2017年全国高中数学联赛江苏赛区预赛及详解
(完整版)2017年高考数学江苏卷试题解析
绝密★启用前2017 年一般高等学校招生全国一致考试(江苏卷)数学 I参照公式:柱体的体积 V Sh ,此中 S 是柱体的底面积,h 是柱体的高.球的体积 V4πR3,此中 R 是球的半径.3一、填空题:本大题共14 小题,每题 5 分,合计 70 分.请把答案填写在答题卡相应地点上.........1.已知会合 A {1,2} , B { a, a23},若 AI B {1} ,则实数a的值为▲.【答案】1【分析】由题意 1 B ,明显a2 3 3,所以a 1 ,此时a234,知足题意,故答案为1.2.已知复数 z (1i)(12i) ,此中 i 是虚数单位,则z 的模是▲.【答案】10【分析】z(1i)(1 2i)1i 1 2i2510 ,故答案为10 .3.某工厂生产甲、乙、丙、丁四种不一样型号的产品,产量分别为200,400,300,100 件.为查验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60 件进行查验,则应从丙种型号的产品中抽取▲件.【答案】 18【分析】应从丙种型号的产品中抽取6030018.18 件,故答案为10004.右图是一个算法流程图,若输入x的值为1 ,则输出y的值是▲.16【答案】2【分析】由题意得 y 2 log 212 ,故答案为 2 .16π1, 则tan▲.5.若 tan()64【答案】75tan()tan 1 177【分析】 tan tan[()]4461.故答案为.441tan()tan5514466.如图,在圆柱O1O2内有一个球 O ,该球与圆柱的上、下底面及母线均相切.记圆柱O1O2的体积为 V1,球 O 的体积为 V2,则 V1的值是▲.V2【答案】32V1r 22r3【分析】设球半径为r ,则V24r 3 2 .故答案为3.327.记函数f (x)6 x x2的定义域为 D .在区间[4,5] 上随机取一个数x ,则x D的概率是▲.【答案】5 98.在平面直角坐标系 xOy 中,双曲线x2y21的右准线与它的两条渐近线分别交于点P ,Q,其焦点是3F1 , F2,则四边形 F1 PF2Q 的面积是▲.【答案】 2 3【分析】右准线方程为33103x ,设 P( 3 10,30),则Q(3 10,30),x10,渐近线方程为 y10310101010F 1 ( 10,0) , F 2 ( 10,0) ,则 S 21030 .2 3109.等比数列 { a n } 的各项均为实数,其前n7 63 项和为 S n ,已知 S 3, S 6,则 a 8 = ▲ .44【答案】 3210.某企业一年购置某种货物 600 吨,每次购置 x 吨,运费为 6 万元 /次,一年的总储存花费为4x 万元.要使一年的总运费与总储存花费之和最小,则x 的值是▲ .【答案】 30【分析】 总花费为 4x600 6900 4 2 900240 ,当且仅当 x900 ,即 x 30 时等号成立.x4( x) xx11.已知函数 f ( x)32 x x1 ,此中 e 是自然对数的底数.若f ( a 1)2) 0 ,则实数 a 的取值xee xf (2 a范围是 ▲ .【答案】 [1,1]2【分析】因为f ( x)x 3 2x1e xf ( x) ,所以函数 f ( x) 是奇函数,e x因为f '( x)3x 22 e x e x 3x 2 2 2 e x e x 0 ,所以数 f ( x) 在 R 上单一递加,又 f (a 1) f (2a 2 ) 0 ,即 f (2a 2 )f (1 a) ,所以 2a 2 1 a ,即 2a 2a 10,解得 1a 1 ,故实数 a 的取值范围为 [ 1,1] .2 uuur uuur uuur 21 1 uuur uuur,且 tan=712.如图, 在同一个平面内, 向量 OA ,OB ,OC 的模分别为 , , 2 ,OA 与 OC 的夹角为,uuur uuur 45° uuur uuur uuur (m, n R ) ,则 m nOB 与OC 的夹角为 .若 OC mOA nOB ▲ .【答案】 3【分析】由 tan7 可得 sin7 2, cos2 ,依据向量的分解, 101022 2n cos 45 m cos 2nm5n m 10 5 7 ,即210,即易得m sin5n 7m,即得 m, n,n sin 452 n 7 2 m 0442 10所以 m n 3 .uuur uuur13.在平面直角坐标系xOy 中, A( 12,0), B(0,6), 点 P 在圆 O : x 2y 250 上,若 PA PB ≤ 20, 则点 P 的横坐标的取值范围是▲.【答案】 [ 5 2,1]14 .设 f ( x) 是定义在 R 上且周期为x 2 , x D , n1 1 的函数,在区间 [0,1) 上, f ( x)D , 此中会合 D { x x,x, xnn N*} ,则方程 f (x)lg x0 的解的个数是▲.【答案】 8【分析】因为 f ( x) [0,1) ,则需考虑 1 x 10 的状况,在此范围内,x Q 且 xD 时,设 xq, p, q N * , p 2 ,且 p, q 互质,p若 lg xQ ,则由 lg x(0,1) ,可设 lg xn, m, n N * , m 2 ,且 m, n 互质,mnqnq m所以 10m,则 10 )lg xQ ,p( ,此时左侧为整数,右侧为非整数,矛盾,所以p所以 lg x 不行能与每个周期内x D 对应的部分相等,只要考虑 lg x 与每个周期 x D 的部分的交点,画出函数图象,图中交点除外(1,0) 其余交点横坐标均为无理数,属于每个周期 x D 的部分,且 x 1 处(lg x)111 邻近仅有一个交点,xln101 ,则在xln10所以方程 f ( x) lg x0 的解的个数为 8.二、解答题:本大题共 6 小题,合计90 分.请在答题卡指定地区内作答,解答时应写出文字说明、证明过........程或演算步骤.15.(本小题满分14 分)如图,在三棱锥A-BCD 中, AB ⊥AD, BC⊥ BD,平面 ABD ⊥平面 BCD ,点 E, F(E 与 A, D 不重合 )分别在棱AD, BD 上,且 EF⊥ AD .求证:( 1) EF∥平面 ABC;(2) AD⊥ AC.16.(本小题满分14 分)已知向量 a (cos x, sin x), b (3,3), x[0, π].( 1)若 a∥ b,求 x 的值;( 2)记 f ( x) a b ,求 f (x) 的最大值和最小值以及对应的x 的值.( 2)f (x)a b (cos x,sin x)(3,3)3cos x 3 sin x2π3 cos(x) .6因为,所以 x ππ 7π,进而1cos(xπ3.6[ ,])2 666于是,当 x π π0 时,3;6,即 x取到最大值6当 x π,即 x5π取到最小值 2 3 .6时,617.(本小题满分14 分)如图,在平面直角坐标系xOy 中,椭圆x2y21(a b0) 的左、右焦点分别为F1, F2,离心率为E :2b2a1,两准线之间的距离为8F1作直线 PF1的垂线 l1,过点 F22.点 P 在椭圆 E 上,且位于第一象限,过点作直线 PF2的垂线 l2.(1)求椭圆E的标准方程;(2)若直线 l1, l2的交点 Q 在椭圆E上,求点P的坐标.【分析】( 1)设椭圆的半焦距为c.因为椭圆 E 的离心率为1,两准线之间的距离为8c12a28 ,2,所以2,a c解得 a 2, c 1 ,于是b a2c23,所以椭圆 E 的标准方程是x2y21.43( 2)由( 1)知,F1(1,0) , F2 (1,0).设 P(x0 , y0 ) ,因为 P 为第一象限的点,故x00, y00 .当 x01时, l2与 l1订交于 F1,与题设不符.由①②,解得xx0 , y x021,所以 Q(x0,x21).y0y0因为点 Q 在椭圆上,由对称性,得x021221221 .y0y0,即x0y0或 x0y0又P在椭圆 E 上,故x02y02 1 .43x02y02147, y0 3 7x02y021由x02y02,解得x0;x02y021,无解.4317743所以点 P的坐标为(47,3 7).7718.(本小题满分16 分)如图,水平搁置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线 AC 的长为10 7 cm,容器Ⅱ的两底面对角线EG , E1G1的长分别为14cm 和 62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm.现有一根玻璃棒l ,其长度为40cm.(容器厚度、玻璃棒粗细均忽视不计)( 1)将 l 放在容器Ⅰ中,l 的一端置于点 A 处,另一端置于侧棱CC1上,求l没入水中部分的长度;( 2)将 l 放在容器Ⅱ中,l 的一端置于点 E 处,另一端置于侧棱GG1上,求 l 没入水中部分的长度.【分析】( 1)由正棱柱的定义,CC1⊥平面ABCD,所以平面 A1 ACC1⊥平面ABCD, CC1⊥ AC .记玻璃棒的另一端落在CC1上点M处.因为 AC 10 7, AM40 ,所以MC402(10 7) 230,进而 sin ∠MAC 3,4记AM 与水面的交点为P ,过P 作P1Q1⊥AC,Q1为垂足,11则 P1Q1⊥平面 ABCD ,故 P1Q1=12,进而 AP1=P1Q116 .sin∠ MAC答:玻璃棒 l 没入水中部分的长度为 16cm.(假如将“没入水中部分”理解为“水面以上部分”,则结果为24cm)过 G 作 GK⊥ E1G1, K 为垂足,则 GK =OO1=32.因为 EG = 14, E1G1= 62,所以 KG 1=62 1424 ,进而GG1KG12GK 224232240 .2设 ∠EGG 1,∠ENG, 则 sinsin(∠ KGG 1 ) cos ∠ KGG 14 .25因为,所以 cos 3 .52在 △ENG 中,由正弦定理可得40 14 ,解得 sin7 .sin sin25因为 0,所以 cos 24 .252于是 sin ∠ NEG sin()sin() sincoscos sin4 24 ( 3) 7 3 .525 5 255记 EN 与水面的交点为 P 22222为垂足,则 2 2,过P 作PQ ⊥EG ,Q P Q ⊥平面 EFGH ,故 P 2Q 2=12,进而 EP 2=P 2Q 2 20 .sin ∠ NEG答:玻璃棒 l 没入水中部分的长度为 20cm .(假如将“没入水中部分”理解为“水面以上部分”,则结果为 20cm)19.(本小题满分16 分)对于给定的正整数 k ,若数列 { a n } 知足: a n k a n k 1Lan 1an 1Lan k 1an k2ka n 对随意正整数 n(n k) 总成立,则称数列{ a n } 是“ P(k ) 数列”. ( 1 )证明:等差数列 { a n } 是“ P(3) 数列”;( 2 )若数列 { a n } 既是“ P(2) 数列”,又是“ P(3) 数列”,证明: { a n } 是等差数列.【分析】( 1)因为 { a}是等差数列,设其公差为d ,则 ana( n1)d ,n1进而,当 n4 时, a n ka nk a 1(n k 1)d a 1 (n k 1)d2a 1 2( n 1)d 2a n , k 1,2,3,所以 a n 3 a n 2 +a n 1 +a n 1 a n 2 +a n 3 6a n ,所以等差数列 { a n } 是“ P(3) 数列”.a n2 a n34a n1 ( a n 1 a n ) ,④将③④代入②,得a n 1 a n 12a n,此中n 4 ,所以 a3, a4 , a5 ,L是等差数列,设其公差为 d' .在①中,取在①中,取n4,则 a2a3a5a64a4,所以 a2a3d' ,n3,则 a1a2a4a54a3,所以 a1a32d' ,所以数列 { a n}是等差数列.20.(本小题满分16 分)已知函数 f ( x)32f (x) 的极值点是 f (x) 的零点.(极值点x ax bx 1(a 0,b R ) 有极值,且导函数是指函数取极值时对应的自变量的值)( 1)求 b 对于a的函数关系式,并写出定义域;( 2)证明: b 23a;( 3)若 f (x) , f ( x) 这两个函数的所有极值之和不小于7,求a的取值范围.2当 a3时, f (x)>0(x1),故 f (x) 在R上是增函数, f (x)没有极值;当 a3时, f (x)=0 有两个相异的实根x1=aa23b,x2= aa23b .33列表以下:x(, x1)x1( x1 , x2 )x2(x2 , )f (x)+0–0+f (x)Z极大值]极小值Z故 f (x) 的极值点是 x 1 , x 2 .进而 a 3 .所以 b2a 23(3,) .9,定义域为a( 2)由( 1)知,b = 2a a 3 .设 g (t )= 2t3 ,则 g (t )=2 32t 2 27 .a 9 a a 9t9 t 2 9t 2当t ( 3 6, ) 时, g (t) 0 ,进而 g(t ) 在 ( 3 6 ,) 上单一递加.22因为 a3 ,所以 a a3 3 ,故 g (a a )>g (3 3)= 3 ,即 b > 3 .所以 b 2 >3a .a记 f (x) , f (x) 所有极值之和为 h(a) ,因为 f (x) 的极值为 b a21 a2 3,所以 h(a)=1 a23 , a 3 .39a9 a因为 h (a)=2 a3 0 ,于是 h(a) 在 (3, ) 上单一递减.9 a 2因为 h(6)=7h(6) ,故 a 6 .所以 a 的取值范围为 (3,6] . ,于是 h(a)2数学Ⅱ(附带题)21.【选做题】此题包含A 、B 、C 、D 四小题,请选定此中两题 ,并在相应的答题地区内作答,若多做,....... ............ 则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A . [ 选修 4-1:几何证明选讲 ]( 本小题满分 10 分)如图, AB 为半圆 O 的直径,直线 PC 切半圆 O 于点 C , AP ⊥ PC , P 为垂足.求证:( 1) PACCAB ;( 2) AC 2AP AB .【分析】( 1)因为 PC 切半圆 O 于点 C ,所以 ∠ PCA ∠ CBA , 因为 AB 为半圆 O 的直径,所以 ∠ACB 90 .因为 AP ⊥ PC ,所以 ∠APC90 ,所以 PACCAB .( 2)由( 1)知, △APC ∽△ ACB ,故APAC,即 AC 2AP ·AB .AC ABB . [ 选修 4-2:矩阵与变换 ](本小题满分 10 分 )0 1 1 0 已知矩阵 A, B.121()求 AB ;x 2 y 2 C C21 在矩阵 AB 对应的变换作用下获得另一曲线2 ,求 2 的方程.( )若曲线 C 1 :82C . [ 选修 4-4:坐标系与参数方程](本小题满分 10 分)x 8t在平面直角坐标系 xOy 中,已知直线 l 的参照方程为t( t 为参数 ),曲线 C 的参数方程为y2x 2s 2P 到直线 l 的距离的最小值.y( s 为参数 ).设 P 为曲线 C 上的动点,求点2 2s【分析】直线 l 的一般方程为x 2 y 8 0.因为点 P 在曲线 C 上,设 P(2 s 2 , 22s) ,进而点 P 到直线 l 的的距离d | 2s242s 8 | 2( s2) 242时,d min 4 5 .2(2)25,当s15所以当点 P 的坐标为 (4, 4)时,曲线 C 上点P到直线 l 的距离取到最小值45 .5D .[选修 4-5:不等式选讲](本小题满分10 分)已知 a,b,c,d 为实数,且a2b24,c2 d 216, 证明: ac bd ≤ 8.【必做题】第22 题、第 23 题,每题10 分,合计20 分.请在答题卡指定地区内作答,解答时应写出文字.......说明、证明过程或演算步骤.22.(本小题满分10 分)如图,在平行六面体ABCD-A 1B1C1D1中, AA1⊥平面 ABCD ,且 AB=AD =2, AA1 = 3 ,BAD 120 .(1)求异面直线 A1B 与 AC1所成角的余弦值;(2)求二面角 B-A1D-A 的正弦值.【分析】在平面ABCD 内,过点 A 作 AE AD ,交 BC 于点 E.因为 AA1平面ABCD,所以AA1AE,AA 1AD .uuur uuur uuur如图,以 { AE , AD , AA1} 为正交基底,成立空间直角坐标系A-xyz.因为 AB=AD =2,AA 1=3,BAD 120.则A(0,0,0), B( 3, 1,0), D(0,2,0), E( 3,0,0), A1(0,0,3), C1 ( 3,1, 3) .uuur (1)A1B ( 3, uuur uuuur 则cos A1 B, AC1uuuur1, 3), AC1(3,1,3),uuur uuuur(3,1, 3) ( 3,1, 3)1 A1B AC1uuur uuuur.| A1B || AC1 |77所以异面直线A1B 与 AC1所成角的余弦值为 1 .7设二面角 B-A1D-A 的大小为,则 | cos|3.4因为[0,] ,所以sin1cos2717 ..所以二面角B-A D-A 的正弦值为4423.(本小题满分10 分)已知一个口袋中有 m 个白球, n 个黑球(m,n N*,n ≥ 2 ),这些球除颜色外所有同样.现将口袋中的球随机地逐一拿出,并放入以下图的编号为1,2, 3,L , m n 的抽屉内,此中第 k 次拿出的球放入编号为 k 的抽屉 (k 1, 2, 3,L , m n) .123L m n( 1)试求编号为 2 的抽屉内放的是黑球的概率p ;( 2 )随机变量X 表示最后一个拿出的黑球所在抽屉编号的倒数, E ( X ) 是X的数学希望,证明:E(X )n.n)( n(m1)【分析】( 1)编号为2 的抽屉内放的是黑球的概率C m n 1n 1n p 为: p.C m n nm n( 2)随机变量 X 的概率散布为1 1 111 Xn 1n 2nkm nC n n 11PCnm n随机变量 X 的希望为C n n1 C n n11C m nnC m nnmn1C k n11E(X)k n kC m nnC k n11C n n 1m 1C m nnC m n n1m n1(k 1)!.C m n n k n k (n 1)!(kn)!1m n(k 2)!1m n(k 2)!所以 E(X)C m nn ( n1)!( k n)! (n1)C mnn k n(n2)!( kn)!n k1n 2n 2 n 2 1n 1 n 2n 2 n 2(n 1)C m n (1 C n 1C nL C m n 2 )(C n 1Cn 1C n L C m n 2 )n( n 1)C m n n1n 1 n 2 Ln 2L1n 1n 2(n 1)C m n (C nC nCm n 2)(Cm n 2Cm n 2)n( n 1)C m nnC m n 1n 1n ,(n 1)C mn( m n)( n 1)n即E(X)n.n)(n 1)(m。
2017年全国高中数学联赛江苏赛区初赛试卷及详解(纯word)
2017年全国高中数学联赛江苏赛区初赛试卷及详解(纯word)1.2017年全国高中数学联赛江苏赛区预赛试卷及详解2.填空题1.已知向量$\overrightarrow{AP}=\begin{pmatrix}1\\3\end{pmatrix}$,$\overrightarrow{PB}=\begin{pmatrix}-3\\1\end{pmatrix}$,则向量$\overrightarrow{AP}$与$\overrightarrow{AB}$的夹角等于$\frac{\pi}{4}$。
2.已知集合$A=\{x| (ax-1)(a-x)>0\}$,且$a\in A$,$3\notin A$,则实数$a$的取值范围是$1\leq a<2$或$2<a\leq 3$。
3.已知复数$z=\cos(\frac{2\pi}{3})+i\sin(\frac{2\pi}{3})$,则$z^3+z^2=\frac{1}{2}-\frac{3}{2}i$。
4.在平面直角坐标系$xOy$中,设$F_1$,$F_2$分别是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左、右焦点,$P$是双曲线右支上一点,$M$是$PF_2$的中点,且$OM\perp PF_2$,$3PF_1=4PF_2$,则双曲线的离心率为$5$。
5.定义区间$[x_1,x_2]$的长度为$x_2-x_1$。
若函数$y=\log_2x$的定义域为$[a,b]$,值域为$[0,2]$,则区间$[a,b]$的长度的最大值与最小值的差为$3$。
6.若关于$x$的二次方程$mx^2+(2m-1)x-m+2=0(m>0)$的两个互异的根都小于$1$,则实数$m$的取值范围是$\left(\frac{3+\sqrt{7}}{4},+\infty\right)$。
7.若$\tan4x=\frac{3\sin4x\sin2x\sinx}{\cos8x\cos4x\cos4x\cos2x\cos2x\cos x\cos x}$,则$\sin^2x+\sin^24x+\sin^28x=3$。
2017年全国高中数学联赛一试(B卷)答案
成立,求实 成立.由于
解:设 t 2 x ,则 t [2, 4] ,于是
对所有
t a 5 t (t a ) 2 (5 t ) 2 (2t a 5)(5 a ) 0 . ………………8 分 对给定实数 a ,设 f (t ) (2t a 5)(5 a ) ,则 f (t ) 是关于 t 的一次函数或常 值函数.注意 t [2, 4] ,因此 f (t ) < 0 等价于 f (2) (1 a )(5 a ) 0, ………………12 分 f (4) (3 a )(5 a ) 0, 解得 3 a 5 . 所以实数 a 的取值范围是 3 a 5 . ………………16 分 10. ( 本 题 满 分 20 分 ) 设 数 列 {an } 是 等 差 数 列 , 数 列 {bn } 满 足 2 , n 1, 2, . bn an1an2 an (1)证明:数列 {bn } 也是等差数列; (2) 设数列 {an } 、 并且存在正整数 s, t , 使得 as bt {bn } 的公差均是 d 0 , 是整数,求 a1 的最小值. 解: (1)设等差数列 {an } 的公差是 d ,则 2 2 bn1 bn ( an2an3 an 1 ) ( an1an2 an ) an2 ( an3 an1 ) ( an1 an )( an1 an ) an2 2d ( an1 an ) d
2017 年全国高中数学联合竞赛一试(B 卷) 参考答案及评分标准
说明: 1. 评阅试卷时,请依据本评分标准. 填空题只设 8 分和 0 分两档;其他各题的 评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次. 2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可 参考本评分标准适当划分档次评分, 解答题中第 9 小题 4 分为一个档次, 第 10、 11 小题 5 分为一个档次,不得增加其他中间档次. 一、填空题:本大题共 8 小题,每小题 8 分,共 64 分. 1. 在等比数列 {an } 中, a2 2, a3 3 ,则
2017年度高考数学江苏试题及解析
2017年江苏1.(2017年江苏)已知集合A={1,2},B={a,a2+3},若A∩B={1},则实数a的值为.1.1 【解析】由题意1∈B,显然a2+3≥3,所以a=1,此时a2+3=4,满足题意,故答案为1.2. (2017年江苏)已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是.2.10 【解析】|z|=|(1+i)(1+2i)|=|1+i||1+2i|=2×5=10.故答案为10.3. 某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取▲ 件.【答案】18【解析】应从丙种型号的产品中抽取30060181000⨯=件,故答案为18.【考点】分层抽样【名师点睛】在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即n i∶N i=n∶N.4. (2017年江苏)右图是一个算法流程图,若输入x的值为116,则输出y的值是.4. -2 【解析】由题意得y=2+log2116=-2.故答案为-2.5. (2017年江苏)若tan(α+π4)=16则tan α= .5. 75 【解析】tan α= tan[(α-π4)+π4]=tan(α-π4)+tan π41- tan(α-π4) tan π4=16+11-16=75.故答案为75.6. (2017年江苏)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是 .6. 32 【解析】设球半径为r ,则V1V2=πr2×2r 43πr3=32.故答案为32.7. (2017年江苏)记函数f (x )=6+x-x 2的定义域为D .在区间[-4,5]上随机取一个数x ,则x ∈D 的概率是 .7. 59 【解析】由6+x-x 2≥0,即x 2-x-6≤0,得-2≤x≤3,根据几何概型的概率计算公式得x ∈D 的概率是3-(-2)5-(-4)=59.8. (2017年江苏)在平面直角坐标系xOy 中,双曲线x 23-y 2=1的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是F 1,F 2,则四边形F 1PF 2Q 的面积是 .8. 2 3 【解析】右准线方程为x=310=31010,渐近线方程为y=±33x ,设P (31010,3010),则Q (31010,-3010),F 1(-10,0),F 2(10,0),则S=210×3010=2 3.9.(2017·江苏高考)等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8=________.[解析] 设等比数列{a n}的公比为q ,则由S 6≠2S 3,得q ≠1,则⎩⎪⎨⎪⎧S 3=a 1(1-q 3)1-q=74,S 6=a 1(1-q 6)1-q=634,解得⎩⎪⎨⎪⎧q =2,a 1=14, 则a 8=a 1q 7=14×27=32.[答案] 3210. (2017·江苏高考)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________.解析:由题意,一年购买600x 次,则总运费与总存储费用之和为600x ×6+4x =4⎝⎛⎭⎫900x +x ≥8900x·x =240,当且仅当x =30时取等号,故总运费与总存储费用之和最小时x 的值是30.答案:3011. (2017年江苏)已知函数f(x)=x 3-2x+e x-1e x ,其中e 是自然对数的底数.若f(a-1)+f(2a 2)≤0,则实数a 的取值范围是___________.12. (2017年江苏)如图,在同一个平面内,向量→OA ,→OB ,→OC 的模分别为1,1,2,→OA 与→OC 的夹角为α,且tan α=7,→OB 与→OC 的夹角为45°.若→OC =m →OA +n →OB (m ,n ∈R),则m n +=___________.12.3 【解析】由tan α=7可得sin α=7210,cos α=210,根据向量的分解, 易得⎩⎨⎧ncos 45°+mcos α=2,nsin 45°-msin α=0,即⎩⎨⎧22n+210m=2,22n-7210m=0,即⎩⎨⎧5n+m=10,5n-7m=0,即得m=54,n=74, 所以m+n=3.13. (2017年江苏)在平面直角坐标系xOy 中,A (-12,0),B (0,6),点P 在圆O :x 2+y 2=50上,若→PA ·→PB ≤20,则点P 的横坐标的取值范围是_________. 【答案】 [52,1]【解析】设P (x ,y ,)由→PA ·→PB ≤20易得2x -y +5≤0,由⎩⎨⎧2x -y +5=0,x 2+y 2=50可得A :⎩⎨⎧x =-5,y =-5或B :⎩⎨⎧x =1,y =7.由2x -y +5≤0得P 点在圆左边弧⌒AB 上,结合限制条件-52≤x ≤52,可得点P横坐标的取值范围为 [52,1].14. (2017·江苏高考)设f (x )是定义在R 上且周期为1的函数,在区间[0,1)上,f (x )=⎩⎪⎨⎪⎧x 2,x ∈D ,x ,x ∉D ,其中集合D =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪x =n -1n ,n ∈N *,则方程f (x )-lg x =0的解的个数是________.解析:由于f (x )∈[0,1),因此只需考虑1≤x <10的情况,在此范围内,当x ∈Q 且x ∉Z 时,设x =qp ,q ,p ∈N *,p ≥2且p ,q 互质.若lg x ∈Q ,则由lg x ∈(0,1),可设lg x =nm ,m ,n ∈N *,m ≥2且m ,n 互质,因此10n m =qp ,则10n =⎝⎛⎭⎫q p m ,此时左边为整数,右边为非整数,矛盾,因此lg x ∉Q , 故lg x 不可能与每个周期内x ∈D 对应的部分相等, 只需考虑lg x 与每个周期内x ∉D 部分的交点.画出函数草图(如图),图中交点除(1,0)外其他交点横坐标均为无理数,属于每个周期x∉D的部分,且x=1处(lg x)′=1x ln 10=1ln 10<1,则在x=1附近仅有一个交点,因此方程f(x)-lgx=0的解的个数为8.答案:815.(2017年江苏)如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.【分析】(1)先由平面几何知识证明EF∥AB,再由线面平行判定定理得结论;(2)先由面面垂直性质定理得BC⊥平面ABD,则BC⊥AD,再由AB⊥AD及线面垂直判定定理得AD ⊥平面ABC,即可得AD⊥AC.【证明】(1)在平面ABC内,∵AB⊥AD,EF⊥AD,∴EF∥AB.又∵EF⊄平面ABC,AB⊂平面ABC,∴EF∥平面ABC.(2)∵平面ABD ⊥平面BCD ,平面ABD ∩平面BCD =BD ,BC ⊂平面BCD ,BC ⊥BD , ∴BC ⊥平面ABD .∵AD ⊂平面ABD ,∴BC ⊥AD .又AB ⊥AD ,BC ∩AB =B ,AB ⊂平面ABC ,BC ⊂平面ABC , ∴AD ⊥平面ABC .又∵AC ⊂平面ABC ,∴AD ⊥AC .16. (2017年江苏)已知向量a =(cos x ,sin x ),b =(3,-3),x ∈[0,π]. (1)若a ∥b ,求x 的值;(2)记f (x )=a ·b ,求f (x )的最大值和最小值以及对应的x 的值. 【解析】(1)∵a =(cos x ,sin x ),b =(3,-3),a ∥b , ∴-3cos x =3sin x .若cos x =0,则sin x =0,与sin 2x +cos 2x =1矛盾,∴cos x ≠0. 于是tan x =-33.又错误!未找到引用源。
2017年全国高中数学联赛江苏赛区复赛参考答案
36t2(t2+12) 1 , 不妨设 k>0, 令 t=k+ ,则 t≥2,可化得 PQ2= k (3t2+4)2 6t t2+12 . 即 PQ= 3t2+4 设 B(x0,y0),则切点弦 PQ 的方程是 x0x+3y0y=3. k2-1 1 x- 上,所以 y0=-2. 又 P,Q 在 l:y= 2 4k 3(k2-1) . 从而 x0= 2k k2-1 2 3( ) +12 k 3t2 所以 B 到 PQ 的距离 d= = . 2 k -1 2 2 t2+12 2 ( ) +16 k 6t t2+12 1 9t3 1 3t2 因此△BPQ 的面积 S= ×d×PQ= × × = . 2 2 2 t2+12 2(3t2+4) 3t2+4 ……………………………… 16 分 1 1 9 令 u= ,则 0<u≤ ,化得 S= . t 2 2(4u3+3u) 1 当 0<u≤ 时,4u3+3u 递增. 2 9 1 所以 0<4u3+3u≤2,即 S≥ ,当且仅当 u= ,即 t=2,k=1 时,等号成立. 4 2 9 . 故△BPQ 的面积 S 的取值范围是 [ ,+∞) 4 四、解答题(本题满分 20 分) 1 1 设函数 fn(x)=1+x+ x2+…+ xn. 2! n! (1)求证:当 x∈(0,+∞) ,n∈N* 时,ex > fn(x); (2)设 x>0,n∈N*.若存在 y∈R 使得 ex = fn(x)+ 解: (1)用数学归纳法证明如下: (i) 当 n=1 时,令 f(x)=ex-f1(x)=ex-x-1,则 f ′(x)=ex-1>0,x∈(0,+∞)恒成立, 所以 f(x)在区间(0,+∞)为增函数. 又因为 f(0)=0,所以 f(x)>0,即 ex>f1(x). ……………………………… 5 分 1 xn+1ey,求证:0<y<x. (n+1)! ………………………… 20 分
2017年全国高中数学联赛江苏赛区复赛参考答案
1 1 + 的最小值. (x+y)2 (x-y)2 ………………………… 4 分
1 1 1 1 1 )((x+y)2+(x-y)2) 2 + 2 = ( 2 + 4 (x+y) (x-y) (x+y) (x-y)2
E E E E E
1 ≥ (1+1)2 4
A A E
6k 6 ,y =1- 2 . k2+3 Q k +3
y-yP x-xP (1+3k2)(y+1)-2 (1+3k2)x+6k 所以 直线 l: = ,即 l: = . yQ-yP xQ-xP (1+3k2)(yQ+1)-2 (1+3k2)xQ+6k k2-1 1 化简得 l:y= x- . 2 4k 1 1 直线 l 纵截距是常数- ,故直线 l 过定点(0,- ). 2 2 ……………………… 8 分
(ii) 假设 n=k 时,命题成立,即当 x∈(0,+∞)时,ex>fk(x), 1 1 1 k+1 x ), 则 n=k+1 时,令 g(x)=ex-fk+1(x)=ex-(1+x+ x2+…+ xk+ 2! k! (k+1)! 1 1 所以 g(x)在区间(0, +∞)为增函数. 则 g′(x)=ex-(1+x+ x2+…+ xk)=ex-fk(x)>0, 2! k! 又因为 g(0)=0,所以 g(x)>0,x∈(0,+∞)恒成立,即 ex>fk+1(x),x∈(0,+∞). 所以 n=k+1 时,命题成立. 由(i)(ii)及归纳假设可知,∀n∈N*,当 x∈(0,+∞)时,ex > fn(x). ……………………………… 10 分 1 n+1 y 1 n+1 x e > fn(x)+ x , (2)由(1)可知 ex >fn+1(x),即 fn(x)+ (n+1)! (n+1)! 所以 ey>1,即 y>0.下证:y<x. 1 1 1 - 下面先用数学归纳法证明:当 x>0,ex<1+x+ x2+…+ xn 1+ xnex,n∈N*. 2! n! (n-1)! (i) 当 n=1 时,令 F(x)=1+xex-ex,则 F′(x)=xex>0,x∈(0,+∞), 所以 F(x)在区间(0,+∞)单调增. 又 F(0)=0,故 F(x)>0,即 ex<1+xex. (ii) 假设 n=k 时,命题成立, 1 1 1 - 即当 x∈(0,+∞)时,ex<1+x+ x2+…+ xk 1+ xkex. 2! k ! (k-1)! 1 1 1 k+1 x x 则当 n=k+1 时,令 G(x)=1+x+ x2+…+ xk+ x e -e , 2! k! (k+1)! 1 1 k+1 x x 1 k+1 x 1 x e -e > x e >0, G′(x)=1+x+ x2+…+ xkex+ k! (k+1)! (k+1)! 2! 所以 G(x)在区间(0,+∞)上为增函数,又 G(0)=0,故 G(x)>0,即 1 1 1 k+1 x ex<1+x+ x2+…+ xk+ x e ,x∈(0,+∞). 2! k! (k+1)! 由(i)(ii)及归纳假设, 1 1 1 n+1 x 可知当 x∈(0,+∞)时,ex<1+x+ x2+…+ xn+ x e ,对 n∈N*成立. 2! n! (n+1)! 1 1 1 n+1 y 1 1 1 n+1 x x e <1+x+ x2+…+ xn+ x e, 所以 ex=1+x+ x2+…+ xn+ 2! n! (n+1)! 2! n! (n+1)! 从而 ey<ex,即 y<x.证毕. ……………………………… 20 分
2017年全国高中数学联赛A卷和B卷试题和答案(word版)全文
可编辑修改精选全文完整版2017年全国高中数学联赛A 卷一试一、填空题1.设)(x f 是定义在R 上的函数.对任意实数x 有1)4()3(-=-⋅+x f x f .又当70<≤x 时.)9(log )(2x x f -=.则)100(-f 的值为__________.2.若实数y x ,满足1cos 22=+y x .则y x cos -的取值范围是__________.3.在平面直角坐标系xOy 中.椭圆C 的方程为1109:22=+y x .F 为C 的上焦点.A 为C 的右顶点.P 是C 上位于第一象限内的动点.则四边形OAPF 的面积的最大值为__________.4.若一个三位数中任意两个相邻数码的差不超过1.则称其为“平稳数”.平稳数的个数是 。
5.正三棱锥P-ABC 中.AB=1.AP=2.过AB 的平面α将其体积平分.则棱PC 与平面α所成角的余弦值为________.6.在平面直角坐标系xOy 中.点集}{1,0,1,),(-==y x y x K .在K 中随机取出三个点.则这三点中存在两点之间距离为5的概率为__________.7.在ABC ∆中.M 是边BC 的中点.N 是线段BM 的中点.若3π=∠A .ABC ∆的面积为3.则AN AM ⋅的最小值为__________.8.设两个严格递增的正整数数列{}{}n n b a ,满足:20171010<=b a .对任意正整数n .有n n n a a a +=++12.n n b b 21=+.则11b a +的所有可能值为__________.二、解答题9.设m k ,为实数.不等式12≤--m kx x 对所有[]b a x ,∈成立.证明:22≤-a b .10.设321,,x x x 是非负实数.满足1321=++x x x .求)53)(53(321321x x x x x x ++++的最小值和最大值.11.设复数21,z z 满足0)Re(1>z .0)Re(2>z .且2)Re()Re(2221==z z (其中)Re(z 表示复数z 的实部). (1)求)Re(21z z 的最小值; (2)求212122z z z z --+++的最小值.2017年全国高中数学联赛A 卷二试一.如图.在ABC ∆中.AC AB =.I 为ABC ∆的内心.以A 为圆心.AB 为半径作圆1Γ.以I 为圆心.IB 为半径作圆2Γ.过点I B ,的圆3Γ与1Γ,2Γ分别交于点Q P ,(不同于点B ).设IP 与BQ 交于点R .证明:CR BR ⊥二.设数列{}n a 定义为11=a . ,2,1,,,,1=⎩⎨⎧>-≤+=+n n a n a n a n a a n n n n n .求满足20173≤<r a r 的正整数r 的个数.三.将3333⨯方格纸中每个小方格染三种颜色之一.使得每种颜色的小方格的个数相等.若相邻连个小方格的颜色不同.则称它们的公共边为“分隔边”.试求分隔边条数的最小值.四.设n m ,均是大于1的整数.n m ≥.n a a a ,,,21 是n 个不超过m 的互不相同的正整数.且n a a a ,,,21 互素.证明:对任意实数x .均存在一个)1(n i i ≤≤.使得x m m x a i )1(2+≥.这里y 表示实数y 到与它最近的整数的距离.2017年全国高中数学联赛A卷一试答案1.2.3.4.5.7.8.9.10.11.2017年全国高中数学联赛A卷二试答案一.二.三.四.2017年全国高中数学联合竞赛一试(B 卷)一、填空题:本大题共8个小题,每小题8分,共64分.1.在等比数列{}n a 中.2a =.3a =则1201172017a a a a ++的值为 .2.设复数z 满足91022z z i +=+.则||z 的值为 .3.设()f x 是定义在R 上的函数.若2()f x x +是奇函数.()2xf x +是偶函数.则(1)f 的值为 . 4.在ABC ∆中.若sin 2sin A C =.且三条边,,a b c 成等比数列.则cos A 的值为 .5.在正四面体ABCD 中.,E F 分别在棱,AB AC 上.满足3BE =.4EF =.且EF 与平面BCD 平行.则DEF ∆的面积为 .6.在平面直角坐标系xOy 中.点集{(,)|,1,0,1}K x y x y ==-.在K 中随机取出三个点.则这三个点两两之间距离均不超过2的概率为 .7.设a 为非零实数.在平面直角坐标系xOy 中.二次曲线2220x ay a ++=的焦距为4.则a 的值为 .8.若正整数,,a b c 满足2017101001000a b c ≥≥≥.则数组(,,)a b c 的个数为 .二、解答题 (本大题共3小题.共56分.解答应写出文字说明、证明过程或演算步骤.)9.设不等式|2||52|x xa -<-对所有[1,2]x ∈成立.求实数a 的取值范围.10.设数列{}n a 是等差数列.数列{}n b 满足212n n n n b a a a ++=-.1,2,n =.(1)证明:数列{}n b 也是等差数列;(2)设数列{}n a 、{}n b 的公差均是0d ≠.并且存在正整数,s t .使得s t a b +是整数.求1||a 的最小值.11.在平面直角坐标系xOy 中.曲线21:4C y x =.曲线222:(4)8C x y -+=.经过1C 上一点P 作一条倾斜角为45的直线l .与2C 交于两个不同的点,Q R .求||||PQ PR ⋅的取值范围.2017年全国高中数学联合竞赛加试(B 卷)一、(本题满分40分)设实数,,a b c 满足0a b c ++=.令max{,,}d a b c =.证明:2(1)(1)(1)1a b c d +++≥-二、(本题满分40分)给定正整数m .证明:存在正整数k .使得可将正整数集N +分拆为k 个互不相交的子集12,,,k A A A .每个子集i A 中均不存在4个数,,,a b c d (可以相同).满足ab cd m -=.三、(本题满分50分)如图.点D 是锐角ABC ∆的外接圆ω上弧BC 的中点.直线DA 与圆ω过点,B C 的切线分别相交于点,P Q .BQ 与AC 的交点为X .CP 与AB 的交点为Y .BQ 与CP 的交点为T .求证:AT 平分线段XY .四、(本题满分50分)设1220,,,{1,2,,5}a a a ∈.1220,,,{1,2,,10}b b b ∈.集合{(,)120,()()0}i j i j X i j i j a a b b =≤<≤--<.求X 的元素个数的最大值.一试试卷答案1.答案:89 解:数列{}n a 的公比为33232a q a ==.故120111201166720171201118()9a a a a a a q a a q ++===++. 2.答案:5。
2017年高考江苏数学试题及答案(word解析版)(K12教育文档)
2017年高考江苏数学试题及答案(word解析版)(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年高考江苏数学试题及答案(word解析版)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年高考江苏数学试题及答案(word解析版)(word版可编辑修改)的全部内容。
2017年普通高等学校招生全国统一考试(江苏卷)数学I一、填空题:本大题共14小题,每小题5分,共计70分. 请把答案填写在答题卡相应位置.......上.. (1)【2017年江苏,1,5分】已知集合}2{1A =,,23{},B a a =+.若{}1A B =,则实数a 的值为_______. 【答案】1【解析】∵集合}2{1A =,,23{},B a a =+.{}1A B =,∴1a =或231a +=,解得1a =.【点评】本题考查实数值的求法,是基础题,解题时要认真审题,注意交集定义及性质的合理运用. (2)【2017年江苏,2,5分】已知复数()()1i 12i z =-+,其中i 是虚数单位,则z 的模是_______. 【答案】10【解析】复数()()1i 12i 123i 13i z =-+=-+=-+,∴()221310z =-+=.【点评】本题考查了复数的运算法则、模的计算公式,考查了推理能力与计算能力,属于基础题. (3)【2017年江苏,3,5分】某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取_______件. 【答案】18【解析】产品总数为2004003001001000+++=件,而抽取60辆进行检验,抽样比例为6061000100=,则应从丙种型号的产品中抽取630018100⨯=件. 【点评】本题的考点是分层抽样.分层抽样即要抽样时保证样本的结构和总体的结构保持一致,按照一定的比例,即样本容量和总体容量的比值,在各层中进行抽取. (4)【2017年江苏,4,5分】如图是一个算法流程图:若输入x 的值为116,则输出y 的值是_______. 【答案】2-【解析】初始值116x =,不满足1x ≥,所以41216222log 2log 2y =+=-=-.【点评】本题考查程序框图,模拟程序是解决此类问题的常用方法,注意解题方法的积累,属于基础题.(5)【2017年江苏,5,5分】若1tan 46πα⎛⎫-= ⎪⎝⎭.则tan α=_______.【答案】75【解析】tan tantan 114tan 4tan 161tan tan 4παπααπαα--⎛⎫-=== ⎪+⎝⎭+,∴6tan 6tan 1αα-=+,解得7tan 5α=.【点评】本题考查了两角差的正切公式,属于基础题.(6)【2017年江苏,6,5分】如如图,在圆柱12O O 内有一个球O ,该球与圆柱的上、下底面及母线均相切。
2017年普通高等学校招生全国统一考试数学I(江苏卷)(附解析)
2017年江苏卷数学高考试题解析(精编版)【试卷点评】【命题特点】2017年江苏高考数学试卷,在保持稳定的基础上,进行适度的改革和创新,对数据处理能力、应用意识的要求比以往有所提高。
2017年江苏数学试卷在―稳中求进‖中具体知识点有变化。
1.体现新课标理念,实现平稳过渡。
试卷紧扣江苏考试大纲,新增内容的考查主要是对基本概念、基本公式、基本运算的考查,难度不大。
对传统内容的考查在保持平稳的基础上进行了适度创新。
如第7题首次考查几何概型概率问题。
2.关注通性通法。
试卷淡化了特殊的技巧,全面考查通性通法,体现了以知识为载体,以方法为依托,以能力考查为目的的命题要求。
如第17题解析几何考查两直线交点以及点在曲线上。
第20题以极值为载体考查根与系数关系、三次方程因式分解。
第19题以新定义形式多层次考查等差数列定义。
3.体现数学应用,关注社会生活。
第10题以实际生活中运费、存储费用为背景的基本不等式求最值问题,第18题以常见的正四棱柱和正四棱台为背景的解三角形问题,体现试卷设计问题背景的公平性,对推动数学教学中关注身边的数学起到良好的导向。
4.附加题部分,前四道选做题对知识点的考查单一,方法清晰,学生入手较易。
两道必做题一改常规,既考查空间向量在立体几何中应用,又考查概率分布与期望值,既考查运算能力,又考查思维能力。
【试卷解析】参考公式:柱体的体积V Sh =,其中S 是柱体的底面积,h 是柱体的高. 球体积公式34π3R V =,其中R 是球的半径.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1. 已知集合{1,2}A =,2{,3}B a a =+,若{1}A B = 则实数a 的值为 ▲ . 【答案】1【考点】元素的互异性【名师点睛】(1)认清元素的属性,解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.(3)防范空集.在解决有关,A B A B =∅⊆ 等集合问题时,往往忽略空集的情况,一定先考虑∅是否成立,以防漏解.2. 已知复数(1i)(12i),z =++其中i 是虚数单位,则z 的模是 ▲ .【考点】复数的模【名师点睛】对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)+∈a bi a b R 的实部为a 、虚部为b 、对应点为(,)a b 、共轭为.-a bi3. 某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取 ▲ 件. 【答案】18【解析】所求人数为300601810000⨯=,故答案为18.【考点】分层抽样【名师点睛】在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即n i ∶N i =n ∶N .4. 右图是一个算法流程图,若输入x 的值为116,则输出的y 的值是 ▲ .【答案】2-【解析】由题意212log 216y =+=-,故答案为-2. 【考点】循环结构流程图【名师点睛】算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项. 5. 若π1tan(),46α-= 则tan α= ▲ .【答案】75【考点】两角和正切公式【名师点睛】三角函数求值的三种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数. (2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异. ①一般可以适当变换已知式,求得另外函数式的值,以备应用; ②变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的.(第4题)(3)给值求角:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角. 6. 如图,在圆柱12,O O 内有一个球O ,该球与圆柱的上、下面及母线均相切.记圆柱12,O O 的体积为1V ,球O 的体积为2V ,则12V V 的值是 ▲ .【答案】32【解析】设球半径为r ,则213223423V r r V r ππ⨯==.故答案为32.【考点】圆柱体积【名师点睛】空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解. (2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.7.记函数()f x =D .在区间[4,5]-上随机取一个数x ,则x D ∈的概率是 ▲ . 【答案】59【考点】几何概型概率【名师点睛】(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解.(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用―比例解法‖求解几何概型的概率. 8. 在平面直角坐标系xOy 中,双曲线2213x y -=的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是12,F F ,则四边形12F PF Q 的面积是 ▲ .【答案】【考点】双曲线渐近线【名师点睛】1.已知双曲线方程22221x y a b -=求渐近线:22220x y by x a b a-=⇒=±2.已知渐近线y mx = 设双曲线标准方程222m x y λ-=3,双曲线焦点到渐近线距离为b ,垂足为对应准线与渐近线的交点.9. 等比数列{}n a 的各项均为实数,其前n 项的和为n S ,已知3676344S S ==,,则8a = ▲ .【答案】32【解析】当1q =时,显然不符学#科.网合题意;当1q ≠时,3161(1)714(1)6314a q q a q q⎧-=⎪-⎪⎨-⎪=⎪-⎩,解得1142a q ⎧=⎪⎨⎪=⎩,则7812324a =⨯=. 【考点】等比数列通项【名师点睛】在解决等差、等比数列的运算问题时,有两个处理思路,一是利用基本量,将多元问题简化为一元问题,虽有一定量的运算,但思路简洁,目标明确;二是利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形. 在解决等差、等比数列的运算问题时,经常采用―巧用性质、整体考虑、减少运算量‖的方法. 10. 某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储之和最小,则x 的值是 ▲ . 【答案】30【解析】总费用600900464()4240x x x x +⨯=+≥⨯=,当且仅当900x x=,即30x =时等号成立.【考点】基本不等式求最值【名师点睛】在利用基本不等式求最值时,要特别注意―拆、拼、凑‖等技巧,使其满足基本不等式中―正‖(即条件要求中字母为正数)、―定‖(不等式的另一边必须为定值)、―等‖(等号取得的条件)的条件才能应用,否则会出现错误. 11. 已知函数31()2e e x xf x x x =-+-, 其中e 是自然对数的底数. 若2(1)(2)0f a f a -+≤,则实数a 的取值范围是 ▲ . 【答案】1[1,]2-【考点】利用函数性质解不等式【名师点睛】解函数不等式:首先根据函数的性质把不等式转化为(())(())f g x f h x >的形式,然后根据函数的单调性去掉―f ‖,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在外层函数的定义域内12. 如图,在同一个平面内,向量OA ,OB ,OC 的模分别为,OA 与OC的夹角为α,且tan α=7,OB 与OC 的夹角为45°.若OC mOA nOB =+(,)m n ∈R , 则m n += ▲ .【答案】3【解析】由tan 7α=可得sin α=,cos α=,根据向量的分解,(第12题)易得cos 45cos sin 45sin 0n m n m αα⎧︒+=⎪⎨︒-=⎪⎩0+==,即510570n m n m +=⎧⎨-=⎩,即得57,44m n ==,所以3m n +=. 【考点】向量表示【名师点睛】(1)向量的坐标运算将向量与代数有机结合起来,这就为向量和函数、方程、不等式的结合提供了前提,运用向量的有关知识可以解决某些函数、方程、不等式问题. (2)以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解不等式或求函数值域,是解决这类问题的一般方法.(3)向量的两个作用:①载体作用:关键是利用向量的意义、作用脱去“向量外衣”,转化为我们熟悉的数学问题;②工具作用:利用向量可解决一些垂直、平行、夹角与距离问题.13. 在平面直角坐标系xOy 中,(12,0),(0,6),A B -点P 在圆2250O x y +=:上,若20,PA PB ⋅≤则点P 的横坐标的取值范围是 ▲ .【答案】[-【考点】直线与圆,线性规划【名师点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求横坐标或纵坐标、直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.14. 设()f x 是定义在R 且周期为1的函数,在区间[0,1)上,2,,(),,x x D f x x x D ⎧∈⎪=⎨∉⎪⎩ 其中集合1,*n D x x n n -⎧⎫==∈⎨⎬⎩⎭N ,则方程()lg 0f x x -=的解的个数是 ▲ .【答案】8【解析】由于()[0,1)f x ∈ ,则需考虑110x ≤< 的情况在此范围内,x Q ∈ 且x ∈Z 时,设*,,,2qx p q p p=∈≥N ,且,p q 互质 若lg x Q ∈ ,则由lg (0,1)x ∈ ,可设*lg ,,,2nx m n m m=∈≥N ,且,m n 互质 因此10n mq p =,则10()nm q p= ,此时左边为整数,右边非整数,矛盾,因此lg x Q ∉【考点】函数与方程【名师点睛】对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等. 二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分14分)如图,在三棱锥A-BCD 中,AB ⊥AD , BC ⊥BD , 平面ABD ⊥平面BCD , 点E ,F (E 与A ,D 不重合)分别在棱AD ,BD 上,且EF ⊥AD . 求证:(1)EF ∥平面ABC ; (2)AD ⊥AC .【答案】(1)见解析(2)见解析【解析】证明:(1)在平面ABD 内,因为AB ⊥AD ,EF AD ,所以EF AB ∥.【考点】线面平行判定定理、线面垂直判定与性质定理,面面垂直性质定理 【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型. (1)证明线面、面面平行,需转化为证明线线平行. (2)证明线面垂直,需转化为证明线线垂直. (3)证明线线垂直,需转化为证明线面垂直. 16.(本小题满分14分)(第15题)ADBC EF已知向量(cos ,sin ),(3,[0,π].x x x ==∈a b (1)若a ∥b ,求x 的值;(2)记()f x =⋅a b ,求()f x 的最大值和最小值以及对应的x 的值. 【答案】(1)5π6x =(2)0x =时,取得最大值,为3; 5π6x =时,取得最小值,为-【解析】解:(1)因为co ()s ,sin x x =a ,(3,=b ,a ∥b ,(2)π(cos ,sin )(3,3cos ())6f x x x x x x =⋅=⋅=-=+a b . 因为,所以ππ7π[,]666x +∈,从而π1cos()6x -≤+≤. 于是,当ππ66x +=,即0x =时,取到最学.科网大值3;当π6x +=π,即5π6x =时,取到最小值-.【考点】向量共线,数量积【名师点睛】(1)向量平行:1221//a b x y x y ⇒=,//,0,a b b a b λλ≠⇒∃∈=R ,111BA AC OA OB OC λλλλ=⇔=+++(2)向量垂直:121200a b a b x x y y ⊥⇔⋅=⇔+=,(3)向量加减乘: 221212(,),||,||||cos ,a b x x y y a a a b a b a b ±=±±=⋅=⋅<>17.(本小题满分14分)如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y E a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点1F 作 直线1PF 的垂线1l ,过点2F 作直线2PF 的垂线2l . (1)求椭圆E 的标准方程;(2)若直线E 的交点Q 在椭圆E 上,求点P 的坐标.【答案】(1)22143x y +=(2)【解析】解:(1)设椭圆的半焦距为c .从而直线1l 的方程:001(1)x y x y +=-+, ①(第17题)直线2l 的方程:001(1)x y x y -=--. ② 由①②,解得20001,x x x y y -=-=,所以2001(,)x Q x y --. 因为点Q 在椭圆上,由对称性,得20001x y y -=±,即22001x y -=或22001x y +=.因此点P的坐标为. 【考点】椭圆方程,直线与椭圆位置关系【名师点睛】直线和圆锥曲线的位置关系,一般转化为直线方程与圆锥曲线方程组成的方程组,利用韦达定理或求根公式进行转化,要充分利用椭圆和双曲线的几何性质、点在曲线上则点的坐标满足曲线方程. 18.(本小题满分16分)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC 的长为cm,容器Ⅱ的两底面对角线EG ,11E G 的长分别为14cm 和62cm. 分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm. 现有一根玻璃棒l ,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将l 放在容器Ⅰ中,l 的一端置于点A 处,另一端置于侧棱1CC 上,求l 没入水中部分的长度;(2)将l 放在容器Ⅱ中,l 的一端置于点E 处,另一端置于侧棱1GG 上,求l 没入水中部分的长度.【答案】(1)16(2)20【解析】解:(1)由正棱柱的定义,1CC ⊥平面ABCD ,所以平面11A ACC ⊥平面ABCD ,1CC AC ⊥.记玻璃棒的另一端落在1CC 上点M 处.( 如果将“没入水中部分冶理解为“水面以上部分冶,则结果为24cm)容器Ⅱ容器ⅠAH 11E 1A (第18题)(2)如图,O ,O 1是正棱台的两底面中心.由正棱台的定义,OO 1⊥平面 EFGH , 所以平面E 1EGG 1⊥平面EFGH ,O 1O ⊥EG . 同理,平面 E 1EGG 1⊥平面E 1F 1G 1H 1,O 1O ⊥E 1G 1. 记玻璃棒的另一端落在GG 1上点N 处.过G 作GK ⊥E 1G ,K 为垂足, 则GK =OO 1=32. 因为EG = 14,E 1G 1= 62,所以KG 1=6214242-=,从而140GG ===. 设1,,EGG ENG αβ==∠∠则114sin sin()cos 25KGG KGG απ=+==∠∠.因为2απ<<π,所以3cos 5α=-.在ENG △中,由正弦定理可得4014sin sin αβ=,解得7sin 25β=. 因为02βπ<<,所以24cos 25β=. 于是42473s i n s i n ()s i n ()s i n c o 3s c o s s i n ()5252555N E Gαβαβαβαβ=π--=+=+=⨯+∠.记EN 与水面的交点为P 2,过 P 2作P 2Q 2⊥EG ,Q 2为垂足,则 P 2Q 2⊥平面 EFGH ,故P 2Q 2=12,从而 EP 2=2220sin P NEGQ =∠.答:玻璃棒l 没入水中部分的长度为20cm.(如果将“没入水中部分冶理解为“水面以上部分冶,则结果为20cm) 【考点】正余弦定理【名师点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向. 第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化. 第三步:求结果. 19.(本小题满分16分)对于给定的正整数k ,若数列{}n a 满足1111n k n k n n n k n k a a a a a a --+-++-++++++++ 2n ka =对任意正整数()n n k >总成立,则称数列{}n a 是“()P k 数列”. (1)证明:等差数列{}n a 是“(3)P 数列”;(2)若数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,证明:{}n a 是等差数列. 【答案】(1)见解析(2)见解析当3n ≥时,n n n n n a a a a a --+++++=21124,①当4n ≥时,n n n n n n n a a a a a a a ---++++++++=3211236.② 由①知,n n n a a a ---+=-32141()n n a a ++,③n n n a a a ++++=-23141()n n a a -+,④所以数列{}n a 是等差数列.【考点】等差数列定义及通项公式【名师点睛】证明{}n a 为等差数列的方法: (1)用定义证明:1(n n a a d d +-=为常数); (2)用等差中项证明:122n n n a a a ++=+; (3)通项法: n a 为n 的一次函数; (4)前n 项和法:2n S An Bn =+ 20.(本小题满分16分)已知函数32()1(0,)f x x ax bx a b =+++>∈R 有极值,且导函数()f x '的极值点是()f x 的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b 关于a 的函数关系式,并写出定义域; (2)证明:23b a >;(3)若()f x ,()f x '这两个函数的所有极值之和不小于72-,求a 的取值范围.【答案】(1)3a >(2)见解析(3)36a <≤【解析】解:(1)由32()1f x x ax bx =+++,得222()323()33a a f x x axb x b '=++=++-.当3ax =-时,()f x '有极小值23a b -.因为()f x '的极值点是()f x 的零点.所以33()1032793a a a ab f -=-+-+=,又0a >,故2239a b a=+.因为()f x 有极值,故()=0f x '有实根,从而231(27a )039a b a-=-≤,即3a ≥.3a =时,()>0(1)f x x '≠-,故()f x 在R 上是增函数,()f x 没有极值;3a >时,()=0f x '有两个相异的实根1=x ,2x 列表如下故()f x 的极值点是12,x x . 从而3a >,因为3a >,所以>(g g因此2>3b a .(3)由(1)知,()f x 的极值点是12,x x ,且1223x x a +=-,22212469a b x x -+=.从而323212111222()()11f x f x x ax bx x ax bx +=+++++++2222121122121212(32)(32)()()23333x x x ax b x ax b a x x b x x =++++++++++ 346420279a ab ab -=-+=因此a 的取值范围为(36],.【考点】利用导数研究函数单调性、极值及零点【名师点睛】涉及函数的零点问题、方程解的个数问题、函数图像交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.数学II21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题......,并在相应的答题区域内..........作答..,若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A. [选修4—1:几何证明选讲](本小题满分10分)如图,AB 为半圆O 的直径,直线PC 切半圆O 于点C ,AP ⊥PC ,P 为垂足. 求证:(1);PAC CAB ∠=∠ (2)2AC AP AB =⋅.【答案】见解析【解析】证明:(1)因为PC 切半圆O 于点C ,所以PCA CBA =∠∠,所以2·AC AP AB = 【考点】圆性质,相似三角形【名师点睛】1.解决与圆有关的成比例线段问题的两种思路P(第21-A 题)(1)直接应用相交弦、切割线定理及其推论;(2)当比例式(等积式)中的线段分别在两个三角形中时,可转化为证明三角形相似,一般思路为―相似三角形→比例式→等积式‖.在证明中有时还要借助中间比来代换,解题时应灵活把握.2.应用相交弦定理、切割线定理要抓住几个关键内容:如线段成比例与相似三角形、圆的切线及其性质、与圆有关的相似三角形等. B. [选修4—2:矩阵与变换](本小题满分10分) 已知矩阵0110,.1002B ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦A A= ,B=.(1)求AB ;(2)若曲线221:182x y C +=在矩阵AB 对应的变换作用下得到另一曲线2C ,求2C 的方程.【答案】(1)(2)228x y +=【解析】解:(1)因为A =0110⎡⎤⎢⎥⎣⎦, B =1002⎡⎤⎢⎥⎣⎦,所以AB =错误!未找到引用源。
2017-2018年全国高中数学联赛江苏赛区初赛试题及答案(20200609100016)
2017-2018年全国高中数学联赛江苏赛区初赛试题(4月20日8:00至10:00)一.填空题(本大题共10小题,每小题7分,共70分)1.若2x ≥,则函数1()1f x x x 的最小值是.2.已知函数()e x f x .若()2f a b ,则(3)(3)f a f b 的值是.3.已知数列n a 是各项均不为0的等差数列,公差为d ,n S 为前n 项和,且满足221n n a S ,*n N ,则数列n a 的通项n a .4.若函数2223,0,()2,0x x x f x x ax x ≥是奇函数,则实数a 的值是.5.已知函数10()lg ||3f x x .若关于x 的方程2()5()60f x f x 的实根之和为m ,则()f m 的值是.6.设、都是锐角,且5cos 5,3sin()5,则cos 等于.7.四面体ABCD 中,3AB ,5CD ,异面直线AB 和CD 之间的距离为4,夹角为o 60,则四面体ABCD 的体积为.8.若满足3ABC ,3AC ,BC m 的ABC △恰有一解,则实数m 的取值范围是.9.设集合1,2,,8S ,A ,B 是S 的两个非空子集,且A 中的最大数小于B 中的最小数,则这样的集合对(,)A B 的个数是.10.如果正整数m 可以表示为224x y (x ,y Z ),那么称m 为“好数”.问1,2,3,…,2017-2018中“好数”的个数为.二.解答题(本大题共4小题,每小题20分,共80分)11.已知a ,b ,c 为正实数,x y z a b c ,1110x y z ,求abc 的值.12.已知1F ,2F 分别是双曲线2222:1(0,0)xy C a b a b 的左右焦点,点B 的坐标为(0,)b ,直线1F B 与双曲线C 的两条渐近线分别交于P ,Q 两点,线段PQ 的垂直平分线与x 轴交于点M .若21212MF F F ,求双曲线C 的离心率.13.如图,已知ABC 是锐角三角形,以AB 为直径的圆交边AC 于点D ,交边AB上的高CH 于点E .以AC 为直径的半圆交BD 的延长线于点G .求证:AG AE .14.(1)正六边形被3条互不交叉(端点可以重合)的对角线分割成4个三角形.将每个三角形区域涂上红、蓝两种颜色之一,使得有公共边的三角形涂的颜色不同.怎样分割并涂色可以使红色三角形个数与蓝色三角形个数的差最大?(2)凸2016边形被2013条互不交叉(端点可以重合)的对角线分割成2014个三角形.将每个三角形区域涂上红、栏两种颜色之一,使得有公共边的三角形涂的颜色不同.在上述分割并涂色的所有情形中,红色三角形个数与蓝色三角形个数之差的最大值是多少?证明你的结论.。
2017-2018学年全国高中数学联赛江苏赛区初赛试卷.pdf
(2)因为 an 1 an
an 1 nan 1 1
an 1 nan 1
1
,
n
所以当 n 2 时,
an an an 1
an 1 an 2 L
1
1
L
n1 n 2
n1
1
.
k 1k
11 1
21
a2 a1 a1
又 a1 1 1 1 ,
所以对任意正整数 n , an 1
n1
.
k 1k
12.解:( 1)由题设条件得
左、右焦点, P 是双曲线右支上一点, M 是 PF2的中点,且 OM PF2 , 3PF1 4PF2 ,
则双曲线的离心率为
.
5.定义区间 x1, x2 的长度为 x2 x1 . 若函数 y log 2 x 的定义域为 a,b ,值域为 0,2 ,
则区间 a,b 长度的最大值与最小值的差为
.
6.若关于 x 的二次方程 mx2 2m 1 x m 2 0 ( m 0 )的两个互异的根都小于 1,
3a 3 2,
2
c
3,
a 2,
从而
a2
b 1.
b2 c2 a2,
故所求的椭圆 E : x2 y2 1,直线 l : x y 6 0 . 4
2cos sin 6 6 5 sin
(2)设 P 2cos ,sin ,则 d1
2
2
tan 2,
所以 6 2
10
62
d1
10
.
2
2
又 d2
016 2
52 2 , d3
. 最新试卷十
2.已知集合 A x ax 1 a x 0 ,且 2 A , 3 A ,则实数 a 的取值范围
2017年全国高中数学联赛一试(B卷)答案
2017 年全国高中数学联合竞赛一试(B卷)参考答案及评分标准说明:1. 评阅试卷时,请依据本评分标准. 填空题只设 8 分和 0 分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第 9 小题 4 分为一个档次,第 10、11 小题 5 分为一个档次,不得增加其他中间档次.一、填空题:本大题共 8 小题,每小题 8 分,共 64 分.1. 在等比数列{a } 中,a2, a 3,则a 1a2011的值为.3n23a 7a2017答案:8.9a 3 a a a a 1 8 解:数列{a } 的公比为q 3,故.a 2 q 6 ( a 1 a 2011 ) q 6n 2 a 7a 201792. 设复数 z 满足z 9 1022 i ,则 z z 的值为.答案:.5 a , b R .由条件得解:设z a b i,( a 9) b i 10 a ( 10b 22) i . 比较两边实虚部可得 a + 9 = 10 a ,b = −10b + 22,解得a 1, b 2 ,故z 1 2 i ,进而 z 5 .3. 设 f ( x ) 是定义在R 上的函数,若 f ( x ) x 2 是奇函数, f ( x ) 2x 是偶函数, 则 f (1) 的值为 .答案: 7.4f ( 1) 1 , 解:由条件知, f (1) 1f ( 1) ( 1) 2 f ( 1) 1, f (1) 221 ,即 f (1) 7两式相加消去 f ( 1) ,可知2 f (1) 3 .244. 在 ABC 中,若sin A 2sin C ,且三条边a , b , c 成等比数列,则cos A 的值为 .答案:42.解:由正弦定理知,ac sinsin C A 2 ,又b 2ac ,于是a : b : c 2 : 2 : 1,从而由余弦定理得,cos A b2c2a 2(2) 2122 22. 4 2 bc 2 2 15. 在正四面体 ABCD 中,E , F 分别在棱 AB , AC 上,满足BE = 3, EF = 4 ,且EF 与面BCD 平行,则∆DEF 的面积为.1答案:233 .解:由条件知,EF 平行于BC .因为正四面体 ABCD 的各个面是全等的正三角形,故AE AF EF 4, AD AB AE BE 7 .由余弦定理得,DE AD 2 AE 2 2 AD AE cos 6049 16 28 37 ,同理有DF 37 .作等腰 DEF 底边EF 上的高DH ,则EH12 EF 2 ,故DH DE 2 EH 2 33 ,于是S DEF12 EF DH 233 .6. 在平面直角坐标系 xOy 中,点集K ( x , y ) | x , y 1, 0, 1 .在K 中随机取出三个点,则这三个点两两之间距离均不超过 2 的概率为 .答案:145.解:注意K 中共有 9 个点,故在K 中随机取出三个点的方式数为种.当取出的三点两两之间距离不超过 2 时,有如下三种情况:(1)三点在一横线或一纵线上,有 6 种情况.(2)三点是边长为1, 1, 2 的等腰直角三角形的顶点,有4 4 16 种情况.(3)三点是边长为2, 2, 2 的等腰直角三角形的顶点,其中,直角顶点位于(0, 0) 的有 4 个,直角顶点位于( 1, 0), (0, 1) 的各有一个,共有8 种情况.综上可知,选出三点两两之间距离不超过 2 的情况数为 ,进而所求概率为30 5 . 14 847. 设a 为非零实数,在平面直角坐标系 xOy 中,二次曲线 x 2 ay 2 a 2 0 的 焦距为 4,则a 的值为 .答案:1 217.解:二次曲线方程可写成 x 2 y2 1.显然必须 a 0 ,故二次曲线为双曲 a 2ay 2x 2222 21 .则c ( a )( a )a a ,注意到焦距( a )2 ( a )2c 4 ,可知a 2 a 4 ,又a 0,所以a 117.28. 若正整数a , b , c 满足2017 10 a 100b 1000c ,则数组( a , b , c ) 的个数为.答案:574 .解:由条件知c20172 .1000当c1时,有10b20.对于每个这样的正整数b,由10b a201知,2相应的a的个数为202 10b.从而这样的正整数组的个数为20b 10 2当c2时,由20 b 2017 .进而200 2017 201 ,,知b20 a100 10故a200, 201.此时共有2组(a,b,c).综上所述,满足条件的正整数组的个数为.二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9.(本题满分16分)设不等式2x a5 2x对所有成立,求实数a的取值范围.解:设t2x,则t[2, 4],于是对所有成立.由于t a 5 t ( t a ) 2 (5 t)2(2 t a 5)(5 a) 0 .………………8 分对给定实数a,设f(t) (2t a5)(5a),则f(t)是关于t的一次函数或常值函数.注意t[2, 4],因此f(t) 0等价于………………12 分f (4) (3 a )(5 a) 0,解得3a5.所以实数a的取值范围是3a5.………………16 分10.(本题满分20分)设数列{a n}是等差数列,数列{b n}满足b a a a 2, n 1, 2,.n n 1 n 2 n(1)证明:数列{b n}也是等差数列;(2)设数列{a n}、{b n}的公差均是d0,并且存在正整数s,t,使得a s b t是整数,求a1的最小值.解:(1)设等差数列{a n}的公差是d,则b n1b n( a n2a n3 a n21)( a n1a n2a n2)a n2( a n3 a n1) ( a n1 a n)( a n1 a n)a n22 d ( a n1 a n) d(2a n2a n1a n ) d .所以数列{b n}也是等差数列.………………5 分(2)由已知条件及(1)的结果知.因为,故.这样b a an 2 a 2 ( a d )( a 2 d ) a2n n 1 n n n n3da n 2d2a n 2 .………………10分9若正整数s,t满足,则3a b a a 2a ( s 1) d a ( ts ts t 9 1 12a s t 22 Z . 13 9 s t 2 2记l 2a ,则l Z ,且18a 3(3l1 3 91 整数,故,从而.又当时,有ab1 17 1 Z .13 18 18综上所述, a 1 的最小值为181.1)d92s t 1) 1是一个非零的………………15 分………………20 分11. (本题满分 20 分)在平面直角坐标系 xOy 中,曲线C 1 : y 2 4x ,曲线 C2 : ( x 4) 2 y 28 .经过C 1 上一点P 作一条倾斜角为45 的直线l ,与C 2 交于两个不同的点Q , R ,求 PQ PR 的取值范围.解:设P (t 2 , 2t ) ,则直线l 的方程为 y x 2t t 2 ,代入曲线C 2 的方程得, ( x 4) 2 ( x 2t t 2 ) 2 8 ,化简可得 2 x 2 2(t 2 2t 4) x (t 2 2t ) 2 8 0 .①由于l 与C 2 交于两个不同的点,故关于x 的方程①的判别式 为正.计算得,(t 2 2t 4) 2 2((t 2 2t ) 2 8) (t 2 2t ) 2 8(t 2 2t ) 16 2(t 2 2t ) 2 164(t 2 2t ) 2 8(t 2 2t )(t 2 2t ) (t 2 2t 8)t (t 2)(t 2)(t 4) ,因此有 t ( 2, 0) (2,4) . ②………………10 分设Q , R 的横坐标分别为x 1 , x 2 ,由①知,x x t 22t 4, x x 1((t 2 2t ) 2 8) ,121 2 2因此,结合l 的倾斜角为45 可知,PQ PR 2( x 1t 2 ) 2( x 2 t 2 ) 2 x 1 x 2 2 t 2 ( x 1 x 2 ) 2t 4(t 2 2t ) 2 8 2t 2 (t 2 2t 4) 2t 4t 4 4t 3 4t 2 8 2t 4 4t 3 8t 2 2t 4t 4 4t 2 8 (t 2 2) 2 4 .③………………15 分由②可知,t 2 2 ( 2, 2) (2, 14) ,故( t 2 2) 2 [0,4) (4, 196) ,从而由③得,PQ PR (t 2 2) 2 4 [4, 8) (8, 200) .………………20 分注 1:利用C 24 2 t t2的圆心到l 的距离小于C 2 的半径,列出不等式2,2 2同样可以求得②中t 的范围.注 2:更简便的计算 PQ PR 的方式是利用圆幂定理.事实上,C 2 的圆心为 M (4, 0) ,半径为r 2 2 ,故PQ PRPM 2 r 2 (t 2 4) 2 (2t ) 2 (22) 2 t 4 4t 2 8 .4。
2017年全国高中数学联合竞赛试题与解答(B卷)_PDF压缩
2017年全国高中数学联合竞赛一试(B 卷)一、填空题:本大题共8个小题,每小题8分,共64分.1.在等比数列{}n a中,2a =,3a =1201172017a a a a ++的值为 .2.设复数z 满足91022z z i +=+,则||z 的值为 .3.设()f x 是定义在R 上的函数,若2()f x x +是奇函数,()2x f x +是偶函数,则(1)f 的值为 .4.在ABC ∆中,若sin 2sin A C =,且三条边,,a b c 成等比数列,则cos A 的值为 .5.在正四面体ABCD 中,,E F 分别在棱,AB AC 上,满足3BE =,4EF =,且EF 与平面BCD 平行,则DEF ∆的面积为 .6.在平面直角坐标系xOy 中,点集{(,)|,1,0,1}K x y x y ==-,在K 中随机取出三个点,则这三个点两两之间距离均不超过2的概率为 .7.设a 为非零实数,在平面直角坐标系xOy 中,二次曲线2220x ay a ++=的焦距为4,则a 的值为 .8.若正整数,,a b c 满足2017101001000a b c ≥≥≥,则数组(,,)a b c 的个数为 .二、解答题 (本大题共3小题,共56分.解答应写出文字说明、证明过程或演算步骤.)9.设不等式|2||52|xxa -<-对所有[1,2]x ∈成立,求实数a 的取值范围.10.设数列{}n a 是等差数列,数列{}n b 满足212n n n n b a a a ++=-,1,2,n =.(1)证明:数列{}n b 也是等差数列;(2)设数列{}n a 、{}n b 的公差均是0d ≠,并且存在正整数,s t ,使得s t a b +是整数,求1||a 的最小值.11.在平面直角坐标系xOy 中,曲线21:4C y x =,曲线222:(4)8C x y -+=,经过1C 上一点P 作一条倾斜角为45的直线l ,与2C 交于两个不同的点,Q R ,求||||PQ PR ⋅的取值范围.2017年全国高中数学联合竞赛加试(B 卷)一、(本题满分40分)设实数,,a b c 满足0a b c ++=,令max{,,}d a b c =,证明:2(1)(1)(1)1a b c d +++≥-二、(本题满分40分)给定正整数m ,证明:存在正整数k ,使得可将正整数集N +分拆为k 个互不相交的子集12,,,k A A A ,每个子集i A 中均不存在4个数,,,a b c d (可以相同),满足ab cd m -=.三、(本题满分50分)如图,点D 是锐角ABC ∆的外接圆ω上弧BC 的中点,直线DA 与圆ω过点,B C 的切线分别相交于点,P Q ,BQ 与AC 的交点为X ,CP 与AB 的交点为Y ,BQ 与CP 的交点为T ,求证:AT 平分线段XY .四、(本题满分50分)设1220,,,{1,2,,5}a a a ∈,1220,,,{1,2,,10}b b b ∈,集合{(,)120,()()0}i j i j X i j i j a a b b =≤<≤--<,求X 的元素个数的最大值.。
2017年全国高中数学联赛江苏复赛试题
2017-2018学年全国高中数学联赛江苏赛区复赛一、填空题(每题8分,满分64分,将答案填在答题纸上)1.若数列{}n a 满足*+∈+==N n a a a a n n n ,232,2111,则2017a 的值为 . 2.若函数()()()b ax x x x f ++-=221对于任意R x ∈都满足()()x f x f -=4,则()x f 的最小值是 .3.在正三棱柱111C B A ABC -中,E D ,分别是侧棱11,CC BB 上的点,BD BC EC 2==,则截面ADE 与底面ABC 所成的二面角的大小是 .4.若13cos 2cos cos 3sin 2sin sin =+x x x x x x ,则=x .5. 设y x ,是实数,则9422244+++y x yx 的最大值是 . 6. 设ΛΛΛ,3,2,1,,,2121=+++=∈+++=*m a a a S N n n a m m n ,则201721,,,S S S Λ中能被2整除但不能被4整除的数的个数是 .7. 在直角平面坐标系xOy 中,21,F F 分别是双曲线()01222>=-b by x 的左、右焦点,过点1F 作圆122=+y x 的切线,与双曲线左、右两支分别交于点B A ,,若AB B F =2,则b 的值是 .8. 从正1680边形的顶点中任取若干个,顺次相连成多边形,其中正多边形的个数为 .二、解答题9.已知R y x ∈,,且y x y x ≠=+,222,求()()2211y x y x -++的最小值.10.在平面直角坐标系xOy 中,椭圆13:22=+y x C 的上顶点为A ,不经过点A 的直线l 与椭圆C 交于Q P ,两点,且.0=⋅AQ AP(1)直线l 是否过定点?若是,求出定点坐标;若不是,说明理由.(2)过Q P ,两点分别作椭圆的切线,两条切线交于点B ,求BPQ ∆面积的取值范围. 11.设函数().!1!2112n n x n x x x f ++++=Λ (1)求证:当()*∈+∞∈N n x ,,0时,()x f e n x>;(2)设*∈>N n x ,0,若存在R y ∈使得()()y n n xe x n xf e 1!11+++=,求证:.0x y <<2017年全国高中数学联赛江苏赛区复赛参考答案与评分标准加试1. 已知圆O 的内接五边形ABCDE 中AD 与BE 相交于点CF F ,的延长线交圆O 于点P ,且.ED BC CD AB ⋅=⋅求证:.AE OP ⊥2.设y x ,是非负实数,22,+++=+=y x b y x a ,若b a ,是两个不相邻的整数,求b a ,的值,3.平面上n 2个点()N n n ∈>,1,无三点共线,任意两点间连线段,将其中任意12+n 条线段染成红色.求证:三边都为红色的三角形至少有n 个. 4.设n 为正整数,nn b an =++++131211Λ, 其中n n b a ,为互素的正整数,对素数p ,令集合{}n p a p N n n S ,*∈=, 证明:对每一个素数5≥p ,集合p S 中至少有三个元素.试卷答案1.302612. 16-3. 0454.Z k k ∈,π5.146.2527.1+二、解答题9.解:因为222=+y x ,所以()()422=-++y x y x ,所以()()()()()()()222222114111y x y x y x y x y x y x -++⎪⎪⎭⎫ ⎝⎛-++=-++ ().111412=+≥当0,2==y x 时,()().11122=-++y x y x 所以()()2211y x y x -++的最小值为.1 10.解:(1) 因为0=⋅,所以.⊥直线AQ AP ,与x 轴平行时,P 或Q 与A 重合,不合题意. 设1:+=kx y PA ,则.11:+-=x ky QA 将1+=kx y 代入3322=+y x ,得().063122=++kx x k 所以2262, 1.1313P P k x y k k=-=-++同理.361,3622+-=+=k y k k x QQ 所以,直线:P P Q P Q P y y x x l y y x x --=--,即()()()()()()kx k kx k y k y k l Q Q 63163121312131:2222++++=-++-++, 化简得.2141:2--=x k k y l 直线l 纵截距是常数21-,故直线l 过定点.21,0⎪⎭⎫ ⎝⎛-(2)由 (1) ,223116k k k AP ++=,同理,.31622++=k k AQ 所以 ()()()()()()()()222222222222222223313131363131136+++++⋅+=⎥⎥⎦⎤⎢⎢⎣⎡+++⋅+=k k k k k k k k k k PQ ()()().3103115151362242462++++++=k kk k k k不妨设0>k ,令k k t 1+=,则2≥t ,可化得()()22222431236++=t t t PQ , 即 .4312622++=t t t PQ 设()00,y x B ,则切点弦PQ 的方程是3300=+y y x x ,又Q P ,在2141:2--=x k k y l 上,所以20-=y , 从而().21320kk x -=所以B 到PQ 的距离.122316121213222222+=+⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=t t k k k k d 因此的面积().43294312612232121232222+=++⨯+⨯=⨯⨯=t t t t t t t PQ d S令t u 1=,则210≤<u ,化得().34293u u S += 当210≤<u 时,u u 343+递增, 所以23403≤+<u u ,即49≥S ,当且仅当21=u ,即1,2==k t 时,等号成立,故BPQ ∆的面积S 的取值范围是.,49⎪⎭⎫⎢⎣⎡+∞ 11.解: (1) 用数学归纳法证明如下:(ⅰ)当1=n 时,令()()11--=-=x e x f e x f xx,则()()+∞∈>-=',0,01x e x f x恒成立,所以()x f 在区间()+∞,0为增函数,又因为()00=f ,所以()0>x f ,即().1x f e x>(ⅱ)假设k n =时,命题成立,即当()+∞∈,0x 时,()x f e k x>,则1+=k n 时,令()()()⎪⎪⎭⎫⎝⎛++++++-=-=++121!11!1!211k k x k x x k x k x x e x f e x g Λ, 则()()0!1!2112>-=⎪⎭⎫⎝⎛++++-='x f e x k x x e x g k x k xΛ,所以()x g 在区间()+∞,0为增函数,又因为()00=g ,所以()()+∞∈>,0,0x x g 恒成立,即()()+∞∈>+,0,1x x f e k x,所以1+=k n 时,命题成立.由(ⅰ)(ⅱ)及归纳假设可知,*∈∀N n ,当()+∞∈,0x 时,().x f e n x>(2)由(1)可知()x f e n x1+>,即()()()()11!11!11++++>++n n y n n x n x f e x n x f ,所以1>ye ,即0>y ,下证:.x y <下面先用数学归纳法证明:当().,!1!11!211,012*-∈+-++++<>N n e x n x n x x e x x n n xΛ(ⅰ)当1=n 时,令()xxe xe x F -+=1,则()()+∞∈>=',0,0x xe x F x,所以()x F 在区间()+∞,0单调增,又()00=F ,故()0>x F ,即.1x x xe e +< (ⅱ)假设k n =时,命题成立, 即当()+∞∈,0x 时,().!1!11!21112k k k xe x k x k x x e +-++++<-Λ则当1+=k n 时,令()()x x k k e e x k x k x x x G -++++++=+12!11!1!211Λ,()()()0!11!11!1!211112>+>-++++++='++x k x x k x k e x k e e x k e x k x x x G Λ,所以()x G 在区间()+∞,0上为增函数,又()00=G ,故()0>x G ,即()()+∞∈++++++<+,0,!11!1!21112x e x k x k x x e x k k x Λ.由(ⅰ)(ⅱ)及归纳假设, 可知当()+∞∈,0x 时,(),!11!1!21112x n n xe x n x n x x e +++++++<Λ对*∈N n 成立,所以()()x n n y n n x e x n x n x x e x n x n x x e 1212!11!1!211!11!1!211++++++++<++++++=ΛΛ,从而x y e e <即x y <,证毕.复赛加试答案1.证明:连接.,PE PA因为五边形ABCDE 内接于圆O , 所以EDF ABF DEF BAF ∠=∠∠=∠,, 所以EDF ABF ∆∆~,所以.FD FBED AB = ① 同理,BFPF BC PE =, ②.PFDFPA DC = ③ 由①⨯②⨯③得.1=⋅⋅PADCBC PE ED AB因为ED BC CD AB ⋅=⋅,所以.1=⋅EDDCBC AB所以PA PE =,即点P 是弧AE 的中点,所以.AE OP ⊥2.解:因为b a ,是不相邻的整数, 所以()()()y y x x y x y x a b -++-+=+-+++=-≤22222.32222222222<=+≤+++++=y y x x由于a b -是整数,所以.2=-a b 设Z n n b n a ∈+=-=,1,1,即122,1+=+++-=+n y x n y x ,则122,1+=+-+--=--n y x y x n y x y x ,则122,1+-=+-+--=-n yx y x n y x y x , 于是1122,112+-++=+--+-=n yx n x n y x n x , 从而()()()()()()y x n x n y x n x n -++=++-+-=-221212,112,故()().2121++=+-x n n x n 又因为()().2222=-+x x ①令x t =,得()1212++-=+n n t n x ,代入①得()()01212222=-----n n t n n nt ,于是()()()()()()nn n n n n n n n n n n n n t x 221141281412222-+±-=--+-±-==, ()()()nn n n n n x n y 22111-+±-=--=,因此,2≥n ,并且()()()211-+≥-n n n n n ,即0122≤--n n ,解之得2121+≤≤-n , 从而212+≤≤n ,且Z n ∈,故.2=n 所以.3,1==b a3. 证明:首先证明一定存在红色三角形(三边均为红色的三角形为红色三角形,下同). 设从顶点A 出发的红色线段最多,由A 引出的红色线段为k AB AB AB ,,,21Λ,则.1+≥n k若k B B B ,,21Λ中存在两点,不妨设为21,B B 使线段21B B 为红色线段, 则21B AB ∆为红色三角形,若k B B B ,,,21Λ相互之间没有红色线段相连,则从()k i B i ,,2,1Λ=出发的红色线段最多有k n -2条, 所以这n 2个点红色线段最多有()()[]()().142212221222+<=-+≤-=--+-+n n k n k k n k k n k n k k 与题设矛盾,所以存在以A 为顶点的红色三角形, 下面用数学归纳法证明,(1)当2=n 时,平面上有四个点D C B A ,,,中两两连线共有6条, 其中有5条为红色,只有一条非红色,设为,AB 则ACD ∆与BCD 均为红色三角形,命题成立,(2)假设k n =时,命题成立,即至少存在k 个红色三角形, 当1+=k n 时,有22+k 个点,且有()112++k 条红色线段,一定存在一个红色三角形,设为.ABC ∆考察从C B A ,,引出的红色线段分别记为()()()C d B d A d ,,条,不妨设()()().C d B d A d ≤≤ 若()()22+≤+k B d A d ,则除去点B A ,余下的k 2个点之间至少有()()11211222+=+-++k k k ,由归纳假设可知存在至少k 个红色三角形,再加上ABC ∆至少有1+k 个红色三角形, 若()()32+≥+k B d A d ,则()()()53+≥++k C d B d A d , 故从C B A ,,出发向其它12-k 个点引出红色线段至少有13-k 条, 因为()().1213k k k =---这()13-k 线段至少有k 对线段有公共点(不包括C B A ,,)故至少存在k 个红色三角形,再加上ABC ∆,则至少有1+k 个红色三角形, 所以1+=k n 时命题也成立,由(1)(2)可知,当N n n ∈>,1时,n 2点之间的12+n 条红色线段至少可组成n 个红色三角形.4.证明:引理:设5≥p 为素数,k 为非负整数,令kk s t p kp kp kp =-++++++112111Λ, 其中k k s t ,为互素的正整数,那么.2k t p 引理的证明:因为()()()∑∑∑-=-=-=-++⋅+=⎪⎪⎭⎫ ⎝⎛-+++=+=111111*********p i p i p i k k i p kp i kp p k i p kp i kp i kp S t , 令()()∑-=-++=111p i i p kp i kp A , 因为素数5≥p ,由Fermat 小定理,以及()()p p kk k mod 0121≡-+++Λ,其中 21-≤≤p k ,有()()()()A p kp kp kp p 1121--+++Λ()()()()()()()∑∑-=---=--≡-++-+++=1122111121p i p p p i p i p i i p kp i kp p kp kp kp Λ().mod 01131142p i ip i p p i p ≡-≡-≡∑∑-=--=-所以()()()()().1211*-∈=-+++N M pM A p kp kp kp p Λ即()()()()().12121212--++++=p k k p kp kp kp Mp k S t Λ 因为()()()()()11212,1=-+++-p p kp kp kp p Λ,所以k t p 2,引理证毕,由引理得,12-p a p ,所以1-p a p , 从而()p S p p ∈-1,又∑∑∑∑∑-=---=-=-=-=--+⋅=++==1011101111112121111112p k k kp p p k p i p i p i p p s t b a p i kp i p i b a ,因为k p t p a p 212,-,所以12-p a p 从而.12p S p ∈-因为()1112-<-<-p p p p ,所以集合p S 中元素至少有3个.。
2017年全国高中数学联赛二试试题及答案解析.pdf
2010年全国高中数学联合竞赛加试 试题参考答案及评分标准(A 卷)说明:1. 评阅试卷时,请严格按照本评分标准的评分档次给分.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不要增加其他中间档次。
一、(本题满分40分)如图,锐角三角形ABC 的外心为O ,K 是边BC 上一点(不是边BC 的中点),D 是线段AK 延长线上一点,直线BD 与AC 交于点N ,直线CD 与AB 交于点M .求证:若OK ⊥MN ,则A ,B ,D ,C 四点共圆.证明:用反证法.若A ,B ,D ,C 不四点共圆,设三角形ABC 的外接圆与AD 交于点E ,连接BE 并延长交直线AN 于点Q ,连接CE 并延长交直线AM 于点P ,连接PQ .因为2PK =P 的幂(关于⊙O )+K 的幂(关于⊙O ) ()()2222PO rKOr =−+−,同理 ()()22222QK QO rKOr =−+−,所以 2222PO PK QO QK −=−,故 OK ⊥PQ . (10分)由题设,OK ⊥MN ,所以PQ ∥MN ,于是AQ APQN PM=. ① 由梅内劳斯(Menelaus )定理,得1NB DE AQBD EA QN⋅⋅=, ② 1MC DE APCD EA PM⋅⋅=. ③ 由①,②,③可得NB MCBD CD=, (30分) 所以ND MDBD DC=,故△DMN ∽ △DCB ,于是DMN DCB ∠=∠,所以BC ∥MN ,故OK ⊥BC ,即K 为BC 的中点,矛盾!从而,,,A B D C 四点共圆. (40分)注1:“2PK =P 的幂(关于⊙O )+K 的幂(关于⊙O )”的证明:延长PK 至点F ,使得PK KF AK KE ⋅=⋅, ④则P ,E ,F ,A 四点共圆,故PFE PAE BCE ∠=∠=∠,从而E ,C ,F ,K 四点共圆,于是PK PF PE PC ⋅=⋅, ⑤⑤-④,得 2PK PE PC AK KE =⋅−⋅=P 的幂(关于⊙O )+K 的幂(关于⊙O ). 注2:若点E 在线段AD 的延长线上,完全类似.二、(本题满分40分)设k 是给定的正整数,12r k =+.记(1)()()f r f r r r ==⎡⎤⎢⎥,()()l f r = (1)(()),2l f f r l −≥.证明:存在正整数m ,使得()()m f r 为一个整数.这里,x ⎡⎤⎢⎥表示不小于实数x 的最小整数,例如:112⎡⎤=⎢⎥⎢⎥,11=⎡⎤⎢⎥.证明:记2()v n 表示正整数n 所含的2的幂次.则当2()1m v k =+时,()()m f r 为整数.下面我们对2()v k v =用数学归纳法.当0v =时,k 为奇数,1k +为偶数,此时()111()1222f r k k k k ⎛⎞⎡⎤⎛⎞=++=++⎜⎟⎜⎟⎢⎥⎝⎠⎢⎥⎝⎠为整数. (10分)假设命题对1(1)v v −≥成立.对于1v ≥,设k 的二进制表示具有形式1212222v v v v v k αα++++=+⋅+⋅+",FE Q PO NM KDC B A这里,0i α=或者1,1,2,i v v =++". (20分)于是 ()111()1222f r k k k k ⎛⎞⎡⎤⎛⎞=++=++⎜⎟⎜⎟⎢⎥⎝⎠⎢⎥⎝⎠2122kk k =+++ 11211212(1)2()222v v v vv v v ααα−++++=+++⋅++⋅+++""12k ′=+, ①这里1121122(1)2()22v v v v v v v k ααα−++++′=++⋅++⋅+++"".显然k ′中所含的2的幂次为1v −.故由归纳假设知,12r k ′′=+经过f 的v 次迭代得到整数,由①知,(1)()v f r +是一个整数,这就完成了归纳证明. (40分) 三、(本题满分50分)给定整数2n >,设正实数12,,,n a a a "满足1,1,2,,k a k n ≤=",记12,1,2,,kk a a a A k n k+++=="".求证:1112nnk k k k n a A ==−−<∑∑. 证明:由01k a <≤知,对11k n ≤≤−,有110,0kni ii i k a k an k ==+<≤<≤−∑∑. (10分)注意到当,0x y >时,有{}max ,x y x y −<,于是对11k n ≤≤−,有11111kn n k i i i i k A A a a n k n ==+⎛⎞−=−+⎜⎟⎝⎠∑∑11111n ki i i k i a a n k n =+=⎛⎞=−−⎜⎟⎝⎠∑∑ 11111max ,n k i i i k i a a n k n =+=⎧⎫⎛⎞<−⎨⎬⎜⎟⎝⎠⎩⎭∑∑111max (),n k k nk n ⎧⎫⎛⎞≤−−⎨⎬⎜⎟⎝⎠⎩⎭1k n=−, (30分) 故111nnnk kn k k k k a AnA A ===−=−∑∑∑()1111n n nk n k k k AA A A −−===−≤−∑∑111n k k n −=⎛⎞<−⎜⎟⎝⎠∑12n −=. (50分) 四、(本题满分50分)一种密码锁的密码设置是在正n 边形12n A A A "的每个顶点处赋值0和1两个数中的一个,同时在每个顶点处涂染红、蓝两种颜色之一,使得任意相邻的两个顶点的数字或颜色中至少有一个相同.问:该种密码锁共有多少种不同的密码设置?解:对于该种密码锁的一种密码设置,如果相邻两个顶点上所赋值的数字不同,在它们所在的边上标上a ,如果颜色不同,则标上b ,如果数字和颜色都相同,则标上c .于是对于给定的点1A 上的设置(共有4种),按照边上的字母可以依次确定点23,,,n A A A "上的设置.为了使得最终回到1A 时的设置与初始时相同,标有a 和b 的边都是偶数条.所以这种密码锁的所有不同的密码设置方法数等于在边上标记a ,b ,c ,使得标有a 和b 的边都是偶数条的方法数的4倍. (20分)设标有a 的边有2i 条,02n i ⎡⎤≤≤⎢⎥⎣⎦,标有b 的边有2j 条,202n i j −⎡⎤≤≤⎢⎥⎣⎦.选取2i 条边标记a 的有2in C 种方法,在余下的边中取出2j 条边标记b 的有22jn i C −种方法,其余的边标记c .由乘法原理,此时共有2in C 22jn i C −种标记方法.对i ,j 求和,密码锁的所有不同的密码设置方法数为222222004n n i i j n n i i j C C −⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦−==⎛⎞⎜⎟⎜⎟⎜⎟⎝⎠∑∑. ①这里我们约定001C =. (30分)当n 为奇数时,20n i −>,此时22221202n i j n i n i j C −⎡⎤⎢⎥⎣⎦−−−==∑. ② 代入①式中,得()()2222222221222000044222n n i n n i j i n i i n i n n i n n i j i i C C C C −⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎢⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦−−−−====⎛⎞⎜⎟==⎜⎟⎜⎟⎝⎠∑∑∑∑ 0022(1)(21)(21)nnkn kk n kk n n nn k k C C −−===+−=++−∑∑ 31n =+. (40分)当n 为偶数时,若2n i <,则②式仍然成立;若2ni =,则正n 边形的所有边都标记a ,此时只有一种标记方法.于是,当n 为偶数时,所有不同的密码设置的方法数为222222004n n i i j n n i i j C C −⎡⎤⎡⎤⎢⎥⎢⎣⎦⎣⎦−==⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠∑∑()122210412n i n i n i C ⎡⎤−⎢⎣⎦−−=⎛⎞⎜⎟×+⎜⎟⎜⎟⎝⎠∑ ()222124233n i n i n n i C ⎡⎤⎢⎣⎦−−==+=+∑.综上所述,这种密码锁的所有不同的密码设置方法数是:当n 为奇数时有31n+种;当n 为偶数时有33n+种. (50分)。
(完整版)2017年全国高中数学联赛A卷和B卷试题和答案(word版)
2017年全国高中数学联赛A 卷一试一、填空题1.设)(x f 是定义在R 上的函数,对任意实数x 有1)4()3(-=-⋅+x f x f .又当70<≤x 时,)9(log )(2x x f -=,则)100(-f 的值为__________.2.若实数y x ,满足1cos 22=+y x ,则y x cos -的取值范围是__________.3.在平面直角坐标系xOy 中,椭圆C 的方程为1109:22=+y x ,F 为C 的上焦点,A 为C 的右顶点,P 是C 上位于第一象限内的动点,则四边形OAPF 的面积的最大值为__________.4.若一个三位数中任意两个相邻数码的差不超过1,则称其为“平稳数”.平稳数的个数是 。
5.正三棱锥P-ABC 中,AB=1,AP=2,过AB 的平面α将其体积平分,则棱PC 与平面α所成角的余弦值为________.6.在平面直角坐标系xOy 中,点集}{1,0,1,),(-==y x y x K .在K 中随机取出三个点,则这三点中存在两点之间距离为5的概率为__________.7.在ABC ∆中,M 是边BC 的中点,N 是线段BM 的中点.若3π=∠A ,ABC ∆的面积为3,则AN AM ⋅的最小值为__________.8.设两个严格递增的正整数数列{}{}n n b a ,满足:20171010<=b a ,对任意正整数n ,有n n n a a a +=++12,n n b b 21=+,则11b a +的所有可能值为__________.二、解答题9.设m k ,为实数,不等式12≤--m kx x 对所有[]b a x ,∈成立.证明:22≤-a b .10.设321,,x x x 是非负实数,满足1321=++x x x ,求)53)(53(321321x x x x x x ++++的最小值和最大值.11.设复数21,z z 满足0)Re(1>z ,0)Re(2>z ,且2)Re()Re(2221==z z (其中)Re(z 表示复数z 的实部). (1)求)Re(21z z 的最小值; (2)求212122z z z z --+++的最小值.2017年全国高中数学联赛A 卷二试一.如图,在ABC ∆中,AC AB =,I 为ABC ∆的内心,以A 为圆心,AB 为半径作圆1Γ,以I 为圆心,IB 为半径作圆2Γ,过点I B ,的圆3Γ与1Γ,2Γ分别交于点Q P ,(不同于点B ).设IP 与BQ 交于点R .证明:CR BR ⊥二.设数列{}n a 定义为11=a , ,2,1,,,,1=⎩⎨⎧>-≤+=+n n a n a n a n a a n n n n n .求满足20173≤<r a r 的正整数r 的个数.三.将3333⨯方格纸中每个小方格染三种颜色之一,使得每种颜色的小方格的个数相等.若相邻连个小方格的颜色不同,则称它们的公共边为“分隔边”.试求分隔边条数的最小值.四.设n m ,均是大于1的整数,n m ≥,n a a a ,,,21 是n 个不超过m 的互不相同的正整数,且n a a a ,,,21 互素.证明:对任意实数x ,均存在一个)1(n i i ≤≤,使得x m m x a i )1(2+≥,这里y 表示实数y 到与它最近的整数的距离.2017年全国高中数学联赛A卷一试答案1.2.3.4.5.6.7.8.9.10.11.2017年全国高中数学联赛A卷二试答案一.二.三.四.2017年全国高中数学联合竞赛一试(B 卷)一、填空题:本大题共8个小题,每小题8分,共64分.1.在等比数列{}n a中,2a =,3a 1201172017a a a a ++的值为 .2.设复数z 满足91022z z i +=+,则||z 的值为 .3.设()f x 是定义在R 上的函数,若2()f x x +是奇函数,()2xf x +是偶函数,则(1)f 的值为 . 4.在ABC ∆中,若sin 2sin A C =,且三条边,,a b c 成等比数列,则cos A 的值为 .5.在正四面体ABCD 中,,E F 分别在棱,AB AC 上,满足3BE =,4EF =,且EF 与平面BCD 平行,则DEF ∆的面积为 .6.在平面直角坐标系xOy 中,点集{(,)|,1,0,1}K x y x y ==-,在K 中随机取出三个点,则这三个点两两之间距离均不超过2的概率为 .7.设a 为非零实数,在平面直角坐标系xOy 中,二次曲线2220x ay a ++=的焦距为4,则a 的值为 .8.若正整数,,a b c 满足2017101001000a b c ≥≥≥,则数组(,,)a b c 的个数为 .二、解答题 (本大题共3小题,共56分.解答应写出文字说明、证明过程或演算步骤.)9.设不等式|2||52|x xa -<-对所有[1,2]x ∈成立,求实数a 的取值范围.10.设数列{}n a 是等差数列,数列{}n b 满足212n n n n b a a a ++=-,1,2,n =.(1)证明:数列{}n b 也是等差数列;(2)设数列{}n a 、{}n b 的公差均是0d ≠,并且存在正整数,s t ,使得s t a b +是整数,求1||a 的最小值.11.在平面直角坐标系xOy 中,曲线21:4C y x =,曲线222:(4)8C x y -+=,经过1C 上一点P 作一条倾斜角为45的直线l ,与2C 交于两个不同的点,Q R ,求||||PQ PR ⋅的取值范围.2017年全国高中数学联合竞赛加试(B 卷)一、(本题满分40分)设实数,,a b c 满足0a b c ++=,令max{,,}d a b c =,证明:2(1)(1)(1)1a b c d +++≥-二、(本题满分40分)给定正整数m ,证明:存在正整数k ,使得可将正整数集N +分拆为k 个互不相交的子集12,,,k A A A ,每个子集i A 中均不存在4个数,,,a b c d (可以相同),满足ab cd m -=.三、(本题满分50分)如图,点D 是锐角ABC ∆的外接圆ω上弧BC 的中点,直线DA 与圆ω过点,B C 的切线分别相交于点,P Q ,BQ 与AC 的交点为X ,CP 与AB 的交点为Y ,BQ 与CP 的交点为T ,求证:AT 平分线段XY .四、(本题满分50分)设1220,,,{1,2,,5}a a a ∈,1220,,,{1,2,,10}b b b ∈,集合{(,)120,()()0}i j i j X i j i j a a b b =≤<≤--<,求X 的元素个数的最大值.一试试卷答案1.答案:89 解:数列{}n a 的公比为33232a q a ==,故120111201166720171201118()9a a a a a a q a a q ++===++. 2.答案:5。