(完整版)导数公式运算习题课

合集下载

导数的基本公式及运算法则习题课

导数的基本公式及运算法则习题课

;
(4)
y
1 cos2
x
;
(5) y 6x3 x ; 1 x2
(6)
y
4 x5
;
(7) y 3 x; 2
练习: 求下列函数的导数:
(3)y=xx-+11;
(4)y=x·tan x.
解:(3)法一:y′=(xx-+11)′ = =xx+-11x+-′1xx2-+11x+-1x=2-1x+2x1+21. ′
f (x) f (x)g(x) f (x)g(x)
g(x)
g ( x)2
(g(x) 0)
推论 1 (cu(x)) = cu(x) (c 为常数).
例 1 设 f (x) = 3x4 – ex + 5cos x - 1,求 f (x) 及 f (0).
解 根据推论 1 可得 (3x4) = 3(x4), (5cos x) = 5(cos x),又(x4) = 4x3, (cos x) = - sin x,(ex) = ex,(1) = 0, 故f (x) = (3x4 ex + 5cos x 1)
(1)y=x(x2+1x+x13);
(2)y=exsin x;
(3)y=xx2++33.
解:(1)∵y=x(x2+1x+x13)=x3+1+x12,∴y′=3x2-x23.
解:(2)y′=(exsin x)′=(ex)′sin x+ex(sin x)′
=exsin x+excos x =ex(sin x+cos x).
x2 ) ' 1 x2 x(2x) (1 x2 )2
1 x2 (1 x 2 ) 2
(4) y ' (2x3 ) ' (3x sin x) ' (e2 ) ' 2(x 3 )'3(x sin x)'0

(完整版)导数的计算练习题及答案

(完整版)导数的计算练习题及答案

【巩固练习】一、选择题1.设函数310()(12)f x x =-,则'(1)f =( )A .0B .―1C .―60D .602.(2014 江西校级一模)若2()2ln f x x x =-,则'()0f x >的解集为( )A.(0,1)B.()(),10,1-∞-C. ()()1,01,-+∞D.()1,+∞3.(2014春 永寿县校级期中)下列式子不正确的是( )A.()'23cos 6sin x x x x +=-B. ()'1ln 22ln 2x x x x -=- C. ()'2sin 22cos 2x x = D.'2sin cos sin x x x x x x -⎛⎫= ⎪⎝⎭ 4.函数4538y x x =+-的导数是( ) A .3543x + B .0 C .3425(43)(38)x x x ++- D .3425(43)(38)x x x +-+- 5.(2015 安徽四模)已知函数()f x 的导函数为'()f x ,且满足关系式2'()3(2)ln f x x xf x =++,则'(2)f 的值等于( )A. 2B.-2C.94 D.94- 6.设曲线1(1)1x y x x +=≠-在点(3,2)处的切线与直线ax+y+1=0垂直,则a=( ) A .2 B .12 C .―12D .―2 7.23log cos (cos 0)y x x =≠的导数是( )A .32log tan e x -⋅B .32log cot e x ⋅C .32log cos e x -⋅D .22log cos e x 二、填空题8.曲线y=sin x 在点,12π⎛⎫ ⎪⎝⎭处的切线方程为________。

9.设y=(2x+a)2,且2'|20x y ==,则a=________。

10.31sin x x '⎛⎫-= ⎪⎝⎭____________,()2sin 25x x '+=⎡⎤⎣⎦____________。

导数计算习题课

导数计算习题课
法则可以推广到两个以上的中间变量.
求复合函数的导数,关键在于分清函数的复合关系,合 理选定中间变量,明确求导过程中每次是哪个变量对哪个 变量求导,一般地,如果所设中间变量可直接求导,就不必再 选中间变量.
例题选讲
例1:求下列函数的导数:
(1) y (2x 1)5
1 (2) y (1 3x)4
回顾与总结
3.复合函数的求导法则: 复合函数 对于两个函数 y f (u) 和 u g(x) ,如果
通过变量 u, y 可以表示成 x 的函数,那么称这个函 数 y f (u) 和 u g(x) 的复合函数,记作 y f (g(x))
复合函数 y f (g(x)) 的导数为 yx ' yu 'ux ' , 即 y 对 x 的导数等于 y 对 u 的导数与 u 对 x 的导数的积.
(3) y (1 sin2 x)4
解:(1)设y=u5,u=2x+1,则:
yx yu ux (u5 )u (2x 1)x 5u4 2 5(2x 1)4 2 10(2x 1)4 .
解: (2)设y=u-4,u=1-3x,则:
yx
yu
ux
(u4 )u
(1 3x)x
4u5
证:由于曲线的图形关于坐标轴对称,故只需证明其中一 个交点处的切线互相垂直即可.
联立两曲线方程解得第一象限的交点为P(3,2),不妨
证明过P点的两条切线互相垂直.
由于点P在第一象限,故由x2-y2=5得 y x2 5, y x ,
k1
y
|x3
3; 2
同理由4x2+9y2=72得
y
x2 5
8 4 x2 , y 4x ;
1 x2

1.2导数的计算(4课时)

1.2导数的计算(4课时)

作业: P18习题1.2A组:1.
1.2
导数的计算
1.2.2 基本初等函数的导数 公式及导数的运算法则 第一课时
问题提出 1.如何求函数f(x)的导数?
y= 2.函数y=c,y=x,y=x2,

f (x + Vx ) - f (x ) f¢ (x ) = lim Vx ® 0 Vx 1
x 的导数分别是什么?.
思考3:若y=c表示路程关于时间的函数, 则y′=0的物理意义如何解释?
物体的瞬时速度始终为0,即物体处于静 止状态.
探究(二):函数y=f(x)=x的导数 思考1:函数f(x)=x的图象是什么?相 对于x的函数值增量△y等于什么? y y =x
v= h(0.5) - h(0) = 4.05(m / s ) 0.5 - 0
f¢ (x ) = k
思考5:函数f(x)=kx(k≠0)的图象是什 么?其导数表示什么? y=kx的图象是过原点的一条直线
f¢ (x ) = k 表示直线y=kx的斜率.
思考6:函数f(x)=kx(k≠0)增(减)的快 慢与k的取值有什么关系? k>0时,k越大,f(x)增加得越快; k<0时,k越大,f(x)减少得越慢.
= ln x 的
导数是什么?
1 (loga x )¢= x ln a
1 (ln x )¢= x
探究(二):导数的四则运算法则
[f (x ) + g(x )]¢ (x ) + g (x ) 相等吗? 思考1: 与 fⅱ 为什么?
[f (x ) + g(x )]ⅱ = f (x ) + g (x )
(x ), g (x ) 有什么关 [f (x ) - g(x )]¢与 f ⅱ 思考2: 系? [f (x ) - g(x )]ⅱ = f (x ) - g (x )

1.2导数计算习题课

1.2导数计算习题课

第一章 1.2
导数及其应用 导数的计算 习题课
回顾与总结
1.常见函数的导数公式 常见函数的导数公式. 常见函数的导数公式
为常数) (C )′ = 0 (C 为常数) 为有理数) ( x n )′ = nx n−1 ( n 为有理数) (sin x )′ = cos x (cos x )′ = -sin x (a x )′ = a x ln a (a > 0,a ≠ 1) 特殊地 (e x )′ = e x 1 1 (log a x )′ = log a e = (a > 0, a ≠ 1) 且 x x ln a 1 特殊地 (ln x )′ = x
2 ∴k2 = y′ |x=3 = − . 3 因为k 所以两条切线互相垂直.从而命题成立 因为 1k2=-1,所以两条切线互相垂直 从而命题成立 所以两条切线互相垂直 从而命题成立.
9 8 − x2 9
利用上述方法可得圆锥曲线的切线方程如下: 利用上述方法可得圆锥曲线的切线方程如下 圆锥曲线的切线方程如下 (1)过圆 过圆(x-a)2+(y-b)2=r2上一点 0(x0,y0)的切线方程是 上一点P 的切线方程是: 过圆 的切线方程是 (x0-a)(x-a)+(y0-b)(y-b)=r2.
2 3 2 3
说明:在对法则的运用熟练后 就不必再写中间步骤 说明 在对法则的运用熟练后,就不必再写中间步骤 在对法则的运用熟练后 就不必再写中间步骤.
y′ = 4(1 + sin x) (1+ sin x) ⋅ x
2 3 2 ’
= 4(1 + sin2 x)3 ⋅ 2sin x ⋅ cos x = 4sin 2x ⋅ (1 + sin2 x)3 .

习题课(导数与微分)

习题课(导数与微分)

利用 f ( x) 在 x = 1 处可导,则必定连续,从而有 − + a + b = 1 = 1 (a + b + 1) f (1 ) = f (1 ) = f (1) 2 即 a=2 ′ ′ f − (1) = f + (1)
机动 目录 上页 下页 返回 结束
ax + b ,
f (x) =
1 ( a+ b + 1) , 2
解y = − ln( 1 −源自x ), 令 u = 1 − x .
y = – lnu .
.
u′ −1 1 dy dy du = . =− = − = ⋅ ∴ y′ = 1− x u 1− x dx du dx
.
(4)复合函数求导练习 题 复合函数求导练习23题 复合函数求导练习
1
o o
( sin 2 x ) ′ = 2 cos 2 x (e
1 14 (ln(1 − x ))′ = − 1− x 3 o 3 15 (ln 2 x )′ = x
o o
.
21 (arcsin3 x )′ = 22 (e )′ = 2 xe
o x2 o
x2
3 1 − 9x2
16 (e 17
o o
o
3 x +1
)′ = 3e
3 x +1
2 (arctan2 x )′ = 1 + 4 x 2
0

).
( (
× ). √ √
).
(
).
(2)判断是非(是: √ 非: × ): 判断是非( 判断是非
.
已知 y = f ( x )在点 x 0 可导 :
f ( x 0 + h) − f ( x 0 ) e . f ′( x 0 ) = lim h→ 0 h f ( x 0 − h) − f ( x 0 ) f . f ′( x 0 ) = lim h→ 0 h f ( x 0 + 3h) − f ( x 0 ) 1 g . f ′( x 0 ) = lim h 3 h→ 0

基本初等函数的导数公式及导数的运算法则习题课 PPT

基本初等函数的导数公式及导数的运算法则习题课  PPT
第一章 导数及其应用
2.对导数的运算法则的理解: (1)两个函数和(或差)的函数的求导法则 设 函 数 f(x) , g(x) 是 可 导 的 , 则 [f(x)±g(x)]′ = f′(x)±g′(x),即两个函数的和(或差)的导数,等于这两个 函数的导数的和(或差). (2)两个函数积的函数的求导法则 设函数f(x),g(x)是可导的,则[f(x)·g(x)]′=f′(x)g(x) +f(x)g′(x).即两个函数积的导数,等于第一个函数的导 数乘上第二个函数,加上第一个函数乘上第二个函数的 导数.
第一章 导数及其应用
5.已知f(x)=x2+ax+b,g(x)=x2+cx+d,又f(2x+ 1)=4g(x),且f′(x)=g′(x),f(5)=30,求g(4).
解:由f(2x+1)=4g(x),得 4x2+2(a+2)x+(a+b+1)=4x2+4cx+4d,
于是有aa++2b=+21c=,4d.
第一章 导数及其应用
A.0
B.1
C.2
D.3
解析:①y=ln2为常数,所以y′=0,①错;②③④
均正确,直接利用公式即可验证.
答案:D
第一章 导数及其应用
2.曲线y=xn在x=2处的导数为12,则n等于( )
A.1
B.2
C.3
D.4
解析:y′|x=2=n·2n-1=12,解得n=3. 答案:C
第一章 导数及其应用
第一章 导数及其应用
练 3 在曲线y=x3+3x2+6x-10的切线中,求斜率 最小的切线方程.
[解] y′=3x2+6x+6=3(x+1)2+3,∴当x=-1时, 切 线 的 斜 率 最 小 , 最 小 斜 率 为 3 , 此 时 , y = ( - 1)3 + 3×( - 1)2 + 6×( - 1) - 10 = - 14 , 切 点 为 ( - 1 , - 14).∴切线方程为y+14=3(x+1),即3x-y-11=0.

《导数习题课》课件

《导数习题课》课件
详细描述
复合函数的导数是通过对中间变量求导,然后将结果代入到外层函数中求导得 到的。掌握复合函数的导数可以帮助我们解决一些复杂的函数问题,如求极值 、判断单调性等。
隐函数的导数
总结词
掌握隐函数的导数是解决隐函数问题 的关键。
详细描述
隐函数的导数是通过对等式两边同时 求导,然后解出对x的导数得到的。掌 握隐函数的导数可以帮助我们解决一 些涉及多个变量的问题,如求最值、 判断曲线的形状等。
THANKS
感谢观看
总结词
导数具有连续性、可加性、可乘性和链式法则等性质 。
详细描述
导数具有一系列重要的性质,包括连续性、可加性、可 乘性和链式法则等。连续性是指函数在某一点的导数等 于该点附近的极限值;可加性是指函数在两点之间的导 数等于两端点导数的和;可乘性是指函数与常数的乘积 的导数等于该常数与函数导数的乘积;链式法则是指复 合函数的导数等于复合函数内部函数的导数与外部函数 的导数的乘积。这些性质在研究函数的单调性、极值和 曲线的拐点等方面具有广泛应用。
导数与函数的最值的综合题
总结词
这类题目通常涉及到利用导 数研究函数的极值和最值,
解决最优化问题。
详细描述
这类题目要求熟练掌握导数 的计算方法和函数的极值判 定,能够利用导数研究函数 的极值和最值,解决最优化
问题。
示例
设函数$f(x) = x^{3} ax^{2} + bx$,若$f(x)$在$( - infty,0)$和$(2, + infty)$上 单调递增,在$(0,2)$上单调 递减,且$f(x)$在$x = 2$处 取得极小值,求$a,b$的值及 $f(x)$的最小值。
导数与函数的零点的综合题
总结词

导数与微分习题课

导数与微分习题课
18
例8 设 y y( x) 是由方程 exy x y 所确定的
隐函数,求: y(0), y(0) .
解 方程两边关于 x 求导,得 ( y xy)exy 1 y , (1)
而 y(0) 1 , y(0) 0 .
(1)式两边再关于x求导:
e xy ( y xy)2 e xy (2 y xy) y ,
lim x sin 1 0 .
x0
x
10
例3 设 f (x) x(x 1)( x 2)(x 100), 求 f (0).
解 f (0) lim f ( x) f (0) x0 x 0
lim x( x 1)( x 2)( x 100)
x0
x
lim( x 1)( x 2)( x 100) x0
x 1 处处可导,求 x1
a,
b 的值.
解 f ( x) 在 x 1 处连续, 1 a b , b 1 a ,
f(1)
lim
x 1
f ( x) f (1) x1
x2 1 lim
x1 x 1
2,
f(1)
lim
x 1
f ( x) f (1) x1
ax b 1 lim
x1 x 1
二阶可导,且 f (t ) 0
,
求 d2 y
.
dx 2
t 1
8.
已知
x
e
y
3t 2 2t sint y
1
0
,求 dy , dy . dx dx t 0
9. 设 y x(sin x)cosx , 求 y.
28
练习题答案
29
设 f ( x) 3x3 x2 x ,则 f ( x) 在 x 0处可

导数公式及导数运算法则1+同步练习【含解析】(可编辑修改word版)

导数公式及导数运算法则1+同步练习【含解析】(可编辑修改word版)

3 x 2x= - ,则 t = 3-1,- 3 B.选修 1-2 基本初等函数的导数公式及导数运算法则一、选择题1.曲线 y1x 3-2 在点(7)处切线的倾斜角为( )A .30°B .45°C .135°D .60°2.设 f (x ) 1 1f ′(1)等于()x A .-1 5 6 6 7 7 C .-D. 663.若曲线 y =x 4 的一条切线 l 与直线 x +4y -8=0 垂直,则 l 的方程为()A .4x -y -3=0B .x +4y -5=0C .4x -y +3=0D .x +4y +3=04.已知 f (x )=ax 3+9x 2+6x -7,若 f ′(-1)=4,则 a 的值等于()A.193 10 B.163 13 C. D. 33 5.已知物体的运动方程是 s =1 4-4t 3+16t 2(t 表示时间,s 表示位移),4则瞬时速度为 0 的时刻是()A .0 秒、2 秒或 4 秒B .0 秒、2 秒或 16 秒C .2 秒、8 秒或 16 秒D .0 秒、4 秒或 8 秒6.曲线 y =x 3-2x +1 在点(1,0)处的切线方程为()= , 则 - 2 , 2A .y =x -1B .y =-x -1C .y =2x -2D .y =-2x -27. 若函数 f (x )=e x sin x ,则此函数图象在点(4,f (4))处的切线的倾斜角为()A. π2 B .0 C .钝角D .锐角8. 曲线 y =x sin x 在点( π π)处的切线与 x 轴、直线 x =π 所围成的三角形的面积为()A. π22B. π2C. 2π21+π)2D. (2 29.设 f 0(x )=sin x ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…,f n +1(x )=f n ′(x ), n ∈N ,则 f 2011(x )等于( )A .sin xB .-sin xC .cos xD .-cos x10.f (x )与g (x )是定义在R 上的两个可导函数,若f (x )、g (x )满足f ′(x )= g ′(x ),则 f (x )与 g (x )满足( )A .f (x )=g (x )B .f (x )-g (x )为常数C .f (x )=g (x )=0D .f (x )+g (x )为常数二、填空题11.设 f (x )=ax 2-b sin x ,且 f ′(0)=1,f ′(π)1a = ,b =3 2.12.设f (x )=x 3-3x 2-9x +1,则不等式f ′(x )<0 的解集为.x ), π 1处的切线的斜率为.3 214. 已知函数 f (x )=ax +b e x 图象上在点 P (-1,2)处的切线与直线 y =-3x 平行,则函数 f (x )的解析式是 .三、解答题15. 求下列函数的导数. (1)y =x 4-3x 2-5x +6(2)y =x 2+cos x(3) y = 1x2(5) y = x + 1x(4)y =x e x(6)y =x sin x(7)y =(2x 2+3)(3x -1)(8) y = ( - 2)2(9) y = x -sinxcos x2 2(10) y =x -1x + 113.曲线 y =cos x 在点 P (x(11) y =sin xx(12) y = ( + 1)( 1-1)16.已知两条曲线 y =sin x 、y =cos x ,是否存在这两条曲线的一个公共点,使在这一点处,两条曲线的切线互相垂直?并说明理由.17. 已知曲线 C 1:y =x 2 与 C 2:y =-(x -2)2.直线 l 与 C 1、C 2 都相切,求直线 l 的方程.x。

导数练习题及答案

导数练习题及答案

导数练习题及答案为了帮助学习者更好地理解与掌握导数的概念与计算方法,以下是一些导数练习题及其详细答案解析。

通过解题的过程,读者可以加深对导数的理解,并熟练掌握导数的计算技巧。

题目一:计算函数 f(x) = x^3 在点 x = 2 处的导数。

解答一:对 f(x) = x^3 进行求导,根据求导规则,可以得到:f'(x) = 3x^2计算 f'(2) 得到导数的值。

代入 x = 2:f'(2) = 3(2)^2 = 12因此,函数 f(x) = x^3 在点 x = 2 处的导数为 12。

题目二:计算函数 f(x) = 2x^2 + 3x - 5 在点 x = -1 处的导数。

解答二:对 f(x) = 2x^2 + 3x - 5 进行求导,根据求导规则,可以得到:f'(x) = 4x + 3计算 f'(-1) 得到导数的值。

代入 x = -1:f'(-1) = 4(-1) + 3 = -1因此,函数 f(x) = 2x^2 + 3x - 5 在点 x = -1 处的导数为 -1。

题目三:计算函数 f(x) = e^x 在点 x = 1 处的导数。

解答三:对 f(x) = e^x 进行求导,根据求导规则,可以得到:f'(x) = e^x计算 f'(1) 得到导数的值。

代入 x = 1:f'(1) = e^1 = e因此,函数 f(x) = e^x 在点 x = 1 处的导数为 e。

题目四:计算函数 f(x) = ln(x) 在点 x = 3 处的导数。

解答四:对 f(x) = ln(x) 进行求导,根据求导规则,可以得到:f'(x) = 1/x计算 f'(3) 得到导数的值。

代入 x = 3:f'(3) = 1/3因此,函数 f(x) = ln(x) 在点 x = 3 处的导数为 1/3。

通过以上导数练习题的解答,读者可以进一步掌握导数的概念与计算方法。

高等数学课件第二章导数的计算 习题课ppt

高等数学课件第二章导数的计算 习题课ppt

lim
3a
x1 x 1
f (1)
lim
x1
f ( x) f (1)
3 x 1 1
lim
Hale Waihona Puke x1x1 x 1 3
3a 1 , 3
f (1) 1
3
a 1, b 8.
9
9
当x 1时,
f
( x)
1 (
x3
8 )
1
x2;
9 93
当x 1时, f ( x) (3 x ) 1 .
33 x2
又 f 0 e ,证明 f x在 , 内处处可导.
解: 取 x y 0 代入恒等式,得 f 0 2 f 0 ,
因此 f 0 0 .
f x lim f x x f x
x 0
x
lim e x f x ex f x f x
x0
x
ex f
lim
0
x
f
0
f
x ex
1
x0
例3.
解:
1
x
2 3
3
所以 y x0 , 即在原点处有垂直切线.
令 1 1 1, 3 3 x2 3
得 x 1, 对应 y 1,
则在点(1,1) , (–1,–1) 处与已知直线平行. 平行的切线方程分别为
y
x 31y
20 y3
x
1
x
3
y
2
0O 1
y
1 1
x
x 1
3
例4.
f



导, 求
u v
uv uv v2
(v
0) .
复合函数的导数: 设函数 y f (u),均u 可导( ,x)

导数的基本公式及运算法则习题课

导数的基本公式及运算法则习题课

(3)令 u=lnx,则 y=lnu, ∴y′x=y′u·u′x =1u·1x=xl1nx. (4)令 u=2x2+1,则 y=eu, ∴y′x=y′u·u′x=eu·4x =4x·e2x2+1.
例2 求下列函数的导数. (1)y=(x2-4)2; (2)y=log2(2x2+3x+1); (3)y=esin(ax+b) 分析 先将复合函数分解,找出中间变量,然后按复合 函数求导公式y′=y′u·u′x进行求导.
gf((xx))f(x)g(xg)(x)f2(x)g(x)(g(x)0)
解 根据推论 1 可得 (3x4) = 3(x4) , (5cos x) = 5(cos x) ,又(x4) = 4x3,
(cos x) = - sin x,(ex) = ex,(1) = 0,
故f (x) = (3x4 - ex + 5cos x - 1) = (3x4) -(ex ) + (5cos x) - (1) = 12x3 - ex - 5sin x . f (0) = (12x3 - ex - 5sin x)|x=0 = - 1
公 式 6 : (e x ) ' e x ;
公 式 7 : (lo g a x ) '
1
(a 0 , 且 a 1);
x ln a
公 式 8 : (ln x ) ' 1 ; x
需要使用导数的运算法则求导:
f(x)g(x)f(x)g(x)
f(x)•g(x)f(x)g(x)f(x)g(x)
推论 1 (cu(x)) = cu (x) (c 为常数).
20XX
感谢观赏 求简单复合函数f(ax+b)的导数
求简单复合函数的导数,实质是运用整体思想,先把简单复

导数的计算习题课

导数的计算习题课

(5) y ln(2 x)
(3) y 1 cos(2x)
2 y 1 co2s t 和 2
y et 和 t 2x
y ln t 和 t 2x
t 2x

y
x
lim
x0
y x
,
yt
lim
t 0
y t
,
t
x
lim
x0
t x
又注意到 y y t
x t x

yx
yt
t
x

yt f (t ),
y
1
cos(2x) 2
ቤተ መጻሕፍቲ ባይዱ
1 2
sin(2x)
(2 x )
sin(2 x)
(4) y (e2x ) e2x (2 x) 2e2x
导数概念是因为求切线的斜率等问题而提出来的,它的提
出是因为研究问题时经常要用到瞬时变化率.一旦提出很快发
现它不仅是一个工具而且是一个相当好的工具,它的应用相当
广阔,这在以后的学习中将会逐渐体会到.
补充练习:
1.垂直于直线 2x 6 y 1 0 且与曲线 y x3 3x2 1
相切的直线方程为__3__x____y____2__. 0
2.求椭圆 x2 y2 1 在点 P(2, 3 3) 处的切线方程.
16 9
2
3x 4y 8 3 0
3.若可导函数 f ( x) 是奇函数,求证:导函数 f (x) 是偶函数.
由函数 y ln 和 x 2 复合得函数 y ln( x 2) ;
事实上,有许多常见函数可以看成是由一些简单函数复合而来的.
例.说出下列函数的复合结构特征:
(1) y (2x 1)3 y t3 和 t 2x 1

超实用高考数学重难点专题复习:导数计算(习题课件)

超实用高考数学重难点专题复习:导数计算(习题课件)

导法

思考1 试求函数y=ln(2x+5)的导数.
答 y′=2x+1 5·(2x+5)′=2x+2 5.
例1 求下列函数的导数: (1)y=32x-1; 解 函数y=32x-1看作函数y=3u与函数u=2x-1的复合, ∴y′=yu′·ux′=(3u)′·(2x-1)′ =(2ln 3)·3u=2·32x-1·ln 3.
导数的计算
1.2.1 几个常用函数的导数 1.2.2 基本初等函数的导数
公式及导数的运算法则
距离高考还有一段时间,不少有经验的老师都会提醒考生,愈是临近高考 ,能否咬紧牙关、学会自我调节,态度是否主动积极,安排是否科学合理,能 不能保持良好的心态、以饱满的情绪迎接挑战,其效果往往大不一样。以下是 本人从事10多年教学经验总结出的超实用新高考数学专题复习讲义希望可以帮 助大家提高答题的正确率,希望对你有所帮助,有志者事竟成!
类型一 利用导数公式求出函数的导数
(1)y=sin π3;(2)y=5x;(3)y=x13;
(4)y=4 x3;(5)y=log3x;(6)y=1-2sin22x.
解 (1)y′=0; (2)y′=(5x)′=5xln 5;
(3)y′=x13′=(x-3)′=-3x-4;
(4)y′=(4
x3)′=(x
解析答案
(5)y=xtan x.
解 f′(x)=(xtan x)′=(xcsoisnxx)′
xsin x′cos x-xsin xcos x′

cos2x
sin x+xcos xcos x+xsin2x

cos2x
sin xcos x+x = cos2x .
解析答案
跟踪训练1 (1)若函数f(x)=(x-1)(x-2)(x-3)(x-4)(x-5),且
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 xlna

1 x
⑨f′(x)±g′(x)
⑩f′(x)g(x)+f(x)g′(x) ⑪f′(x)g(xg)-2(xf)(x)g′(x)
第一章 导数及其应用
1.下列结论正确的个数为
()
①y=ln2,则y′=12 ②y=x12,则y′|x=3=-227 ③y
=2x,则y′=2xln2 ④y=log2x,则y′=xl1n2
第一章 导数及其应用
2.对导数的运算法则的理解: (1)两个函数和(或差)的函数的求导法则 设 函 数 f(x) , g(x) 是 可 导 的 , 则 [f(x)±g(x)]′ = f′(x)±g′(x),即两个函数的和(或差)的导数,等于这两个 函数的导数的和(或差). (2)两个函数积的函数的求导法则 设函数f(x),g(x)是可导的,则[f(x)·g(x)]′=f′(x)g(x) +f(x)g′(x).即两个函数积的导数,等于第一个函数的导 数乘上第二个函数,加上第一个函数乘上第二个函数的 导数.
第一章 导数及其应用
5.已知f(x)=x2+ax+b,g(x)=x2+cx+d,又f(2x+ 1)=4g(x),且f′(x)=g′(x),f(5)=30,求g(4).
解:由f(2x+1)=4g(x),得 4x2+2(a+2)x+(a+b+1)=4x2+4cx+4d,
于是有aa++2b=+21c=,4d.
① ②
由f′(x)=g′(x),得2x+a=2x+c,
∴a=c.③
由f(5)=30,得25+5a+b=30.④
∴由①③可得a=c=2.
第一章 导数及其应用
又由④,得b=-5.再由②,得d=-12. ∴g(x)=x2+2x-12.故g(4)=16+8-12=427.
第一章 导数及其应用
1.对基本初等函数的导数公式的理解: (1)基本初等函数的求导公式只要求记住公式的形式, 学会使用公式解题即可,对公式的推导不要求掌握.(2) 要注意幂函数与指数函数的求导公式的区别,这是易错 点.
第一章 导数及其应用
A.0
B.1
C.2
D.3
解析:①y=ln2为常数,所以y′=0,①错;②③④
均正确,直接利用公式即可验证.
答案:D
第一章 导数及其应用
2.曲线y=xn在x=2处的导数为12,则n等于( )
A.1
B.2
C.3
D.4
解析:y′|x=2=n·2n-1=12,解得n=3. 答案:C
第一章 导数及其应用
(3)y′=(3x4+2x3+5)′=12x3+6x2. (4)y′=(sinx+tanx)′ =(sinx)′+(csoinsxx)′ =cosx+(sinx)′coscxo-s2sxinx(cosx)′ =cosx+cosx·coscxo+s2xsinx·sinx =cosx+co1s2x.
第一章 导数及其应用
2.导数运算法则 (1)[f(x)±g(x)]′=⑨________. (2)[f(x)·g(x)]′=⑩________. (3)[gf((xx))]′=⑪________.
第一章 导数及其应用
自我校对:①0 ②nxn-1 ③cos x ④-sin x
⑤axlna ⑥ex ⑦
1 g(x)
]′
=-g[g′(x()x])2.
第一章 导数及其应用
例1 求下列函数的导数. (1)y=tanx; (2)y=3x2+x·cosx; (3)y=( x-2)2-sin2x·cos2x.
第一章 导数及其应用
[分析] 求函数的导数主要有直接求导和先变形然后
再求导两种方法,要注意正确区分.
[解] (1)y′=(tanx)′=(
sinx cosx
)′=
(sinx)′co(scxo-sxs)i2nx(cosx)′=cos(2cxo+sxs)i2n2x=co1s2x.
(2)y′=(3x2+x·cosx)′=(3x2)′+(x·cosx)′=6x+
x′·cosx+x·(cosx)′=6x+cosx-xsinx.
第一章 导数及其应用
练 1 求下列函数的导数:
(1)y=6 x; (2)y=log3x; (3)y=3x4+2x3+5; (4)y=sinx+tanx. [解] (1)∵y=6 x=x16, ∴y′=(x16)′=16x16-1=16x-56. (2)y′=(log3x)′=xl1n3.
第一章 导数及其应用
第一章 导数及其应用
推论:常数与函数的积的导数,等于常数乘函数的
导数.
即[cf(x)]′=cf′(x).
(3)两个函数商的函数的求导法则
设函数f(x),g(x)是可导的,且g(x)≠0,则[
f(x) g(x)
]′=
f′(x)g(x)-f(x)g′(x) [g(x)]2
,特别地,当f(x)=1时,有[
(3)y′=[(
x
-2)2-sin
ቤተ መጻሕፍቲ ባይዱ
x 2
·cos
x 2
]′=[(
x -2)2]′-( 12
sinx)′=(x-4 x+4)′-12cosx=1- 2x-12cosx.
第一章 导数及其应用
[点拨] 理解和掌握求导法则和公式的结构是灵活进 行求导运算的前提条件,当函数解析式较为复杂时,应 先变形,然后求导,当函数解析式不能直接用公式时, 也要先变形,使其符合公式形式.
基本初等函数的导数公式及导数的运 算法则习题课
第一章 导数及其应用
1.基本初等函数的导数公式 (1)若f(x)=c,则f′(x)=①________. (2)若f(x)=xn,则f′(x)=②________. (3)若f(x)=sin x,则f′(x)=③________. (4)若f(x)=cos x,则f′(x)=④________. (5)若f(x)=ax,则f′(x)=⑤________. (6)若f(x)=ex,则f′(x)=⑥________. (7)若f(x)=logax则f′(x)=⑦________. (8)若f(x)=ln x,则f′(x)=⑧________.
3.若曲线y=f(x)在点(x0,f(x0))处的切线方程为2x+
y-1=0,则
()
A.f′(x0)>0 C.f′(x0)=0 答案:B
B.f′(x0)<0 D.f′(x0)不存在
第一章 导数及其应用
4.函数y=sixnx的导数为________. 解析:y′=(sinx)′x-x2sinx·(x)′=xcosxx-2 sinx. 答案:xcosxx-2 sinx
相关文档
最新文档