用洛必达法则巧解导数问题
导数结合洛必达法则巧解高考压轴题
导数结合洛必达法则巧解高考压轴题TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-TYYUA162】导数结合洛必达法则巧解高考压轴题2010年和2011年高考中的全国新课标卷中的第21题中的第○2步,由不等式恒成立来求参数的取值范围问题,分析难度大,但用洛必达法则来处理却可达到事半功倍的效果。
洛必达法则简介:法则1 若函数f(x) 和g(x)满足下列条件:(1) ()lim 0x af x →= 及()lim 0x ag x →=;(2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)()()limx af x lg x →'=', 那么 ()()lim x a f x g x →=()()limx a f x l g x →'='。
法则2 若函数f(x) 和g(x)满足下列条件:(1)()lim 0x f x →∞= 及()lim 0x g x →∞=;(2)0A∃,f(x) 和g(x)在(),A -∞与(),A +∞上可导,且g '(x)≠0;(3)()()limx f x l g x →∞'=', 那么 ()()limx f x g x →∞=()()limx f x l g x →∞'='。
法则3 若函数f(x) 和g(x)满足下列条件:(1) ()lim x af x →=∞及()lim x ag x →=∞; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)()()limx af x lg x →'=', 那么 ()()lim x a f x g x →=()()limx a f x l g x →'='。
利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意:○1将上面公式中的x→a,x→∞换成x→+∞,x→-∞,x a +→,x a -→洛必达法则也成立。
3类导数综合问题解题技巧(端点效应(必要性探索)、函数的凹凸性、洛必达法则)(学生版)
3类导数综合问题解题技巧(端点效应(必要性探索)、函数的凹凸性、洛必达法则)技法01端点效应(必要性探索)解题技巧知识迁移端点效应的类型1.如果函数f(x)在区间[a,b]上,f(x)≥0恒成立,则f(a)≥0或f(b)≥0.2.如果函数f(x)在区问[a,b]上,f(x)≥0恒成立,且f(a)=0(或f(b)=0),则f (a)≥0 或f (b)≤0 .3.如果函数f(x)在区问[a,b]上,f(x)≥0恒成立,且f(a)=0,f (a)=0(或f(b)=0,f (b)≤0 则f (a)≥0 或f (b)≤0 .1(2023·全国·统考高考真题)已知函数f(x)=ax-sin xcos3x,x∈0,π2(1)当a=8时,讨论f(x)的单调性;(2)若f(x)<sin2x恒成立,求a的取值范围.1(2023·全国·统考高考真题)已知函数f x =ax-sin xcos2x,x∈0,π2.(1)当a=1时,讨论f x 的单调性;(2)若f x +sin x<0,求a的取值范围.2(2020·全国·统考高考真题)已知函数f(x)=e x+ax2-x.(1)当a=1时,讨论f(x)的单调性;(2)当x≥0时,f(x)≥12x3+1,求a的取值范围.3(2022·全国·统考高考真题)已知函数f(x)=xe ax-e x.(1)当a=1时,讨论f(x)的单调性;(2)当x>0时,f(x)<-1,求a的取值范围;(3)设n∈N∗,证明:112+1+122+2+⋯+1n2+n>ln(n+1).技法02函数凹凸性解题技巧知识迁移凹函数:对于某区间内∀x 1,x 2, 都有f x 1 +f x 2 2>f x 1+x 22 .凸函数:对于某区间内∀x 1,x 2, 都有f x 1 +f x 2 2<f x 1+x 22.1在△ABC 中, 求sin A +sin B +sin C 的最大值.2(2021·黑龙江模拟)丹麦数学家琴生(Jensen)是19世纪对数学分析做出卓越贡献的数学家,特别是在函数的凹凸性与不等式方面留下了很多宝贵的成果.设函数f(x)在(a,b)上的导函数为f (x),f (x)在(a,b)上的导函数为f (x),若在(a,b)上f (x)<0恒成立,则称函数f(x)在(a,b)上为“凸函数”.已知f(x)=e x-x ln x-m2x2在(1,4)上为“凸函数”,则实数m的取值范围是()A.e-1,+∞B.e-1,+∞C.e4-14,+∞D.e4-14,+∞1(全国·高考真题)已知函数f(x)=(x-2)e x+a(x-1)2有两个零点.(Ⅰ)求a的取值范围;(Ⅱ)设x1,x2是f(x)的两个零点,证明:x1+x2<2.2(2021·全国·统考高考真题)已知函数f x =x1-ln x.(1)讨论f x 的单调性;(2)设a,b为两个不相等的正数,且b ln a-a ln b=a-b,证明:2<1a +1b<e.3(陕西·高考真题)已知函数A(1,1).(1)若直线y=kx+1与f(x)的反函数的图像相切, 求实数k的值;(2)设x>0, 讨论曲线y=f(x)与曲线y=mx2(m>0)公共点的个数.(3)设a<b,比较f(a)+f(b)2与f(b)-f(a)b-a的大小, 并说明理由.技法03洛必达法则解题技巧知识迁移洛必达法则:法则1若函数f(x)和g(x)满足下列条件:(1)limx→a f x =0及limx→ag x =0; (2)在点a的去心邻域内,f(x)与g(x)可导且g'(x)≠0; (3)limx→a f xg x=l,那么limx→a f xg x=limx→af xg x=l。
导数极难压轴题解法罗比达法则
导数极难压轴题解法罗比达法则罗比达法则是一种常用的解法,用来求解导数极难的压轴题。
在数学中,导数是函数的一个重要性质,能够帮助我们研究函数的变化趋势和性质。
然而,有些函数的导数的求解过程非常困难,需要借助于特殊的方法来解决。
本文将介绍罗比达法则及其应用,帮助读者更好地理解和掌握这一方法。
罗比达法则(L'Hopital's Rule)是由法国数学家奥波尔·罗比达发现并提出的。
当我们需要求解一个函数的极限,而该函数在该点的导数难以计算时,罗比达法则就派上了用场。
该法则的核心思想是将分子和分母同时求导,然后再进行极限运算。
具体的步骤如下:首先,我们需要找到一个函数的极限,例如:lim(x→a) [f(x)/g(x)]这里的f(x)和g(x)是两个函数,我们需要求解的是当x趋近于a时,f(x)/g(x)的极限。
如果在x=a的附近,f(x)和g(x)都为0或者都是无穷大的情况下,我们可以使用罗比达法则。
具体的做法是,分别对f(x)和g(x)求导,得到f'(x)和g'(x)。
接着,我们计算f'(x)/g'(x)的极限,即:lim(x→a) [f'(x)/g'(x)]如果这个极限存在,那么它就是原函数极限的值。
如果这个极限不存在,那么我们可以继续应用罗比达法则,重复上述步骤,直到得到一个确定的值或者证明不存在极限。
需要注意的是,使用罗比达法则的前提是函数在x=a附近的导数存在且非零。
另外,使用该法则求解函数极限时,要考虑函数的右导数和左导数是否一致,即:lim(x→a+) [f'(x)/g'(x)] = lim(x→a-) [f'(x)/g'(x)]只有当这两个极限相等时,我们才能得出最终的极限值。
下面我们通过一个具体的例子来演示罗比达法则的应用。
例子:求解极限lim(x→0) [sin(x)/x]首先,我们注意到当x趋近于0时,分子sin(x)和分母x都变为0。
洛必达法则解高中导数问题
洛必达法则解高中导数问题在高中教学内容中,导数占据着重要的地位,并且通常在数学考试中以压轴题目出现,另外还是学生以后学习微积分的基础。
合理应用导数可以拓宽解决中学问题的视野,可以说导数是解决数学问题的有力工具。
而在运用导数解决问题的时候通过引入洛必达法则可以有效提高解题效率。
本文结合相关教学经验,分析洛必达法则在高中数学导数教学中的应用。
在高中数学教学内容中,有关导数有着较为详细的介绍,并详细论述导数的概念与几何意义,通过函数的变化率刻画函数变化的趋势。
导数教学内容是对函数性质与图像的总结与延伸,是研究函数、几何问题、证明不等式的重要工具,并且,通过导数可以实现生活中最优化问题的解答。
而应用洛必达法则可以对部分导数问题进行进一步的简化。
1应用洛必达法则的注意事项作为高中数学导数学习中的一个重要板块,洛必达法则能够有效减轻学生解决极限问题的压力,帮助他们以较为简便的方法对相关导数问题求解,大大降低了求解导数的难度,这在一定程度上有利于导数应用的广泛性,帮助学生应用导数解答大量的数学问题。
但是应用洛必达也有一些注意事项,教师在开展教学活动的过程中可以对此进行强调,引导学生在正确的情境之中合理应用洛必达法则,提高自己的解题效率。
如果教师不对应用洛必达法则的注意事项进行强调,学生难免会出现滥用洛必达法则而不自知的情况,这对于学生的解题是不利的。
教师可以从以下几个方面对洛必达法则进行强调:1、洛必达法则只能应用于0/0型或者是无穷大比无穷大型的。
在0/0型中,函数可以从正向趋近于0,也可以从负向趋近于0;在无穷大比无穷大型中,函数可以趋近于正无穷大,也可以趋近于负无穷大。
而在其他条件下,洛必达法则是不适用的。
如果学生在应用洛必达法则前没有对函数的情况进行判断,当然,他们能够应用洛必达的解题思路得出一个答案,但是这个答案是错误的,而这个错误常常不能够被学生所发现。
2、若lim(x从正向趋近于0、从负向趋近于0、趋近于正无穷大、趋近于负无穷大或者取某一个值)f(x)的导数/g(x)的导数不存在,不能够说明若lim (x从正向趋近于0、从负向趋近于0、趋近于正无穷大、趋近于负无穷大或者取某一个值)f(x)/g(x)不存在,只能说明洛必达法则失效。
(word完整版)导数结合洛必达法则巧解高考压轴题.doc
导数结合洛必达法则巧解高考压轴题○2 洛必达法则可处理0 0, ,0 ,1 ,,0 , 型。
2010 年和 2011 年高考中的全国新课标卷中的第 21 题中的第 ○2 步,由不等式恒成立来求参数的0 0取值范围问题,分析难度大,但用洛必达法则来处理却可达到事半功倍的效果。
则不适用,应从另外途径求极限。
洛必达法则简介: ○4 若条件符合,洛必达法则可连续多次使用,直到求出极限为止。
法则 1 若函数 f(x) 和 g(x) 满足下列条件: (1) lim f x 0 及 lim g x 0;x a x a(2) a f(x) g(x) g'(x) 0 在点 的去心邻域内, 与 可导且 ≠ ;二.高考题处理1.(2010 年全国新课标理 )设函数x 2f (x) e 1 x ax 。
(3) limx af xg xl ,(1) 若a 0,求 f (x) 的单调区间; (2) 若当 x 0时 f (x) 0,求 a 的取值范围那么 limx af xg x= limx af xg xl 。
x x原解:(1) a 0时, ( ) 1f x e x , f '( x) e 1.法则 2 若函数 f(x) 和 g(x) 满足下列条件: (1) lim f x 0 及lim g x 0;x x当 x ( ,0) 时, f '( x) 0;当 x (0, ) 时, f '( x) 0 .故 f (x) 在( ,0) 单调减少,在(2) A f 0,f(x) 和 g(x) 在 ,A 与 A, 上可导,且 g'(x) ≠0;(0, ) 单调增加(3) limxf xg x l ,x(II ) '( ) 1 2f x e ax那么 limxf xg x=limxf xg xl。
x 由(I )知 1e x ,当且仅当 x 0时等号成立 .故f '( x) x 2ax (1 2a)x ,法则 3 若函数 f(x) 和 g(x) 满足下列条件: (1) limx af x 及 lim x ag x ;从而当 1 2a 0,即 1 a 时, f '( x) 0 ( x 0) ,而 f (0) 0 ,2(2) 在点 a 的去心邻域内, f(x) 与 g(x) 可导且 g'(x) ≠0;于是当 x 0时, f (x) 0 .(3) limx af xg xl ,x x由 e 1 x(x 0) 可得 e 1 x(x 0) .从而当1 a 时, 2那么 limf x= limx af xl 。
洛必达法则高阶导数
洛必达法则高阶导数洛必达法则是微积分中常用的极限求解方法,它可以简单地求解无穷大、无穷小的极限问题。
而针对一些高阶导数求解的问题,我们也可以使用洛必达法则解决。
本文将详细介绍洛必达法则高阶导数的求解方法和应用。
一、洛必达法则洛必达法则是指在计算一个函数在某点处的极限时,如果在该点处最简单的求导形式得到的结果是0/0或者±∞/±∞,则可以使用洛必达法则进行求解。
即,先将原函数及其导函数在该点处求值,然后将导函数的极限值除以原函数的极限值,即可得到函数在该点处的极限。
二、一次导数的情况在使用洛必达法则求一次导数的极限时,我们可以直接将导数在该点处的值除以函数在该点处的值。
例如,求函数f(x)在x=1处的极限:假设f(x)=x^2-3x+2,则f'(x)=2x-3。
当x=1时,f(x)=1-3+2=-1,f'(x)=2-3=-1。
因此,函数f(x)在x=1处的极限为:lim┬(x→1)〖f(x)〗=lim┬(x→1)〖(x^2-3x+2)/(x-1)〗=lim┬(x→1)〖(2x-3)/1〗=lim┬(x→1)〖f'(x)〗=-1三、二次导数的情况当需要求解二次导数的极限时,我们可以将导数的导数在该点处的值除以函数在该点处的值。
例如,求函数f(x)在x=0处的二次导数的极限:假设f(x)=x^3,则f'(x)=3x^2,f''(x)=6x。
当x=0时,f(0)=0,f'(0)=0,f''(0)=0。
因此,函数f(x)在x=0处的二次导数的极限为:lim┬(x→0)(f''(x))/(f(x))=lim┬(x→0)〖6/(x^2)〗=±∞四、高阶导数的情况对于高阶导数的情况,我们可以使用洛必达法则来求解。
假设需要求函数f(x)在x=a处的n阶导数的极限,其中a为常数。
则将函数依次求导n次,在a点处分别求导数的值,用这些导数的值除以原函数在a点处的值,即可得到极限的结果。
导数洛必达法则
导数洛必达法则
洛必达法则(L'Hôpital'srule)是一种求解极限的方法,特别适用于某些情况下无法直接求解的不定型极限。
它的核心思想是通过对被除函数和除数函数同时求导,将原极限转化为一个更容易求解的形式。
洛必达法则的一般形式可以描述如下:假设有两个函数f(x)和g(x),满足以下条件:
1.当x趋近某个数值时,f(x)和g(x)同时趋近于零或无穷大;
2.g'(x)≠0,即g(x)的导函数在给定区间内不为零。
如果满足上述条件,那么可以将极限lim(x->a)[f(x)/g(x)]转化为极限lim(x->a)[f'(x)/g'(x)]。
这样,原本求解困难的极限可以通过对两个函数同时求导来简化。
具体的导数洛必达法则的表述如下:
设函数f(x)和g(x)在某个区间内可导,并满足条件:
1.lim(x->a)[f(x)/g(x)]是一个不定型,即当x趋近a时,f(x)和g(x)同时趋近零或无穷大;
2.lim(x->a)[f'(x)/g'(x)]存在或为无穷大。
如果满足上述条件,那么可以得到以下结论:
lim(x->a)[f(x)/g(x)]=lim(x->a)[f'(x)/g'(x)]
使用洛必达法则,可以解决一些常见的不定型极限,例如0/0、∞/∞、0*∞、∞-∞等情况。
需要注意的是,洛必达法则只适用于某些特定的情况,而且在应用时需要符合一定的条件。
此外,使用洛必达法则求解极限时应当谨慎,需要在每一步转换中仔细检查条件的满足性,以确保结果的准确
性。
洛必达法则求导
洛必达法则求导是高等数学中一种常见的求导方法,其可以解决一些特殊函数的导数计算问题。
在本文中,我们将向读者详细介绍洛必达法则的概念及其应用。
一、洛必达法则的含义洛必达法则又称为洛必达-夹逼定理,它是对不定型(即在求极限时出现 $\frac{0}{0}, \frac{\infty}{\infty}$ 等形式)极限的一种求法。
当 $\frac{0}{0}, \frac{\infty}{\infty}$ 等形式出现时,我们可以利用洛必达法则将其转化为可求得的极限。
二、洛必达法则的公式在理解洛必达法则的基本思想后,我们可以了解其公式:假设 $f(x)$ 和 $g(x)$ 连续,且当$x→a$ 时,$f(x)$ 和$g(x)$ 同时趋于 $0$ 或$±∞$,则:$$\lim_{x→a}\frac{f(x)}{g(x)}=\lim_{x→a}\frac{f'(x)}{g'(x)}$$其中,$f'(x)$ 和 $g'(x)$ 分别表示 $f(x)$ 和 $g(x)$ 的导函数。
三、洛必达法则的应用下面,我们就来看一下几个应用洛必达法则的例子。
例1:计算 $\lim_{x→∞}\frac{e^x}{x^2}$由于 $\frac{\infty}{\infty}$ 的形式,我们可以利用洛必达法则将其转化为:$$\lim_{x→∞}\frac{e^x}{2x}$$继续利用洛必达法则,得到其极限为:$$\lim_{x→∞}\frac{e^x}{2}=∞$$例2:计算 $\lim_{x→0}\frac{x-\sin{x}}{x^3}$在这个例子中,当$x→0$ 时,$\frac{0}{0}$ 的形式出现,因此我们可以使用洛必达法则。
将其分子分母求导,得:$$\lim_{x→0}\frac{1-\cos{x}}{3x^2}=\frac{1}{6}$$例3:计算 $\lim_{x→∞}\frac{\ln{x}}{x}$当$x→∞$ 时,$\frac{\infty}{\infty}$ 的形式出现,因此我们可以使用洛必达法则。
妙用洛必达法则-2023年新高考数学导数压轴题(解析版)
妙用洛必达法则【典型例题】例1.已知f(x)=(x+1)ln x.(1)求f(x)的单调区间;(2)若对任意x≥1,不等式xf(x)x+1-ax+a≤0恒成立,求a的取值范围.【解析】解:(1)f(x)的定义域为(0,+∞),f′(x)=ln x+1+1 x,令g(x)=ln x+1+1x(x>0),则g (x)=1x-1x2=x-1x2所以当0<x<1时,g (x)<0;当x>1时,g (x)>0,所以g(x)在(0,1)单调递减,在(1,+∞)单调递增,所以x>0时,g(x)>g(1)=2>0,即f(x)在(0,+∞)上单调递增,所以f(x)的增区间为(0,+∞),无减区间.(2)对任意x≥1,不等式xf(x)x+1-ax+a≤0恒成立等价于对任意x≥1,ln x-a x-1x≤0恒成立.当x=1,a∈R对任意x>1,不等式xf(x)x+1-ax+a≤0恒成立等价于对任意x>1,a≥x ln xx2-1恒成立.记m(x)=x ln xx2-1(x>1),则m (x)=(1+ln x)(x2-1)-2x2ln x(x2-1)2=x2-1-(1+x2)ln x(x2-1)2=1 x2+11-2x2+1-ln x (x2-1)2,记t(x)=1-21+x2-ln x(x>1),则t (x)=4x(1+x2)2-1x=4x2-(1+x2)2x(1+x2)2=-(1-x2)2x(1+x2)2<0,所以t(x)在(1,+∞)单调递减,又t(1)=0,所以,x>1时,t(x)<0,即m (x)<0,所以m(x)在(1,+∞)单调递减.所以m(x)max<m(1)=limx→1x ln xx2-1=limx→1x ln xx+1-0x-1=x ln xx+1x=1=x+1-ln x(x+1)2x=1=12,综上所述,a的取值范围是12,+∞.例2.设函数f(x)=ln(x+1)+a(x2-x),其中a∈R.(1)a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)讨论函数f(x)极值点的个数,并说明理由;(3)若∀x>0,f(x)≥0成立,求a的取值范围.【解析】解:(1)当a=1时,切点为(1,ln2),则f′(x)=1x+1+2x-1,所以f′(1)=32,切线方程为y-ln2=32(x-1),即3x-2y+2ln2-3=0,所以切线方程为:3x-2y+2ln2-3=0;(2)由题意可知,函数f(x)的定义域为(-1,+∞),则f′(x)=1x+1+a(2x-1)=2ax2+ax-a+1x+1,令g(x)=2ax2+ax-a+1,x∈(-1,+∞),①当a=0时,f′(x)>0,函数f(x)在(-1,+∞)上单调递增,无极值点,②当a>0时,△=a(9a-8),当0<a≤89时,△≤0,g(x)≥0,f′(x)≥0,所以f(x)在(-1,+∞)上单调递增,无极值点,当a>89时,△>0,设方程2ax2+ax-a+1=0的两个根,x1,x2,且x1=-a-9a2-8a4a,x2=-a+9a2-8a4a,此时x1<x2,因为x1+x2=-12,x1<-14,x2>-14,g(-1)=1>0,所以-1<x1<-14,因为x∈(-1,x1),(x2,+∞)时,g(x)>0,f′(x)>0,函数f(x)单调递增,x∈(x1,x2)时,g(x)<0,f′(x)<0,函数f(x)单调递减,所以函数有两个极值点,当a<0时,△>0,设方程2ax2+ax-a+1=0的两个根,x1,x2,且x1=-a-9a2-8a4a,x2=-a+9a2-8a4a,此时x1>x2,因为g(-1)=1>0,所以x2<-1,所以,x∈(-1,x1)时,g(x)>0,f′(x)>0,函数f(x)单调递增,当x∈(x2,+∞)时,g(x)<0,f′(x)<0,函数f(x)单调递减,所以函数有一个极值点,综上可知,当a<0时,函数f(x)有一个极值点;当0≤a≤89时,函数f(x)无极值点;当a>89时,函数f(x)有两个极值点;(3)当0≤a≤89时,函数f(x)在(0,+∞)上单调递增,因为f(0)=0,所以x∈(0,+∞)时,f(x)>0,符合题意,当89<a≤1时,g(0)>0,得x2<0,所以函数f(x)在(0,+∞)上单调递增,又因为f(0)=0,所以x∈(0,+∞)时,f(x)>0,符合题意,当a>1时,由g(0)<0,得x2>0,所以x∈(0,x2)时,函数f(x)单调递减,因为f(0)=0,所以x∈(0,x2)时,f(x)<0时,不符合题意,当a<0时,设h(x)=x-ln(x+1),因为x∈(0,+∞)时,h′(x)=1-1x+1=xx+1>0,所以h(x)在(0,+∞)上单调递增,所以当x∈(0,+∞)时,h(x)>h(0)=0,即h(x+1)<x,可得f(x)<x+a(x2-x)=ax2+(1-a)x,当x>1-1a时,ax2+(1-a)x<0,此时f(x)<0,不合题意,综上,a的取值范围为[0,1].例3.已知函数f(x)=x2-mx-e x+1.(1)若函数f(x)在点(1,f(1))处的切线l经过点(2,4),求实数m的值;(2)若关于x的方程|f(x)|=mx有唯一的实数解,求实数m的取值范围.【解析】解:(1)f (x)=2x-m-e x,∴在点(1,f(1))处的切线l的斜率k=f (1)=2-e-m,又f(1)=2-e-m,∴切线l的方程为y-(2-e-m)=(2-e-m)(x-1),即l:y=(2-e-m)x,由l经过点(2,4),可得4=2(2-e-m)⇒m=-e.(2)证明:易知|f(0)|=0=m×0⇒x=0为方程的根,由题只需说明当x>0和x<0时原方程均没有实数解即可.①当x>0时,若m<0,显然有mx<0,而|f(x)|≥0恒成立,此时方程显然无解,若m=0,f(x)=x2-e x+1⇒f (x)=2x-e x,f (x)=2-e x,令f (x)>0⇒x<ln2,故f (x)在(0,ln2)单调递增,在(ln2,+∞)单调递减,故f (x)<f (ln2)=2ln2-2<0⇒f(x)在(0,+∞)单调递减⇒f(x)<f(0)=0,从而|f(x)|>0,mx=0×x=0,此时方程|f(x)|=mx也无解.若m>0,由|f(x)|=mx⇒m=x+1x-e xx-m,记g(x)=x+1x-e xx-m,则g (x)=(x-1)(x+1-e x)x2,设h(x)=x+1-e x,则h (x)=1-e x<0有(0,+∞)恒成立,∴h(x)<h(0)=0恒成立,故令g (x )>0⇒0<x <1⇒g (x )在(0,1)上递增,在(1,+∞)上递减⇒g (x )≤g (1)=2-e -m <0⇒|g (x )|≥e -2+m >m ,可知原方程也无解,由上面的分析可知x >0时,∀m ∈R ,方程|f (x )|=mx 均无解.②当x <0时,若m >0,显然有mx <0,而|f (x )|≥0恒成立,此时方程显然无解,若m =0,和①中的分析同理可知此时方程|f (x )|=mx 也无解.若m <0,由|f (x )|=mx ⇒-m =x +1x -e x x-m,记g (x )=x +1x -e x x -m ,则g(x )=(x -1)(x +1-e x )x 2,由①中的分析知h (x )=x +1-e x <0,故g (x )>0在(-∞,0)恒成立,从而g (x )在(-∞,0)上单调递增,当x →0时,g (x )→lim x →0-g (x )=lim x →0-x 2+1-e x x -m =lim x →0-2x -e x1-m =-1-m ,如果-1-m ≤0,即m ≥-1,则|g (x )|>m +1,要使方程无解,只需-m ≤m +1⇒m ≥-12,即有-12≤m <0如果-1-m >0,即m <-1,此时|g (x )|∈[0,+∞),方程-m =|g (x )|一定有解,不满足.由上面的分析知x <0时,∀m ∈-12,+∞ ,方程|f (x )|=mx 均无解,综合①②可知,当且仅当m ∈-12,+∞ 时,方程|f (x )|=mx 有唯一解,∴m 的取值范围为-12,+∞ .【同步练习】1.设函数f (x )=e x -1-x -ax 2,(1)若a =0,求f (x )的单调区间;(2)若当x ≥0时f (x )≥0,求a 的取值范围.【解析】(1)a =0时,f (x )=e x -1-x ,f '(x )=e x -1.当x ∈(-∞,0)时,f '(x )<0;当x ∈(0,+∞)时,f '(x )>0.故f (x )在(-∞,0)单调减少,在(0,+∞)单调增加.(2)当x =0时,f (x )=0,对于任意实数a ,f (x )≥0恒成立;当x >0时,f (x )≥0等价于a ≤e x -1-x x 2,令g (x )=e x -x -1x 2(x >0),则g(x )=xe x -2e x +x +2x 3,令h (x )=xe x -2e x +x +2(x >0),则h (x )=xe x -e x +1,h (x )=xe x >0,所以h (x )在(0,+∞)上为增函数,h (x )>h (0)=0,所以h (x )在(0,+∞)上为增函数,h (x )>h (0)=0,所以g (x)>0,g(x)在(0,+∞)上为增函数.而limx→0+(e x-1-x)=0,limx→0+(x2)=0,由洛必达法则知,lim x→0+e x-1-xx2=limx→0+e x-12x=limx→0+e x2=12,故a≤12.综上得a的取值范围为-∞,1 2.2.设函数f(x)=ln(x+1)+a(x2-x),其中a∈R.(1)讨论函数f(x)极值点的个数,并说明理由;(2)若∀x>0,f(x)≥0成立,求a的取值范围.【解析】(1)f(x)=ln(x+1)+a(x2-x),定义域为(-1,+∞)f (x)=1x+1+a(2x-1)=a(2x-1)(x+1)+1x+1=2ax2+ax+1-ax+1,当a=0时,f (x)=1x+1>0,函数f(x)在(-1,+∞)为增函数,无极值点.设g(x)=2ax2+ax+1-a,g(-1)=1,Δ=a2-8a(1-a)=9a2-8a,当a≠0时,根据二次函数的图像和性质可知g(x)=0的根的个数就是函数f(x)极值点的个数.若Δ=a(9a-8)≤0,即0<a≤89时,g(x)≥0,f(x)≥0函数在(-1,+∞)为增函数,无极值点.若Δ=a(9a-8)>0,即a>89或a<0,而当a<0时g(-1)≥0此时方程g(x)=0在(-1,+∞)只有一个实数根,此时函数f(x)只有一个极值点;当a>89时方程g(x)=0在(-1,+∞)都有两个不相等的实数根,此时函数f(x)有两个极值点;综上可知当0≤a≤89时f(x)的极值点个数为0;当a<0时f(x)的极值点个数为1;当a>89时,f(x)的极值点个数为2.(2)函数f(x)=ln(x+1)+a(x2-x),∀x>0,都有f(x)≥0成立,即ln(x+1)+a(x2-x)≥0恒成立,设h(x)=-ln x+1x2-x,则h (x)=-1x+1(x2-x)+(2x-1)ln(x+1)(x2-x)2=(2x-1)-x2-x(2x-1)(x+1)+ln(x+1)(x2-x)2,设φ(x)=-x2-x(2x-1)(x+1)+ln(x+1),则φ (x)=(x2-x)(4x+1)(2x-1)2(x+1)2,所以x∈0,1 2和x∈12,1时,φ (x)<0,所以φ(x)在对应区间递减,x∈(1,+∞)时,φ (x)>0,所以φ(x)在对应区间递增,因为φ(0)=0,limx→12+-x2-x(2x-1)(x+1)>0,φ(1)=ln2>0,所以x∈(0,1)和x∈(1,+∞)时,h (x)>0,所以h(x)在(0,1)与(1,+∞)上递增.当x∈0,1时,x2-x<0,所以a≤-ln x+1x2-x,由h(x)的单调性得,a≤limx→0-ln x+1x2-x=limx→0-1x+12x-1=limx→0-12x-1x+1=1;当x=1时,f(x)=0,恒成立;当x∈1,+∞时,x2-x>0,所以a≥-ln x+1x2-x,由h(x)的单调性得,所以a≥-ln x+1x2-x=limx→+∞-ln x+1x2-x=limx→+∞-1x+12x-1=limx→+∞-12x-1x+1=0,综上,a∈0,13.已知函数f(x)=e x,g(x)=bx+1,若f(x)≥g(x)对于任意x∈R恒成立,求b的取值集合.【解析】e x≥bx+1恒成立,即e x-1≥bx.当x=0时显然成立,即b∈R.当x>0时,b<e x-1x,令F(x)=e x-1x,则F(x)=e x(x-1)+1x2,令G(x)=e x(x-1)+1,则G (x)=xe x>0,所以G(x)递增,所以G(x)>G(0)=0,所以F (x)在(0,+∞)上恒成立.所以F(x)在(0,+∞)上递增,根据洛必达法则得,limx→0+e x-1x=limx→0+e x1=1,所以b≤1.同理,当x<0时,b≥1.综上所述,b的取值集合为1 .4.设函数f(x)=ln(x+1),g(x)=xf (x),x≥0,其中f (x)是f(x)的导函数,若f(x)≥ag(x)恒成立,求实数a的取值范围.【解析】已知f(x)≥ag(x)恒成立,即ln(x+1)≥axx+1恒成立.当x=0时,a为任意实数,均有不等式恒成立.当时x>0,不等式变形为a≤(x+1)ln(x+1)x恒成立.令h(x)=(x+1)ln(x+1)x,则h(x)=x-ln(x+1)x2,再令φ(x)=x-ln(x+1),则φ (x)=xx+1.因为x>0,所以φ (x)>0,所以φ(x)在(0,+∞)上递增,从而有φ(x)>φ(0)=0.进而有h (x)>0,所以h(x)在(0,+∞)上递增.当x→0+时,有(x+1)ln(x+1)→0,x→0,由洛必达法则得limx→0+h(x)=limx→0+(x+1)ln(x+1)x=limx→0+ln(x+1)+11=1,所以当x→0+时,h(x)→1.所以a≤(x+1)ln(x+1)x恒成立,则a≤1.综上,实数的取值范围为(-∞,1].5.若不等式sin x>x-ax3对于x∈0,π2恒成立,求a的取值范围.【解析】当x∈0,π2时,原不等式等价于a>x-sin xx3.记f(x)=x-sin xx3,则f (x)=3sin x-x cos x-2xx4.记g(x)=3sin x-x cos x-2x,则g (x)=2cos x+x sin x-2.因为g (x)=x cos x-sin x=cos x(x-tan x),g (x)=-x sin x<0,所以g (x)在0,π2上单调递减,且g (x)<0,所以g (x)在0,π2上单调递减,且g (x)<0.因此g(x)在0,π2上单调递减,且g(x)<0,故f (x)=g(x)x4<0,因此f(x)=x-sin xx3在0,π2上单调递减.由洛必达法则有lim x→0f(x)=limx→0x-sin xx3=limx→01-cos x3x2=limx→0sin x6x=limx→0cos x6=16即当x→0时,g(x)→16,即有f(x)<16.故a≥16时,不等式sin x>x-ax3对于x∈0,π2恒成立.6.设函数f(x)=1-e-x.设当x≥0时,f(x)≤xax+1,求a的取值范围.【解析】应用洛必达法则和导数由题设x≥0,此时f(x)≥0.(1)当a<0时,若x>-1a,则xax+1<0,f(x)≤xax+1不成立;(2)当a≥0时,当x≥0时,f(x)≤xax+1,即1-e -x≤xax+1;若x=0,则a∈R;若x>0,则1-e-x≤xax+1等价于1-e-xx≤1ax+1,即a≤xe x-e x+1xe x-x.记g(x)=xe x-e x+1xe x-x,则g (x)=e2x-x2e x-2e x+1xe x-x2=e x xe x-x 2e x-x2-2+e-x.记h(x)=e x-x2-2+e-x,则h (x)=e x-2x-e-x,h (x)=e x+e-x-2>0.因此,h (x)=e x-2x-e-x在(0,+∞)上单调递增,且h (0)=0,所以h (x)>0,即h(x)在(0,+∞)上单调递增,且h(0)=0,所以h(x)>0.因此g (x)=e xxe x-x2h(x)>0,所以g(x)在(0,+∞)上单调递增.由洛必达法则有lim x→0g(x)=limx→0xe x-e x+1xe x-x=limx→0xe xe x+xe x-1=limx→0e x+xe x2e x+xe x=12,即当x→0时,g(x)→12,即有g(x)>12,所以a≤12.综上所述,a的取值范围是-∞,12.。
导数结合洛必达法则巧解高考压轴题
设函数f(x)=(x+1)ln(x+1),若对所有的x≥0,都有f(x)≥ax成立,求实数a的取值范围.解析:解法1:令g(x)=(x+1)ln(x+1)-ax,对函数g(x)求导数:g′(x)=ln(x+1)+1-a,令g′(x)=0,解得x=ea-1-1.(1)当a≤1时,对所有x>0,g′(x)>0,所以g(x)在[0,+∞)上是增函数.又g(0)=0,所以对x≥0,有g(x)≥g(0),即当a≤1时,对于所有x≥0,都有f(x)≥ax.(2)当a>1时,对于0<x<ea-1-1,g′(x)<0,所以g(x)在(0,ea-1-1)是减函数.又g(0)=0,所以对0<x<ea-1-1,有g(x)<g(0),即f(x)<ax.所以当a>1时,不是对所有的x≥0,都有f(x)≥ax成立.综上a的取值范围是(-∞,1].解法2:令g(x)=(x+1)ln(x+1)-ax,于是不等式f(x)≥ax成立即为g(x)≥g(0)成立.对g(x)求导数得g′(x)=ln(x+1)+1-a,令g′(x)=0,解得x=ea-1-1,当x>ea-1-1时,g′(x)>0,g(x)为增函数,当-1<x<ea-1-1时,g′(x)<0,g(x)为减函数.要对所有x≥0都有g(x)≥g(0)充要条件为ea-1-1≤0.由此得a≤1,即a的取值范围是(-∞,1].1.231 1, 1!2!3!!(1)!n nx x x x x x xe en nθ+ =+++++++其中(01)θ<<;2.231ln(1)(1),2!3!!nnnx x xx x Rn-+=-+-+-+其中111(1)()(1)!1nn nnxRn xθ++=-++;3.35211sin(1)3!5!(21)!kkn x x xx x Rk--=-+-+-+-其中21(1)cos(21)!kknxR xkθ+=-+;4.24221cos1(1)2!4!(22)!kkn x x xx Rk--=-+-+-+-其中2(1)cos(2)!kknxR xkθ=-;已知函数ln ()1a x b f x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (Ⅰ)求a 、b 的值; (Ⅱ)如果当0x >,且1x ≠时,ln ()1x k f x x x >+-,求k 的取值范围. (Ⅰ)略解得1a =,1b =.(Ⅱ)方法一:分类讨论、假设反证法由(Ⅰ)知ln 1()1x f x x x =++,所以22ln 1(1)(1)()()(2ln )11x k k x f x x x x x x---+=+--. 考虑函数()2ln h x x =+2(1)(1)k x x--(0)x >,则22(1)(1)2'()k x x h x x -++=. (i)当0k ≤时,由222(1)(1)'()k x x h x x +--=知,当1x ≠时,'()0h x <.因为(1)0h =, 所以当(0,1)x ∈时,()0h x >,可得21()01h x x⋅>-;当(1,)x ∈+∞时,()0h x <,可得 21()01h x x ⋅>-,从而当0x >且1x ≠时,ln ()()01x k f x x x -+>-,即ln ()1x k f x x x>+-; (ii )当01k <<时,由于当1(1,)1x k∈-时,2(1)(1)20k x x -++>,故'()0h x >,而(1)0h =,故当1(1,)1x k ∈-时,()0h x >,可得21()01h x x ⋅<-,与题设矛盾. (iii )当1k ≥时, '()0h x >,而(1)0h =,故当(1,)x ∈+∞时,()0h x >,可得21()01h x x ⋅<-,与题设矛盾.综上可得,k 的取值范围为(0]-∞,.当0x >,且1x ≠时,ln ()1x k f x x x >+-,即ln 1ln 11x x k x x x x+>++-, 也即2ln 1ln 2ln 1111x x x x x x k x x x x <+-=++--,记22ln ()11x x g x x =+-,0x >,且1x ≠ 则2222222222(1)ln 2(1)2(1)1'()=(ln )(1)(1)1x x x x x g x x x x x ++-+-=+--+, 记221()ln 1x h x x x -=++,则22222214(1)'()+=0(1+)(1+)x x h x x x x x --=>, 从而()h x 在(0,)+∞上单调递增,且(1)0h =,因此当(0,1)x ∈时,()0h x <,当(1,)x ∈+∞时,()0h x >;当(0,1)x ∈时,'()0g x <,当(1,)x ∈+∞时,'()0g x >,所以()g x 在(0,1)上单调递减,在(1,)+∞上单调递增.由洛必达法则有2211112ln 2ln 2ln 2lim ()lim(1)1lim 1lim 0112x x x x x x x x x g x x x x→→→→+=+=+=+=---, 即当1x →时,()0g x →,即当0x >,且1x ≠时,()0g x >.因为()k g x <恒成立,所以0k ≤.综上所述,当0x >,且1x ≠时,ln ()1x k f x x x>+-成立,k 的取值范围为(0]-∞,.设函数2()1x f x e x ax =---.(Ⅰ)若0a =,求()f x 的单调区间;(Ⅱ)当0x ≥时,()0f x ≥,求a 的取值范围.应用洛必达法则和导数(Ⅱ)当0x ≥时,()0f x ≥,即21x e x ax --≥. ①当0x =时,a R ∈;②当0x >时,21x e x ax --≥等价于21x e x a x --≤. 记21()x e x g x x --= (0+)x ∈∞,,则3(2)2'()x x e x g x x-++=. 记()(2)2x h x x e x =-++ (0+)x ∈∞,,则'()(1)1xh x x e =-+,当(0+)x ∈∞,时,''()0x h x x e =>,所以'()(1)1x h x x e =-+在(0+)∞,上单调递增,且'()'(0)0h x h >=,所以()(2)2xh x x e x =-++在(0+)∞,上单调递增,且()(0)0h x h >=,因此当(0+)x ∈∞,时,3()'()0h x g x x=>,从而21()x e x g x x --=在(0+)∞,上单调递增. 由洛必达法则有,20000111lim ()lim lim lim 222x x x x x x x e x e e g x x x →→→→---==== 即当0x →时,1()2g x →,所以当(0+)x ∈∞,时,所以1()2g x >,因此12a ≤.综上所述,当12a ≤且0x ≥时,()0f x ≥成立.若不等式3sin x x ax >-对于(0,)2x π∈恒成立,求a 的取值范围. 应用洛必达法则和导数 当(0,)2x π∈时,原不等式等价于3sin x x a x->. 记3sin ()x x f x x -=,则43sin cos 2'()x x x x f x x--=. 记()3sin cos 2g x x x x x =--,则'()2cos sin 2g x x x x =+-.因为''()cos sin cos (tan )g x x x x x x x =-=-,'''()sin 0g x x x =-<,所以''()g x 在(0,)2π上单调递减,且''()0g x <, 所以'()g x 在(0,)2π上单调递减,且'()0g x <.因此()g x 在(0,)2π上单调递减, 且()0g x <,故4()'()0g x f x x =<,因此3sin ()x x f x x -=在(0,)2π上单调递减. 由洛必达法则有3200000sin 1cos sin cos 1lim ()lim lim lim lim 3666x x x x x x x x x x f x x x x →→→→→--=====, 即当0x →时,1()6g x →,即有1()6f x <. 故16a ≥时,不等式3sin x x ax >-对于(0,)2x π∈恒成立. 通过以上例题的分析,我们不难发现应用洛必达法则解决的试题应满足:① 可以分离变量;②用导数可以确定分离变量后一端新函数的单调性;② 现“00”型式子.2010海南宁夏文(21)已知函数2()(1)x f x x e ax =--. (Ⅰ)若()f x 在1x =-时有极值,求函数()f x 的解析式;(Ⅱ)当0x ≥时,()0f x ≥,求a 的取值范围.解:(Ⅰ)略(Ⅱ)应用洛必达法则和导数当0x ≥时,()0f x ≥,即2(1)x x e ax -≥. ①当0x =时,a R ∈;②当0x >时,2(1)x x e ax -≥等价于1xe ax -≥,也即1x e a x -≤. 记1()x e g x x-=,(0,)x ∈+∞,则(1)1'()x x e g x x -+=. 记()(1)1x h x x e =-+,(0,)x ∈+∞,则'()0x h x x e =>,因此()(1)1x h x x e =-+在(0,)+∞上单调递增,且()(0)0h x h >=,所以()'()0h x g x x=>,从而1()x e g x x -=在(0,)+∞上单调递增.由洛必达法则有0001lim ()lim lim 11x xx x x e e g x x→→→-===, 即当0x →时,()1g x →所以()1g x >,即有1a ≤.综上所述,当1a ≤,0x ≥时,()0f x ≥成立.2010全国大纲理(22)设函数()1xf x e -=-. (Ⅰ)证明:当1x >-时,()1x f x x ≥+; (Ⅱ)设当0x ≥时,()1x f x ax ≤+,求a 的取值范围. 解:(Ⅰ)略(Ⅱ)应用洛必达法则和导数由题设0x ≥,此时()0f x ≥.①当0a <时,若1x a >-,则01x ax <+,()1x f x ax ≤+不成立; ②当0a ≥时,当0x ≥时,()1x f x ax ≤+,即11x x e ax --≤+; 若0x =,则a R ∈; 若0x >,则11xx e ax --≤+等价于111x e x ax --≤+,即1x x x xe e a xe x -+≤-. 记1()x x x xe e g x xe x-+=-,则2222221'()=(2)()()x x x x x x x x e x e e e g x e x e xe x xe x ---+=--+--. 记2()2x x h x e x e -=--+,则'()2x x h x e x e -=--,''()+20x x h x e e -=->.因此,'()2x x h x e x e -=--在(0)+∞,上单调递增,且'(0)0h =,所以'()0h x >, 即()h x 在(0)+∞,上单调递增,且(0)0h =,所以()0h x >. 因此2'()=()0()xx e g x h x xe x >-,所以()g x 在(0)+∞,上单调递增. 由洛必达法则有000011lim ()lim lim lim 122x x x x x x x x x x x x x x xe e xe e xe g x xe x e xe e xe →→→→-++====-+-+,即当0x →时, 1()2g x →,即有1()2g x >,所以12a ≤.综上所述,a 的取值范围是1(,]2-∞.设函数sin ()2cos x f x x=+. (Ⅰ)求()f x 的单调区间;(Ⅱ)如果对任何0x ≥,都有()f x ax ≤,求a 的取值范围.解:(Ⅰ)22(2cos )cos sin (sin )2cos 1()(2cos )(2cos )x x x x x f x x x +--+'==++. 当2π2π2π2π33k x k -<<+(k ∈Z )时,1cos 2x >-,即()0f x '>; 当2π4π2π2π33k x k +<<+(k ∈Z )时,1cos 2x <-,即()0f x '<.因此()f x 在每一个区间2π2π2π2π33k k ⎛⎫-+ ⎪⎝⎭,(k ∈Z )是增函数, ()f x 在每一个区间2π4π2π2π33k k ⎛⎫++ ⎪⎝⎭,(k ∈Z )是减函数. (Ⅱ)应用洛必达法则和导数sin ()2cos x f x ax x=≤+ 若0x =,则a R ∈; 若0x >,则sin 2cos x ax x≤+等价于sin (2cos )x a x x ≥+,即sin ()(2cos )x g x x x =+ 则222cos 2sin sin cos '()(2cos )x x x x x x g x x x --+=+. 记()2cos 2sin sin cos h x x x x x x x =--+,2'()2cos 2sin 2cos cos212sin cos212sin 2sin 2sin (sin )h x x x x x x x x x x x x x x x =---+=--+=-=-因此,当(0,)x π∈时,'()0h x <,()h x 在(0,)π上单调递减,且(0)0h =,故'()0g x <,所以()g x 在(0,)π上单调递减, 而000sin cos 1lim ()lim lim (2cos )2+cos sin 3x x x x x g x x x x x x →→→===+-. 另一方面,当[,)x π∈+∞时,sin 111()(2cos )3x g x x x x π=≤≤<+,因此13a ≥.。
利用洛必达法则解决导数问题(解析版)—2025年新高考数学一轮复习
0
一、 型及 型未定式
0 1、定义:如果当 x ® a (或 x ® )时,两个函数 f (x) 与 g(x) 都趋于零(或都趋于无
f (x)
f (x)
.通常把这种极限
x®a g(x)
x® g(x)
0
称为 型及 型未定式.
x®1
ln x x2 1
=
()
A. 3
8
B.
1 2
C.1
D.2
【答案】B
学科网(北京)股份有限公司
【分析】
根据题意利用洛必达法则求解即可
【详解】由题意得
lim
x®1
ln x x2 1
=
lim
x®1
ln x
x2 1
1
=
lim
x®1
x 2x
=
lim
x®1
1 2x2
=1, 2
故选:B 2.(23-24 高二下·广东佛山·阶段练习)两个无穷小之比或两个无穷大之比的极限可能存在, 也可能不存在,为此,洛必达在 1696 年提出洛必达法则,即在一定条件下通过对分子、分母
【详解】由题意可得: lim ex ex = lim ex ex = lim ex + ex = 2 .
x®0 sin x x®0 sin x x®0 cos x
故答案为: 2 . 2.(23-24 高二下·四川成都·期中)1696 年,洛必达在他的著作《无限小分析》一书中创造 了一种算法,用以寻找满足一定条件的两函数之商的极限,法则的大意为:在一定条件下通
lim ex + ex 2 = lim ex + ex 2 = lim ex ex = lim ex ex = lim ex + ex = 2 ,
导数洛必达法则和例题
导数洛必达法则和例题
洛必达法则:
1. 洛必达法则是由著名的19世纪数学家、物理学家和实验家约瑟夫·洛必达提出的,也叫作不变量定理。
2. 洛必达法则可以用来证明量子力学中的基本定理以及相关的物理定理。
3. 洛必达法则的基本用到的思想:若一个物理量的系统不发生改变,则其状态必定不变。
4. 洛必达法则可以用来证明物理量的变化,如动量、势能、电动势等的变化与时间的关系。
5. 洛必达法则的证明可以通过使用方程的变换、部分导数等方法来实现。
例题:
假定物体有一定量的动能,当它在一个力场中运动时,动能与位置之间关系可以表示为:
V(x,y,z)=V0+kx^2+ky^2+kz^2
其中V0为一定的常数,k是一个可以根据位置改变的常数。
对于上述方程,使用洛必达法则可以得出:
V(x,y,z)在x、y、z位置的偏导数均等于2k。
这说明,位置上每单位变化所引起的动能变化为2k。
导数恒成立问题---洛必达法则的妙用
洛必达法则 沈阳市第十一中学数学组赵拥权洛必达法则:设函数()f x 、()g x 满足: (1)lim ()lim ()0x ax af xg x →→==;(2)在()U a 内,()f x '和()g x '都存在,且()0g x '≠;(3)()lim ()x af x Ag x →'=' (A 可为实数,也可以是±∞). 则()()lim lim ()()x ax a f x f x A g x g x →→'=='.(可连环使用)注意 使用洛必达法则时,是对分子、分母分别求导,而不是对它们的商求导,求导之后再求极限得最值。
利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ①将上面公式中的x →a ,x →∞换成x →+∞,x →-∞,x a+→,x a-→洛必达法则也成立。
②洛必达法则可处理00,∞∞,0⋅∞,1∞,0∞,00,∞-∞型。
③在着手求极限以前,首先要检查是否满足00,∞∞,0⋅∞,1∞,0∞,00,∞-∞型定式,否则滥用洛必达法则会出错。
当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。
④若条件符合,洛必达法则可连续多次使用,直到求出极限为止。
1.(2006全国2)设函数f (x )=(x +1)ln(x +1),若对所有的x ≥0,都有f (x )≥ax 成立,求实数a 的取值范围.令g (x )=(x +1)ln(x +1)-ax ,对函数g (x )求导数:g ′(x )=ln(x +1)+1-a令g ′(x )=0,解得x =e a -1-1, ……5分(i )当a ≤1时,对所有x >0,g ′(x )>0,所以g (x )在[0,+∞)上是增函数, 又g (0)=0,所以对x ≥0,都有g (x )≥g (0),即当a ≤1时,对于所有x ≥0,都有 f (x )≥ax . ……9分(ii )当a >1时,对于0<x <e a -1-1,g ′(x )<0,所以g (x )在(0,e a -1-1)是减函数,又g (0)=0,所以对0<x <e a -1-1,都有g (x )<g (0), 即当a >1时,不是对所有的x ≥0,都有f (x )≥ax 成立. 综上,a 的取值范围是(-∞,1]. ……12分 解法二:令g (x )=(x +1)ln(x +1)-ax ,于是不等式f (x )≥ax 成立即为g (x )≥g (0)成立. ……3分 对函数g (x )求导数:g ′(x )=ln(x +1)+1-a令g ′(x )=0,解得x =e a -1-1, ……6分当x > e a -1-1时,g ′(x )>0,g (x )为增函数,当-1<x <e a -1-1,g ′(x )<0,g (x )为减函数, ……9分所以要对所有x ≥0都有g (x )≥g (0)充要条件为e a -1-1≤0. 由此得a ≤1,即a 的取值范围是(-∞,1]. 解法三:1),当0x =时,a R ∈; 2),当 x>0时 + +,+ +=( )由洛必塔法则( )===12. 2006全国1理 已知函数()11axx f x e x-+=-. (Ⅰ)设0a >,讨论()y f x =的单调性;(Ⅱ)若对任意()0,1x ∈恒有()1f x >,求a 的取值范围.解法(一)(ⅰ)当0<a ≤2时, 由(Ⅰ)知: 对任意x ∈(0,1)恒有f(x)>f(0)=1. (ⅱ)当a>2时, 取x 0= 12a -2a∈(0,1),则由(Ⅰ)知 f(x 0)<f(0)=1 (ⅲ)当a ≤0时, 对任意x ∈(0,1),恒有1+x 1-x>1且e -ax≥1,得f(x)= 1+x 1-x e -ax ≥1+x1-x >1. 综上当且仅当a ∈(-∞,2]时,对任意x ∈(0,1)恒有f(x)>1.解法(二),g(x)=,(x) (x )(两次求导)由洛必塔法则:=-2,3.2007全国1理设函数()e e xxf x -=-.(Ⅰ)证明:()f x 的导数()2f x '≥;(Ⅱ)若对所有0x ≥都有()f x ax ≥,求a 的取值范围. 解法(一):令()()g x f x ax =-,则()()e e x x g x f x a a -''=-=+-,(ⅰ)若2a ≤,当0x >时,()e e20xxg x a a -'=+->-≥,故()g x 在(0)+,∞上为增函数,所以,0x ≥时,()(0)g x g ≥,即()f x ax ≥.(ⅱ)若2a >,方程()0g x '=的正根为1ln 2a x +=,此时,若1(0)x x ∈,,则()0g x '<,故()g x 在该区间为减函数.所以,1(0)x x ∈,时,()(0)0g x g <=,即()f x ax <,与题设()f x ax ≥相矛盾. 综上,满足条件的a 的取值范围是(]2-∞,. 解法(二):(1)x=0时 都成立。
洛必达变限积分求导
洛必达变限积分求导
洛必达变限积分求导是微积分中的重要概念,它是在求导的基础上,引入一个参数,从而得到一个关于参数的函数。
这种方法在实际问题中具有广泛的应用,尤其是在求解变量范围不确定或存在其他参数的情况下。
洛必达变限积分求导的基本思想是通过对极限的研究,来求解导数。
对于给定的函数,我们可以通过求导的方法来获得其导数。
但是,在一些特殊情况下,我们可能会遇到无法直接求导的函数,这时就需要使用洛必达变限积分求导的方法。
洛必达变限积分求导的步骤如下:首先,我们将函数写成洛必达的形式,即分子和分母都是关于参数的函数,并且在某一点处取得无穷大或无穷小的极限。
然后,我们对分子和分母同时求导,得到两个导数。
最后,我们再次应用洛必达法则,将原始函数的导数表示为两个导数的商。
洛必达变限积分求导的优势在于它可以解决一些无法直接求导的函数的导数问题。
通过引入参数,我们可以对函数的极限进行研究,从而得到函数的导数。
这种方法在计算机科学、物理学、经济学等领域都有着广泛的应用。
洛必达变限积分求导是一种重要的微积分方法,通过引入参数,可以解决一些无法直接求导的函数的导数问题。
它在实际问题中具有
广泛的应用,是我们学习微积分的重要内容之一。
通过掌握洛必达变限积分求导的方法和技巧,我们可以更好地理解和应用微积分的知识,为解决实际问题提供更有效的工具和方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应用洛必达法则巧解导数问题. 近年来的高考数学试题逐步做到科学化、规范化,坚持了稳中求改、稳中创新的原则,充分发挥数学作为基础学科的作用,既重视考查中学数学基础知识的掌握程度,又注重考查进入高校继续学习的潜能。
为此,高考数学试题常与大学数学知识有机接轨,以高等数学为背景的命题形式成为了热点.
许多省市的高考试卷的压轴题都是导数应用问题,其中求参数的取值范围就是一类重点考查的题型.这类题目容易让学生想到用分离参数法,一部分题用这种方法很奏效,另一部分题在高中范围内用分离参数的方法却不能顺利解决,高中阶段解决它只有一条路——分类讨论和假设反证的方法.
虽然这些压轴题可以用分类讨论和假设反证的方法求解,但这种方法往往讨论多样、过于繁杂,学生掌握起来非常困难.研究发现利用分离参数的方法不能解决这部分问题的原因是出现了00”型的式子,而这就是大学数学中的不定式问题,解决这类问题的有效方法就是洛必达法则.
洛必达法则:设函数()f x 、()g x 满足:
(1)lim ()lim ()0x a x a
f x
g x →→==; (2)在()U a o
内,()f x '和()g x '都存在,且()0g x '≠; (3)()lim ()
x a f x A g x →'=' (A 可为实数,也可以是±∞). 则()()lim lim ()()
x a x a f x f x A g x g x →→'=='.(可连环使用) 注意 使用洛必达法则时,是对分子、分母分别求导,而不是对它们的商求导,求导之后再求极限得最值。
已知函数ln ()1a x b f x x x
=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (Ⅰ)求a 、b 的值; (Ⅱ)如果当0x >,且1x ≠时,ln ()1x k f x x x >
+-,求k 的取值范围. (Ⅰ)略解得1a =,1b =.
(Ⅱ)方法一:分类讨论、假设反证法
由(Ⅰ)知ln 1()1x f x x x =++,所以所以22ln 1(1)(1)()()(2ln )11x k k x f x x x x x x
---+=+--. 考虑函数()2ln h x x =+2(1)(1)k x x
--(0)x >,则22(1)(1)2'()k x x h x x -++= (i)当0k ≤时,由22
2
(1)(1)'()k x x h x x +--=知,当1x ≠时,'()0h x <.因为(1)0h =,
所以当(0,1)x ∈时,()0h x >,可得
2
1()01h x x ⋅>-;当(1,)x ∈+∞时,()0h x <,可得 21()01h x x ⋅>-,从而当0x >且1x ≠时,ln ()()01x k f x x x -+>-,即ln ()1x k f x x x
>+-; (ii )当01k <<时,由于当1(1,)1x k
∈-时,2(1)(1)20k x x -++>,故'()0h x >,而(1)0h =,故当1(1,)1x k ∈-时,()0h x >,可得21()01h x x ⋅<-,与题设矛盾. (iii )当1k ≥时, '()0h x >,而(1)0h =,故当(1,)x ∈+∞时,()0h x >,可得21()01h x x
⋅<-,与题设矛盾.综上可得,k 的取值范围为(0]-∞,. 常规解法
注:分三种情况讨论:①0k ≤;②01k <<;③1k ≥不易想到.尤其是②01k <<时,许多考生都停留在此层面,举反例1(1,)1x k
∈-更难想到.而这方面根据不同题型涉及的解法也不相同,这是高中阶段公认的难点,即便通过训练也很难提升.
运用洛必达和导数解2011年新课标理
当0x >,且1x ≠时,ln ()1x k f x x x >
+-,即ln 1ln 11x x k x x x x
+>++-, 也即2ln 1ln 2ln 1111x x x x x x k x x x x <+-=++--,记22ln ()11x x g x x =+-,0x >,且1x ≠ 则2222
222222(1)ln 2(1)2(1)1'()=(ln )(1)(1)1
x x x x x g x x x x x ++-+-=+--+, 记221()ln 1
x h x x x -=++,则22
222214(1)'()+=0(1+)(1+)x x h x x x x x --=>, 从而()h x 在(0,)+∞上单调递增,且(1)0h =,因此当(0,1)x ∈时,()0h x <,当(1,)x ∈+∞时,()0h x >;当(0,1)x ∈时,'()0g x <,当(1,)x ∈+∞时,'()0g x >,所以()g x 在(0,1)上单调递减,在(1,)+∞上单调递增.
注:本题由已知很容易想到用分离变量的方法把参数k 分离出来.然后对分离出来的函数22ln ()11x x g x x
=+-求导,研究其单调性、极值. 此时遇到了“当=1x 时,函数()g x 值没有意义”这一问题,很多考生会陷入困境.如果考前对优秀的学生讲洛必达法则的应用,再通过强化训练就能掌握解决此类难题的这一有效方法.
当然这一法则出手的时机:(1)所构造的分式型函数在定义域上单调
(2)是
00
型。
运用洛必达和导数解2010新课标理
设函数2()1x f x e x ax =---. (Ⅰ)若0a =,求()f x 的单调区间;
(Ⅱ)当0x ≥时,()0f x ≥,求a 的取值范围.
解:(Ⅱ)当0x ≥时,()0f x ≥,即21x e x ax --≥.
①当0x =时,a R ∈;②当0x >时,2
1x e x ax --≥等价于21x e x a x --≤. 记21()x e x g x x --= (0+)x ∈∞,,则3
(2)2'()x x e x g x x -++=. 记()(2)2x h x x e x =-++ (0+)x ∈∞,,则'()(1)1x h x x e =-+,当(0+)x ∈∞,时,
''()0x h x xe =>,所以'()(1)1x h x x e =-+在(0+)∞,上单调递增,且'()'(0)0h x h >=,
所以()(2)2x h x x e x =-++在(0+)∞,上单调递增,且()(0)0h x h >=,因此当(0+)
x ∈∞,时,3()'()0h x g x x
=>,从而21()x e x g x x --=在(0+)∞,上单调递增. 由洛必达法则有,
20000111lim ()lim lim lim 222
x x x x x x x e x e e g x x x →→→→---==== 即当0x →时,1()2g x →
,所以当(0+)x ∈∞,时,所以1()2g x >,因此12a ≤. 综上所述,当12
a ≤且0x ≥时,()0f x ≥成立. 通过以上例题的分析,我们不难发现应用洛必达法则解决的试题应满足:
① 可以分离变量;
②用导数可以确定分离变量后一端新函数的单调性; ③出现“
00
”型式子.。