光学显微镜的放大倍数

合集下载

光学显微镜的四百倍的尺度

光学显微镜的四百倍的尺度

光学显微镜的四百倍的尺度
40倍显微镜标尺应该是0.01微米,和倍数没关系,测量时刻度和物体同时都被放大了。

一般来说,将比例乘以材料类显微镜的倍率后为10000。

例如,如果刻度为200um,则倍率为50倍。

显微镜刻度100um是40倍。

显微镜是由一个透镜或几个透镜组合而成的光学仪器,是人类进入原子时代的标志。

主要是用于放大微小物体,使其能用人的肉眼看到的机器。

高倍镜物镜与装订距离近可见细胞数量少形态大视野相对暗的
分辨率高于低倍镜。

低倍镜物镜与装订的距离远,可见细胞数量多的形态小;视野比较明亮;清晰度比较低。

高倍物镜使用前,必须先在低倍物镜上找到观察对象,对准视野中央,转动转换器后更换高倍物镜。

更换高倍率物镜后视野内的亮度会变暗,所以一般使用较大的光圈,使用反射镜的凹面来调节细的准焦点螺旋。

看到的物体数量变少,体积变大。

显微镜的倍数是相对的,一般显微镜变换物镜,目镜一般不变,所以10倍物镜低倍40倍物镜高倍,没有明确的边界。

低倍镜倍数小,可见细胞数多,高倍镜倍数大,可见细胞数多,但视野暗淡。

显微镜那个十字架的尺寸部分,全长1mm,100倍是100um,500倍是20um。

光学显微镜分辨率

光学显微镜分辨率

光学显微镜分辨率光学显微镜用于光滑表面的微米级组织观察与测量,因为采用可见光作为光源因此不仅能观察样品表层组织而且在表层以下的一定范围内的组织同样也可被观察到,并且光学显微镜对于色彩的识别非常敏感和准确。

它的出现,为工业生产和人类文明的进步提供了很大的动力,称为科学实验中的一个基本实验仪器。

光学显微镜系统的分辨率主要由物镜(变倍体、附加镜或apo物镜)聚光形成的实像决定,目镜(适配镜)成的像是虚像。

显微镜的分辨率是指它能清晰地分辨试样上两点间最小距离d的能力。

在普通光线下,人眼能分辨两点间的最小距离为0.15~0.30mm,即人眼的鉴别率为d为0.15~0.30mm;而显微镜当其有效放大倍数为1400x时,其分辨率d为0.21x10-3mm。

d值越小,分辨率越高。

分辨率可以由公式排序:式中λ――入射光源的波长n.a――物镜的数值孔径,表示物镜的聚光能力中旺高精度为国家高新技术企业,iso9001:2021证书企业,广东省守信用守信用企业。

中旺高精度主要生产、研发、内置、销售一键手挥测仪、全自动影像测量仪、复合式三坐标测量仪、工具显微镜、光学显微镜、视频显微镜、测量投影仪、影像投影仪等光学测量仪器和洛氏硬度计、布氏硬度计、电子显微镜硬度计、便携式超音波硬度计、里氏硬度计、邵氏硬度计、韦氏硬度计等硬度检测仪器及周边服务设施产品。

产品广为用作半导体、汽车、通讯、家电、五金、塑胶、电子、航空、航天等产业的实验室、生产车间、流水线上管控产品品质。

中旺高精度产品除满足用户中国大陆市场的用户市场需求外,目前还出口至全球60多个国家和地区,在全球30多个国家和地区具有分销服务商,售后服务存有确保。

中旺高精度建有产品体验中心,热烈欢迎参观实地考察!。

显微镜种类及使用方法

显微镜种类及使用方法

显微镜的种类及其使用方法一、光学显微镜光学显微镜是一种精密的光学仪器。

当前使用的显微镜由一套透镜配合,因而可选择不同的放大倍数对物体的细微结构进行放大观察。

普通光学显微镜通常能将物体放大1500~2000 倍(最大的分辨力为0.2μm)。

(一)光学显微镜的基本结构(附图1)1.光学部分包括目镜、物镜、聚光器和光源等。

(1)目镜通常由两组透镜组成,上端的一组又称为“接目镜”,下端的则称为“场镜”。

两者之间或在场镜的下方装有视场光阑(金属环状装置),经物镜放大后的中间像就落在视场光阑平面上,所以其上可加置目镜测微尺。

在目镜上方刻有放大倍数,如10×、20×等。

按照视场的大小,目镜可分为普通目镜和广角目镜。

有些显微镜的目镜上还附有视度调节机构,操作者可以对左右眼分别进行视度调整。

另有照相目镜(NFK)可用于拍摄。

(2)物镜由数组透镜组成,安装于转换器上,又称接物镜。

通常每台显微镜配备一套不同倍数的物镜,包括:①低倍物镜:指1×~6×;②中倍物镜:指6×~25×;③高倍物镜:指25×~63×;④油浸物镜:指90×~100×。

其中油浸物镜使用时需在物镜的下表面和盖玻片的上表面之间填充折射率为1.5 左右的液体(如香柏油等),它能显著地提高显微观察的分辨率。

其他物镜则直接使用。

观察过程中物镜的选择一般遵循由低到高的顺序,因为低倍镜的视野大,便于查找待检的具体部位。

显微镜的放大倍数,可粗略视为目镜放大倍数与物镜放大倍数的乘积。

(3)聚光器由聚光透镜和虹彩光圈组成,位于在载物台下方。

聚光透镜的功能是将光线聚焦于视场范围内;透镜组下方的虹彩光圈可开大缩小,以控制聚光器的通光范围,调节光的强度,影响成像的分辨力和反差。

使用时应根据观察目的,配合光源强度加以调节,得到最佳成像效果。

(4)光源较早的普通光学显微镜借助镜座上的反光镜,将自然光或灯光反射到聚光器透镜的中央作为镜检光源。

光学显微镜参数范文

光学显微镜参数范文

光学显微镜参数范文以下是光学显微镜的一些常见参数:1. 放大倍数(Magnification):放大倍数是指显微镜放大物体的能力。

光学显微镜的放大倍数通常为40x至1000x不等。

这意味着物体在显微镜下观察时,其大小将放大40倍至1000倍。

2. 焦距(Focal Length):焦距是指透镜将平行光线聚焦在焦点上的距离。

在显微镜中,物镜和目镜都具有焦距。

物镜的焦距通常为4mm至60mm,目镜的焦距通常为10mm至25mm。

3. 数值孔径(Numerical Aperture):数值孔径是指物镜接收和聚焦光线的能力,影响显微镜的分辨率。

数值孔径的值越大,显微镜的分辨率越高。

光学显微镜的数值孔径通常在0.1至1.4之间。

4. 工作距离(Working Distance):工作距离是指物镜与物体之间的距离。

工作距离的长度影响着显微镜操作的便利性和物体的观察范围。

一般来说,工作距离越长,观察到的物体范围就越大。

5. 角度(Angle):角度是指物镜的张角和视场角。

物镜的张角是指物镜接受入射光线的能力,视场角是指目镜的视场范围。

6. 透光率(Transmittance):透光率是指透镜对入射光线的透明程度。

透光率越高,显微镜的图像质量越好。

7. 调焦机构(Focusing Mechanism):调焦机构是指显微镜用于调节物镜和目镜之间距离的装置。

调焦机构可以手动或电动,使人们可以轻松调节焦距以获得清晰的图像。

8. 光源(Light Source):光源提供显微镜的照明。

传统的光学显微镜通常使用白光照明,而现代的显微镜则可以使用不同的光源,如LED 或荧光灯。

以上仅是光学显微镜的一些基本参数,不同型号的显微镜可能具有不同的参数和功能。

此外,光学显微镜的参数和性能也受到物镜、目镜、透镜材料、光源和观察样本的影响。

因此,在选择和使用光学显微镜时,需要根据实际需求和应用场景,综合考虑这些参数。

放大镜的使用方法

放大镜的使用方法

放大镜的使用方法第一种:将需要进行观察的物体放在一个固定的位置上,再将放大镜靠近物体一侧,然后沿着肉眼与物体之间的直线方向,缓缓地移动放大镜,直至看清楚物体的细微结构为止。

第二种:将放大镜放置在一个固定的位置上,再将需要观察的物体放置在放大镜下(靠近放大镜),然后沿着肉眼与放大镜之间的直线方向,缓缓地移动物体,直至看清楚物体的细微结构为止。

显微镜一、显微镜的种类1、光学显微镜:实验室中常用的光学显微镜,由两组透镜组成,放大倍数一般从40倍至1000倍左右。

在光学显微镜下看到的物体是放大的倒立的虚象。

2、电子显微镜:基本结构与光学显微镜相似,用高速运动的电子束代替光线作为工作媒质。

电子的波长比可见光光波最短的光波短10万倍,分辨力比光学显微镜高8万倍,可以看到光学显微镜下看不到的细胞亚显微结构。

但是,电子显微镜是在高真空条件下操作的,标本必须脱水,因此不能观察活的组织。

电子显微镜可应用于生物学、石油化工、地质、冶金、电子材料、航空材料等各项科研工作中。

我国在1965年试制成功20万倍电子显微镜,后来又研制成功80万倍电子显微镜。

它的分辨率高,可以看清两个小点间最小距离为14.4nm,相当于人的头发丝的五百万分之一,已经达到可以分辨单个分子和原子的程度。

电子显微镜还有放大倍率范围宽、操作方便、使用范围广的特点,并配有自动照相装置。

二、光学显微镜的构造:1、目镜和物镜:目镜位于镜筒上端,物镜位于镜筒下端,目镜和物镜上都各标有不同的放大倍数,如,8×表示放大8倍。

所用目镜和物镜放大倍数的乘机,就是物象的放大倍数。

物镜的质量决定于它的分辨力,分辨力是指物镜分辨物体中两个点之间最短距离的能力。

一个成型的物镜,具有一定的分辨力,一定的放大倍数。

2、镜座:用来稳定整台显微镜。

3、镜柱:用来支持镜臂。

4、镜筒:固定在镜臂上端能转动的支架和齿条上。

上接目镜,下接物镜,使目镜和物镜保持一定的距离。

镜检调焦时,由粗、细准焦螺旋控制镜筒升降。

显微镜放大倍数方法

显微镜放大倍数方法

显微镜放大倍数方法
1. 光学显微镜放大倍数的计算方法:
光学显微镜的放大倍数主要由目镜和物镜的放大倍数决定。

显微镜的总放大倍数=目镜放大倍数×物镜放大倍数
例如,如果目镜的放大倍数为10倍,物镜的放大倍数为40倍,那么显微镜的总放大倍数为400倍。

2. 电子显微镜放大倍数的计算方法:
电子显微镜使用的是电子束,使用倍率的概念来表示放大倍数。

电子显微镜的倍率分为两种,分别是透射电子显微镜和扫描电子显微镜。

透射电子显微镜的倍率=物镜放大倍数×透镜放大倍数×屏幕放大倍数
扫描电子显微镜的倍率=电子汇聚器放大倍数×扫描线圈放大倍数×显像管放大倍数
注意:每种显微镜的放大倍数计算方法可能有所不同,以上只是一些常见显微镜
的计算方法。

显微镜放大的规律

显微镜放大的规律

显微镜放大的规律
显微镜的放大倍数等于所用物镜与目镜放大倍数的乘积。

目镜的放大倍数越小镜头越长,物镜的放大倍数越小镜头越短。

显微镜下所成的像是倒立的虚像,即上下、左右均是颠倒的。

低倍镜下细胞数目多,体积小,视野亮;高倍镜下细胞数目少,体积大,视野暗。

显微镜是由一个透镜或几个透镜的组合构成的一种光学仪器,是人类进入原子时代的标志。

主要用于放大微小物体成为人的肉眼所能看到的仪器。

1.持镜时必须是右手握臂、左手托座的姿势,不可单手提取,以免零件脱落或碰撞到其它地方。

2.轻拿轻放,不可把显微镜放置在实验台的边缘,应放在距边缘10cm 处,以免碰翻落地。

3.保持显微镜的清洁,光学和照明部分只能用擦镜纸擦拭,切忌口吹手抹或用布擦,机械部分用布擦拭。

4.水滴、酒精或其它药品切勿接触镜头和镜台,如果沾污应立即用擦镜纸擦净。

5.放置玻片标本时要对准通光孔中央,且不能反放玻片,防止压坏玻片或碰坏物镜。

6.要养成两眼同时睁开观察的习惯,以左眼观察视野,右眼用以绘图。

7.不要随意取下目镜,以防止尘土落入物镜,也不要任意拆卸各种零件,以防损坏。

8.使用完毕后,必须复原才能放回镜箱内,其步骤是:取下标本片,
转动旋转器使镜头离开通光孔,下降镜台,平放反光镜,下降集光器(但不要接触反光镜)、关闭光圈,推片器回位,盖上绸布和外罩,放回实验台柜内。

最后填写使用登记表。

(注:反光镜通常应垂直放,但有时因集光器没提至应有高度,镜台下降时会碰坏光圈,所以这里改为平放)。

光学显微镜的常用分类

光学显微镜的常用分类

光学显微镜的常用分类光学显微镜有多种分类方法:按使用目镜的数目可分为双目和单目显微镜;按图像是否有立体感可分为立体视觉和非立体视觉显微镜;按观察对像可分为生物和金相显微镜等;按光学原理可分为偏光、相衬和微差干涉对比显微镜等;按光源类型可分为普通光、荧光、紫外光、红外光和激光显微镜等;按接收器类型可分为目视、数码(摄像)显微镜等。

所以在选购显微镜前,一定要确定哪种显微镜适合自己。

常用的光学显微镜有生物显微镜、体视显微镜、金相显微镜、偏光显微镜、荧光显微镜、相衬显微镜、倒置显微镜等。

1、生物显微镜生物显微镜放大倍数一般在40X-2000X之间,光源为透射光。

生物显微镜供医疗卫生单位、高等院校、研究所用于微生物、细胞、细菌、组织培养、悬浮体、沉淀物等的观察,同时可以观察其他透明或者半透明物体以及粉末、细小颗粒等物体。

可连续观察细胞、细菌等在培养液中繁殖分裂的过程等。

在细胞学、寄生虫学、肿瘤学、免疫学、遗传工程学、工业微生物学、植物学等领域中应用广泛,是食品厂、饮用水厂办QS、HACCP认证的必备检验设备。

2、体视显微镜体视显微镜又称实体显微镜或解剖镜,是一种具有正像立体感的目视仪器。

体视显微镜放大倍数在7X-45X左右,也可以放大到90X,180X,225X。

在生物、医学领域广泛用于切片操作和显微外科手术;在工业中用于微小零件和集成电路的观测、装配、检查等工作。

它利用双通道光路,双目镜筒中的左右两光束不是平行,而是具有一定的夹角--体视角(一般为12度--15度),为左右两眼提供一个具有立体感的图像。

它实质上是两个单镜筒显微镜并列放置,两个镜筒的光轴构成相当于人们用双目观察一个物体时所形成的视角,以此形成三维空间的立体视觉图像。

目前体视显微镜的光学结构是由一个共用的初级物镜,对物体成象后的两光束被两组中间物镜----变焦镜分开,并成一体视角再经各自的目镜成象,它的倍率变化是由改变中间镜组之间的距离而获得的,因此又称为连续变倍体视显微镜。

fov 光学倍率

fov 光学倍率

fov 光學倍率
FOV(视场)和光学倍率是两个不同的概念,但是他们都涉及到成像和观察。

视场(FOV)是指设备(如相机、望远镜等)能够观察或拍摄的范围。

它通常用角度来表示,例如水平视场和垂直视场。

视场的大小会影响到图像的视角和场景的大小,视场越大,可以观察或拍摄的范围就越广。

光学倍率(也称为放大倍数或变焦倍数)则是望远镜、显微镜等光学仪器的一个重要参数。

它表示光学仪器将物体放大的倍数。

例如,一个10倍的放大镜会将物体放大10倍。

光学倍率越大,物体看起来就越大,但同时观察的视野也会减小。

因此,视场和光学倍率是两个不同的概念,它们之间没有直接的关系。

在选择和使用设备时,需要根据实际需求和场景来选择合适的视场和光学倍率。

光学显微镜的放大倍数

光学显微镜的放大倍数

光学xx的放大倍数显微镜的放大倍数就是指的是“边长的放大倍数”。

比如一台放大100倍的显微镜去看一个1mm边长的正方形,你就会看到正方形的边长变成了10cm那么长,是真实大小的100倍,然后你计算一下放大后的面积,发现是100平方厘米,是原来1平方毫米的100倍,所以面积是放大了100倍,是边长放大倍数的平方。

其实普通的光学显微镜是根据凸透镜的成像原理,要经过凸透镜的两次成像。

第一次先经过物镜(凸透镜1)成像,这时候的物体应该在物镜(凸透镜1)的一倍焦距和两倍焦距之间,根据物理学的原理,成的应该是放大的倒立的实像。

而后以第一次成的物像作为“物体”,经过目镜的第二次成像。

由于我们观察的时候是在目镜的另外一侧,根据光学原理,第二次成的像应该是一个虚像,这样像和物才在同一侧。

因此第一次成的像应该在目镜(凸透镜2)的一倍焦距以内,这样经过第二次成像,第二次成的像是一个放大的正立的虚像。

如果相对实物说的话,应该是倒立的放大的虚像。

二倍焦距以外,倒立缩小实像;一倍焦距到二倍焦距,倒立放大实像;一倍焦距不成像;一倍焦距以内,正立放大虚像;成实像物和像在凸透镜异侧,成虚像在凸透镜同侧。

1、根据你问的问题,你应该问的是光学显微镜。

2、光学显微镜的成像是利用凸透镜的成像原理,如图。

3、显微镜的成像是利用多个凸透镜(透镜组),原理如图。

附:凸透镜成像规律:u>2f f<u<2f成倒立缩小实像f<u<2f u>2f成倒立放大实像u<f __正立放大虚像u=f不成像u=2f成倒立等大实像f表示透镜焦距u表示物体与透镜之间距离(简称物距)xx成像的特点(1)显微镜的物镜与装片的距离是在一倍焦距与二倍焦距之间,成倒立放大的实像,此实像在目镜的一倍焦距之内,成正立放大的虚象。

显微镜下成倒像(上下左右同时颠倒)。

(2)物像移动与装片移动的关系:由于显微镜下成的像是倒立的像,所以物像移动的方向与载玻片移动的方向是相反的。

显微镜与望远镜的种类、用途、分辨本领、放大率

显微镜与望远镜的种类、用途、分辨本领、放大率

《显微镜与望远镜》专业班级姓名学号日期显微镜显微镜是由一个透镜或几个透镜的组合构成的一种光学仪器,是人类进入原子时代的标志。

主要用于放大微小物体成为人的肉眼所能看到的仪器。

显微镜分光学显微镜和电子显微镜:光学显微镜是在1590年由荷兰的杨森父子所首创。

现在的光学显微镜可把物体放大1600倍,分辨的最小极限达0.1微米,国内显微镜机械筒长度一般是160mm。

电子显微镜是在1926年,被汉斯·布什发明出来的。

显微镜的分类:一、光学显微镜:是在1590年由荷兰的詹森父子所首创。

现在的光学显微镜可把物体放大1500倍,分辨的最小极限达0.2微米。

光学显微镜的种类很多,除一般的外,主要有暗视野显微镜一种具有暗视野聚光镜,从而使照明的光束不从中央部分射入,而从四周射向标本的显微镜.荧光显微镜以紫外线为光源,使被照射的物体发出荧光的显微镜。

结构为:目镜,镜筒,转换器,物镜,载物台,通光孔,遮光器,压片夹,反光镜,镜座,粗准焦螺旋,细准焦螺旋,镜臂,镜柱。

1、暗视野显微镜暗视野显微镜由于不将透明光射入直接观察系统,无物体时,视野暗黑,不可能观察到任何物体,当有物体时,以物体衍射回的光与散射光等在暗的背景中明亮可见。

在暗视野观察物体,照明光大部分被折回,由于物体(标本)所在的位置结构,厚度不同,光的散射性,折光等都有很大的变化。

2、相位差显微镜相位差显微镜的结构:相位差显微镜,是应用相位差法的显微镜。

因此,比通常的显微镜要增加下列附件:(1) 装有相位板(相位环形板)的物镜,相位差物镜。

(2) 附有相位环(环形缝板)的聚光镜,相位差聚光镜。

(3) 单色滤光镜-(绿)。

各种元件的性能说明(1) 相位板使直接光的相位移动90°,并且吸收减弱光的强度,在物镜后焦平面的适当位置装置相位板,相位板必须确保亮度,为使衍射光的影响少一些,相位板做成环形状。

(2) 相位环(环状光圈)是根据每种物镜的倍率,而有大小不同,可用转盘器更换。

使用光学显微镜的注意事项

使用光学显微镜的注意事项

使用光学显微镜的注意事项光学显微镜是一种常用于观察微小物体的工具,它通过利用光的折射和放大原理,使我们能够清晰地观察到微观世界中的细节。

然而,在使用光学显微镜时,我们需要注意一些事项,以确保观察结果的准确性和安全性。

我们需要正确地安装和调整光学显微镜。

在安装过程中,需要注意将显微镜放置在平稳的桌面上,并调整好镜头的高度和角度,以便观察者的眼睛与目镜保持合适的距离。

此外,还需要注意调整光源的亮度和角度,以获得清晰的观察图像。

我们需要选择合适的放大倍数。

光学显微镜通常具有多个放大倍数可供选择,根据观察对象的大小和细节要求,选择合适的放大倍数非常重要。

如果放大倍数过大,可能会导致图像模糊或失真;而放大倍数过小,则无法清晰地观察到微小的细节。

在观察过程中,我们需要注意调节焦距。

根据不同的观察对象和放大倍数,可能需要不断调节镜头的焦距,以获得清晰的图像。

可以通过轻轻转动镜头或移动镜片来进行焦距的微调,直到获得最佳观察效果为止。

除了以上注意事项,我们还需要注意保持观察环境的清洁和安静。

在观察前,应将待观察的样品或载玻片清洁干净,以避免杂质或灰尘影响观察结果。

同时,在观察过程中,应尽量避免外界的干扰和噪音,以确保观察者能够专注于观察对象,并获得准确的观察数据。

使用光学显微镜时,我们还需要注意安全问题。

显微镜通常使用透明玻璃制成的载玻片或盖玻片来固定待观察的样品,因此在操作时需要小心,以避免划伤或碎裂。

另外,由于光学显微镜使用了放大镜片和光源,观察过程中要避免直接暴露在强光下,以免对眼睛造成伤害。

使用光学显微镜时需要注意安装和调整、选择合适的放大倍数、调节焦距、保持观察环境的清洁和安静,以及注意安全问题。

只有遵循这些注意事项,我们才能获得准确、清晰的观察结果,并确保使用过程的安全性。

人眼、光学显微镜以及电子显微镜成像原理、分辨率及其影响因素

人眼、光学显微镜以及电子显微镜成像原理、分辨率及其影响因素

人眼、光学显微镜以及电子显微镜成像原理、分辨率及其影响因素文章主要从人眼成像原理入手,逐步介绍光学显微镜以及电子显微镜的成像原理、分辨率和分辨率的影响因素。

分三部分作简要说明。

一人眼成像1 、人眼结构人眼成像原理图如下,所取的距离为250米,则人眼成像见下图1:图1 人眼结构原理图2 、成像原理自然界各种物体在光线的照射下,不同颜色可以反射出明暗不同的光线,这些光线透过角膜、晶状体、玻璃体的折射,眼球中的角膜和晶状体的共同作用,相当于一个“凸透镜”,在视网膜上形成倒立、缩小的实像,构成光刺激。

视网膜上的感光细胞(圆锥和杆状细胞)受光的刺激后,经过一系列的物理化学变化,转换成神经冲动,由视神经传入大脑层的视觉中枢,然后我们就能看见物体了,经过大脑皮层的综合分析,产生视觉,人就看清了正立的立体像。

人的眼睛是个复杂的成像系统,而人的大脑像CPU处理这些图像,让人能在视觉上感知到图像。

人眼成像最主要的是晶状体和视网膜。

晶状体调整眼睛的焦距是光束集中到富有视锥细胞和视柱细胞的视网膜上,在进行光电(生物电)变化,由视觉神经把信号传至大脑生成图像。

人类的目标就是能制造出能过可以和眼睛相媲美的视觉系统,这是机器智能化的关键部分。

3 、分辨率说及人眼分辨率首先需要知道如下几个概念:(1)视角:观看物体时,人眼对该物体所张的角度。

(2)分辨角:人眼的分辨角:指刚能看出两黑点时,两黑点对人眼的张角。

(3)分辨力:人眼分辨图像细节的能力称为分辨力,可用分辨角来衡量,分辨角的倒数为分辨力。

它也反映了人眼的视力。

分辨力还与照度及景物相对对比度有关。

人眼分辨率指的是人眼能够分辨两个相邻的点或者线的能力,通常以刚能被分开的两点或两线与眼睛瞳孔中心所成的张角表示。

其最小分辨的距离在0.2mm 左右。

要观察和分析更小的距离时,就必须借助于专门仪器。

观看物体时,能清晰看清视场区域对应的分辨率为2169 ×1213。

再算上上下左右比较模糊的区域,最后的分辨率在6000×4000。

显微镜倍率的计算方式

显微镜倍率的计算方式

显微镜倍率的计算方式
发布时间:2011-05-01
显微镜倍率的计算方式:
如何计算显微镜倍率呢,请看下面内容:
光学总放大倍率=目镜的倍率X物镜放大倍率(如有附加物镜,也要把附加物镜算上)
数字总放大倍率=物镜X摄像目镜放大率X数字放大率(如有附加物镜,也要把附加物镜算上)
以体视显微镜为例:当体视显微镜目镜的倍率为10倍,变倍体变倍范围是:0.7X-4.5X,附加物镜为:2X。

那它的光学放大倍率为:10乘0.7乘2得到这款显微镜的最低倍率为:14倍,那最大倍数为:10乘4.5乘2等于90倍,那这款体视显微镜的光学总放大倍率就是14倍到90倍。

那么显微镜的数码放大倍率计算是多少呢?比如显示器的尺寸为17寸,用的是1/3的显微镜摄像头,那对照下面的表显微镜摄像头的数字放大倍率是:72倍。

那显微镜的数码放大倍率安计算公式计法是:以上面体视显微镜的配置算,变倍体是0.7X-4.5X,附加物镜是2X。

摄像目镜为1(如摄像目镜无倍数不用加入计算)。

按照公式:物镜X摄像目镜放大率X数字放大率,数码放大最小倍率为:0.7乘2乘1乘72等于:100.8倍,数码放大最大倍率为:4.5乘2乘1乘72等于:648倍.那数码放大倍数范围就是100.8倍到648倍.
其它的生物显微镜、金相显微镜、偏光显微镜、单筒显微镜、视频显微镜等各种显微镜均按照这样的方法计算。

数字放大率:与 CCD摄像机规格及电视机(监视器)规格有关(见下表)。

显微镜的放大倍率是如何计算的?

显微镜的放大倍率是如何计算的?

显微镜的放⼤倍率是如何计算的?
显微镜的放⼤倍率是如何计算的?
⾸先我们来举个例⼦来说:当体视显微镜⽬镜的倍率为10倍,变倍体变倍范围是:0.7X-4.5X,附加物镜为:2X。

那它的光学放⼤倍率为:10乘0.7乘2得到这款显微镜的zui低倍率为:14倍,那zui⼤倍数为:10乘4.5乘2等于90倍,那这款体视显微镜的光学总放⼤倍率就是14倍到90倍。

当然这只是显微镜主机的实际放⼤倍率。

接下来是显微镜数码放⼤倍率。

⽐如显⽰器的尺⼨为17⼨,⽤的是1/3的显微镜摄像头,那对照下⾯的表显微镜摄像头的数字放⼤倍率是:72倍。

那显微镜的数码放⼤倍率安计算公式计法是:以上⾯体视显微镜的配置算,变倍体是变倍体是0.7X-4.5X,附加物镜是2X。

摄像⽬镜为1(如摄像⽬镜⽆倍数不⽤加⼊计算)。

按照公式:物镜X摄像⽬镜放⼤率X数字放⼤率,数码放⼤zui⼩倍率为:0.7乘2乘1乘72等于:100.8倍,数码放⼤zui⼤倍率为:4.5乘2乘1乘72等于:648倍.那数码放⼤倍数范围就是100.8倍到648倍。

这样的话就会出现两个公式:
1、光学总放⼤倍率=⽬镜的倍率X物镜放⼤倍率
2、数字总放⼤倍率=物镜X摄像⽬镜放⼤率X数字放⼤率
这公式对于任何⼀台显微镜都合适,⽆论是⾦相显微镜,⽣物显微镜等等。

#显微镜#芯⽚#半导体。

光学显微镜 放大倍数极限

光学显微镜 放大倍数极限

光学显微镜放大倍数极限
光学显微镜的放大倍数极限取决于多个因素,包括镜头的质量、光源的强度、样本的透明度和准备情况等。

一般来说,光学显微镜的放大倍数可以达到1000倍左右。

然而,要达到更高的放大倍数,可以采用一些增强技术,如油浸显微镜、相差显微镜和荧光显微镜等。

这些技术可以进一步提高显微镜的分辨率和放大倍数,使得观察更细微的结构成为可能。

另外,还有一种称为电子显微镜的仪器,它使用电子束而不是光束来观察样本。

电子显微镜的放大倍数可以达到数百万倍,因此在观察更小的结构和更高分辨率的细节方面具有优势。

1。

实验五 显微镜望远镜放大倍数的测定

实验五 显微镜望远镜放大倍数的测定

实验五显微镜与望远镜放大本领的测定望远镜和显微镜都是用途极为广泛的助视光学仪器,显微镜通过放大物所成的像,来帮助人们观察近处的微小物体,而望远镜则是通过放大远处物的视角,帮助人们观察远处的目标,它们常被组合在其他光学仪器中使用.为适应不同用途和性能的要求,望远镜和显微镜的种类很多,构造也各有差异,但是它们的基本光学系统都由物镜和目镜组成.望远镜和显微镜在天文学、电子学、生物学和医学等领域中都起着十分重要的作用.光学望远镜从诞生至今将近400年,出现了折射望远镜、反射望远镜、折反射式望远镜和空间望远镜,不断推动着天文学和物理学的发展.长久以来,人们仰望天空,看见日月星辰东升西落,有过天圆地方、地心说、日心说等宇宙模型.但过去人们只能用肉眼对星空进行观察,观测范围非常局限,所得的数据资料也就非常有限.凭借着物理学的不断发展,多种望远镜被制造出来,越来越精密,推动着天文学和物理学不断向前发展,人类的视野也变得更深更广.·实验目的1.熟悉显微镜和望远镜的构造及其放大原理;2.进一步熟悉透镜成像规律及光学系统的共轴调节方法;3.学会一种测定显微镜和望远镜放大本领的方法;4.掌握显微镜、望远镜的正确使用方法.·实验仪器显微镜,望远镜,标尺,标准石英尺,测微目镜,照明灯.图5-1 显微镜的结构显微镜是一种复杂的光学仪器.它是医学实验常用工具之一,其作用是将观察的标本放大,以便观察和分析.一般光学显微镜包括机械装置和光学系统两大部分,如图5-1所示.一、机械装置1. 镜座:位于最底部的构造,为整个显微镜的基座,用以支持着整个镜体,起稳固作用.2. 镜柱:为垂直于镜座上的短柱,用以支持镜臂.3. 镜臂:为支持镜筒和镜台的呈弓形结构的部分,是取用显微镜时握拿的部分.镜筒直立式光镜在镜臂与其下方的镜柱之间有一倾斜关节,可使镜筒向后倾斜一定角度以方便观察,但使用时倾斜角度不应超过45°,否则显微镜由于重心偏移容易翻倒.4. 调节器:也称调焦螺旋,为调节焦距的装置,位于镜臂的上端(镜筒直立式光镜)或下端(镜筒倾斜式光镜),分粗调节器(大螺旋)和细调节器(小螺旋)两种.粗调节器可使镜筒或镜台作大幅度的升降,适于低倍镜观察时调焦.细调节器可使镜筒或镜台缓慢或较小幅度地升降,在低倍镜下用粗调节器找到物体后,在高倍镜和油镜下进行焦距的精细调节,藉以对物体不同层次、深度的结构做细致地观察.5. 镜筒:位于镜臂的前方,它是一个齿状脊板与调节器相接的圆筒状结构,上端装载目镜,下端连接物镜转换器.根据镜筒的数目,光镜可分为单筒式和双筒式.单筒光镜又分为直立式和倾斜式两种,镜筒直立式光镜的目镜与物镜的光轴在同一直线上,而镜筒倾斜式光镜的目镜与物镜的中心线互成45°角,在镜筒中装有使光线转折45°的棱镜;双筒式光镜的镜筒均为倾斜式的.6. 物镜转换器:又称旋转盘,位于镜筒下端的一个可旋转的凹形圆盘上,一般装有2~4个放大倍数不同的接物镜.旋转它就可以转换接物镜.旋转盘边缘有一定卡,当旋至物镜和镜筒成直线时,就发出“咔”的响声,这时方可观察玻片标本.7. 载物台:位于镜臂下面的平台,用以承放玻片标本.载物台中央有一圆形的通光孔,光线可以通过它由下向上反射.(二)光学系统1. 反光镜:是装在镜台下面、镜柱前方的一面可转动的圆镜,它有平凹两面.平面镜聚光力弱,适合光线较强时使用.凹面镜聚光力强,适于光线较弱时使用.转动反光镜,可将光源反射到聚光镜上,再经镜台中央圆孔照明标本.2. 聚光镜:在镜台下方,是一组透镜,用以聚集光线增强视野的亮度.镜台上方有一调节旋钮,转动它可升降聚光镜.往上升时增强反射光,下降时减弱反射光.3. 可变光栏:是在聚光镜底部的一个圆环状结构.它装有多片半月形的薄金属片,叠合在中央成圆孔形.在圆环外缘有一突起的小柄,拨动它可使金属片分开或合拢,用以控制光线的强弱,使物像变得更清晰.4. 目镜:装在镜筒上端,其上一般刻有放大倍数(如5×,10×).目镜内常装有一指示针,用以指示要观察的某一部分.5. 物镜:装在物镜转换器上,一般分低倍镜、高倍镜和油镜三种.低倍镜镜体较短,放大倍数小;高倍镜镜体较长,放大倍数较大;油镜镜体最长,放大倍数最大(在镜体上刻有数字,低倍镜一般有4×、10×,高倍镜一般有40×、45×,油镜一般是90×、100×,×表示放大倍数).测微目镜由目镜、分划板、读数鼓轮与连接装置等组成.目镜把叉丝和被观测的像同时放大,其放大倍数不影响测量数据大小,但可以提高测量准确程度.测微目镜的基本结构剖视图如图5-2所示.目镜镜头通过调焦螺纹固定在目镜外壳中部.外壳内有一块刻有十字丝的透明叉丝板,外壳右侧装有测距螺旋(即千分尺)系统,转动测距手轮,其螺杆将带动叉丝板移动.叉丝板的移动量可通过手轮上的千分尺测出.透明十字叉丝板后面是一个固定的玻璃标尺,标尺上刻有毫米尺,每格1mm,量程为8mm . 旋转读数鼓轮,刻有十字叉丝的可动分划板就可以左右移动.读数鼓轮每旋转一周,叉丝移动1mm ,鼓轮上有100个分格,故每一格对应的读数为0.01mm ,再估读一位.其读数方法和螺旋测微器差不多.在测量过程中,要始终沿着一个方向移动叉丝,不得回旋.测微目镜通常用来测金属丝、干涉条纹等的宽度.测量时,使双线与待测物质边缘平行,叉丝交点与待测物的边缘重合,开始计数.在测量过程中,要始终沿着一个方向移动叉丝,不得回旋.图2 测微目镜的基本结构剖视图 ·实验原理最简单的望远镜与显微镜都是由目镜和物镜两个透镜共轴所组成.物镜的像方焦点到目镜的物方焦点之间的距离(即光学间隔)为Δ.望远镜用来观察远处的物体,显微镜则是用来观察近处的微小物体,他们的放大作用都可以用放大本领M 来描述,可表示为:OE M ααt a n t a n = (5-1) 式中E α为像所张的视角;O α为物体直接对眼睛所张的视角.一、望远镜的构造及其放大原理望远镜由物镜和目镜组成,物镜用反射镜的称反射式望远镜,物镜用透镜的称折射式望远镜.目镜是会聚透镜的称为开普勒望远镜,目镜是发散透镜的称为伽利略望远镜.对于望远镜,两透镜的光学间隔Δ≈0,即物镜的像方焦点与目镜的物方焦点近乎重合.图5-3所示为开普勒望远镜的光路示意图.图中L 0为物镜(焦距较长),Le 为目镜(焦距较短),远处物体PQ 经物镜L O 后在物镜的像方焦点F'上成一倒立实像P'Q',像的大小决定于物镜焦距及物体与物镜间的距离.像P'Q'一般是缩小的.近乎位于目镜的物方焦面上,经目镜L E 放大后成虚像P"Q"于观察者眼睛的明视距离与无穷远之间.用望远镜观察不同位置的物体时,只需调节物镜和目镜的相对位置,使物镜成的实像落在目镜物方焦平面上,这就是望远镜的“调焦”.图5-3 开普勒望远镜的光路示意图由理论计算可得望远镜的放大本领为: ''t a n t a n E O OE O E O E f f f Q P f Q P M =''''=≈=αααα (5-2) 式中f o ′为物镜的焦距,f E ′为目镜的焦距,上式表明,物镜的焦距越长、目镜的焦距越短,望远镜的放大本领则越大.开普勒望远镜(f o ′>0,(f E ′>0),放大本领M 为负值,系统成倒立的像;而对伽利略望远镜(f o ′>0,(f E ′<0),放大本领M 为正值,系统成正立的像.因实际观察时,物体并不真正处于无穷远,像亦不成在无穷远,但式(5-2)仍近似适用.二、显微镜的构造及其放大原理显微镜和望远镜的光学系统十分相似,都是由物镜和目镜组成.显微镜的结构一般认为是由两个会聚透镜共轴组成,如图5-4所示,实物PQ 经物镜L 0成倒立实像P'Q'于目镜Le 的物方焦点Fe 的内侧,再经目镜Le 成放大的虚像P"Q"于人眼的明视距离处或无穷远处.理论计算可得显微镜的放大本领为: ''E O O E O f s f M M M ⋅∆-== (5-3)式中O M 为物镜的放大本领,M E 是目镜的放大本领,f o ′,f E ′ 为物镜和目镜的像方焦距,Δ是显微镜的光学间隔,S O =-25cm 为正常人眼的明视距离.由上式可知,显微镜的镜筒越长,物镜和目镜的焦距越短,放大本领就越大,通常物镜和目镜的放大本领,是标在镜头上的.图5-4 显微镜光路图用望远镜或显微镜观察物体时,一般视角均甚小,因此视角之比可用其正切之比代替,于是光学仪器的放大本领M 可近似地写成 OE O l l M ==ααtan tan 式中l 0是被测物的大小PQ ,l 是在物体所处平面上被测物的虚像的大小P"Q". ·实验内容与步骤一、显微镜放大倍数的测定1.将标准石英尺放在显微镜载物台上夹住.2.选择适当倍率的目镜,调节聚光镜、反光镜及光阑,使目镜中观察到强弱适当而均匀的视场.3.熟悉显微镜的机械结构,学会调节使用,先用低倍物镜对石英尺进行调焦,先粗调、后微调,直至目镜视场中观察到最清晰的像,如果观察物的像不在视场中间,则可调节载物台移动手轮,将其移至视场中心进行观察.4.将目镜卸下,换上测微目镜,首先对测微目镜的目镜进行调焦,看清分划板,在调节显微镜的物镜调焦手轮,至标尺的像最清晰且无视差.5.转动测微目镜使分划板上“双线”与标准石英尺的刻度(石英尺刻度部分全长lmm ,共分100小格,每格宽O .01mm)平行,然后将叉丝移至和显微镜视场中标准石英尺某一刻度重合,记下测微目镜的读数1x .转动测微目镜鼓轮,使叉丝在标准石英尺上移动5格,这时叉丝与标准石英尺上另一刻度线重合,记下测微目镜的读数2x .依此每隔5格记录一组数据,共记录10组数据.6.用逐差法处理数据,求出标尺5格对应像的大小,求其平均值,计算出物镜的放大本领.二、望远镜放大本领的测定1.将望远镜夹好,在垂直望远镜光轴方向距离目镜25cm 处放置一毫米分度的米尺A ,调节望远镜调焦手轮,把望远镜调焦到无穷远处,即望远镜能看清楚远处的物体.2.在A 尺上套上两白纸条,其间距可调,如图5-5所示.一只眼睛通过望远镜观察米尺的像B ,另一只眼睛直接看米尺A ,经过多次观察,调节眼睛使得米尺A 与望远镜中的米尺像B 重合.以B 尺为标尺,选定A 尺的上两纸带的间距为10格,记录其相当于B 尺上的格数0l ,重复3-5次,算出望远镜的放大倍数,取其平均值,并计算平均绝对偏差.3.取两纸带的间隔分别为8格和13格,重复上述步骤进行测量.图5-5 望远镜放大倍数测定原理·实验数据测量1.用测微目镜测经显微镜放大的石英标尺像刻度间隔数据表测量间隔:每隔5小格标尺像刻度读一次数序号i1 2 3 4 5 6 7 8 9 10 x i (mm)2.望远镜视角放大率测量数据表标记实际长度l 0 (mm)80 100 130 重复测量序号1 2 3 1 2 3 1 2 3 上缘对应镜内刻度Y u (mm)下缘对应镜内刻度Y l (mm)镜内对应长度 l =Y l -Y u (mm)望远镜放大率M = l 0/ l5 4 8 3 7 26 548372 6l 0l 标尺A 标尺B·实验注意事项1.注意不要用手摸透镜、反射镜等光学元件的光学表面,,以免在光学面上留下痕迹,使成像模糊或无法成像.2.在实验过程中,注意光学仪器要轻拿轻放,勿使仪器受到震动和磨损.3.用测微目镜测量时要注意回程误差.4.测望远镜放大本领时,两只眼睛要同时观察,同时看清A、B两尺的像,并将A、B两尺的像重合在一起时,方可读数.·历史渊源与应用前景望远镜和显微镜的发明是17世纪光学的伟大成就.显微镜的发明,使人类第一次发现了微生物和细胞生存的世界.第一架显微镜由荷铸眼镜匠詹森父子发明,后由伽利略改良而成.最初的显微镜只能放大50-200倍,到1932年德国的诺尔和鲁斯卡发明了世界第一台电子显微镜,它是利用德布罗依物质波原理制造而成的,它能放大1万倍,到20世纪90年代发展到放大率可达200万倍,由此人们发现了原子世界.1983年人们又发明了基于量子力学原理造而成的扫描隧道显微镜,开创了纳米科技的观测手段.后来人们又发明了原子力显微镜,它是根据扫描隧道显微镜的原理设计的高速拍摄三维图像的显微镜.可观察大分子在体内的活动变化.1608年荷兰的眼睛匠利佩希偶然地制造出了第一架望远镜,它的目镜为一凹透镜,被称为荷兰望远镜.发明望远镜的消息迅速在欧洲传开,1609年伽利略得悉这一消息后,立即动手制作,并把自制的望远镜第一个指向天空,首先发现了月亮上的山脉和火山口.伽利略设计了由两个凸透镜构成的开普勒望远镜,第一架开普勒望远镜由天文学家沙伊纳制成.1668年,牛顿(Newton,I.1642~1727)用2.5 厘米直径的金属,磨制成一块凹面反射镜,并在主镜的焦点前面放置了一个与主镜成45°角的反射镜,使经主镜反射后的会聚光经反射镜以90°角反射出镜筒后到达目镜,制成了反射望远镜.1672年牛顿有制造了第二架反射望远镜,全长1.2m,口径为2m,并把它献给了英国皇家学会.往后的几百年间,人们提出了反射镜的多种设计方案.1918年末,口径为254厘米的胡克望远镜(Hooker telescope)投入使用,它第一次揭示了银河系的真实大小和我们在其中所处的位置,更为重要的是,哈勃(Hubble,E.P.1889~1953)的宇宙膨胀理论就是用胡克望远镜观测的结果.相对于折射镜,反射镜没有色差,容易制作;但它也存在固有的不足:如口径越大,视场越小,物镜需要定期镀膜等.随后又出现了能兼顾折射和反射两种望远镜优点的折反射式望远镜,非常适合业余的天文观测和天文摄影,并且得到了广大天文爱好者的喜爱.它的特点是相对口径很大(甚至可大于1),光力强,视场广阔,像质优良.适于巡天摄影和观测星云、彗星、流星等天体.自1970年代以来,在望远镜的制造方面有了许多新技术,涉及光学、力学、计算机、自动控制和精密机械等领域,使望远镜的制造突破了镜面口径的局限.然而,由于地球大气对电磁波的吸收作用,地面观测具有严重的局限性.物理学在不断地发展,直到人造卫星上天,航天技术逐渐成熟,空间天文学才兴起.1990年4月24日,由美国国家航空与航天局(NASA)和欧洲空间局(ESRO)联合研制的哈勃空间望远镜(HST)的发射成功,是天文学走向空间时代的一个里程碑.空间观测与地面观测相比,有极大的优势:没有了大气层的干扰,恒星不再闪烁.分辨率比起地面的大型望远镜提高了几十倍.灵敏度的提高,使可观测的天体迅速增加.空间没有重力,仪器就不会因自重而变形.频率覆盖范围也大大地变宽,全波段天文观测成为可能,对于光学望远镜,可以接收到宽得多的波段.就哈勃空间望远镜(现已退役)而言,主望远镜是口径为2.4米的反射望远镜,还携带了广角行星照相机,暗弱天体照相机,暗弱天体光谱仪,高分辨率光谱仪,高速光度计,成象光谱仪,近红外照相机,多目标摄谱仪,高级普查摄像仪,高新巡天照相机等精密仪器,观测范围早已突破了可见光波段,向红外和紫外两端延伸.其功能之强大,在天文学的许多领域中作出了巨大的贡献,如:银河系中心、双星系统、近邻星系、宇宙早期星系、黑洞研究等等.在望远镜的庞大家族里,除了以上介绍的光学望远镜以外,还有射电望远镜(radio telescope)、红外望远镜(infrared telescope)、紫外望远镜(ultraviolet telescope)、X 射线望远镜(X-ray telescope)和γ射线望远镜(gamma ray telescope).随着新型显微镜、望远镜的发展和应用,使人类的视野变得更深更广.·与中学物理的衔接中学物理课标对望远镜、显微镜及相关内容的要求是:1.知道显微镜、望远镜的原理.2.用两个不同焦距的凸透镜制作望远镜.3.了解开普勒望远镜和伽利略望远镜的结构.4.通过望远镜原理的及调节要求的学习,可进一步掌握凸透镜呈像的特点及规律·自主学习1.显微镜和望远镜有何异同?2.显微镜和望远镜的调焦方式有何不同?为什么?3.测量标准石英尺时所获得的放大本领为什么不等于物镜的标称放大本领?4、用同一个望远镜观察不同距离的目标时,其视觉放大本领是否不同?5、在光具座上自组装的望远镜(或显微镜),如何调节焦距以获得清晰的像?6.已知什么量?哪个是待测量?如何控制变量?按要求处理实验数据,完成实验报告.·实验探究与设计尝试在光具座上设计并组装望远镜或显微镜,写出实验方案,并完成实验.。

医学知识之显微镜

医学知识之显微镜

显微镜在细菌的形态学检查中以光学显微镜为常用,借助显微镜放大至1000倍左右可以观察到细菌的一般形态和结构,至于细菌内部的超微结构,则需经电子显微镜放大数万倍以上才能看清。

检查细菌常用的显微镜有以下几种:1.普通光学显微镜:普通光学显微镜通常以自然光或灯光为光源,其波长约0.5μm。

在最佳条件下,显微镜的最大分辨率为波长的一半,即0.25μm,而肉眼所能看到的最小形象为0.2mm,故在普通光学显微镜下用油镜放大1000倍,可将0.25μm的微粒放大到0.25mm,肉眼便可以看清,一般细菌大于0.25μm,故用普通光学显微镜均能清楚看到。

2.暗视野显微镜:暗视野显微镜是用特制的暗视野集光器代替普通光学显微镜上的明视野集光器,由于暗视野集光器的中央为不透光的遮光板,光线不能直接射入镜筒,故背景视野黑暗无光,而从集光器四周边缘斜射到标本部位的光线,经菌体散射后而进入物镜。

故在强光的照射下,可以在黑暗的背景中看到发亮的菌体,犹如夜空中的明亮星星。

明暗反差提高了观察的效果,多用于检查不染色的活细菌和螺旋体的形态及运动观察。

3.相差显微镜:在进行未染色标本检查时,由于细菌的折旋光性与周围环境的折旋光性相近,明暗对比不明显。

在普通光学显微镜下不易看清,用暗视野显微镜只能看到发亮的菌体轮廓,看不清内部结构。

而相差显微镜依据光波穿过标本中密度不同的部位时,引起光相差异的原理,利用相差板的光栅作用,改变直射光的光相和振幅,将光相的差异转换成光的强度的差异,使细菌中的某部分结构比其他部分深暗,衬托出鲜明的对比。

本法主要用于检查不染色活细菌的形态及某些内部结构。

4.荧光显微镜:荧光显微镜以紫外光或蓝紫光为光源,能激发荧光物质发光使之成为可见光。

细菌经荧光色素染色后,置于荧光显微镜下,即可激发荧光,因此在暗色的背景下可以看到发射荧光的细菌。

由于紫外光与蓝紫光的波长较短(0.3~0.4μm),故分辨率得到进一步提高。

荧光显微镜还广泛应用于免疫荧光技术中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光学显微镜的放大倍数
显微镜的放大倍数就是指的是“边长的放大倍数”。

比如一台放大100倍的显微镜去看一个1mm边长的正方形,你就会看到正方形的边长变成了10cm那么长,是真实大小的100倍,然后你计算一下放大后的面积,发现是100平方厘米,是原来1平方毫米的10000倍,所以面积是放大了10000倍,是边长放大倍数的平方。

其实普通的光学显微镜是根据凸透镜的成像原理,要经过凸透镜的两次成像。

第一次先经过物镜(凸透镜1)成像,这时候的物体应该在物镜(凸透镜1)的一倍焦距和两倍焦距之间,根据物理学的原理,成的应该是放大的倒立的实像。

而后以第一次成的物像作为“物体”,经过目镜的第二次成像。

由于我们观察的时候是在目镜的另外一侧,根据光学原理,第二次成的像应该是一个虚像,这样像和物才在同一侧。

因此第一次成的像应该在目镜(凸透镜2)的一倍焦距以内,这样经过第二次成像,第二次成的像是一个放大的正立的虚像。

如果相对实物说的话,应该是倒立的放大的虚像。

二倍焦距以外,倒立缩小实像;
一倍焦距到二倍焦距,倒立放大实像;
一倍焦距不成像;
一倍焦距以内,正立放大虚像;
成实像物和像在凸透镜异侧,成虚像在凸透镜同侧。

1、根据你问的问题,你应该问的是光学显微镜。

2、光学显微镜的成像是利用凸透镜的成像原理,如图。

3、显微镜的成像是利用多个凸透镜(透镜组),原理如图。

附:
凸透镜成像规律:
u>2f f<u<2f 成倒立缩小实像
f<u<2f u>2f 成倒立放大实像
u<f ____ 正立放大虚像
u=f 不成像
u=2f 成倒立等大实像
f 表示透镜焦距
u 表示物体与透镜之间距离(简称物距)
显微镜成像的特点
(1)显微镜的物镜与装片的距离是在一倍焦距与二倍焦距之间,成倒立放大的实像,此实像在目镜的一倍焦距之内,成正立放大的虚象。

显微镜下成倒像(上下左右同时颠倒)。

(2)物像移动与装片移动的关系:由于显微镜下成的像是倒立的像,所以物像移动的方向与载玻片移动的方向是相反的。

举例:物像在视野右下方,仍向右下方移动玻片标本,物像移到视野中央。

显微镜成的是倒像,只要把原来的数字或字母等转动180度即可。

相关文档
最新文档