金属塑性变形的基本理论
第五章刚塑性有限元法基本理论与模拟方法
塑性成形过程 计算机数值模拟
第五章 刚塑性有限元法基本理论与模拟方法
❖ 从数学的角度来讲,有限元法是解微分方程的一种数值方法。它的 基本思想是:在整个求解区域内要解某一微分方程很困难(即求出 原函数)时,先用适当的单元将求解区域进行离散化,在单元内假 定一个满足微分方程的简单函数作为解,求出单元内各点的解;然 后,再考虑各单元间的相互影响,最后求出整个区域的场量。
两个或一个事先得到满足,而将其余的一个或两个,通过拉格朗日
乘子引入泛函中,组成新的泛函,真实解使泛函取驻值,这就是不
完全广义变分原理。
❖ 在选择速度场时应变速率与速度的关系(1)式和速度边界条(3)式容 易满足,而体积不可压缩条件(2)式难于满足。因此,可以把体积 不可压缩条件用拉格朗日乘子入引入到泛函中,得到新泛函:
够的工程精度的前提下,可提高计算效率。
塑性成形过程 计算机数值模拟
第五章 刚塑性有限元法基本理论与模拟方法
❖ 由于刚塑性有限元法采用率方程表示,材料变形后的构形可通 过在离散空间对速度的积分而获得,从而避开了应变与位移之 间的几何非线性问题。
❖ 由于忽略了弹性变形,刚塑性有限元法仅适合于塑性变形区的 分析,不能直接分析弹性区的变形和应力状态,也无法处理卸 载和计算残余应力与变形。
在满足: (1) 速度-应变速率关系
ij
1 2
ui, j
u j,i
(2) 体积不可压缩条件 (3) 速度边界条件
V kk 0
ui ui
(在 Su 上)
的一切动可容场
ui*j
,
金属塑性变形物理基础位错理论
E螺=
Gb2
4
ln
R r0
E刃=
Gb2 ln R
4 (1 ) r0
则 E刃=
1
1
E螺,一般取0.3,
2
所以 E 螺= 3 混合位错
E混=
Gb 2
4 (1 )
E刃 (1-cos2)ln
R r0
• 汇集一点的位错线,它们的柏氏矢量和 为零;
• 一根位错线不能终止在晶体内部,只能 终止在晶体表面。
位错环 b
1.2.3 位错密度——描述位错多少的参数 (1) 定义:单位体积中位错的总长度。
V = L cm/cm3
(2) 位错的形成——液态结晶时形成。晶体 经过塑性变形回复和再结晶及其它热处 理,位错的密度变化。
体的一边贯通到另一边,而是有时终止 在晶体的中部。
1934年,提出了位错的概念,
1947年低碳钢的屈服效应,位错理论得到 了很大发展,
1950年以后,用电镜直接观察到位错。至 此,位错的存在才最终得到间接证明。 从此以后,位错理论得以迅速发展。它 是一门很重要的基本理论。
1.2 位错模型和柏氏矢量 1.2.1 位错的分类:
如1-2图所示,若位错线上的原子沿切 应力方向移动不到一个原子间距,周围其 它原子稍作调整,多余半原子面和位错线 就可以向前移动一个原子间距。可见位 错移动具有易动性。
• 图1-2示出了位错由晶体的一端扫到另一端
(2)螺位错的滑移运动 如图所示位错线上的原子只需在切应
力作用下向前移动一个原子间距的分数倍 的距离,位错线可以向左移动一个原子间 距。
设m= b
化简得
金属塑性成型原理-知识点
名词解释塑性成型:金属材料在一定的外力作用下,利用其塑性而使其成形并获得一定力学性能的加工方法加工硬化:略动态回复:在热塑性变形过程中发生的回复动态再结晶:在热塑性变形过程中发生的结晶超塑性变形:一定的化学成分、特定的显微组织及转变能力、特定的变形温度和变形速率等,则金属会表现出异乎寻常的高塑性状态塑性:金属在外力作用下,能稳定地发生永久变形而不破坏其完整性的能力。
屈服准则(塑性条件):在一定的变形条件下,只有当各应力分量之间符合一定关系时,指点才开始进入塑性状态,这种关系成为屈服准则。
塑性指标:为衡量金属材料塑性的好坏,需要有一种数量上的指标。
晶粒度:表示金属材料晶粒大小的程度,由单位面积所包含晶粒个数来衡量,或晶粒平均直径大小。
填空1、塑性成形的特点(或大题?)1组织性能好(成形过程中,内部组织发生显著变化)2材料利用率高(金属成形是靠金属在塑性状态下的体积转移来实现的,不切削,废料少,流线合理)3尺寸精度高(可达到无切削或少切屑的要求)4生产效率高适于大批量生产失稳——压缩失稳和拉伸失稳按照成形特点分为1块料成形(一次加工、轧制、挤压、拉拔、二次加工、自由锻、模锻2板料成形多晶体塑性变形——晶内变形(滑移,孪生)和晶界变形超塑性的种类——细晶超塑性、相变超塑性冷塑性变形组织变化——1晶粒形状的变化2晶粒内产生亚结构3晶粒位向改变固溶强化、柯氏气团、吕德斯带(当金属变形量恰好处在屈服延伸范围时,金属表面会出现粗超不平、变形不均匀的痕迹,称为吕德斯带)金属的化学成分对钢的影响(C略、P冷脆、S热脆、N兰脆、H白点氢脆、O塑性下降热脆);组织的影响——单相比多相塑性好、细晶比粗晶好、铸造组织由于有粗大的柱状晶粒和偏析、夹杂、气泡、疏松等缺陷、塑性降低。
摩擦分类——干摩擦、边界摩擦、流体摩擦摩擦机理——表面凹凸学说、分子吸附学说、粘着理论库伦摩擦条件T=up 常摩擦力条件t=mK塑性成形润滑——1、特种流体润滑法2、表面磷化-皂化处理3、表面镀软金属常见缺陷——毛细裂纹、结疤、折叠、非金属夹杂、碳化物偏析、异金属杂物、白点、缩口残余影响晶粒大小的主要因素——加热温度、变形程度、机械阻碍物常用润滑剂——液体润滑剂、固体润滑剂(干性固体润滑剂、软化型固体润滑剂)问答题1、提高金属塑性的基本途径1、提高材料成分和组织的均匀性2、合理选择变形温度和应变速率3、选择三向压缩性较强的变形方式4、减小变形的不均匀性2、塑性成形中的摩擦特点1、伴随有变形金属的塑性流动2、接触面上压强高3、实际接触面积大4、不断有新的摩擦面产生5、常在高温下产生摩擦3、塑性成形中对润滑剂的要求1、应有良好的耐压性能2、应有良好的耐热性能3、应有冷却模具的作用4、应无腐蚀作用5、应无毒6、应使用方便、清理方便4、防止产生裂纹的原则措施1、增加静水压力2、选择和控制适合的变形温度和变形速度3、采用中间退火,以便消除变形过程中产生的硬化、变形不均匀、残余应力等。
wwei材料成形技术(塑性)1
二、金属塑性成形的基本生产方式 1、轧制:金属毛坯在两个轧辊之间受压变形而形成各 种产品的成形工艺,图6-1。 2、挤压:金属毛坯在挤压模内受压被挤出模孔而变形 的成形工艺,图6-3。 3、拉拔:将金属坯料拉过拉拔模的模孔而变形的成形 工艺,图6-5。 4、自由锻:金属毛坯在上下砥铁间受冲击或压力而变 形的成形工艺,图6-7(a)。 5、模锻:金属坯料在既有一定形状的锻模模膛内受击 力或压力而变形的成形工艺,图6-7(b) 。
塑性愈大、变形抗力愈小,材料的可锻性愈好
4、可锻性的影响因素
(1)化学成分 A、碳钢中碳和杂质元素的影响
C、H、P(冷脆)、S (热脆) B、合金元素的影响
塑性降低,变形抗力提高。
(2)内部组织
单相组织(纯金属或者固溶体)比多相组织塑性好。 细晶组织比粗晶组织好; 等轴晶比柱状晶好。 面心立方结构的可锻性最好,体心立方结构次之, 而密排六方结构可锻性最差。
冲击力和压力
锻压是锻造与冲压的总称。
★锻造:在加压设备及工(模)具作用下,使坯料、铸锭产生局 部或全部的塑性变形,以获得一定几何尺寸、形状和质量的锻件 的加工方法。锻造通常是在高温(再结晶温度以上)下成形的,
因此也称为金属热变形或热锻。
★锻造特点:1、压密或焊合铸态金属组 织中的缩孔、缩松、空隙、气泡和裂纹。 2、细化晶粒和破碎夹杂物,从而获得一 定的锻造流线组织。因此,与铸态金属 相比,其性能得到了极大的改善。 3、主要用于生产各种重要的、承受重载荷的机器零件或毛坯。 如机床的主轴和齿轮、内燃机的连杆、起重机的吊钩等。 4、高温下金属表面的氧化和冷却收缩等各方面的原因,锻件精度 不高、表面质量不好,加之锻件结构工艺性的制约。
2、晶粒和分布在晶界上的非金属夹杂物ห้องสมุดไป่ตู้沿变形方向被拉长, 但是拉长的晶粒可经再结晶又变成等轴细粒状,而这些夹杂物不能 改变,就以细长线条状保留下来,形成了所谓的纤维组织。 纤维组织的化学稳定性很高,只有经过锻压才能改变其分布方向, 用热处理是不能消除或改变纤维组织形态的。 纤维组织使金属的力学性能具有明显的方向性。
金属塑性成形原理``俞汉清 陈金德主编``
金属塑性成形原理复习指南第一章绪论1、基本概念塑性:在外力作用下材料发生永久性变形,并保持其完整性的能力。
塑性变形:作用在物体上的外力取消后,物体的变形不能完全恢复而产生的永久变形成为塑性变形。
塑性成型:材料在一定的外力作用下,利用其塑性而使其成形并获得一定的力学性能的加工方法。
2、塑性成形的特点1)其组织、性能都能得到改善和提高。
2)材料利用率高。
3)用塑性成形方法得到的工件可以达到较高的精度。
4)塑性成形方法具有很高的生产率。
3、塑性成形的典型工艺一次成形(轧制、拉拔、挤压)体积成形塑性成型分离成形(落料、冲孔)板料成形变形成形(拉深、翻边、张形)第二章金属塑性成形的物理基础1、冷塑性成形晶内:滑移和孪晶(滑移为主)滑移性能(面心>体心>密排六方)晶间:转动和滑动滑移的方向:原子密度最大的方向。
塑性变形的特点:① 各晶粒变形的不同时性;② 各晶粒变形的相互协调性;③ 晶粒与晶粒之间和晶粒内部与晶界附近区域之间变形的不均匀性。
合金使塑性下降。
2、热塑性成形软化方式可分为以下几种:动态回复,动态再结晶,静态回复,静态再结晶等。
金属热塑性变形机理主要有:晶内滑移,晶内孪生,晶界滑移和扩散蠕变等。
3、金属的塑性金属塑性表示方法:延伸率、断面收缩率、最大压缩率、扭转角(或扭转数)塑性指标实验:拉伸试验、镦粗试验、扭转试验、杯突试验。
非金属的影响:P冷脆性 S、O 热脆性 N 蓝脆性 H 氢脆应力状态的影响:三相应力状态塑性好。
超塑性工艺方法:细晶超塑性、相变超塑性第三章金属塑性成形的力学基础第一节应力分析1、塑性力学基本假设:连续性假设、匀质性假设、各向同性假设、初应力为零、体积力为零、体积不变假设。
2、张量的性质1、存在不变量,张量的分量一定可以组成某些函数f(Tij),这些函数的值不随坐标而变。
2、2阶对称张量存在三个主轴和三个主值;张量角标不同的分量都为零时的坐标轴方向为主轴,三个角标相同的分量为值。
(金属塑性成形原理课件)第2讲塑性变形物理本质
存在着一系列缺陷: 点缺陷、线缺陷、 面缺陷
2020/10/4
10
Lesson Two
一些金属材料的实验屈服强度和理论屈服强度
材料
理论强度(G/30)/GPa 实验强度/MPa 理论强度/实验强度
银 铝 铜 镍 铁 钼 铌 镉 镁(柱面滑移) 钛(柱面滑移) 铍(基面滑移) 铍(柱面滑移)
2020/10/4
13
Lesson Two
肖脱基空位——只形成空位而不形成等量的间隙原子 弗兰克尔缺陷——同时形成等量的空位和间隙原子
2020/10/4
14
Lesson Two
在实际晶体中,点缺陷的形式可能更复杂。例 如,即使在金属晶体中,也可能存在两个、三个甚 至多个相邻的空位,分别称为双空位、三空位或空 位团。但由多个空位组成的空位团从能量上讲是不 稳定的,很容易沿某一方问“塌陷”成空位片(即 在某一原子面内有一个无原子的小区域)。同样,间 隙原子也未必都是单个原子,而是有可能m个原子均 匀分布在n个原子位置的范围内(m>n),形成所谓 “挤塞子”(crowdion)。
(1)表面:指所研究的金属材料系统与周围气相或液相介质的接触面。 (2)晶界、亚晶界:指多晶体材料内部,结构及成分相同,而位向不 同的两部分晶体之间的界面。 (3)相界:指晶体材料内部不仅位向不同,而且结构不同,甚至成分 也不同的两部分晶体之间的界面。在纯金属的同素异晶转变过程中出现 的相界面,其两侧仅结构不同;而合金相的相界两侧,除结构不同外, 往往成分也不相同。 此外,还有孪晶界、反相畴界,层错界、胞壁等等。
(1)对称倾侧晶界
对称倾侧晶界相当于两部分晶体,沿着平行于界面
的某一轴线,各自转过方向相反的θ/2而形成的。两晶 粒位向差为θ,如下图1所示。此晶界相当于两个晶粒的 对称面,它只有一个自由度θ。
金属塑性成形原理---第二章_金属塑性变形的物理基础
位错的攀移
❖ 螺型位错无攀移
❖ 正攀移——正刃型位错位错线上移
负刃型位错位错线下移
编辑课件
位错的交割
❖ 两根刃型位错线都在各自的滑移面上移动,
则在相遇后交截分别形成各界,形成割阶后
仍分别在各自的平面内运动。
❖ 刃型位错和螺型位错交割时,在各自的位错
线上形成刃型割阶,位错线也能继续滑移。
❖ 螺型位错和螺型位错交割时,相交后形成的
❖ 假设:理想晶体两排原子相距为a,同排原子间距
为b。原子在平衡位置时,能量处于最低的位置。
在外力τ作用下,原子偏离平衡位置时,能量上升,
原子能量随位置的变化为一余弦函数。
❖ 通过计算晶体的临界剪切应力,并与实际的临界
剪切应力进行比较,人们发现,理论计算的剪切
强度比实验所得到的剪切强度要高一千倍以上。
编辑课件
典型的晶胞结构
编辑课件
典型的晶胞结构
编辑课件
三种晶胞的晶格结构
编辑课件
一、塑性变形机理
实际金属的晶体结构
❖ 单晶体:各方向上的原子密度不同——各向
异性
❖ 多晶体:晶粒方向性互相抵消——各向同性
❖ 塑性成形所用的金属材料绝大多数为多晶
体,其变形过程比单晶体复杂的多。
编辑课件
多晶体塑性变形的分类
加工中,会使变形力显著增
加,对成形工件和模具都有
III.抛物线硬化阶段:
一定的损害作用;但利用金
与位错的交滑移过程有关,
θ3
随应变增加而降低,应力应变
属加工硬化的性质,对材料
曲线变为抛物线。
进行预处理,会使其力学性
能提高
编辑课件
2.2 金属热态下的塑性变形
必学-金属材料热处理轧制原理基本理论知识
必学-金属材料热处理轧制原理基本理论知识金属材料及热处理、金属塑性变形与轧制原理基本理论知识金属材料及热处理部分一、金属材料的种类材料是人类用来制造各种有用物件的物质。
工程材料是指具有一定性能,在特定条件下能够承担某种功能、被用来制取零件和元件的材料。
工程材料的种类繁多,分类方法也不同,但均可分为金属材料和非金属材料两大类。
金属材料通常分为黑色金属和有色金属两大类,黑色金属包括钢、铸铁、锰、铬及其合金,有色金属材料是除黑色金属之外的所有金属及其合金。
在铸铁中,由于采用不同的处理方式可使石墨呈现不同的形式。
根据石墨形态的差别,将铸铁分为下列几种:普通灰铸铁(石墨呈片状)、蠕墨铸铁(石墨呈蠕虫状)、可锻铸铁(石墨呈团絮状)、球墨铸铁(石墨呈球状)。
二、金属的结构1,金属的晶体结构金属和合金在固态下通常都是晶体。
内部原子或离子在三维空间呈周期性有规则的重复排列的固体称为晶质体(晶质)。
习惯上,将具有几何多面体外形的晶质称为晶体,相应地,将不具有几何多面体外形的晶质称为晶粒。
由一个核心(晶核)生长而成的晶体称为单晶体,在单晶体的不同方向上测量其性能时,表现出或大或小的差异,这就是晶体的各向异性。
金属材料通常由许多不同位向的小晶粒所组成,称为多晶体;多晶体中各晶粒的各向异性互相抵消,故一般不显示各向异性,所以在工业用的金属材料中,通常见不到各向异性特征,称之为伪各向同性。
工业上使用的金属元素中,除了少数具有复杂的晶体结构外,绝大多数都具有比较简单的晶体结构,其中最典型、最常见的金属晶体结构有三种类型,即体心立方结构,面心立方结构和密排六方结构。
2,金属的同素异构转变大部分金属只有一种晶体结构,但也有少数金属如Fe、Mn、Ti、Co等具有两种或几种不同的晶体结构,即具有多晶型。
当外部条件(如温度和压力)改变时,金属可能由一种晶体结构转变成另一种晶体结构。
这种固态金属在不同温度下具有不同晶格的现象称为多晶型性或同素异晶性。
材料成型基本原理总结
材料成型力学原理部分第十四章金属塑性变形的物理基础1、塑形成形:利用金属的塑性,使金属在外力作用下成形的一种加工方法,亦称金属塑性加工或金属压力加工。
2、金属塑性成形的优点:生产效率高、材料利用率高、组织性能亦改变、尺寸精度高。
3、塑性成形工艺:锻造、轧制、拉拔、挤压、冲裁、成型4、金属冷塑形变形的形式:1、晶内变形:滑移和孪生2、晶间变形:晶粒间发生相互滑动和转动5、加工硬化:在常温状态下,金属的流动应力随变形程度的增加而上升,为了使变形继续下去,就需要增加变形外力或变形功。
(指应变对时间的变化率)6、热塑性变形时金属组织和性能的变化1、改善晶粒组织2、锻合内部缺陷3、破碎并改善碳化物和非金属夹杂物在钢中的分布4、形成纤维组织5、改善偏析7、织构的理解:多晶体取向分布状态明显偏离随机分布的取向分布结构。
8、细化晶粒:1、晶粒越细小,利于变形方向的晶粒越多2、滑移从晶粒内发生止于晶界处,晶界越多变形抗力越大9、热塑性变形机理:晶内滑移、晶界滑移和扩散蠕变10、塑性:不可逆变形,表征金属的形变能力11、塑性指标:金属在破坏前产生的最大变形程度12、影响塑性的因素:1、化学成分和合金成分对金属塑性的影响2、组织状态对金属塑性的影响3、变形温度4、应变速率5、应力状态13、单位流动压力P:接触面上平均单位面积上的变形力14、碳和杂质元素的影响碳:其含量越高,塑性越差;磷:冷脆;硫:热脆性;氧:热脆性;氮:时效脆性、蓝脆、气孔;氢:氢脆、白点、气孔和冷裂纹等15、合金元素的影响:塑性降低硬度升高16、金属组织的影响(1)晶格类型(2)晶粒度(3)相组成(4)铸造组织17、变形温度对金属塑性的影响:对大多少金属而言,总的趋势是随着温度升高,塑性增加。
但是这种增加并不是线性的,在加热的某些温度区间,由于相态或晶界状态的变化而出现脆性区,使金属的塑性降低。
(蓝脆区和热脆区)18、变形抗力:指金属在发生塑性变形时,产生抵抗变形的能力一般用接触面上平均单位面积变形力来表示,又称单位面积上的流动压力19、质点的应力状态:变形体内某点任意截面上应力的大小和方向20、对变形抗力的影响因素:①化学成分:纯金属和合金②组织结构:组织状态、晶粒大小和相变③变形温度④变形程度:加工硬化⑤变形速度⑥应力状态21、金属的超塑性:细晶超塑性、相变超塑性第十五章应力分析1、研究塑性力学时的四个假设:①连续性假设:变形体不存在气孔等缺陷②匀质性假设:质点的组织、化学成分等相同③各向同性假设④体积不变假设2、质点:有质量但不存在体积或形状的点3、内力:在外力作用下,物体内各质点之间就会产生相互作用的力。
材料成形工艺基础最新精品课件第五章金属塑性成形理论基础
2. 多晶体的塑性变形
多晶体的塑性变形是由于晶界的存在和 各晶粒晶格位向的不同,其塑性变形过程比 单晶体的塑性变形复杂得多。在外力作用下, 多晶体的塑性变形首先在晶格方向有利于滑 移的晶粒A内开始,然后,才在晶格方向较 为不利的晶粒B、C内滑移。由于多晶体中 各晶粒的晶格位向不同,滑移方向不一致, 各晶粒间势必相互牵制阻扰。为了协调相邻 晶粒之间的变形,使滑移得以继续进行,便 图5-4 多晶体塑性变形过程示意图 会出现晶粒彼此间相对的移动和转动。因此, 多晶体的塑性变形,除晶粒内部的滑移和转 动外,晶粒与晶粒之间也存在滑移和转动。
图5-6 回复和再结晶示意图
(3)晶粒长大 在结晶退火后的金属组织一般为细小均匀的等 轴晶。如果温度继续升高,或延长保温时间,则在结晶后的晶粒 又会长大而形成粗大晶粒,从而使金属的强度、硬度和塑性降低。 所以要正确选择再结晶温度和加热时间的长短。
5.2.2 冷变形和热变形后金属的组织与性能
金属在再结晶温度以下进行的塑性变形称为冷变形,在再结晶以 上进行的塑性变形称为热变形。
图5-7 冲压件的制耳
(4)残余内应力 残余内应力是指去除外力后,残留在金属内 部的应力,它主要是由于金属在外力作用下变形不均匀而造成的。 残余内应力的存在,使金属原子处于一种高能状态,具有自发恢 复到平衡状态的倾向。在低温下,原子活动能力较低,这种恢复 现象难以觉察,但是,当温度升高到某一程度后,金属原子获得 热能而加剧运动。金属组织和性能将会发生一系列变化。
1. 锻造比 锻造比是锻造生产中代表金属变形程度大小的一个参数,一 般是用锻造过程中的典型工序的变形程度来表示(Y)。如拔长时, 锻造比Y拔=F0/F;镦粗时,锻造比Y镦=H0/H。(式中,H0、F0分别为坯 料变形前的高度和横截面积,H、F分别为坯料变形后的高度和横截面 积)。
金属塑性变形机制-讲义
金属塑性成形理论基础(一)金属塑性变形机制参考讲义前言金属塑性加工是利用金属的塑性,在外力的作用下,通过模具(或工具)使简单形状的坯料成形为所需形状和尺寸的工件(或毛坯)的技术。
它也被称之为塑性成形或压力加工。
金属塑性加工方法主要包括锻造、冲压、轧制、拉拔、挤压等几种类型。
为何采用塑性成形技术?⏹金属经过塑性成形后能改善其组织结构和力学性能。
铸造组织经过热塑性变形后由于金属的变形和再结晶,会使原来的粗大枝晶和柱状晶粒变为晶粒较细、大小均匀的等轴再结晶组织,使钢锭内原有的偏析、缩松、气孔、夹渣等压实和焊合,其组织变得更加紧密,提高了金属的塑性和力学性能。
因此铸件的力学性能低于同材质的锻件的力学性能。
⏹塑性成形能保证金属纤维组织的连续性,使锻件的纤维组织与锻件外形保持一致,金属流线完整,可保证零件具有良好的力学性能与长的使用寿命。
什么是塑性变形?当外力增大到使金属的内应力超过该金属的屈服极限以后,金属就会产生变形。
当外力停止作用后,金属的变形并不消失。
这种变形称为塑性变形。
(当外力作用在金属上时,如受拉,金属内的原子间距变大,如果这种变化是弹性范围内的,当外力去除后,原子还能恢复到原来的状态;如果外力较大,这种变化就达到了塑性阶段了,当外力去除之后,有一部分变化就不能恢复了,金属就发生了塑性变形。
作为一种极限,当外力大到一定程度,原子间的结合力被打破,那么金属就断了。
)塑性是指金属材料在载荷外力的作用下,产生永久变形(塑性变形)而不被破坏的能力。
塑性不仅与材料本身的性质有关,还与变形有方式和变形条件有关。
材料的塑性不是固定不变的,不同的材料在同一变形条件下会有不同的塑性,而同一材料,在不同的变形条件下,会表现不同的塑性。
塑性是反映金属的变形能力,是金属的一咱重要的加工性能。
塑性好的材料可以顺利地进行某些成型工艺加工,如冲压、冷弯、冷拔、校直等。
金属材料通过冶炼、铸造,获得铸锭后,可通过塑性加工的方法获得具有一定形状、尺寸和力学性能的型材、板材、管材或线材,以及零件毛坯或零件。
金属塑性变形理论-第8讲变形不均匀概念
变形不均匀性的影响
变形不均匀性对金属的塑性变形行为、力学性 能和加工性能产生重要影响。
变形不均匀性可能导致应力集中、应变集中和 局部过载等问题,从而影响金属的塑性变形能 力、强度和韧性等性能。
变形不均匀性还可能导致金属内部组织结构的 不均匀变化,如晶粒大小、相组成和织构等, 进一步影响金属的物理、化学和机械性能。
03
变形不均匀性的原因
材料内部结构的不均匀性
晶体结构差异
微观缺陷
金属材料由无数的晶粒组成,每个晶 粒的晶体结构可能存在差异,导致塑 性变形时不同晶粒的变形行为不均匀。
金属材料内部存在的如空洞、裂纹等 微观缺陷,在塑性变形过程中可能成 为变形的薄弱区域,引发变形不均匀。
相分布不均
金属材料中可能存在不同相,如固溶 体、化合物等,各相的塑性变形特性 不同,导致整体变形的不均匀性。
理解变形不均匀的概念及 其来源。
学习如何通过实验和模拟 方法研究变形不均匀。
Hale Waihona Puke 掌握变形不均匀对材料性 能的影响。
了解如何通过优化工艺参 数和材料组织来改善材料 的变形不均匀性。
02
变形不均匀的基本概念
变形不均匀性的定义
变形不均匀性是指金属在塑性变形过 程中,由于变形条件、组织结构和物 理性能等因素的影响,导致变形在不 同区域表现出不均匀的特征。
02 03
变形不均匀的来源
金属塑性变形过程中,由于材料内部晶粒大小、形状、取向和分布的不 均匀性,以及材料内部存在的各种缺陷和应力集中区域,导致各部分之 间变形的不均匀分布。
变形不均匀的影响
变形不均匀会导致材料内部应力状态复杂,影响材料的变形行为和性能, 如材料的屈服强度、流动应力、硬化行为等。
金属塑性成型的理论与仿真
金属塑性成型的理论与仿真摘要:金属塑性成型技术是机械冶金、汽车拖拉机、电工仪表、宇航军工、五金日用品等制造业最基本,最古老,亦是极重要的加工手段之一,包括锻、冲、挤、轧,拉、辊、旋、辗等工艺技术。
结合近代科技,金属成形技术正向精密、高效、节能、节材,清洁化生产方向发展,是国家工业发展的最基础工艺技术之一。
本文主要对塑性成型的基本原理、方法以及应用做了综合介绍。
文章还介绍了有限元法处理金属塑性成型过程的问题。
最后针对塑性成形技术的发展提出了一些建议和对该技术在以后的生产中的展望。
关键词:塑性成型原理应用展望引言:金属塑性成型就是利用金属的塑性,在工具及模具的外力作用下来加工制件的少切削或无切削的工艺方法。
由于工艺本身的特点,它虽然有很长的发展历史却又在不断的研究和创新之中,新工艺、新方法层出不穷。
这些研究和创新的基本目的不外乎增加材料塑性、提高成形零件的精度及性能、降低变形力、增加模具使用寿命和节约能源等。
而“塑性成形原理”正是实现这些目的的基础理论知识。
金属塑性成型技术是机械冶金、汽车拖拉机、电工仪表、宇航军工、五金日用品等制造业最基本,最古老,亦是极重要的加工手段之一。
除了这些传统的应用外金属成形技术正向精密、高效、节能、节材,清洁化生产方向发展,是国家工业发展的最基础工艺技术之一一、金属塑性成型机理1、冷态下的塑性成型塑性成形所用的金属材料绝大部分是多晶体,其变形过程较单晶体的复杂得多,这主要是与多晶体的结构特点有关。
多晶体是由许多结晶方向不同的晶粒组成。
每个晶粒可看成是一个单晶体。
晶粒之间存在厚度相当小的晶界。
1.1晶内变形晶内变形的主要方式和单晶体一样为滑移和孪生。
1.1.1滑移当晶体受力时,由于各个滑移系相对于外力的空间位向不同,其上所作用的切应力分量的大小也必然不同。
现设某一晶体作用有由拉力 P引起的拉伸应力σ,其滑移面的法线方向与拉伸轴的夹角为υ,面上的滑移方向与拉伸轴的夹角为λ,通过简单的静力学分析可知,在此滑移方向上的切应力分量为τ=σcosυcosλ令μ=cosυcosλ,称为取向因子。
第六章金属塑性成形工艺理论基础
3)冲压件尺寸精度高,质量稳定,互换性好, 一般不需机械加工即可作零件使用。 4)冲压生产操作简单,生产率高,便于实现机 械化和自动化。
5)可以冲压形状复杂的零件,废料少。
6)冲压模具结构复杂,精度要求高,制造费用 高,只适用于大批量生产。
坯料在锻造过程中,除与上下抵铁或其它辅 助工具接触的部分表面外,都是自由表面,变形 不受限制,锻件的形状和尺寸靠锻工的技术来保 证,所用设备与工具通用性强。
自由锻主要用于单件、小批生产,也是生产 大型锻件的唯一方法。
1) 自由锻设备
空气锤 它由电动机直接驱动,打击速度快,锤击能量小,适
用于小型锻件;65~750Kg
挤压成形是使坯料在外力作用下,使模具内的金属坯 料产生定向塑性变形,并通过模具上的孔型,而获得 具有一定形状和尺寸的零件的加工方法。
图6-3 挤压
挤压的优点:
1)可提高成形零件的尺寸精度,并减小表面粗糙 度。 2)具有较高的生产率,并可提高材料的利用率。 3)提高零件的力学性能。 4)挤压可生产形状复杂的管材、型材及零件。
3)精整工序:修整锻件的最后尺寸和形状,消除表面的不 平和歪扭,使锻件达到图纸要求的工序。如修整鼓形、平 整端面、校直弯曲。
3)自由锻的特点
优点:
1)自由锻使用工具简单,不需要造价昂贵的模具;
2)可锻造各种重量的锻件,对大型锻件,它是唯一方法
3)由于自由锻的每次锻击坯料只产生局部变形,变形金属 的流动阻力也小,故同重量的锻件,自由锻比模锻所需的 设备吨位小。
实例:
当采用棒料直接经切削加工制造螺钉时,螺钉头部与 杆部的纤维被切断,不能连贯起来,受力时产生的切应力 顺着纤维方向,故螺钉的承载能力较弱(如图示 )。
金属塑性成形原理知识点
弹性:材料的可恢复变形的能力。
塑性:在外力作用下使金属材料发生塑性变形而不破坏其完整性的能力。
塑性变形:材料在一定外力作用下,利用其塑性而使其成型并获得一定力学性能的加工方法。
塑性成形:金属材料在一定的外力作用下,利用其塑性而使其成形并获得一定力学性能的加工方法。
塑性成形的特点:组织性能好、材料利用率高、生产效率高、尺寸精度高、设备相对复杂。
冷态塑性变形的机理:晶内变形(滑移和孪生)和晶间变形(滑动和转动)滑移:晶体在力的作用下,晶体的一部分沿一定的晶面(滑移面)和晶向(滑移向)相对于晶体的另一部分发生相对移动或切变。
孪生:晶体在力的作用下,晶体的一部分沿一定的晶面(孪生面)和晶向(孪生向)发生均匀切边滑移面:滑移中,晶体沿着相对滑动的晶面。
滑移方向:滑移中,晶体沿着相对滑动的晶向。
塑性变形的特点:不同时性、不均匀性、相互协调性。
合金:合金是由两种或者两种以上的金属元素或者金属元素与非金属元素组成具有金属特性的物质。
合金分为固溶体(间隙固溶体、置换固溶体)和化合物(正常价、电子价、间隙化合物)固溶强化:以间隙或者置换的方式融入基体的金属所产生的强化。
弥散强化:若第二项是通过粉末冶金的方法加入而引起的强化。
时效强化:若第二项为力是通过对过饱和固溶体的时效处理而沉淀析出并产生强化。
冷态下的塑性变形对组织性能的影响:组织:晶粒形状发生变化,产生纤维组织晶粒内部产生亚晶结构晶粒位向改变:产生丝织构和板织构性能:产生加工硬化(随着塑性变形的程度的增加,金属的塑性韧性降低,强度硬度提高的现象)加工硬化的优点:变形均匀,减小局部变薄,增大成形极限缺点:塑性降低、变形抗力提高、变形困难。
热塑性变形的软化过程:动态回复、动态再结晶、静态回复、静态再结晶、亚动态再结晶金泰回复:从热力学角度,变形引起金属内能增加,而处于稳定的高自用能状态具有向变形前低自由能状态自发恢复的趋势静态再结晶:冷变形金属加热到更高温度后,在原来版型体中金属会重新形成无畸变的等轴晶直至完全取代金属的冷组织的过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由于有加工硬化的存在,故冷变形可提高工件的强度 和硬度,但冷变形不能太大,否则易开裂;
由于没有氧化及温差小,故可获得较高的精度和表面 质量;
❖ 热变形——再结晶温度以上的变形
热变形能以较小的功达到较大的变形,故省力;
无加工硬化存在;
晶粒细化,故能获得较高机械性能的再结晶组织;
应用广泛;常用于重要的零件。
G
的 900℃
锻 800℃
F+A
造
P
温 700℃
度
F
范 600℃
围
F+P
500℃
2020/4/24
Q C%
A+Fe3CⅡ
S
P
P+Fe3CⅡ
0.38%.1 金属塑性变形的基本理论2.11%
1148℃ 912℃ 727℃
24
模锻
2020/4/24
3.1 金属塑性变形的基本理论
25
模锻件
2020/4/24
虽然亚共析钢在此温度为二相区(F+A),但仍
有较好的塑性;
对过共析钢,则为了击碎渗碳体的网状组织
(Fe3CⅡ),改善钢的性能,在此温度仍可锻击。
2020/4/24
3.1 金属塑性变形的基本理论
21
变形速度对可锻性的影响
❖ 正作用 (V变 > WK);
图3-9
塑性变形能量↑ 转变成热能↑ 温度↑ 变
3.1 金属塑性变形的基本理论
18
组织结构对可锻性影响
❖ 成分相同而金属组织结构不同,则可锻 性差别很大:
纯金属及固溶体(如奥氏体)具有较好的可 锻性,而化合物(如渗碳体)则可锻性很差;
金属在单相状态下的可锻性比多相状态时好; 细晶组织可锻性较粗晶组织的可锻性好。
2020/4/24
3.1 金属塑性变形的基本理论
形抗力↓ ,塑性↑ 可锻性↑;
❖ 反作用 (V变 < WK);
回复及再结晶来不及克服加工硬化现象 变形 抗力↑ ,塑性↓ 可锻性↓。
2020/4/24
3.1 金属塑性变形的基本理论
22
应力状态对可锻性的影响
❖ 压应力数目越多(三个方向的压应力)塑性↑ 可锻性↑;但同时变形抗力↑ 可锻性↓;
❖ 压应力数目越少(二个方向的压应力,一个方向的
T再 = 0.4 T熔
例 如 : 钢 的 熔 点 t 熔 为 1535℃ , 则 t 再 = 0.4 (1535+273)K = 723 K,即钢的再结晶温度t再 = (723-273) ℃ = 450 ℃。
2020/4/24
3.1 金属塑性变形的基本理论
15
冷变形和热变形
❖ 冷变形——再结晶温度以下的变形
❖ 生产中对塑性变形后的工件进行低温退火,就是 利用回复的原理。
如碳钢弹簧在冷卷后加热到250~300℃,再缓慢冷却以 消除力应力。
2020/4/24
3.1 金属塑性变形的基本理论
14
金属的再结晶 图3-5
❖ 当温度升高到T再时,金属原子动能增加,原子扩
散能力更高,能以某些碎晶或杂质为核心,重新 生核和成长为新的晶粒,从而完全消除了加工硬 化现象。该过程称为再结晶,此温度称为再结晶 温度,即:
金属压力加工
塑态成型
概论
❖ 3.1 金属塑性变形的基本理论; ❖ 3.2 自由锻; ❖ 3.3 模锻; ❖ 3.4 板料冲压。
2020/4/24
3.1 金属塑性变形的基本理论
2
金属压力加工概论
❖ 压力加工是使金属材料在外力作用下产 生塑性变形,(永久变形)以获得所需 形状、尺寸及机械性能的毛坯或零件的 一种热加工工艺;
2020/4/24
3.1 金属塑性变形的基本理论
8
影响金属可锻性的因素
❖ 金属的本质(物理特性) 化学成分的影响 组织结构的影响
❖ 加工条件 变形温度 变形速度 应力状态 。
2020/4/24
3.1020/4/24
晶粒内部的滑移
❖ 单晶体的塑性变形的过程
未变形
❖ 无外力、正常晶格
19
变形温度对可锻性的影响
❖ 随着温度增加塑性增加而变形抗力下降可 锻性越好;
但加热温度过高(超过一定值后),晶粒急剧长大, 而金属机械性能反而下隆,这种现象称“过热”;
当加热温度进一步提高到接近熔点时,晶界开始被 氧化,失去塑性,金属稍锻即裂,变成废料,这种 现象称为“过烧”;
加热温度过低塑性下降、变形抗力增加可锻性 变差易开裂;
11
晶粒间的滑移
❖ 多晶体的塑性变形
大多数金属都属于多晶体,其塑性变形是所有 单晶粒变形的综合作用,即晶内滑移和晶间的 转动;
每个单晶粒内部的塑性变形仍主要是滑移; 但在多晶体变形中同时伴随有晶粒间的滑移和
转动 。
2020/4/24
3.1 金属塑性变形的基本理论
12
金属的加工硬化
图3-4,5
❖ 随着变化程度地增加,这种由于塑性变形 在滑移面附近引起晶格的严重畸变,甚至 产生碎晶而引起的强度和硬度的提高,塑 性和韧性下降,这种现象称为加工硬化;
❖ 故应在合适的锻造温度范围内锻造(800~
1200 ℃ )。
2020/4/24
3.1 金属塑性变形的基本理论
20
锻造温度范围
❖ 始锻温度——锻压时金属允许加热到的最高 温度称为始锻温度 (1200 ℃左右 );
❖ 终锻温度——锻压中,当温度逐渐降低到一 定程度后,其可锻性变差,必须停止锻造, 此时温度称为终锻温度(800 ℃左右 );
❖ 纤维组织稳定性很高,不能用热处理和其它方法 消除它,只有通过金属的塑性变形,方能改变其 方向和形状。
2020/4/24
3.1 金属塑性变形的基本理论
17
化学成分对可锻性影响
❖ 金属的化学成分不同,可锻性也不同
一般纯金属的可锻性比合金好,而且合金元素 的种类、含量越多,可锻性越差。
2020/4/24
2020/4/24
3.1 金属塑性变形的基本理论
16
纤维组织
图3-6
❖ 纤维组织——热变形时,晶粒和晶界上的杂质 都被压扁、且沿变形方向拉长,并被保留下来,
这种性能各向异性的组织,称为纤维组织; 图3-7
❖ 当最大正应力与纤维方向重合,或最大切应力与 纤维方向垂直时,受力状况最好,因此,在设计 和制造零件时,应使零件工作时的最大正应力与 纤维方向重合,最大切应力与纤维方向垂直,并 使纤维分布与零件的轮廓相符合而不被切断;
4
金属在塑性变形中的特点
❖ 坯料体积不变,只是坯料形状和尺寸的重 新分配的结果(变形工艺);
❖ 与切削加工比较,压力加工的生产效率高, 且能节约大量金属;
❖ 机械性能高; ❖ 由于坯料在固态下成形,受成形工具的限
制,故产品的截面形状不能太复杂。
2020/4/24
3.1 金属塑性变形的基本理论
5
金属塑性变形的基本理论
❖ 包括锻造和冲压;
❖ 只适合塑性好的金属材料如中、低碳钢; 大多数有色金属及其合金。
2020/4/24
3.1 金属塑性变形的基本理论
3
压力加工分类
❖ 锻压 锻造 模锻
自由锻 手工自由锻(打铁)
机器自由锻(锤类、
压力机)
冲压
❖ 挤压
❖ 拉拔
❖ 轧制。
2020/4/24
3.1 金属塑性变形的基本理论
❖ 弹性变形的本质(物理解释);图3-1
外力应力原子离开平衡位置变形原子位
能增加返回趋势外力消失变形消失弹性
变形
图3-1
图3-3
❖ 金属塑性变形的实质——晶粒内部或晶粒
之间产生的滑移及转动; 图3-2
❖ 由于晶体内部存在大量的缺陷,故实际变形
的应力要比理论小得多,多为位错运动,即
缺陷的转移。
2020/4/24
3.1 金属塑性变形的基本理论
26
挤压
2020/4/24
3.1 金属塑性变形的基本理论
27
轧 制
2020/4/24
3.1 金属塑性变形的基本理论
28
斜轧
2020/4/24
3.1 金属塑性变形的基本理论
29
模 锻 件
2020/4/24
3.1 金属塑性变形的基本理论
30
弹性变形
❖ 外力小于屈服极限,弹性变形
弹-塑性变形
❖ 若外力继续增加,超过其屈服强度时,原子间距进一步增加, 原子沿着一定的晶面产生相对滑移(该面称滑移面)
塑性变形
❖ 外力去除后,原子在新的平衡位置上稳定下来,即弹性变形恢 复,但滑移变形保留下来,即塑性变形。
2020/4/24
3.1 金属塑性变形的基本理论
❖ 多数冲压件要利用加工硬化提高零件的强 度。
2020/4/24
3.1 金属塑性变形的基本理论
13
金属的回复
图3-5
❖ 当温度适当提高时,由于原子动能的增加,原子 扩散能力提高,使晶格畸变程度减轻,内应力明 显减小。使加工硬化部分消除的现象。这一过程 称回复,此温度称回复温度,即
T回=(0.25--0.30)T熔
拉应力) 塑性↓ 可锻性↓;但同时变形抗力
↓ 可锻性↑;
图3-11
❖ 因此,对塑性好的材料,应利用拉应力使其变形抗
力↓ 以减小变形能量消耗省力拉拔;
❖ 而对塑性差的金属,则应利用三向压应力 ↑塑 性 以免开裂 挤压。
图3-10
2020/4/24
3.1 金属塑性变形的基本理论
23
A
E
碳 1000℃
钢
3.1 金属塑性变形的基本理论
6
塑性变形后金属的组织及性能