(0=+<<<<B A P B A P B P A P 且则( ). A. A 与B 不相容B. A 与B 相容4C. A 与B 不独立D. A 与B 独立14.设事件A,B 是互不相容的,且()0,()0P A P B >>,则下列结论正确的 是( ). (A|B)=0B.(|)()P A B P A =C.()()()P AB P A P B = (B|A)>015.四人独立地破译一份密码,已知各人能译出的概率分别为61,31,41,51则密码最终能被译出的概率为( ).B.21 C.52D.32 16.已知11()()(),()0,()(),416P A P B P C P AB P AC P BC ======则事件A,B,C 全不发生的概率为( ). A.81B.83 C.85 D.87 17.三个箱子,第一箱中有4个黑球1个白球,第二箱中有3个黑球3个白球,第三个箱中有3个黑球5个白球,现随机取一个箱子,再从这个箱中取出一个球,则取到白球的概率是( ). A.12053 B.199 C.12067 D.1910 18.有三类箱子,箱中装有黑、白两种颜色的小球,各类箱子中黑球、白球数目之比为,2:3,2:1,1:4已知这三类箱子数目之比为1:3:2,现随机取一个箱子,再从中随机取出一个球,则取到白球的概率为( ). A.135 B.4519 C.157 D.3019 19.接上题,若已知取到的是一只白球,则此球是来自第二类箱子的概率为( ). A.21B.31 C.75 D.71 答:1.答案:(B )5解:AUB 表示A 与B 至少有一个发生,Ω-AB 表示A 与B 不能同时发生,因此(AUB)(Ω-AB)表示A 与B 恰有一个发生. 3.答案:(C )4. 答案:(C ) 注:C 成立的条件:A 与B 互不相容.5. 答案:(C ) 注:C 成立的条件:A 与B 互不相容,即AB φ=.6. 答案:(D ) 注:由C 得出A+B=Ω.7. 答案:(C )8. 答案:(D )注:选项B 由于11111()1()1()1()1(1())n nnnni i i i i i i i i i P A P A P A P A P A ======-=-==-=--∑∑∏∏9.答案:(C ) 注:古典概型中事件A 发生的概率为()()()N A P A N =Ω. 10.答案:(A )解:用A 来表示事件“此r 个人中至少有某两个人生日相同”,考虑A的对立事件A “此r 个人的生日各不相同”利用上一题的结论可知365365!()365365r r r r C r P P A ⋅==,故365()1365r r P P A =-.612.答案:(B )解:“事件A 与B 同时发生时,事件C 也随之发生”,说明AB C ⊂,故()()P AB P C ≤;而()()()()1,P A B P A P B P AB ⋃=+-≤ 故()()1()()P A P B P AB P C +-≤≤.13.答案:(D )解:由(|)()1P A B P A B +=可知2()()()1()()()1()()()(1())()(1()()())1()(1())()(1())()(1()()())()(1())()()()()()()(())()()()P AB P AB P AB P A B P B P B P B P B P AB P B P B P A P B P AB P B P B P AB P B P B P A P B P AB P B P B P AB P AB P B P B P A P B P B P B P AB P B -⋃+=+--+--+==-⇒-+--+=-⇒-+--+=2(())()()()P B P AB P A P B -⇒=故A 与B 独立. 14.答案:(A )解:由于事件A,B 是互不相容的,故()0P AB =,因此P(A|B)=()00()()P AB P B P B ==. 15.答案:(D )7解:用A 表示事件“密码最终能被译出”,由于只要至少有一人能译出密码,则密码最终能被译出,因此事件A 包含的情况有“恰有一人译出密码”,“恰有两人译出密码”,“恰有三人译出密码”,“四人都译出密码”,情况比较复杂,所以我们可以考虑A 的对立事件A “密码最终没能被译出”,事件A 只包含一种情况,即“四人都没有译出密码”,故111112()(1)(1)(1)(1)()543633P A P A =----=⇒=.16.答案:(B ) 解:所求的概率为()1()1()()()()()()()11111100444161638P ABC P A B C P A P B P C P AB P BC P AC P ABC =-⋃⋃=---+++-=---+++-=注:0()()0()0ABC AB P ABC P AB P ABC ⊂⇒≤≤=⇒=. 17.答案:(A )解:用A 表示事件“取到白球”,用i B 表示事件“取到第i 箱”1.2.3i =,则由全概率公式知112233()()(|)()(|)()(|)11131553353638120P A P B P A B P B P A B P B P A B =++=++=.18.答案:(C )8解:用A 表示事件“取到白球”,用i B 表示事件“取到第i 类箱子” 1.2.3i =,则由全概率公式知112233()()(|)()(|)()(|)213212765636515P A P B P A B P B P A B P B P A B =++=++=.19.答案:(C )解:即求条件概率2(|)P B A .由Bayes 公式知3263222711223315()(|)5(|)()(|)()(|)()(|)7P B P A B P B A P B P A B P B P A B P B P A B ===++. 二、填空题1. E :将一枚均匀的硬币抛三次,观察结果:其样本空间=Ω .2.设A ,B ,C 表示三个随机事件,试通过A ,B ,C 表示随机事件A 发生而B ,C 都不发生为 ;随机事件A ,B ,C 不多于一个发生 . 3.设P (A )=,P (A+B )=,若事件A 与B 互斥,则P (B )= ;若事件A 与B 独立,则P (B )= .4.已知随机事件A 的概率P (A )=,随机事件B 的概率P (B )=及条件概率P (B|A )=,则P (AUB )= .5.设随机事件A 、B 及和事件AUB 的概率分别是,和,则P (AB )= .6.设A 、B 为随机事件,P (A )=,P (A-B )=,则P (AB )= .7.已知81)()(,0)(,41)()()(======BC p AC p AB p C p B p A p ,则C B A ,,全不发生的概率为 .98.设两两相互独立的三事件A 、B 和C 满足条件:φ=ABC ,21)()()(<==C p B p A p ,且已知 169)(=C B A p ,则______)(=A p .9.一批产品共有10个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为 .10.将C 、C 、E 、E 、I 、N 、S 这7个字母随机地排成一行,恰好排成SCIENCE 的概率为 .11.设工厂A 和工厂B 的产品的次品率分别为1%和2%,现从由A 和B 的产品分别占60%和40%的一批产品中随机抽取一件,发现是次品,则该次品属于A 生产的概率是 . 12.甲、乙两人独立地对同一目标射击一次,其命中率分别为和.现已知目标被命中,则它是甲射中的概率是 .答:1.{(正,正,正),(正,正,反),(正,反,反),(反,反,反),(反,正,正),(反,反,正),(反,正,反),(正,反,正)}2.;ABC ABC ABC ABC ABC 或AB BC AC 3.,解:若A 与B 互斥,则P (A+B )=P (A )+P (B ),于是 P (B )=P (A+B )-P (A )=;若A 与B 独立,则P (AB )=P (A )P (B ),于是由P (A+B )=P (A )+P (B )-P (AB )=P (A )+P (B )-P (A )P (B ),得()()0.70.4()0.51()10.4P A B P A P B P A +--===--.10解:由题设P (AB )=P (A )P (B|A )=,于是P (AUB )=P (A )+P (B )-P (AB )=+解:因为P (AUB )=P (A )+P (B )-P (AB ),又()()()P AB P AB P A +=,所以()()()0.60.30.3P AB P A B P B =-=-=.解:由题设P (A )=,P (AB )=,利用公式AB AB A +=知()()()P AB P A P AB =-=,故()1()10.40.6P AB P AB =-=-=.12解:因为P (AB )=0,所以P (ABC )=0,于是()()1()1[()()()()()()()]13/42/67/12P ABC P A B C P A B C P A P B P C P AB P BC P AC P ABC ==-=-++---+=-+=. 4 解:因为()()()()()()()()P A B C P A P B P C P AB P BC P AC P ABC =++---+由题设22()()(),()()()(),()()()()P A P B P C P AC P A P C P A P AB P A P B P A ======, 2()()()(),()0P BC P B P C P A P ABC ===,因此有293()3()16P A P A =-,解得 P (A )=3/4或P (A )=1/4,又题设P (A )<1/2,故P (A )=1/4. 6解:本题属抽签情况,每次抽到次品的概率相等,均为1/6,另外,用全概率公式也可求解. 10.11260解:这是一个古典概型问题,将七个字母任一种可能排列作为基本事件,则全部事件数为7!,而有利的基本事件数为12121114⨯⨯⨯⨯⨯⨯=,故所求的概率为417!1260=. 7解:设事件A={抽取的产品为工厂A 生产的},B={抽取的产品为工厂B 生产的},C={抽取的是次品},则P (A )=,P (B )=,P (C|A )=,P (C|B )=,故有贝叶斯公式知()()(|)0.60.013(|)()()(|)()(|)0.60.010.40.027P AC P A P C A P A C P C P A P C A P B P C B ⨯====+⨯+⨯. 11解:设A={甲射击},B={乙射击},C={目标被击中}, 则P (A )=P (B )=1/2,P (C|A )=,P (C|B )=, 故()()(|)0.50.66(|)()()(|)()(|)0.50.60.50.511P AC P A P C A P A C P C P A P C A P B P C B ⨯====+⨯+⨯. 三、设A ,B ,C 是三事件,且0)()(,41)()()(=====BC P AB P C P B P A P ,81)(=AC P . 求A ,B ,C 至少有一个发生的概率。
概率论与数理统计练习册(内附答案)
概率论与数理统计练习册 复习题和自测题解答第一章 复习题1、一个工人生产了n 个零件,以事件i A 表示他生产的第i 个零件是正品(i =1,2,3,……,n ),用i A 表示下列事件: (1) 没有一个零件是次品; (2) 至少有一个零件是次品; (3) 仅仅只有一个零件是次品; (4) 至少有两个零件是次品。
解:1)1ni i A A ==2)1ni i A =3)11nn i j i j j i B A A ==≠⎡⎤⎛⎫⎢⎥ ⎪=⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎣⎦4)A B2、任意两个正整数,求它们的和为偶数的概率。
解:{}(S =奇,奇),(奇,偶),(偶,奇),(偶,偶) 12P ∴=3、从数1,2,3,……,n 中任意取两数,求所取两数之和为偶数的概率。
解:i A -第i 次取到奇数(i =1,2);A -两次的和为偶数1212()()P A P A A A A =当n 为奇数时:11111112222()112n n n n n P A n n n n n----+--=⋅+⋅=-- 当n 为偶数时:1122222()112(1)n n n n n P A n n n n n ---=⋅+⋅=---4、在正方形{(,)|1,1}p q p q ≤≤中任意取一点(,)p q ,求使方程20x px q ++=有两个实根的概率。
解: 21411136x S dx dy --==⎰⎰ 13136424p ∴==5、盒中放有5个乒乓球,其中4个是新的,第一次比赛时从盒中任意取2个球去用,比赛后放回盒中,第二次比赛时再从盒中任意取2个球,求第二次比赛时取出的2个球都是新球的概率。
解:i A -第一次比赛时拿到i 只新球(i =1,2)B -第二次比赛时拿到2只新球1)()()1122()()|()|P B P A P B A P A P B A =⋅+⋅2122344222225555950C C C C C C C C =⨯+⨯=6、两台机床加工同样的零件,第一台加工的零件比第二台多一倍,而它们生产的废品率分别为0.03与0.02,现把加工出来的零件放在一起 (1)求从中任意取一件而得到合格品的概率;(2)如果任意取一件得到的是废品,求它是第一台机床所加工的概率。
概率论练习册答案第二章
习题2-21. 设A 为任一随机事件, 且P (A )=p (0<p <1). 定义随机变量1,,0,A X A =⎧⎨⎩发生不发生. 写出随机变量X 的分布律.解 P {X =1}=p , P {X =0}=1-p . 或者2. 已知随机变量X 只能取-1,0,1,2四个值, 且取这四个值的相应概率依次为cc c c 167,85,43,21. 试确定常数c , 并计算条件概率}0|1{≠<X X P . 解 由离散型随机变量的分布律的性质知,13571,24816c c c c+++= 所以3716c =. 所求概率为 P {X <1| X 0≠}=258167852121}0{}1{=++=≠-=cc c c X P X P . 3. 设随机变量X 服从参数为2, p 的二项分布, 随机变量Y 服从参数为3, p的二项分布, 若{P X ≥51}9=, 求{P Y ≥1}.解 注意p{x=k}=k k n k n C p q -,由题设5{9P X =≥21}1{0}1,P X q =-==-故213q p =-=. 从而{P Y ≥32191}1{0}1().327P Y =-==-=4. 在三次独立的重复试验中, 每次试验成功的概率相同, 已知至少成功一次的概率为1927, 求每次试验成功的概率.解 设每次试验成功的概率为p , 由题意知至少成功一次的概率是2719,那么一次都没有成功的概率是278. 即278)1(3=-p , 故 p =31. 5. 若X 服从参数为λ的泊松分布, 且{1}{3}P X P X ===, 求参数λ. 解 由泊松分布的分布律可知6=λ.6. 一袋中装有5只球, 编号为1,2,3,4,5. 在袋中同时取3只球, 以X 表示取出的3只球中的最大号码, 写出随机变量X 的分布律.解 从1,2,3,4,5中随机取3个,以X 表示3个数中的最大值,X 的可能取值是3,4,5,在5个数中取3个共有1035=C 种取法.{X =3}表示取出的3个数以3为最大值,P{X =3}=2235C C =101;{X =4}表示取出的3个数以4为最大值,P{X =4}=1033523=C C ;{X =5}表示取出的3个数以5为最大值,P{X =5}=533524=C C .X 的分布律是1. 设解 (1) F (x )=0,1,0.15,10,0.35,01,1,1.x x x x <-⎧⎪-<⎪⎨<⎪⎪⎩≤≤≥(2) P {X <0}=P {X =-1}=0.15;(3) P {X <2}= P {X =-1}+P {X =0}+P {X =1}=1; (4) P {-2≤x <1}=P {X =-1}+P {X =0}=0.35. 2. 设随机变量X 的分布函数为F (x ) = A +B arctan x -∞<x <+∞.试求: (1) 常数A 与B ; (2) X 落在(-1, 1]内的概率.解 (1) 由于F (-∞) = 0, F (+∞) = 1, 可知()0112,.2()12A B A B A B πππ⎧+-=⎪⎪⇒==⎨⎪+=⎪⎩ 于是 11()arctan ,.2F x x x π=+-∞<<+∞(2) {11}(1)(1)P X F F -<=--≤1111(arctan1)(arctan(1))22ππ=+-+-11111().24242ππππ=+⋅---=3. 设随机变量X 的分布函数为F (x )=0, 0,01,21,1,,x xx x <<⎧⎪⎪⎨⎪⎪⎩ ≤ ≥求P {X ≤-1}, P {0.3 <X <0.7}, P {0<X ≤2}.解 P {X 1}(1)0F -=-=≤,P {0.3<X <0.7}=F (0.7)-F {0.3}-P {X =0.7}=0.2,P {0<X ≤2}=F (2)-F (0)=1.5. 假设随机变量X 的绝对值不大于1; 11{1},{1}84P X P X =-===; 在事件{11}X -<<出现的条件下, X 在(-1,1)内任一子区间上取值的条件概率与该区间的长度成正比. (1) 求X 的分布函数(){F x P X =≤x }; (2) 求X 取负值的概率p .解 (1) 由条件可知, 当1x <-时, ()0F x =;当1x =-时, 1(1)8F -=;当1x =时, F (1)=P {X ≤1}=P (S )=1.所以 115{11}(1)(1){1}1.848P X F F P X -<<=---==--= 易见, 在X 的值属于(1,1)-的条件下, 事件{1}X x -<<的条件概率为{1P X -<≤|11}[(1)]x X k x -<<=--,取x =1得到 1=k (1+1), 所以k =12. 因此 {1P X -<≤|11}12x X x -<<=+. 于是, 对于11x -<<, 有{1P X -<≤}{1x P X =-<≤,11}x X -<<{11}{1|11}≤P X P X x X =-<<-<-<< 5155.8216x x ++=⨯=对于x ≥1, 有() 1.F x = 从而0,1,57(),11,161,1.x x F x x x <-+=-<<⎧⎪⎪⎨⎪⎪⎩≥ (2) X 取负值的概率7{0}(0){0}(0)[(0)(0)](0).16p P X F P X F F F F =<=-==---=-=习题2-41. 选择题 (1) 设2, [0,],()0, [0,].x x c f x x c ∈=∉⎧⎨⎩ 如果c =( ), 则()f x 是某一随机变量的概率密度函数. (A)13. (B) 12. (C) 1. (D) 32. 解 由概率密度函数的性质()d 1f x x +∞-∞=⎰可得02d 1cx x =⎰, 于是1=c ,故本题应选(C ).(2) 设~(0,1),X N 又常数c 满足{}{}P X c P X c =<≥, 则c 等于( ).(A) 1. (B) 0. (C)12. (D) -1.解 因为{}{}P X c P X c =<≥, 所以1{}{}P X c P X c -<=<,即2{}1P X c <=, 从而{}0.5P X c <=,即()0.5c Φ=, 得c =0. 因此本题应选(B).(3) 下列函数中可以作为某一随机变量的概率密度的是( ).(A) cos ,[0,],()0,x x f x π∈=⎧⎨⎩其它.(B) 1,2,()20,x f x <=⎧⎪⎨⎪⎩其它.(C) 22()2,0,()0,0.≥x x f x x μσ--=<⎧⎩ (D) e ,0,()0,0.≥x x f x x -=<⎧⎨⎩解 由概率密度函数的性质()1f x dx +∞-∞=⎰可知本题应选(D).(4) 设随机变量2~(,4)X N μ, 2~(,5)Y N μ, 1{X P P =≤4μ-}, {2P P Y =≥5μ+}, 则( ).(A) 对任意的实数12,P P μ=. (B) 对任意的实数12,P P μ<. (C) 只对实数μ的个别值, 有12P P =. (D) 对任意的实数12,P P μ>. 解 由正态分布函数的性质可知对任意的实数μ, 有12(1)1(1)P P ΦΦ=-=-=. 因此本题应选(A).(5) 设随机变量X 的概率密度为()f x , 且()()f x f x =-, 又F (x )为分布函数, 则对任意实数a , 有( ).(A) 0()1d ()∫aF a x f x -=-. (B) 01()d 2()∫aF a x f x -=-.(C) ()()F a F a -=. (D) ()2()1F a F a -=-. 解 由分布函数的几何意义及概率密度的性质知答案为(B).(6) 设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且12{1}{1},P X P Y μμ-<>-< 则下式中成立的是( ).(A) σ1 < σ2. (B) σ1 > σ2. (C) μ1 <μ2. (D) μ1 >μ2.解 对μ1=μ2时, 答案是(A).(7) 设随机变量X 服从正态分布N (0,1), 对给定的正数)10(<<αα, 数αu 满足{}P X u αα>=, 若{}P X x α<=, 则x 等于( ).(A) 2u α . (B) 21α-u. (C) 1-2u α. (D) α-1u .解 答案是(C).2. 设连续型随机变量X 服从参数为λ的指数分布, 要使1{2}4P k X k <<=成立, 应当怎样选择数k ?解 因为随机变量X 服从参数为λ的指数分布, 其分布函数为1e ,0,()0,0.≤x x F x x λ-->=⎧⎨⎩由题意可知221{2}(2)()(1e )(1e )e e 4k k k k P k X k F k F k λλλλ----=<<=-=---=-. 于是 ln 2k λ=.3. 设随机变量X 有概率密度34,01,()0,x x f x <<=⎧⎨⎩其它, 要使{}{}≥P X a P X a =<(其中a >0)成立, 应当怎样选择数a ?解 由条件变形,得到1{}{}P X a P X a -<=<,可知{}0.5P X a <=, 于是304d 0.5ax x =⎰,因此a =. 4. 设连续型随机变量X 的分布函数为20,0,()01,1,1,,≤≤x F x x x x <=>⎧⎪⎨⎪⎩求: (1) X 的概率密度; (2){0.30.7}P X <<.解 (1) 根据分布函数与概率密度的关系()()F x f x '=, 可得 2,01,()0,其它.x x f x <<⎧=⎨⎩(2) 22{0.30.7}(0.7)(0.3)0.70.30.4P X F F <<=-=-=.5. 设随机变量X 的概率密度为f (x )= 2,01,0,x x ⎧⎨⎩≤≤ 其它,求P {X ≤12}与P {14X <≤2}.解 {P X ≤12201112d 2240}x x x ===⎰;1{4P X <≤12141152}2d 1164x x x ===⎰. 6. 设连续型随机变量X 具有概率密度函数,01,(),12,0,x x f x A x x <=-<⎧⎪⎨⎪⎩≤≤其它.求: (1) 常数A ;(2) X 的分布函数F (x ).解 (1) 由概率密度的性质可得12221121111d ()d []122x x A x x xAx x A =+-=+-=-⎰⎰,于是 2A =;(2) 由公式()()d x F x f x x -∞=⎰可得当x <0时, ()0F x =; 当0≤x<1时, 201()d 2x F x x x x ==⎰;当1≤x <2时, 211()d (2)d 212x x F x x x x x x =+-=--⎰⎰;当x ≥2时, ()1F x =.所以 220,0,1()221,2.1,021,12x F x x x x x x x =-≥⎧⎪⎪<⎪⎨⎪-<⎪⎪⎩<≤,≤,7. 设随机变量X 的概率密度为1(1),02,()40,x x f x ⎧⎪⎨⎪⎩+<<=其它,对X 独立观察3次, 求至少有2次的结果大于1的概率.解 2115{1}(1)d 48P X x x >=+=⎰.所以, 3次观察中至少有2次的结果大于1的概率为223333535175()()()888256C C +=. 8. 设~(0,5)X U , 求关于x 的方程24420x Xx ++=有实根的概率.解 随机变量X 的概率密度为105,()50,,x f x <=⎧⎪⎨⎪⎩≤其它,若方程有实根, 则 21632X -≥0, 于是2X ≥2. 故方程有实根的概率为P {2X ≥2}=21{2}P X -<1{P X =-<<1d 5x =-15=-. 9. 设随机变量)2,3(~2N X .(1) 计算{25}P X <≤, {410}P X -<≤, {||2}P X >, }3{>X P ; (2) 确定c 使得{}{};P X c P X c >=≤ (3) 设d 满足{}0.9P X d >≥, 问d 至多为多少?解 (1) 由P {a <x ≤b }=P {33333}()()22222a Xb b a ΦΦ-----<=-≤公式, 得到P {2<X ≤5}=(1)(0.5)0.5328ΦΦ--=, P {-4<X ≤10}=(3.5)( 3.5)0.9996ΦΦ--=, {||2}P X >={2}P X >+{2}P X <-=123()2Φ--+23()2Φ--=0.6977,}3{>X P =133{3}1()1(0)2P X ΦΦ-=-=-≤=0.5 . (2) 若{}{}≤P X c P X c >=,得1{}{}P X c P x c -=≤≤,所以{}0.5P X c =≤由(0)Φ=0推得30,2c -=于是c =3. (3) {}0.9≥P Xd > 即13()0.92d Φ--≥, 也就是3()0.9(1.282)2d ΦΦ--=≥,因分布函数是一个不减函数, 故(3)1.282,2d --≥ 解得 32( 1.282)0.436d +⨯-=≤.10. 设随机变量2~(2,)X N σ, 若{04}0.3P X <<=, 求{0}P X <.解 因为()~2,X N σ2,所以~(0,1)X Z N μσ-=. 由条件{04}0.3P X <<=可知02242220.3{04}{}()()X P X P ΦΦσσσσσ---=<<=<<=--,于是22()10.3Φσ-=, 从而2()0.65Φσ=.所以 {{}2020}P P X X σσ==--<<22()1()0.35ΦΦσσ-=-=. 习题2-51. 选择题(1) 设X 的分布函数为F (x ), 则31Y X =+的分布函数()G y 为( ). (A) 11()33F y -. (B) (31)F y +.(C) 3()1F y +. (D)1133()F y -. 解 由随机变量函数的分布可得, 本题应选(A). (2) 设()~01,X N ,令2Y X =--, 则~Y ( ).(A)(2,1)N --. (B)(0,1)N . (C)(2,1)N -. (D)(2,1)N . 解 由正态分布函数的性质可知本题应选(C).2. 设~(1,2),23X N Z X =+, 求Z 所服从的分布及概率密度.解 若随机变量2~(,)X N μσ, 则X 的线性函数Y aX b =+也服从正态分布, 即2~(,()).Y aX b N a b a μσ=++ 这里1,μσ==所以Z ~(5,8)N .概率密度为()f z=2(5)16,x x ---∞<<+∞.3. 已知随机变量X 的分布律为(1) 解 (1)(2)4. ()X f x =1142ln 20x x <<⎧⎪⎨⎪⎩, , , 其它,且Y =2-X , 试求Y 的概率密度.解 先求Y 的分布函数)(y F Y :)(y F Y ={P Y ≤}{2y P X =-≤}{y P X =≥2}y -1{2}P X y =-<-=1-2()d yX f x x --∞⎰.于是可得Y 的概率密度为()(2)(2)Y X f y f y y '=---=12(2)ln 20,.,124,其它y y -⎧<-<⎪⎨⎪⎩即 121,2(2)ln 20, ,()其它.Y y y f y -<<-⎧⎪=⎨⎪⎩5. 设随机变量X 服从区间(-2,2)上的均匀分布, 求随机变量2Y X =的概率密度.解 由题意可知随机变量X 的概率密度为()0,.1,22,4其它X f x x =⎧-<<⎪⎨⎪⎩因为对于0<y <4,(){Y F y P Y =≤2}{y P X =≤}{y P =X(X X F F =-.于是随机变量2Y X =的概率密度函数为()Y fy (X X f f =+0 4.y =<<即()04,0,.其它f y y =<<⎩总习题二1. 一批产品中有20%的次品, 现进行有放回抽样, 共抽取5件样品. 分别计算这5件样品中恰好有3件次品及至多有3件次品的概率.解 以X 表示抽取的5件样品中含有的次品数. 依题意知~(5,0.2)X B .(1) 恰好有3件次品的概率是P {X =3}=23358.02.0C .(2) 至多有3件次品的概率是k k k k C-=∑5358.02.0.2. 一办公楼装有5个同类型的供水设备. 调查表明, 在任一时刻t 每个设备被使用的概率为0.1. 问在同一时刻 (1) 恰有两个设备被使用的概率是多少? (2) 至少有1个设备被使用的概率是多少? (3) 至多有3个设备被使用的概率是多少? (4) 至少有3个设备被使用的概率是多少?解 以X 表示同一时刻被使用的设备的个数,则X ~B (5,0.1),P {X =k }=kk k C -559.01.0,k =0,1, (5)(1) 所求的概率是P {X =2}=0729.09.01.03225=C ;(2) 所求的概率是P {X ≥1}=140951.0)1.01(5=--; (3) 所求的概率是 P {X ≤3}=1-P{X =4}-P {X =5}=0.99954;(4) 所求的概率是P {X ≥3}=P {X =3}+P {X =4}+P {X =5}=0.00856. 3. 设随机变量X 的概率密度为e ,0,()00,≥,x k x f x x θθ-=<⎧⎪⎨⎪⎩且已知1{1}2P X >=, 求常数k , θ.解 由概率密度的性质可知0e d 1xkx θθ-+∞=⎰得到k =1.由已知条件111e d 2xx θθ-+∞=⎰, 得1ln 2θ=.4. 某产品的某一质量指标2~(160,)X N σ, 若要求{120P ≤X ≤200}≥0.8, 问允许σ最大是多少?解 由{120P ≤X ≤}200120160160200160{}X P σσσ---=≤≤=404040()(1())2()1ΦΦΦσσσ--=-≥0.8,得到40()Φσ≥0.9, 查表得40σ≥1.29, 由此可得允许σ最大值为31.20.5. 设随机变量X 的概率密度为φ(x ) = A e -|x |, -∞<x <+∞.试求: (1) 常数A ; (2) P {0<X <1}; (3) X 的分布函数.解 (1) 由于||()d e d 1,x x x A x ϕ+∞+∞--∞-∞==⎰⎰即02e d 1x A x +∞-=⎰故2A = 1,得到A =12.所以 φ(x ) =12e -|x |.(2) P {0<X <1} =111111e e d (e )0.316.0222xxx ----=-=≈⎰(3) 因为||1()e d ,2xx F x x --∞=⎰ 得到 当x <0时, 11()e d e ,22x x xF x x -∞==⎰当x ≥0时, 00111()e d e d 1e ,222x x x xF x x x ---∞=+=-⎰⎰所以X的分布函数为1,0,2()11,0.2xxxF xx-⎧<⎪⎪=⎨⎪-⎪⎩ee≥。
概率论与数理统计习题册
概率论与数理统计习题册(总13页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第六章 样本及抽样分布一、选择题1. 设12,,,n X X X 是来自总体X 的简单随机样本,则12,,,n X X X 必然满足( )A.独立但分布不同;B.分布相同但不相互独立; C 独立同分布; D.不能确定2.下列关于“统计量”的描述中,不正确的是( ). A .统计量为随机变量 B. 统计量是样本的函数C. 统计量表达式中不含有参数D. 估计量是统计量3下列关于统计学“四大分布”的判断中,错误的是( ).A. 若12~(,),F F n n 则211~(,)F n n FB .若2~(),~(1,)T t n T F n 则C .若)1(~),1,0(~22x X N X 则D .在正态总体下2212()~(1)nii Xx n μσ=--∑4. 设2,i i X S 表示来自总体2(,)i i N μσ的容量为i n 的样本均值和样本方差)2,1(=i ,且两总体相互独立,则下列不正确的是( ).A. 2221122212~(1,1)SF n n S σσ--12(~(0,1)X X N C.)(~/11111n t n S X μ- D.2222222(1)~(1)n S x n σ--5. 设12,,,n X X X 是来自总体的样本,则211()1ni i X X n =--∑是( ).A.样本矩B. 二阶原点矩C. 二阶中心矩D.统计量 612,,,n X X X 是来自正态总体)1,0(N 的样本,2,S X 分别为样本均值与样本方差,则( ).A. )1,0(~N XB. ~(0,1)nX NC. 221~()ni i X x n =∑ D.~(1)Xt n S- 7. 给定一组样本观测值129,,,X X X 且得∑∑====91291,285,45i i i i X X 则样本方差2S 的观测值为 ( ).A. C.320D. 2658设X 服从)(n t 分布, a X P =>}|{|λ,则}{λ-<X P 为( ).A.a 21B. a 2C. a +21 D. a 211- 9设12,,,n x x x 是来自正态总体2(0,2)N 的简单随机样本,若298762543221)()()2(X X X X c X X X b X X a Y ++++++++=服从2x 分布,则c b a ,,的值分别为( ).A. 161,121,81B. 161,121,201C. 31,31,31D. 41,31,2110设随机变量X 和Y 相互独立,且都服从正态分布2(0,3)N ,设921,,,X X X 和921,,,Y Y Y 分别是来自两总体的简单随机样本,则统计量9iXU =∑服从分布是( ).A. )9(tB. )8(tC. )81,0(ND. )9,0(N二、填空题1.在数理统计中, 称为样本. 2.我们通常所说的样本称为简单随机样本,它具有的两个特点是 .3.设随机变量n X X X ,,,21 相互独立且服从相同的分布,2,σμ==DX EX ,令∑==ni i X n X 11,则EX =;.DX =4.),,,(1021X X X 是来自总体)3.0,0(~2N X 的一个样本,则=⎭⎬⎫⎩⎨⎧≥∑=101244.1i i X P .5.已知样本1621,,,X X X 取自正态分布总体)1,2(N ,X 为样本均值,已知5.0}{=≥λX P ,则=λ .10.6设总体),(~2σμN X ,X 是样本均值,2n S 是样本方差,n 为样本容量,则常用的随机变量22)1(σn S n -服从 分布.第七章 参数估计一、选择题1. 设总体),(~2σμN X ,n X X ,,1 为抽取样本,则∑=-ni i X X n 12)(1是( ).)(A μ的无偏估计 )(B 2σ的无偏估计 )(C μ的矩估计 )(D 2σ的矩估计2 设X 在[0,a]上服从均匀分布,0>a 是未知参数,对于容量为n 的样本n X X ,,1 ,a 的最大似然估计为( )(A )},,,max{21n X X X (B )∑=ni i X n 11(C )},,,min{},,,max{2121n n X X X X X X - (D )∑=+ni i X n 111;3 设总体分布为),(2σμN ,2,σμ为未知参数,则2σ的最大似然估计量为( ).(A )∑=-n i i X X n 12)(1 (B )∑=--n i i X X n 12)(11 (C )∑=-n i i X n 12)(1μ (D )∑=--n i i X n 12)(11μ 4 设总体分布为),(2σμN ,μ已知,则2σ的最大似然估计量为( ).(A )2S (B )21S nn - (C )∑=-n i i X n 12)(1μ (D )∑=--n i i X n 12)(11μ 5 321,,X X X 设为来自总体X 的样本,下列关于)(X E 的无偏估计中,最有效的为( ).(A ))(2121X X + (B ))(31321X X X ++(C ))(41321X X X ++ (D ))313232321X X X -+6 设)2(,,,21≥n X X X n 是正态分布),(2σμN 的一个样本,若统计量∑-=+-1121)(n i i i X X K 为2σ的无偏估计,则K 的值应该为( )(A )n 21 (B )121-n (C )221-n (D )11-n 7. 设θ为总体X 的未知参数,21,θθ是统计量,()21,θθ为θ的置信度为)10(1<<-a a 的置信区间,则下式中不能恒成的是( ).A. a P -=<<1}{21θθθB. a P P =<+>}{}{12θθθθC. a P -≥<1}{2θθD. 2}{}{12aP P =<+>θθθθ 8 设),(~2σμN X 且2σ未知,若样本容量为n ,且分位数均指定为“上侧分位数”时,则μ的95%的置信区间为( )A. )(025.0u n X σ±B. ))1((05.0-±n t nS XC. ))((025.0n t nS X ±D. ))1((025.0-±n t nS X9 设22,),,(~σμσμN X 均未知,当样本容量为n 时,2σ的95%的置信区间为( )A. ))1()1(,)1()1((2025.022975.02----n x S n n x S nB. ))1()1(,)1()1((2975.022025.02----n x S n n x S nC. ))1()1(,)1()1((2975.022025.02----n t S n n t S n D. ))1((025.0-±n t nS X 二、填空题1. 点估计常用的两种方法是: 和 .2. 若X 是离散型随机变量,分布律是{}(;)P X x P x θ==,(θ是待估计参数),则似然函数是 ,X 是连续型随机变量,概率密度是(;)f x θ,则似然函数是 .3. 设总体X 的概率分布列为:X 0 1 2 3 P p 2 2 p (1-p ) p 2 1-2p其中p (2/10<<p ) 是未知参数. 利用总体X 的如下样本值: 1, 3, 0, 2, 3, 3, 1, 3则p 的矩估计值为__ ___,极大似然估计值为 . 4. 设总体X 的一个样本如下:,,,,则该样本的数学期望)(X E 和方差)(X D 的矩估计值分别_ ___.5. 设总体X 的密度函数为:⎩⎨⎧+=0)1()(λλx x f 其他10<<x ,设n X X ,,1 是X 的样本,则λ的矩估计量为 ,最大似然估计量为 .6. 假设总体),(~2σμN X ,且∑==ni i X n X 11,n X X X ,,,21 为总体X 的一个样本,则X 是 的无偏估计.7 设总体),(~2σμN X ,n X X X ,,,21 为总体X 的一个样本,则常数k= , 使∑=-ni i X X k 1为的无偏估计量.8 从一大批电子管中随机抽取100只,抽取的电子管的平均寿命为1000小时,样本均方差为40=S .设电子管寿命分布未知,以置信度为95.0,则整批电子管平均寿命μ的置信区间为(给定96.1,645.1025.005.0==Z Z ) .9设总体),(~2σμN X ,2,σμ为未知参数,则μ的置信度为1α-的置信区间为.10 某车间生产滚珠,从长期实践可以认为滚珠的直径服从正态分布,且直径的方差为04.02=σ,从某天生产的产品中随机抽取9个,测得直径平均值为15毫米,给定05.0=α则滚珠的平均直径的区间估计为 .)96.1,645.1(025.005.0==Z Z11. 某车间生产滚珠,从某天生产的产品中抽取6个,测得直径为:已知原来直径服从)06.0,(N μ,则该天生产的滚珠直径的置信区间为 ,(05.0=α,645.105.0=Z ,96.1025.0=Z ).12. 某矿地矿石含少量元素服从正态分布,现在抽样进行调查,共抽取12个子样算得2.0=S ,则σ的置信区间为 (1.0=α,68.19)11(22=αχ,57.4)11(221=-αχ).第八章 假设检验一、选择题1. 关于检验的拒绝域W,置信水平α,及所谓的“小概率事件”,下列叙述错误的是( ). A. α的值即是对究竟多大概率才算“小”概率的量化描述 B .事件021|),,,{(H W X X X n ∈ 为真}即为一个小概率事件C .设W 是样本空间的某个子集,指的是事件120{(,,,)|}n X X X H 为真D .确定恰当的W 是任何检验的本质问题2. 设总体22),,(~σσμN X 未知,通过样本n X X X ,,,21 检验假设00:μμ=H ,要采用检验估计量( ).A.nX /0σμ- B.nS X /0μ- C.nS X /μ- D.nX /σμ-3. 样本n X X X ,,,21 来自总体)12,(2μN ,检验100:0≤μH ,采用统计量( ). A.nX /12μ- B.nX /12100- C.1/100--n S X D.nS X /μ-4设总体22),,(~σσμN X 未知,通过样本n X X X ,,,21 检验假设00:μμ=H ,此问题拒绝域形式为 .A.}C >B. }/100{C nS X <- C. }10/100{C S X >- D. }{C X >5.设n X X X ,,,21 为来自总体)3,(2μN 的样本,对于100:0=μH 检验的拒绝域可以形 如( ).A .}{C X >-μ B. {100}X C ->C. }C >D. {100}X C -<6、 样本来自正态总体),(2σμN ,μ未知,要检验100:20=σH ,则采用统计量为( ). A.22)1(σS n - B. 100)1(2S n - C. n X 100μ- D. 1002nS7、设总体分布为),(2σμN ,若μ已知,则要检验100:20≥σH ,应采用统计量( ).A.nS X /μ- B.22)1(σSn - C.100)(21∑=-ni iXμ D.100)(21∑=-ni iX X二、填空题1. 为了校正试用的普通天平, 把在该天平上称量为100克的10个试样在计量标准天平上进行称量,得如下结果:, , , 101,2,,假设在天平上称量的结果服从正态分布,为检验普通天平与标准天平有无显著差异,0H 为 .2.设样本2521,,,X X X 来自总体μμ),9,(N 未知.对于检验00:μμ=H ,01:μμ=H ,取拒绝域形如k X ≥-0μ,若取05.0=a ,则k 值为 .第六章 样本及抽样分布答案一、选择题1. ( C )2.(C ) 注:统计量是指不含有任何未知参数的样本的函数3.(D )对于答案D,由于~(0,1),1,2,,iX N i n μσ-=,且相互独立,根据2χ分布的定义有2212()~()nii Xx n μσ=-∑4.(C) 注:1~(1)X t n -才是正确的.5.(D)6C) 注:1~(0,)X N n~(1)t n -才是正确的{}{}12121211P X P X -≤=-≤-(({}2121121P X =-≤-=Φ- 7.(A) ()9922221192859257.591918iii i XX XX S ==--⨯-⨯====--∑∑ 8.(A) 9.(B) 解:由题意可知122~(0,20)X X N +,345~(0,12)X X X N ++,6789~(0,16)X X X X N +++,且相互独立,因此()()()()22212345678922~3201216X X X X X X X X X χ++++++++,即111,,201216a b c === 10(A)解:()99211~(0,9)9~0,1i i i i X N X N ==⇒∑∑,()92219~9i i Y χ=∑由t分布的定义有()9t 二、填空题1.与总体同分布,且相互独立的一组随机变量2.代表性和独立性3.μ,2nσ4.6.2(1)n χ-第七章 参数估计一、选择题 1.答案: D.[解] 因为)()(222X E X E -=σ,∑===n i i X n A X E 12221)(ˆ,∑===ni i X n A X E 111)(ˆ,所以,∑=-=-=n i i X X n X E X E 12222)(1)(ˆ)(ˆˆσ. 2.答案: A.[解]因为似然函数n i in X a a L )max (11)(≤=,当i i X a max =时,)(a L 最大, 所以,a 的最大似然估计为},,,max{21n X X X . 3 答案 A .[解]似然函数⎥⎦⎤⎢⎣⎡--=∏=2212)(21exp 21),(μσσπσμi ni x L , 由0ln ,0ln 2=∂∂=∂∂L L σμ,得22A =∧σ. 4. 答案 C.[解]在上面第5题中用μ取代X 即可.5答案 B.6.答案 C. 7答案 D. 8.答案 D. 9.答案 B.二、填空题:1. 矩估计和最大似然估计;2.∏iix p );(θ,∏iix f );(θ;.3 41, ; [解] (1) p 的矩估计值28/1681===∑=i i X X ,令X p X E =-=43)(,得p 的矩估计为 4/14/)3(ˆ=-=X p. (2)似然函数为4281)]3()[2()]1()[0()()(=======∏=X P X P X P X P x X P p L i i42)21()1(4p p p --=)21ln(4)1ln(2ln 64ln )(ln p p p p L -+-++=令 0218126])(ln [=----='pp p p L , 0314122=+-⇒p p 12/)137(±=⇒p . 由 2/10<<p ,故12/)137(+=p 舍去 所以p 的极大似然估计值为 .2828.012/)137(ˆ=-=p 4、 ,;[解] 由矩估计有:nXX E X X Eii∑==22)(ˆ,)(ˆ,又因为22)]([)()(X E X E X D -=,所以71.1575.165.17.175.17.1)(ˆ=++++==X X E且00138.0)(1)(ˆ12=-=∑=n i i X X n X D . 5、XX --=112ˆλ, ∑∑==+-=ni ini iXX n 11ln ln ˆλ;[解] (1)λ的矩估计为:210121)1()(21++=++=+⋅=+⎰λλλλλλλx dx x x X E 样本的一阶原点矩为:∑==ni i x n X 11所以有:XX X --=⇒=++112ˆ21λλλ (2)λ的最大似然估计为:λλλλλ)()1()1(),,(111∏∏==+=+=ni i nni i n X X X X L ;∏=++=ni i X n L 1ln )1ln(ln λλ0ln 1ln 1=++=∑=ni i X nd L d λλ 得:∑∑==+-=ni ini iXX n 11ln ln ˆλ.6、μ;[解]μμ===∑=nn X E n X E n i i 1)(1)(.7、)1(2-n n π;[解]注意到n X X X ,,,21 的相互独立性,()n i i X X n X X nX X ---+--=- )1(121 21)(,0)(σnn X X D X X E i i -=-=-所以,)1,0(~2σnn N X X i --, dz enn z X X E nn z i 2212121|||)(|σσπ--∞+∞-⎰-=-dz e nn znn z 221201212σσπ--∞+⎰-=σπnn 122-=因为:⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-∑∑==n i i n i i X X E k X X k E 11||||σσπ=-=nn kn122 所以,)1(2-=n n k π.8、. [,];[解] 这是分布未知,样本容量较大,均值的区间估计,所以有:05.0,40,1000=α==S X ,96.1025.0=Zμ的95%的置信区间是:]84.1007,16.992[],[025.0025.0=+-Z nSX Z n S X . 9、22((1),(1))X n X n αα--; [解]这是2σ为未知的情形,所以)1(~/--n t nS X μ.10、 [,];[解] 这是方差已知均值的区间估计,所以区间为:],[22αασ+σ-Z n x Z n x 由题意得:905.004.0152==α=σ=n x ,代入计算可得:]96.192.015,96.192.015[⨯+⨯-, 化间得:]131.15,869.14[. 11、 [,];[解] 这是方差已知,均值的区间估计,所以有:置信区间为:],[22αασ+σ-Z n X Z n X 由题得:95.14)1.152.158.149.141.156.14(61=+++++=X696.105.0025.0===αn Z 代入即得:]96.1606.095.14,96.1606.095.14[⨯-⨯- 所以为:]146.15,754.14[12、. [,]; [解] 由2222221)1(ααχσχ≤-≤-S n 得: 2222)1(αχσS n -≥,22122)1(αχσ--≤S n所以σ的置信区间为:[)11()1(222αχS n -,)11()1(2212αχ--S n ] , 将12=n ,2.0=S 代入得 [15.0,31.0].第八章 假设检验一、选择题 、、、、、、、 二、填空题 1.100=μ 2.。
概率论与数理统计练习册 参考答案
概率论与数理统计练习册 参考答案第1章 概率论的基本概念 基础练习 1.11、C2、C3、D4、A B C ++5、13{|02}42x x x ≤<≤<或,{}12/1|<<x x ,Ω6、{3},{1,2,4,5,6,7,8,9,10},{1,2,6,7,8,9,10},{1,2,3,6,7,8,9,10}7、(1) Ω={正,正,正,正,正,次},A ={次,正}(2)Ω={正正,正反,反正,反反},A ={正正,反反},B={正正,正反}(3) 22{(,)|1}x y x y Ω=+≤,22{(,)|10}A x y x y x =+<<且 (4)Ω={白,白,黑,黑,黑,红,红,红,红},A={白},B={黑} 8、(1)123A A A (2)123123123A A A A A A A A A ++ (3)123A A A ++ (4)123123123123A A A A A A A A A A A A +++ (5)123123A A A A A A +9、(1)不正确 (2)不正确 (3)不正确 (4)正确 (5) 正确 (6)正确(7)正确 (8)正确10、(1)原式=()()()A B AB A B AB A B A B B -==+=U U U (2)原式=()()A A B B A B A AB BA BB A +++=+++= (3)原式=()AB AB =∅11、证明:左边=()AAB B A A B B AB B A B +=++=+=+=右边 1.21、C2、B3、B4、0.85、0.256、0.37、2226C C 8、0.081 9、2628C C10、3()()()()()()()()4P A B C P A P B P C P AB P BC P AC P ABC ++=++---+=11、解:设,,A B C 分别表示“100人中数学,物理,化学不及格的人数” 则{10},{9},{8}A B C ===,{5},{4},{4},{2}AB AC BC ABC ====100()84ABC A B C =-++=12、解:设A 表示“抽取3个球中至少有2个白球”21343437()C C C P A C +=13、解:(1)设A 表示“10件全是合格品”,则109510100()C P A C = (2) 设B 表示“10件中恰有2件次品”,则8295510100()C C P B C = 14、解:(1)设A 表示“五人生日都在星期日”,51()7P A =(2)设B 表示“五人生日都不在星期日”, 556()7P B = (3)设C 表示“五人生日不都在星期日”,55516()177P C =-- 15、解:{(,)|01,01}x y x y Ω=≤≤≤≤设A 表示“两人能会到面”,则1{(,)|}3A x y x y =-≤, 所以5()9P A =1.31、0.8,0.252、0.63、0.074、23 5、0.56、注:加入条件()0.4P B =解:()()0.1P AB P A ==,()()0.4P A B P B +==()()0.9P A B P AB +==,()(|)0.25()P AB P A B P B ==7、解:设A 表示"13张牌中有5张黑桃,3张红心,3张方块,2张梅花”则5332131313131352()C C C C P A C =,8、解:设123,,A A A 分别表示“零件由甲,乙,丙厂生产”,B 表示“零件时次品”则112233()()(|)()(|)()(|)P B P A P B A P A P B A P A P B A =++0.20.050.40.040.40.030.036=⋅+⋅+⋅=9、解:设123,,A A A 分别表示“甲,乙,丙炮射中敌机”, 123,,B B B分别表示“飞机中一门,二门,三门炮”,C 表示“飞机坠毁”。
概率论练习册讲课习题
第一章 概率论的基本概念第一次7.袋中有a 个白球,b 个黑球,从中任取一个,则取得白球的概率是( C ).A.21B. b a +1C. b a a +D. b a b +注:古典概型中事件A 发生的概率为()()()N A P A N =Ω8.设有r 个人,365≤r ,并设每个人的生日在一年365天中的每一天的可能性为均等的,则此r 个人中至少有某两个人生日相同的概率为( A ).A.r rP 3651365-B. rrr C 365!365⋅C.365!1r -D.r r 365!1-解:用A 来表示事件“此r 个人中至少有某两个人生日相同”,考虑A的对立事件A “此r 个人的生日各不相同”利用上一题的结论可知365365!()365365r r rrC r P PA ⋅==,故365()1365rr P P A =- 9..当事件A 与B 同时发生时,事件C 也随之发生,则( B ).A.1)()()(-+≤B P A P C PB.1)()()(-+≥B P A P C PC.P(C)=P(AB)D.()()P CP A B =解:“事件A 与B 同时发生时,事件C 也随之发生”,说明A B C ⊂,故()()PA B P C ≤;而()()()()1,P A B P A P B P A B ⋃=+-≤ 故()()1()()P A P B P A B P C +-≤≤.10.已知11()()(),()0,()(),416P A P B P CP A BP A C P B C ======则事件A,B,C 全不发生的概率为( B ).A. 81B. 83C. 85D. 87解:所求的概率为()1()1()()()()()()()11111100444161638PA B C PA B C PA PB PC PA B PB C PA C PA B C =-⋃⋃=---+++-=---+++-=注:0()()0()0A B C A B P A B C P A B P A B C ⊂⇒≤≤=⇒=.填空:5.已知81)()(,0)(,41)()()(======BC p AC p AB p C p B p A p ,则C B A ,,全不发生的概率为 .5.1/2解:因为P (AB )=0,所以P (ABC )=0,于是()()1()1[()()()()()()()]13/42/67/12P A B CP A B C P A B C P AP BP CP A BP B CP A CP A B C ==-=-++---+=-+=.第二次:7.三个箱子,第一箱中有4个黑球1个白球,第二箱中有3个黑球3个白球,第三个箱中有3个黑球5个白球,现随机取一个箱子,再从这个箱中取出一个球,则取到白球的概率是( A ).A. 12053B. 199C. 12067D. 1910解:用A 表示事件“取到白球”,用B表示事件“取到第i 箱”1.2.3i =,则由全概率公式知112233()()(|)()(|)()(|)11131553353638120P A P B P A B P B P A B P B P A B =++=++=8.有三类箱子,箱中装有黑、白两种颜色的小球,各类箱子中黑球、白球数目之比为,2:3,2:1,1:4已知这三类箱子数目之比为1:3:2,现随机取一个箱子,再从中随机取出一个球,则取到白球的概率为( C ).A.135B. 4519C. 157D. 3019解:用A 表示事件“取到白球”,用B 表示事件“取到第i 类箱子”1.2.3i =,则由全概率公式知112233()()(|)()(|)()(|)213212765636515P A P B P A B P B P A B P B P A B =++=++=9.接上题,若已知取到的是一只白球,则此球是来自第二类箱子的概率为( C ).A. 21B. 31C. 75D. 71.解:即求条件概率2(|)P B A .由Bayes 公式知3263222711223315()(|)5(|)()(|)()(|)()(|)7P B P A B P B A P B P A B P B P A B P B P A B ===++随机地挑选一人,恰好是色盲患者,问此人是男性的概率是多少? 解:A 1={男人},A 2={女人},B={色盲},显然A 1∪A 2=S ,A 1 A 2=φ由已知条件知%25.0)|(%,5)|(21)()(2121====A B P A B P A P A P由贝叶斯公式,有)()()|(11B P B A P B A P =)|()()|()()|()(221111A B P A P A B P A P A B P A P += 2120100002521100521100521=⋅+⋅⋅=四、设有甲、乙二袋,甲袋中装有n 只白球m 只红球,乙袋中装有N 只白球M 只红球,今从甲袋中任取一球放入乙袋中,再从乙袋中任取一球,问取到(即从乙袋中取到)白球的概率是多少?(此为第三版19题(1))记A 1,A 2分别表“从甲袋中取得白球,红球放入乙袋” 再记B 表“再从乙袋中取得白球”。
概率练习册1-2章答案
(n 1 ) ! ,而事 (2)n 个朋友随机的围绕圆桌而坐,样本空间样本点总数为
件 B 为甲、乙、丙三人坐在一起,可将三人“捆绑”在一起,看成是“一个”人
3 (n 3)! 占“一个”座位,有利于事件 B 发生的样本点个数为 A3 3 A3 (n 3)! 6 于是 P ( B ) (n 1)! (n 1)(n 2)
S ( A) P ( A) S ( )
Y
习题 1-4
条件概率
一、填空题: 一盒中有新旧两种乒乓球 100 只,其中新球中有 40 只白的和 30 只黄的,旧球中有 20 只白的和 10 只黄的。现从中任取一只,则: (1)取到一只新球的概率是 0.7 ; (2)取到一只黄球的概率是 0.4 ; (3)已知取到的是新球,该球是黄球的概率是
(4) ( A1 ∪ A2 )∩ A3 表示 (5)( A1 ∪ A2 )∩ A3 表示
; ;
答案: (1)三次均抽到废品; (2)至少有一次抽到废品; (3)只在第三次才抽到废品; (4)前两次至少抽到一件废品且第三次抽到废品; (5)前两次至少抽到一件正品且第三次抽到废品。 5.设事件 A,B,C 满足 ABC≠ф将下列事件分解为互斥事件和的形式: A∪B∪C 可表示为 ; A-BC 可表示为 ;
P ( A1 A2 An ) P ( A1 ) P ( A2 A1 ) P ( A3 A1 A2 ) P ( A1 A2 An ) 1 2 3 n 1 n 2 3 4 n n 1 1 n 1
2.市场上某种产品分别有甲、乙、丙三个厂所生产,其产量结构为 2:4:5,已知三个厂 的次品率分别为 4%、5%和 3%,求: (1)市场上该种产品总的次品率是多少? (2)若从该市场上任取一件这种产品发现是次品,则该次品最可能是哪个厂生产的? 解:设 Ai (i 1,2,3) 分别表示分别有甲、乙、丙三个厂所生产的产品
南昌大学概率论练习册答案
练习一一、1.BCD 2. ABC 3. CD 4. BD 5. D二.1. 88365365A 2. 41/90 3. 0.4 0.6 4. 25/42 三、已知:P (A )=0.45,P (B )=0.35,P (C )=0.3,P (AB )=0.1,P (AC )=0.08,P (BC )=0.05,P (ABC )=0.03(1)3.0)]()()([)()}({)()(=-+-=-=ABC P AC P AB P A P C B A P A P C B A P (2)07.0)()()(=-=ABC P AB P C AB P (3)3.0)(=C B A P23.0)]()()([)()}({)()(=-+-=-=ABC P BC P AB P B P C A B P B P C B A P 2.0)]()()([)()}({)()(=-+-=-=ABC P BC P AC P C P B A C P C P C B A P得73.0)()()(=++=C B A P C B A P C B A P P(4)14.0)()()()(=-+-+-==ABC BC P ABC AC P ABC AB P BC A C B A C AB P P (5)P (A ∪B ∪C )=0.73+0.14+0.03=0.9 (6)1.09.01)(=-=C B A P四、令x 、y 为所取两数,则Ω={(x ,y )|0<x <1, 0<y <1}; 令事件A :“两数之积不大于2/9,之和不大于1”,则A ={(x ,y )| xy ≤2/9, x +y ≤1, 0<x <1, 0<y <1}S Ω=S OAED =1×1=1; 2ln 9231)9211121231+=---⨯⨯==⎰dx x x S S A 阴得2ln 9231+==ΩS S P A练习二一、1.ABCD 2. ABC 3. ABC 4. C二、Ω:“全厂的产品”;A 、B 、C 分别为:“甲、乙、丙各车间的产品”,S :“次品”,则(1)由全概率公式,得 P (S )=P (A )P (S |A )+P (B )P (S |B )+P (C )P (S |C )=25%×5%+35%×4%+40%×2%=3.45%(2)由贝叶斯公式,得%23.366925345125%45.3%5%25)()|()()|(≈==⨯==S P A S P A P S A P三、Ω={(女,女,女),(女,女,男),(女,男,女),(男,女,女),(女,男,男),(男,女,男),(男,男,女)}有:P {至少有一男}=6/7或132333331C C C C P ++-= 四、101)(,157)(,154)(===AB P B P A P有:143157101)()()|(===B P AB P B A P 83154101)()()|(===A P AB P A B P 3019)()()()(=-+=AB P B P A P B A P五、bB A P b a B P B A P B P A P B P AB P B A P )()()()()()()()|( -+=-+==又P (A ∪B )≤1,则bb a B A P 1)|(-+≥练习三一、1.BD 2. ABCD 3. AD 4. B二、A 1、A 2、A 3分别“甲、乙、丙击中飞机”,则A 1、A 2、A 3相互独立 B i :“有i 个人击中飞机”(i =1,2,3),有:Ω== 31i i B ;B :“飞机被击落”由已知:P (A 1)=0.4,P (A 2)=0.5,P (A 3)=0.73213213211A A A A A A A A A B =36.0075.06.03.05.06.03.05.04.0 )()()()()()()()()()(3213213211=⨯⨯+⨯⨯+⨯⨯=++=A P A P A P A P A P A P A P A P A P B P41.0)(23213213212=⇒=B P A A A A A A A A A BB 3=A 1A 2A 3⇒P (B 3)=0.14又P (B |B 1)=0.2,P (B |B 2)=0.6,P (B |B 3)=1 由全概率公式,得:458.0114.06.041.02.036.0)|()()(31=⨯+⨯+⨯==∑=i i i B B P B P B P三、A i :“C 发生时第i 只开关闭合”,由已知有:P (A i )=0.96 (1)P (A 1∪A 2)=P (A 1)+P (A 2)-P (A 1A 2)=0.96+0.96-0.96×0.96=0.9984 (2)设需k 只开关满足所需可靠性,在情况C 发生时,k 只开关中至少有一只闭合的概率为:39999.004.01)96.01(1)()()(1)(1)(1)(min 21212121=⇒≥-=--=-=-=-=k A P A P A P A A A P A A A P A A A P kkk k k k四、(1)3087.0)3.01(3.0)2(32255=-=C P(2)A :“5个样品中至少有2个一级品”,有:47178.07.03.01)(1)()(15515525=-=-==∑∑∑=-==i i i i i i C i P i P A P练习四一、1. ABCD 2. D 3. A 4. AB 二、(1)任掷两骰子所得点数和i 有2→12共11种可能令ωi 表示和数为i 的样本点(i =2,3,…,12),则基本事件集Ω={ω2, ω3,…, ω12 }(2)由已知,得:∀ωi ∈Ω,有ξ(ωi )=2i (i =2,3,…,12),则ξ的可能值为2i (i =2,3,…,12) (3){ξ<4}=φ; {ξ≤5.5}={ξ=4}={ω2}; {6≤ξ≤9}={ξ=6}∪{ξ=8}={ω3}∪{ω4}; {ξ>20}={ξ=22}∪{ξ=24}={ω11}∪{ω12}(4)P {ξ<4}=0;P {ξ≤5.5}=P {ω2}=1/36;P {6≤ξ≤9}=P {ω3}+P {ω4}=2/36+3/36=5/36; P {ξ>20}= P {ω11}+P {ω12}=2/36+1/36=3/36=1/12 三、(1) ξ的所有可能值为0,1,2P {ξ=0}=3522315313=C C ; P {ξ=1}=3512321312=C C C ; P {ξ=2}=35131511322=C C C 故ξ的分布律为: (2)F (x )=P {ξ≤x }当x <0时,{ξ≤x }为不可能事件,得F (x )=P {ξ≤x }=0当0≤x <1时,{ξ≤x }={ξ=0},得F (x )=P {ξ≤x }=P {ξ=0}=22/35 当1≤x <2时,{ξ≤x }={ξ=0}∪{ξ=1},又{ξ=0}与{ξ=1}是两互斥事件,得F (x )=P {ξ≤x }=P {ξ=0}+P {ξ=1}=22/35+12/35=34/35当x ≥2时,{ξ≤x }为必然事件,得F (x )=P {ξ≤x }=1 综合即得 四、五、(1)ππ11111)(112=⇒=⇒=-⇒=⎰⎰-+∞∞-A A dx x A dx x f(2)3111)2121(21212=-=<<-⎰-dx x P πξ(3)dt t f x F x⎰∞-=)()( 当x <-1时,00)(==⎰∞-dt x F x当-1≤x ≤1时,x dt x dt x F xarcsin 121110)(121ππ+=-+=⎰⎰--∞- 当x >1时, 10110)(11121=+-+=⎰⎰⎰--∞-dt dt x dt x F xπ 综合即得六、(1)P {2<ξ≤5}=Φ(235-)-Φ(232-)=Φ(1)-Φ(-0.5)=Φ(1)-[1-Φ(0.5)]=0.5328P {-4<ξ<10}=Φ(2310-)-Φ(234--)=Φ(3.5) -Φ(-3.5)= 2Φ(3.5) -1=0.9996 P {|ξ|>2}=1-P {-2≤ξ≤2}=1-Φ(232-)+Φ(232--)=1-Φ(-0.5)+Φ(-2.5)=0.6977P {ξ>3}=1-P {ξ≤3}=1-Φ(233-)=1-Φ(0)=1-0.5=0.5(2) P {ξ>C}=1-P {ξ≤C}=P {ξ≤C}⇒P {ξ≤C}=0.5⇒Φ(23-C )=0.5⇒23-C =0.5⇒练习五一、1.AB 2. BC 3. AC 4. BD 5. B 二、⎩⎨⎧∉∈=)1,0( ,0)1,0( ,1)(x x x f X(1)y =e x 在(0,1)严格单调增且可导,则x =ln y 在(1,e )上有:(ln y )'=y1∴⎪⎩⎪⎨⎧<<=其它 ,01 |,1|)(ln )(e y y y f y f X Y ⇒⎪⎩⎪⎨⎧<<=其它 ,01 ,1)(e y y y f Y (2)y = -2ln x 在(0,1)严格单调减且可导,则2yex -=在(0,+∞)上有:2221)(yy e e---='∴⎪⎩⎪⎨⎧>-=--其它 ,00 |,21|)()(y e e f y f y y X Y ⇒⎪⎩⎪⎨⎧>=-其它 ,00,21)(y e y f y Y 三、⎩⎨⎧-∈=其它,0]2/ ,2/[ ,/1)(πππx x f Xy =cosx 在[-π/2,0]上严格单调增且可导,则x 1=h 1(y )= -arccosy 在[0,1]上有:x 1'=211y- y =cosx 在[0, π/2]上严格单调减且可导,则x 2=h 2(y )=arccosy 在[0,1]上有:x 2'=211y-- ∴⎪⎩⎪⎨⎧∈-='+'=其它 ,0]1,0[ ,12|)(|)]([|)(|)]([)(22211y y y h y h f y h y h f y f X X Y π四、五、(1)12112/1),(0403=⇒==⇒=⎰⎰⎰⎰+∞-+∞∞-+∞-+∞∞-k k dy e dx e k dxdy y x f y x(2)⎪⎩⎪⎨⎧>>--===--+-∞-∞-⎰⎰⎰⎰其它,00,0 ),1)(1(12),(),(4300)43(y x e e dxdy edxdy y x f y x F y x y xy x yx(3)P (0<X ≤1,0<Y ≤2)=F (1,2)-F (1,0)-F (0,2)+F (0,0)= (1-e -3)(1-e -8)六、(1)X 与Y 独立,则⎪⎩⎪⎨⎧>>⨯==+-其它,00,0 ,1021)()(),(26y x e y f x f y x f y x Y X(2)311021),()(02000206=⨯==>⎰⎰⎰⎰+-∞+>dy edx dxdy y x f Y X P x yx yx练习六1.(1)2211),(ππ=⇒==⎰⎰+∞∞-+∞∞-A A dxdy y x f (2) 161)1)(1(11010222=++=⎰⎰dxdy y x P π (3))1(1)1)(1(1)(2222x dy y x x f X +=++=⎰+∞∞-ππ,同理)1(1)(2y y f Y +=⇒π 有f (x ,y )=f X (x )f Y (y ),故X 与Y 独立2.X 与Y 独立,则P {X =x i ,Y =y j }=P {X =x i }P {Y =y j }有:3.(1)2,10)]3/()[2/(0),(0)2/)](2/([0),(1)2/)(2/(1),(2ππππππ===⇒⎪⎭⎪⎬⎫=+-⇒=-∞=-+⇒=-∞=++⇒=+∞+∞C B A y arctg C B A y F C x arctg B A x F C B A F (2))9)(4(6),(),())((1),(22222++=∂=⇒++=y x y x F y x f y arctg x arctg y x F ππππ (3)2121)22)(22(1),()(2x arctg x arctg x F x F X πππππ+=++=+∞=则有)4(2)(2+=x x f X π;同理得:3121)(yarctg y F Y π+=,)9(3)(2+=y y f Y π4.5.设第i 周需要量为X i (i =1,2,3)⎩⎨⎧≤>=⇒-0 ,00,)(i i x i i X x x e x x f i i (i =1,2,3)(1)令X =X 1+X 2,则⎩⎨⎧>>=+-其它 ,00,0 ,),(21)(212121x x e x x x x f x x⎪⎩⎪⎨⎧≤>+++-===--+-≤+⎰⎰⎰⎰0 ,00,)12161(1),()(2320)(2101212112121x x e x x x dx e x x dx dx dx x x f x F x x x x x x x x x X ⎪⎩⎪⎨⎧≤>=⇒-0,00 ,61)(3x x e x x f x X(2)令Y =X 1+X 2+X 3=X +X 3,则⎪⎩⎪⎨⎧>>=--其它,00,0 ,61),(33333x x e x e x x x f x x⎪⎩⎪⎨⎧≤>+++++-===----≤+⎰⎰⎰⎰0,00,)12624120(161),()(2345303303333y y e y y y y y dx e x e x dx dxdx x x f y F y x y x x y y x x Y ⎪⎩⎪⎨⎧≤>=⇒-0,00 ,1201)(5y y e y y f y Y6.dxdy y x f dxdy y x f z Z P z F zy x z yx Z ⎰⎰⎰⎰≤+≤+==≤=22),(),()()((1)z ≤0⇒F Z (z )=0; (2)z z xz y x zZ ze e dy e dx z F z 2220)(2021)(0---+---==⇒>⎰⎰故⎩⎨⎧≤>=⇒⎩⎨⎧≤>--=---0,00 ,4)(0 ,00 ,21)(222z z ze z f z z ze e z F zZ z z Z 练习七一、1. D 2. B 3. AD 4. D 5. BC 二、令Z 表示整数,则P {Z =i }=1/10=0.1 (i =1,2, (10)除的尽1的整数有且只有整数1这一个;除的尽2,3,5,7的有二个;除的尽4,9的有三个;除的尽6,8,10的有四个,则 P {X =1}=P {Z =1}=0.1; P {X =2}=P {Z =2}+P {Z =3}+P {Z =5}+P {Z =7}=0.4 P {X =3}=P {Z =4}+P {Z=8}+P {Z =10}=0.3 得X 的分布律为:E (X )=1×0.1+2×0.4+3×0.2+4×0.3=2.7三、E (X )=p q pq q p q p q p kqp kpqk k k kk k k k 1)1()1()()(2111111=-='-='='==∑∑∑∑∞=∞=∞=-∞=- E (X 2)=)()()(1111112112'='='==∑∑∑∑∑∞=-∞=∞=∞=-∞=-k k k kk kk k k k kq q p kq p kq p qk p pqk222])1([ppq q p -='-= D (X )=E (X 2)-E 2(X )=221p qp p =- 四、E (X )=0)(2||==⎰⎰∞+∞--∞+∞-dx xe dx x xf xD (X )=322)()]([02||22===-⎰⎰⎰∞+-∞+∞--∞+∞-dx e x dx ex dx x f X E x x x五、令搜索时间为T ,则T 的分布函数为⎩⎨⎧≤>-=-0,00,1)( t t e t F t λ,得:⎩⎨⎧≤>=-0,00,)( t t e t f t λλ,则有E (T )=λλλ1)(0 ==⎰⎰+∞-+∞∞-dt e t dt t tf t六、b X E a b dx x bf dx x xf X E dx x af a ba b a b a ≤≤⇒=≤=≤=⎰⎰⎰)()()()()(E [(X -x )2]=E (X 2)-2xE (X )+x 2=E (X 2)+[x -E (X )]2-E 2(X )=[x -E (X )]2+D (X )可见,当x =E (X )时,E [(X -x )2]取最小值D (X )则当2b a x +=时,有:D (X )=E {[X -E (X )]2}2222)2(])2[(])2[(])2[(a b a b E b a b E b a X E -=-=+-≤+-≤练习八一、1. AD 2. AD 3. B 4. D 5. ABD 二、(1)2/112)sin(1),(0=⇒==+⇒=⎰⎰⎰⎰∞+∞-∞+∞-A A dxdy y x A dxdy y x f ππ(2)4)sin(21)(0πππ=+=⎰⎰dxdy y x x X E228)sin(21)(22222-+=+=⎰⎰ππππdxdy y x x X E2216)()()(222-+=-=ππX E X E X D同理可得:2216)( ,4)(2-+==πππY D Y E(3)12)sin(21)(22-=+=⎰⎰πππdxdy y x xy XY E 1612)()()(),(2ππ--=-=Y E X E XY E Y X Cov 328168)()(),(22-+-+-==ππππρY D X D Y X Cov XY 三、(1)设X i 为第i 个加数取整后的误差,则X i ~U[-0.5,0.5] (i =1, (1500)总误差∑==15001i i X X ,且125211500)()(,0)()(1500115001=⨯====∑∑==i i i i X D X D X E X E由独立同分布的中心极限定理:P {|X |>15}=1-P {|X |≤15}1802.0)34.1(22)553(22)125015()125015(1=Φ-=Φ-=--Φ+-Φ-≈(2)在(1)的假设下,设∑==ni i X X 1,有E (X )=0,12)(n X D =则求最小自然数n ,使P {|X |≤10}≥0.90,即65.112/1095.0)12/10(9.01)12/10(2)12/010()12/010(≥⇒≥Φ⇒≥-Φ=--Φ--Φn n n n n ⇒n ≤440.77⇒n =440为所求四、E (X )=E (Y )=μ, D (X )=D (Y )=σ2E (Z 1)=αE (X )+βE (Y )=μ(α+β), E (Z 2)=αE (X )-βE (Y )=μ(α-β)E (Z 1Z 2)=E (α2X 2-β2Y 2)=α2E (X 2)-β2E (Y 2)=α2[D (X )+E 2(X )]-β2[D (Y )+E 2(Y )]=α2(σ2+μ2)-β2(σ2+μ2) =(σ2+μ2)(α2-β2)D (Z 1)=α2D (X )+β2D (Y )=σ2(α2+β2), D (Z 2)=α2D (X )+β2D (Y )=σ2(α2+β2)22222222222121212121)()()()()()()()()(),(21βαβαβασβασρ+-=+-=-==Z D Z D Z E Z E Z Z E Z D Z D Z Z Cov Z Z 阶段自测一一、1. D 2. A 3. B 4. A 5. B二、1. 0 3/4 5/8 1/8 2. 1/2 1/[π(1+x 2)] 3. 20 16 4. 41 41 5. 1 三、X 的可能值为:2,3,4,5P {X =2}=101125=C =0.1 P {X =3}=104251212=C C =0.4 P {X =4}=103)1(2512=+C C =0.3 P {X =5}=1022512=C =0.2 得X 的分布律:E (X )=2×0.1+3×0.4+4×0.3+5×0.2=3.6E (X 2)=22×0.1+32×0.4+42×0.3+52×0.2=13.8 D (X )=E (X 2)-E 2(X )=0.84 四、令A i :第i 台车床加工的零件;B :废品,则A 1与A 2不相容 由已知:P (B |A 1)=0.03, P (B |A 2)=0.02, P (A 1)=2/3, P (A 2)=1/3由贝叶斯公式:25.0413/203.03/102.03/102.0)()|()()|()|(21222==⨯+⨯⨯==∑=i ii A P A B P A P A B P B A P 五、(1)1)(2)arcsin (lim )(lim ==+=+=--→→a F B A a x B A x F a x a x π0)(2)(lim )(=-=-=+-→a F B A x F a x π,则得:A =1/2, B =1/π(2)31)21arcsin 121()21arcsin 121()2()2(}22{=--+=--=<<-ππa F a F a X a P(3)⎪⎩⎪⎨⎧<-='=其它 ,0|| ,1)()(22a x x a x F x f π六、⎪⎩⎪⎨⎧≤-=⎪⎩⎪⎨⎧≤==⎰⎰---∞+∞-其它其它 ,01|| ,12,01|| ,1),()(21122x x x dy dy y x f x f x x X ππ同理:⎪⎩⎪⎨⎧≤-=其它,01|| ,12)(2y y y f Y πf (x ,y )≠f X (x )f Y (y ),则X 和Y 不独立012)()(112=-==⎰⎰-+∞∞-dx x x dx x xf X E Xπ,同理:E (Y )=001),()0)(0(),(122==--=⎰⎰⎰⎰≤++∞∞-+∞∞-dxdy xy dxdy y x f y x Y X Cov y x , 则X 和Y 不相关七、设A i :第i 次误差的绝对值不超过30米 , ξ~N (20,402)所求为:3321321)](1[1)()()(1)(i A P A P A P A P A A A P --=-=8698.0)]402030()402030(1[1}]30|{|1[133=--Φ+-Φ--=≤--=ξP八、⎰⎰⎰⎰⎰⎰+∞∞-∞-≤≤===≤dy dx x f y f dxdy y f x f dxdy y x f Y X P yyx Y X yx ])()([)()(),(}{21)]()([21)(21)()()()(222=-∞-+∞====+∞∞-+∞∞-+∞∞-⎰⎰F F y F y dF y F dy y F y f练习九一、1. C 2. A 3. C 4. C 5. A 二、(1)∵)1,0(~/N nX σμ- ∴}05.02)(05.0{}/21.0/2||{}1.0|{|n X n n P nn X P X P ≤-≤-=≤-=≤-μμμ153764.153695.01)05.0(2)05.0()05.0(≥⇒≥⇒≥-Φ=-Φ-Φ=n n n n n(2)n p p p np n X n D X D p np n X n E X E ni i n i i )1()1(1)1()( ,1)1()(211-=-=====∑∑==p (1-p )在p =1/2处取得最大值1/4,nX D X E X E p X E 41)(|)(|||22≤=-=-要使01.0||2≤-p X E ,只需1/4n ≤0.01,即n ≥25三、X 1,X 2,X 3,X 4~N (μ,σ2),且相互独立⇒X 1-X 2~N (0,2σ2), X 3-X 4~N (0,2σ2),且X 1-X 2与X 3-X 4相互独立则)1(~)2();1(~)2()1,0(~2);1,0(~2224322214321χσχσσσX X X X N X X N X X --⇒--)1,1(~)()()1,1(~)2()2(243221243221F X X X X F X X X X --⇒--⇒σσ 05.095.01)()(1)()(243221243221=-=⎭⎬⎫⎩⎨⎧≤---=⎭⎬⎫⎩⎨⎧>--a X X X X P a X X X X P ⇒a =F 0.05(1,1)=161.4四、由题意知:)1,0(~)(212N X X C i i +- (i =1,2,3)22222122112)()]([σσσσ=⇒==+=+⇒-C C C X X C D i i又σ2212i i X X +- (i =1,2,3)是相互独立的,得Y ~χ2(3),即自由度为3五、X 1,X 2,...,X 16相互独立,且)16(~)()1,0(~21612χσμσμ∑=-⇒-i i i X N X}32)({}8)({}32)(8{161216121612>--≥-=≤-≤=∑∑∑===i i i i i i X P X P X P P σμσμσμ=0.95-0.01=0.94六、X 1,X 2,...,X n 相互独立,且E (X i )=D (X i )=λn n nX n D X D n n X n E X E ni i n i i λλλλ======∑∑==2111)1()( ;1)1()()(112122X n X n S ni i --=∑=E (X i 2)=D (X i )+E 2(X i )=λ+λ2, 222)()()(λλ+=+=nX E X D X Eλλλλλ=--+-=)(11)(222n n n n S E练习十一、1. A 2. D 3. A 4. B 5. B 二、矩估计量:⎪⎪⎩⎪⎪⎨⎧++===+===⎰⎰∞+--∞+--22222122)()(θμθμθμθμθμμθμμμdx e x X E dx e x X E x x ⎪⎪⎩⎪⎪⎨⎧===∑∑==ni i ni i X n A X X n A 1221111 令⎩⎨⎧==2211A A μμ⇒⎪⎩⎪⎨⎧=++=+∑=n i i X n X1222122θμθμθμ⇒⎪⎪⎩⎪⎪⎨⎧-=--=∑∑==2122121ˆ1ˆX X n X X n X ni in i i θμ极大似然估计量:设x 1, x 2,..., x n 是相应于样本X 1, X 2,..., X n 的一个样本值 似然函数L (x 1, x 2,..., x n , μ, θ )=∑==--=--∏ni i i x n ni x ee1)(1111μθθμθθ(x i ≥μ, i =1,2,..., n )⇒ln L = -n ln θ -∑=-n i i x 1)(1μθ,令⎪⎪⎩⎪⎪⎨⎧=-+-=∂∂==∂∂∑=0)(1ln 0ln 12ni ixn L n L μθθθ⇒μ和θ无解∵x i ≥μ,取k nk x ≤≤=1min ˆμ,有 L =∑=--ni i x n e 1)(11μθθ≤∑=≤≤--ni k nk i x x n e 11)min (11θθ=∑=--ni i x n e 1)ˆ(11μθθ令g (θ )=∑=≤≤--ni k n k i x x n e 11)min (11θθ令0)(=∂∂θθg ⇒0)min (1112=-+-∑=≤≤ni k n k i x x n θ,得⎪⎩⎪⎨⎧-==≤≤=≤≤∑)min (1ˆmin ˆ111k nk n i i k nk x x n x θμ 三、似然函数L (x 1, x 2,..., x n , σ )=∑==-=-∏ni ii x nni x ee1||1||)2(121σσσ⇒ln L = -n ln(2σ) -∑=ni i x 1||σ= -n ln(2σ) -∑=ni ix1||1σ令0ln =∂∂L ⇒0||112=+-∑=n i i x n σσ⇒∑==n i i X n1||1ˆσ由大数定律,有: ∑∑==−→−ni iPn i i X E n X n 11||1||1 E |X i |=E |X |=dx e x dx e x dx e x xxx ⎰⎰⎰∞+-∞-∞+∞--⋅+⋅-=⋅00||2121)(21||σσσ=22σσ+=σ⇒σn n X E n ni i 1||11=∑==σ, 即σ−→−∑=P ni i X n 1||1⇒σˆ为σ的一致估计量 四、E (X )=2β, D (X )=122β⇒βˆ21)(ˆ=X E,2ˆ121)(ˆβ=X D 似然函数L (x 1, x 2,..., x n , β )=n ni ββ111=∏= (0≤x 1,..., x n ≤β)⇒ln L = -n ln β令0ln =∂∂βL ⇒0=-βn ⇒β无解∵L =n β1≤nn x )(1* (x n *=max(x 1,..., x n ))∴取*ˆn x =β时,有L (x 1, x 2,..., x n , β )≤L (x 1, x 2,..., x n ,βˆ) ∴21)(ˆ=X Emax(x 1,..., x n ), 121)(ˆ=X D [max(x 1,..., x n )]2 X 的观察值为1.3, 0.6, 1.7, 2.2, 0.3, 1.1时,最大值为2.2∴2.221)(ˆ⨯=X E=1.1, 22.2121)(ˆ⨯=X D =0.403 五、(1)证明连续型的情形: 设f (x )为X 的概率密度,则 P {|X -μ|≥ε}=dx x f y x ⎰≥-ε||)(≤dx x f x y x )()(||22⎰≥--εεμ≤dx x f x ⎰∞+∞--)()(22εμ=21εE (X -μ)2(2)∀ε >0, P {|t n -θ |<ε}=1-P {|t n -θ |≥ε}≥1-22)(1θε-n t E22)(1θε-n t E =)]()([122θθε-+-n n t E t D =}])([)({122θε-+n n t E t D=])([122n n K t D +ε=0)(1222−−→−+∞→n n n K σε∴1}|{|lim =<-∞→εθn n t P , 即t n 是θ的一致估计量 练习十一一、n =16, 1-α =0.95⇒α =0.05, σ2未知)1(-n t α=t 0.025(15)=2.131516029.01315.2705.2)1(2⨯-=--n t n s x α=2.6916029.01315.2705.2)1(⨯+=-+n t n s x α=2.72∴μ的置信度为0.95的置信区间为(2.69, 2.72) 二、n =9, 1-α =0.95⇒α =0.05)8()1(2025.022χχα=-n =17.535, )8()1(2975.0221χχα=--n =2.180 535.171218)1()1(222⨯=--n s n αχ=55.20, 180.21218)1()1(2212⨯=---n s n αχ=444.04 ∴σ2的置信度为0.95的置信区间为(55.20, 444.04) 三、μ1, μ2分别为一号方案和二号方案的平均产量n 1= n 2=8, α =0.05, x =81.63, 21s =145.70, y =75.88, 22s =101.98)2(212-+n n t α=t 0.025(14)=2.14, 2)1()1(21222211-+-+-=n n s n s n s ω=11.13212111)2(n n s n n t y x +-+--ωα= -6.162121211)2(n n s n n t y x +-++-ωα=17.66 ∴μ1-μ2的置信度为0.95的置信区间为(-6.16, 17.66)四、n 1= n 2=10, α =0.05, )1,1()1,1(122212--=--n n F n n F αα=F 0.05(9, 9)=4.0303.416065.05419.0)1,1(121222⋅=--n n F S S BA α=0.222 )1,1()1,1(11)1,1(112221222212122--=--=---n n F S S n n F S S n n F S S B ABA B A ααα 03.46065.05419.0⋅==3.601 ∴22BAσσ的置信度为0.95的置信区间为(0.222, 3.601) 五、∵212111)()(n n S Y X +---ωμμ~t (n 1+n 2-2)∴P {212111)()(n n S Y X +---ωμμ< t α(n 1+n 2-2)}=1-α∴P {2111n n S Y X +--ωt α(n 1+n 2-2)<μ1-μ2}=1-α∴μ1-μ2的置信度为1-α的置信下限为2111n n S Y X +--ωt α(n 1+n 2-2)x=0.14125, s 12=0.0000083, y =0.1392, s 22=0.0000052,7432221s s s +=ω=0.0025495 2111n n s y x +--ωt α(n 1+n 2-2)=0.14125-0.1392-0.00254955141+t 0.05(7)= -0.0011901≈ -0.0012 ∴μ1-μ2的置信度为0.95的置信下限为-0.0012六、∵S nX )(μ-~t (n -1), 且P {)1(|)(|2-<-n t S n X αμ}=1-α ∴P {nS n t X nS n t X )1()1(22-+<<--ααμ}=1-α∴μ的置信度为1-α的置信区间为(n S n t X )1(2--α,n S n t X )1(2-+α)此时n S n t L )1(2-=α⇒22222)]1([4)()]1([4)(-=-=n t n S E n t n L E αασ 阶段自测二一、1. 1 2. 21σnn - 11--n 3. F (1, n -1) 4. 11-n 5.二、1. AD 2. AC 3. CD 4. 三、(1)∵22)1(σnS n -~χ 2(n -1)∴P {22σn S ≤1.5}=P {22)1(σnS n -≤1.5(n -1)}≥0.95 ⇒P {22)1(σnS n ->1.5(n -1)}≤0.05⇒1.5(n -1)≥)1(205.0-n χ查χ 2分布表得满足上式的最小的n 为27 (2)∵n X σμ-~N (0,1), n n X E X E σσμμ⋅-=-||||, 令Y =nX σμ- ∴E |Y |=ππ22||2122=⎰∞+∞--dy ey y ∴nn X E ππμ24222||=⋅=-≤0.1⇒n ≥255 四、(1)矩估计量: μ1=E (X )=dx xe x ⎰+∞--θθ)(=1+θ, A 1=X令μ1=A 1⇒θ+1=X ⇒1ˆ-=X θ⇒∑∑==-=-=ni i ni i X n X n 111)1(111ˆθ 极大似然估计量: L (x 1,..., x n ,θ )=∑=--ni i x e1)(θ (x i ≥θ )⇒ln L = -∑=-n i i x 1)(θ, 令0ln =∂∂L ⇒θ无解∵x i ≥θ时L 非零 ∴当θ =i ni x ≤≤1min 时, L 有最大值⇒i n i X ≤≤=12min ˆθ (2))()1()ˆ(1X E X E E =-=θ-1=E (X )-1=θ+1-1=θ⇒1ˆθ是θ的无偏估计量 2ˆθ的分布函数G (y )=P {i ni x ≤≤1min ≤y }=1-P {ini x ≤≤1min >y } =1-P {X 1>y , X 2>y ,..., X n >y }=1-[1-F (y )]nX 的分布函数F (x )=⎩⎨⎧<≥---θθθx x e x,0 ,1)(⇒G (y )=⎩⎨⎧<≥---θθθy y e y n ,0 ,1)(⇒g (y )=G ' (y )=⎩⎨⎧<≥--θθθy y ne y n ,0 ,)(⇒ndy yne E y n 1)ˆ()(2+==⎰+∞--θθθθ⇒2ˆθ不是θ的无偏估计量 五、n 1=5, n 2=7, α=0.01103262842)1()1(22212221⨯+⨯=-+-+-=n n S n S n S B A ω=30.46 )2(212-+n n t α=t 0.05(10)=3.1693212111)2(n n s n n t x x B A +-+--ωα=63.47,212111)2(n n s n n t x x B A +-++-ωα=176.52 ∴所求置信区间为(63.47, 176.52) 六、七、E (T )=)()(21X bE X aE +=a μ+b μ=(a +b )μ=μ⇒T 是μ的无偏估计 T =21)1(X a X a -+ ∵1X 与2X 相互独立∴D (T )=222122221222212])1([)1()()1()(σσσn a n a n a n a X D a X D a -+=-+=-+则问题归结为求2212)1(n a n a -+的最小值, 令f (a )=2212)1(n a n a -+令0)(=da a df ⇒0)1(2221=--n a n a ⇒a =211n n n + )()(2)(2112121n n n a n n n n a f +-+='⇒a >211n n n +时, f '(a )>0; a <211n n n+时, f '(a )<0 ⇒f (a )在点211n n n +处取得最小值 ∴使D (T )达到最小值的a =211n n n +, b =212n n n+。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 概率论的基本概念§1.1 -1.2一、选择题1.以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为( ) A 、甲种产品滞销,乙种产品畅销 B 、甲乙两种产品均畅销C 、甲种产品滞销D 、甲种产品滞销或乙种产品畅销2.设必然事件123456{,,,,,}ωωωωωωΩ=其中(1,2,3,4,5,6)i i ω=是基本事件,事件 1235{,,,}A ωωωω=,24{,}B ωω=,123{,,}C ωωω=,则下列选项正确的是( ) A 、A B ⊃ B 、B A = C 、A C -与B C -互斥 D 、A C -与B 逆二、填空题1.同时掷两颗骰子,记录两颗骰子的电数之和,则样本空间Ω= .2.上题中,设事件A 表示“点数之和为偶数”,事件B 表示“点数之和大于7” 事件C 表示“点数之和为小于5的偶数”,则A B ⋃= ,A B -= , AB = ,A B C ⋃⋃= 。
三、设事件A 、B 、C 分别表示某运动员参加的三个项目,用A 、B 、C 的运算关系表示下列事件:(1)该运动员只参加A 项目,不参加B 、C 项目;(2)该运动员参加A 、B 两项目,不参加C 项目;(3)该运动员参加全部三个项目;(4)该运动员三个项目都不参加;(5)该运动员仅参加一项;(6)该运动员至少参加一项;(7)该运动员至多参加一项;(8)该运动员至少参加两项.§1.3一、从5双不同的鞋中任取4只,求其中恰有一双配对以及其中至少有两只配对的概率.二、将n只球随机地放入()N N n≥个盒子中去,试求每个盒子最多有一只球的概率.三、随机的向由101,2y x<<<所围成的正方形内掷一点,点落在该正方形内任何区域的概率与区域面积成正比,求原点与该点的连线与x轴的夹角小于34π的概率.四、将三个球随机地放入4个杯子中去,求杯子中球的最多个数分别为1,2,3的概率.§1.4一、填空题1.已知()0.2,()0.5,()0.08,P A P B P AB ===则()P A B = ,()P B A = 。
2.一批产品有100个,次品率为10%,连续两次从中任取一个(不放回),则第二次才取得正品的概率为 。
二、10个签中有4个难签,3人抽签考试,甲先乙次丙最后,求(1)甲、乙、丙各抽到难签的概率;(2)甲、乙都抽到难签的概率;(3)甲没抽到难签而乙抽到难签的概率;(4)甲、乙、丙同时抽到难签的概率.三、设甲袋中装有编号为1,2,3,,15 的15个红球,乙袋中装的编号为1,2,3,,10 的10个白球,现任意从一个袋中任取一个球,(1)求取到的球的号码是奇数的概率;(2)已知取到的球的号码是奇数,求它是红球的概率五、某通信系统的发射端以0.6和0.4的概率发出0和1两种信号。
由于信道有干扰,当发出信号0时,接收端以0.8和0.2的概率收到信号0和1;当发出信号1,接收端以0.9和0.1的概率收到信号1和0,求(1)收到信号1的概率;(2)当收到信号1时,发射端确是发出1的概率六、两台车床加工同一种零件,第一台车床加工后的废品率为0.03,第二台车床加工后的废品率为0.02,若两台车床加工的零件放在一起,且已知第一台车床加工的零件比第二台车床加工的零件多一倍,求从这批零件中任取一只零件是合格品的概率.§1.5一、填空题1.若,A B 相互独立,()0.2,()0.45P A P B ==,则()P B A = ,()P A B ⋃= , ()P AB = ,()P A B = 。
2.若,A B 相互独立,且()0.4,()0.7P A P A B =⋃=,则()P B = 。
3.一射手对同一目标进行四次独立,若至少命中一次的概率为8081,则该射手的命中率为 .二、为了防止意外,在矿内设有两种报警系统A 与B ,每种系统单独使用时,其有效的概率分别是系统A 为0.92,系统B 为0.93,在系统A 失灵的条件下,系统B 有效的概率为0.85,求:(1)发生意外时,这两个报警系统至少有一个有效的概率;(2)在系统B 失灵的条件下,系统A 有效的概率.三、加工某一零件共需经过四道工序,设第一、二、三、四道工序的次品率分别为0.02,0.03,0.05,0.03,假设各道工序是互不影响的,求加工出来的零件的次品率.四、设11 (),()32P A P B==,(1)若,A B互不相容,求(),(),()P AB P AB P A B⋃;(2)若,A B独立,求(),()P A B P A B⋃-;(3)若A B⊂,求(),()P AB P AB.六、A、B、C三人在同一办公室工作,房间里有三部电话,据统计知,打给A、B、C的电话的概率分别是221,,555.他们三人常因工作外出,A、B、C三人外出的概率分别是111,,244.设三人的行动相互独立,求(1)无人接电话的概率;(2)被呼叫人在办公室的概率.若某一时间段打进三个电话,求(3)这三个电话打给同一个人的概率;(4)这三个电话打给不同的人的概率;(5)这3个电话打给B,而B不在的概率.第二章 随机变量及其分布§2.1-2.2一、填空题1、设随机变量X 的分布律是{}(1,2,3,4)10k P X k k ===,则15{}22P X ≤≤= 。
2.设随机变量X 的分布律是{}(0,1,2,),0!kP X k a k K λλ==⋅=> ,为常数,则a = 。
3.已知随机变量X 只能取1,0,1,2-这四个值,其相应的概率依次为1352,,,24816C C C C,则 C = 。
4.设5个产品中有3个正品2个次品,如果每次从中任取1个进行测试,测试后不放回,直到把2个次品都取出来为止。
用X 表示需要进行的测试次数,则{2}P X == ; {5}P X == 。
5.若21{}1,{}1P X x P X x βα≤=-≥=-,其中12x x <,则12{}P x X x ≤≤= 。
6.一颗均匀骰子重复掷10次,用X 表示3出现的次数,则X 服从参数为 的 分布,X 的分布律为 。
7一电话交换台每分钟接到呼叫次数X ~(4)P ,则每分钟恰好有8次呼叫的概率为 ,每分钟呼唤次数大于8的概率为 。
8.一实习生用一台机器接连独立的制造了3个相同的零件,第(1,2,3)i i =个零件是不合格品的概率为1(1,2,3)1i P i i ==+,以X 表示3个零件中合格品的个数,则{2}P X == 。
二、车从某校到火车站途中,要经过3个设有红绿灯的十字路口, 假设在各路口遇到红灯是相互独立的,并且概率都是13, (1)若以X 表示途中遇到红灯的次数,求X 的分布律.(2)若以Y 表示汽车从学校出发首次遇到红灯前已通过的路口数,求Y 的分布律.(3)求从学校出发到火车站途中至少遇到一次红灯的概率.三、一台设备由三大部件构成,在设备运转中各部件需要调整的概率分别为0.10,0.20和0.30,设各部件的状态相互独立,以X表示同时需要调整的部件数,求X的分布律.四、某种产品的次品率为0.1,检验员每天独立检验6次,每次有放回的取10件产品进行检验若发现这10件产品中有次品,就去调整设备,设X为一天中调整设备的次数,求X的概率分布.五、某车间有20台同型号的机床,每台机床开动的概率为0.8,若机床是否开动相互独立,每台机床开动时需要耗电15个单位,求该车间消耗电能不少于270个单位的概率。
§2.3一、填空题1.随机变量X 的分布函数()F x 是事件 的概率。
2.用随机变量X 的分布函数()F x 表示下述概率{}a X P ≤= ,{}P X a == , {}a X P >= ,{}21x X x P ≤<= 。
3.设()F x 是离散型随机变量X 的分布函数,若{}P X b == ,则{}P a X b <<= ()()F b F a -成立。
二、设袋中有标号分为-1,1,1,1,2,2的六个球,先从中任取一球,求得球的标号X 的分布律和分布函数,并作出分布函数的图形。
三、已知离散型随机变量X 的概率分布为{1}0.2,{2}0.3,{3}0.5P X P X P X ======,试写出X 的分布函数()F x ,并给出其图形。
§2.4~2.5一、选择题1.设()sin f x x =,要使()f x 为某随机变量X 的概率密度函数,则X 的可能取值的 区间为( )A .3[,]2ππ B.3[,2]2ππ C.[0,]π D.[0,]2π 2. 设连续型随机变量的概率密度函数,分布函数分别为()f x 和()F x ,则下列选项中正确的是( )A .0()1f x ≤≤ B.{}()P X x F x =≤C .{}()P X x F x == D.{}()P X x f x ==3.某电子元件的寿命X (单位:小时)的概率密度函数为201000()10001000x f x x x ≤⎧⎪=⎨>⎪⎩则装有5个这种电子元件的系统在使用的前1500小时内正好有2个元件需要更换的概率是 ( ) A.13 B.40243 C.80243 D.23 二.填空题1.设随机变量K ~[1,6]U ,则K 的概率密度函数是 。
2.设随机变量X ~[1,4]N ,且{}5.0=>a X P ,则a = 。
3.如果函数()x f x Ae -= ()x -∞<<+∞是某随机变量的概率密度函数,则A=________4.设X ~[0,1]U ,则2Y X =在(0,1)内的概率密度函数为 。
5.设X ~(3,2)N -,则Y =~ 。
6.已知X ~2(2,2)N ,且Y aX b =+~(0,1)N ,则a = ,b = 。
三、设连续型随机变量X 的概率密度函数为⎪⎩⎪⎨⎧<≤-<≤=021210)(x x x x x f 求(1)X 的分布函数()F x ;(2)⎭⎬⎫⎩⎨⎧≤<-211X P四、设电池寿命(单位:h)X 是一个随机变量,且X ~2(300,35)N (1)求电池寿命在250h 以上的概率;(2)求数a ,使得电池寿命在区间(300,300)a a -+内的概率不小于0.9.五、设某公共汽车站从早上5:00起,每5分钟一辆汽车通过,乘客在6:00到6:05到达车站是等可能的,求乘客候车时间不超 2分钟的概率。
六、设随机变量X 的分布密度为X -2 -1/2 0 2 4P 1/8 1/4 1/8 1/6 1/3求(1)2Y X =+; (2)1Y X =-+; (3)2Y X =的分布密度。