轴的设计计算

合集下载

轴的设计计算

轴的设计计算

第四章:轴的设计计算第一节:输入轴的设计:输入轴的设计::选取轴的材料和热处理方法:选取轴的材料为45钢,经过调质处理,硬度240=HB 。

:初步估算轴的直径:30min nP A d ≥ 根据选用材料为45钢,0A 的范围为103~126,选取0A 值为120,高速轴功率kW P 81.7=,min /500r n =,代入数据:mm d .85.4150081.71203min =⨯≥ 考虑到轴的外伸端上开有键槽,将计算轴颈增大3%~7%后,取标准直径为45mm 。

输入轴的结构设计:输入轴系的主要零部件包括一对深沟球轴承,考虑到轴的最小直径为45mm ,而差速器的输入齿轮分度圆为70mm ,设计输入轴为齿轮轴,且外为了便于轴上零件的装卸,采用阶梯轴结构。

(1)外伸段:输入轴的外伸段与带轮的从动齿轮键连接,开有键槽,选取直径为mm 45,长为mm 78。

(2)密封段:密封段与油封毡圈5019974406/-ZQ JB 配合,选取密封段长度为mm 60,直径为mm 50。

(3)齿轮段:此段加工出轴上齿轮,根据主动轮mm B 70=,选取此段的长度为mm 100,齿轮两端的轴颈为mm 5.12,轴颈直径为mm 63。

(4)左右两端轴颈段:左右两端轴颈跟深沟球轴承6309配合,采用过度配合k6,实现径向定位,根据轴承,25mm B =端轴颈直径为mm 60,长度左端为mm 30和右端为mm 28。

(5)退刀槽:为保证加工到位,和保证装配时相邻零件的端面靠紧,在齿轮段两端轴颈处加工退刀槽,选取槽宽为mm 5,槽深为mm 2。

(7)倒角:根据推介值(mm ):50~30>d ,6.15.1或取C 。

80~50>d ,2取C 。

输入轴的基本尺寸如下表:输入轴的结构图::输入轴的受力分析::画出受力简图::计算支座反力:(1)作用于齿轮上的圆周力:N d T F I t 85.4589065.017.149222=⨯== (2)作用于齿轮上的径向力:N F F o t r 33.149120tan 85.458920tan ===ο(3)计算在水平面上的反力:N .F F F r NV NV 67.7452331491221====(4)计算在垂直面上的反力:N F F F t NH NH 93.2294285.4389221====:计算弯矩: (1)计算水平面上的弯矩:m N .L F M NV V ⋅=⨯=⨯=33.50356767.745111m N .L F M NV V ⋅=⨯=⨯=33.50356767.74522221V V V M M M ==(2)计算垂直面上的弯矩:m N L F M NH H ⋅=⨯=⨯=08.15495.6793.2294111m N .L F M NH H ⋅=⨯=⨯=08.154956703.229422221H H H M M M ==(3)计算合成弯矩:m N M M M H V ⋅=+=+=80.162808.154933.5032221211 m N M M M H V ⋅=+=+=80.162808.154933.503222222221M M M ==(4)计算转矩:m N n P T I I ⋅=⨯==17.14950081.795509550 (5)计算截面当量弯矩: ()()m N ..αT M M ⋅=⨯+=+=89.163217.149608016282222 取应力校正系数6.0=α。

轴的设计、计算、校核

轴的设计、计算、校核

轴得设计、计算、校核以转轴为例,轴得强度计算得步骤为:一、轴得强度计算1、按扭转强度条件初步估算轴得直径机器得运动简图确定后,各轴传递得P与n为已知,在轴得结构具体化之前,只能计算出轴所传递得扭矩,而所受得弯矩就是未知得。

这时只能按扭矩初步估算轴得直径,作为轴受转矩作用段最细处得直径dmin,一般就是轴端直径。

根据扭转强度条件确定得最小直径为:(mm)式中:P为轴所传递得功率(KW)n为轴得转速(r/min)Ao为计算系数,查表3若计算得轴段有键槽,则会削弱轴得强度,此时应将计算所得得直径适当增大,若有一个键槽,将d min增大5%,若同一剖面有两个键槽,则增大10%。

以dmin为基础,考虑轴上零件得装拆、定位、轴得加工、整体布局、作出轴得结构设计。

在轴得结构具体化之后进行以下计算。

2、按弯扭合成强度计算轴得直径l)绘出轴得结构图2)绘出轴得空间受力图3)绘出轴得水平面得弯矩图4)绘出轴得垂直面得弯矩图5)绘出轴得合成弯矩图6)绘出轴得扭矩图7)绘出轴得计算弯矩图8)按第三强度理论计算当量弯矩:式中:α为将扭矩折合为当量弯矩得折合系数,按扭切应力得循环特性取值:a)扭切应力理论上为静应力时,取α=0、3。

b)考虑到运转不均匀、振动、启动、停车等影响因素,假定为脉动循环应力,取α=0、59。

c)对于经常正、反转得轴,把扭剪应力视为对称循环应力,取α=1(因为在弯矩作用下,转轴产生得弯曲应力属于对称循环应力)。

9)校核危险断面得当量弯曲应力(计算应力):式中:W为抗扭截面摸量(mm3),查表4。

为对称循环变应力时轴得许用弯曲应力,查表1。

如计算应力超出许用值,应增大轴危险断面得直径。

如计算应力比许用值小很多,一般不改小轴得直径。

因为轴得直径还受结构因素得影响。

一般得转轴,强度计算到此为止。

对于重要得转轴还应按疲劳强度进行精确校核。

此外,对于瞬时过载很大或应力循环不对称性较为严重得轴,还应按峰尖载荷校核其静强度,以免产生过量得塑性变形。

轴的设计计算

轴的设计计算

轴的设计计算轴的计算通常都是在初步完成结构设计后进行校核计算,计算准则是满足轴的强度和刚度要求。

一、轴的强度计算进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。

对于仅仅承受扭矩的轴(传动轴),应按扭转强度条件计算;对于只承受弯矩的轴(心轴),应按弯曲强度条件计算;对于既承受弯矩又承受扭矩的轴(转轴),应按弯扭合成强度条件进行计算,需要时还应按疲劳强度条件进行精确校核。

此外,对于瞬时过载很大或应力循环不对称性较为严重的轴,还应按峰尖载荷校核其静强度,以免产生过量的塑性变形。

下面介绍几种常用的计算方法:按扭转强度条件计算。

1、按扭转强度估算轴的直径对只受转矩或以承受转矩为主的传动轴,应按扭转强度条件计算轴的直径。

若有弯矩作用,可用降低许用应力的方法来考虑其影响。

扭转强度约束条件为:[]式中:为轴危险截面的最大扭剪应力(MPa);为轴所传递的转矩(N.mm);为轴危险截面的抗扭截面模量();P为轴所传递的功率(kW);n为轴的转速(r/min);[]为轴的许用扭剪应力(MPa);对实心圆轴,,以此代入上式,可得扭转强度条件的设计式:式中:C为由轴的材料和受载情况决定的系数。

当弯矩相对转矩很小时,C值取较小值,[]取较大值;反之,C取较大值,[]取较小值。

应用上式求出的值,一般作为轴受转矩作用段最细处的直径,一般是轴端直径。

若计算的轴段有键槽,则会削弱轴的强度,作为补偿,此时应将计算所得的直径适当增大,若该轴段同一剖面上有一个键槽,则将d增大5%,若有两个键槽,则增大10%。

此外,也可采用经验公式来估算轴的直径。

如在一般减速器中,高速输入轴的直径可按与之相联的电机轴的直径估算:;各级低速轴的轴径可按同级齿轮中心距估算,。

几种轴的材料的[]和C值轴的材料Q2351Cr18Ni9Ti354540Cr,35SiMn,2Cr13,20CrMnTi []12~2012~2520~3030~4040~52160~135148~125135~118118~107107~982、按弯扭合成强度条件校核计算对于同时承受弯矩和转矩的轴,可根据转矩和弯矩的合成强度进行计算。

轴的设计计算

轴的设计计算

轴的设计计算2)根据轴向定位的要求确定轴的各段直径和长度如上图 从左到右依次为1d 2d 3d 4d 5d 6d 7d 与大带轮配合的轴 mm d 381= mm d d d 08.4408.63808.02112=+=⨯+= 取mm d 452= mm d d 4523=≥ 且此处为基孔制配合(其中孔为轴承内孔) 取mm d 503=mm d d 5034=≥ 取mm d 554= mmd d d 8.638.85508.02445=+=⨯+=取mm d 645=mm d d d 5885008.02336=+=⨯+= mm d d 5037== mm l 831=mm l 502252=⨯=∆++=s b l 3由于使用的轴承为深沟球轴承6010(GB/T276-1993)查《机械设计手册》P64表6-1得b=16mm主动轴如左图的装配方案mm d 381=mm d 452=mm d 503=mm d 554=mm d 645=mm d 586=对于从动轴:1)拟定轴上零件的装配方案现选用如图所示的装配方案从动轴如左图所示的装配方案mm mm h b 1422⨯=⨯,键槽用键槽铣刀加工,长为80mm ,选择齿轮轴毂与轴的配合为67k H ;同样半联轴器与轴的连接,选用平键为mm mm mm l h b 901118⨯⨯=⨯⨯,半联轴器与轴的配合为67k H 。

滚动轴承与轴的周向定位是通过过渡配合来保证的,此处选轴的直径尺寸公差为m64)确定轴上圆角和倒角尺寸 参考《机械设计》教材P365表15-2 mm d 601= mm d 757= 取轴端倒角为0452⨯,各轴肩处的圆角半径见轴的俯视图上标注(3) 按弯扭合成应力校核轴的强度 1)主动轴的强度校核圆周力 1t F =112000d T =2000×255.86/93=5502.37N 径向力1r F =1t F tan α=5502.37×tan20°=5502.37×0.36=1980.85N 由于为直齿圆柱齿轮,轴向力1a F =0带传动作用在轴上的压力齿轮轴毂与轴的配合为67k H半联轴器与轴的配合为67k H 。

轴的设计计算

轴的设计计算

轴的设计计算【一】能力目标1.了解轴的功用、分类、常用材料及热处理。

2.能合理地进行轴的结构设计。

【二】知识目标1.了解轴的分类,掌握轴结构设计。

2.掌握轴的强度计算方法。

3.了解轴的疲劳强度计算和振动。

【三】教学的重点与难点重点:轴的结构设计难点:弯扭合成法计算轴的强度【四】教学方法与手段采用多媒体教学(加动画演示),结合教具,提高学生的学习兴趣。

【五】教学任务及内容任务 知识点轴的设计计算 1. 轴的分类、材料及热处理2. 轴的结构设计3. 轴的设计计算一、轴的分类(一)根据承受载荷的情况,轴可分为三类1、心轴 工作时只受弯矩的轴,称为心轴。

心轴又分为转动心轴(a )和固定心轴(b)。

2、传动轴 工作时主要承受转矩,不承受或承受很小弯矩的轴,称为传动轴。

3、转轴工作时既承受弯矩又承受转矩的轴,称为转轴。

(二)按轴线形状分:1、直轴(1)光轴作传动轴(应力集中小)(2)阶梯轴优点:1)便于轴上零件定位;2)便于实现等强度2、曲轴另外还有空心轴(机床主轴)和钢丝软轴(挠性轴)——它可将运动灵活地传到狭窄的空间位置。

如牙铝的传动轴。

二、轴的结构设计轴的结构设计就是确定轴的外形和全部结构尺寸。

但轴的结构设计原则上应满足如下要求:1)轴上零件有准确的位置和可靠的相对固定;2)良好的制造和安装工艺性;3)形状、尺寸应有利于减少应力集中;4)尺寸要求。

(一)轴上零件的定位和固定轴上零件的定位是为了保证传动件在轴上有准确的安装位置;固定则是为了保证轴上零件在运转中保持原位不变。

作为轴的具体结构,既起定位作用又起固定作用。

1、轴上零件的轴向定位和固定:轴肩、轴环、套筒、圆螺母和止退垫圈、弹性挡圈、螺钉锁紧挡圈、轴端挡圈以及圆锥面和轴端挡圈等。

2、轴上零件的周向固定:销、键、花键、过盈配合和成形联接等,其中以键和花键联接应用最广。

(二)轴的结构工艺性轴的结构形状和尺寸应尽量满足加工、装配和维修的要求。

为此,常采用以下措施:1、当某一轴段需车制螺纹或磨削加工时,应留有退刀槽或砂轮越程槽。

轴的设计计算

轴的设计计算

第七章 轴的设计计算一、初步确定轴的尺寸1、高速轴的设计及计算:高速轴功率kw p 11.21=,转速min /7101r n =。

选取轴的材料为40Cr 、调质处理、由《机械设计》教材表15-3,取1000=A ,得mm 377.14mm 71011.210033110min ≈⨯==n p A d 考虑轴上开有一个键槽对轴强度的削弱,轴径增大%7~%5,并圆整后mm d 15=,轴承选用角接触球轴承7205C ,B=15mm ,综合减速器其他零件的布置和减速器箱体的轮廓,高速轴初步设计如下:2、中间轴的设计及计算:中间轴功率kw p 03.22=,转速min /4.1612r n =。

选取轴的材料为40Cr 、调质处理、由《机械设计》教材表15-3,取1050=A ,得mm 419.24mm 4.16103.210533220min ≈⨯==n p A d 考虑轴上开有两个键槽对轴强度的削弱,轴径增大%15~%10,并圆整后mm d 25=,轴承选用角接触球轴承7205C ,B=15mm ,综合减速器其他零件的布置和减速器箱体的轮廓,中间轴初步设计如下:安装大齿轮处的键型号为:键10⨯36GB1096-79 安装小齿轮处的键型号为:键10⨯70GB1096-79 3、低速轴的设计及计算:低速轴功率kw p 95.13=,转速min /4.433r n =。

选取轴的材料为40Cr 、调质处理、由《机械设计》教材表15-3,取970=A ,得mm 484.34mm 4.4395.19733330min ≈⨯==n p A d 考虑轴上开有两个键槽对轴强度的削弱,轴径增大%15~%10,并圆整后mm d 35=,轴承选用角接触球轴承7209C ,B=19mm ,综合减速器其他零件的布置和减速器箱体的轮廓,低速轴初步设计如下:安装大齿轮的键型号为:键18⨯65GB1096-97 安装联轴器处的键为:键16⨯125GB1096-97二、轴的校核以中间轴的校核为代表,中间轴的功率为kw p 03.22=,转速为min /4.1612r n =,转矩11.1202=T N ·m 。

(9) 减速器轴的设计计算.doc

(9) 减速器轴的设计计算.doc

轴的设计1、轴的机构设计 (1) 轴的设计计算① 轴的直径的确定(Ⅰ轴) 按扭转强度条件计算: 3npA do ≥ 其中:首选45号钢进行设计,查表A O =120,P=10.56 ,n=486.7r/min 于是d 1≥33.47取d 1=34m②作用在齿轮上的力F t =112d T =31033.7723.2072⨯⨯=5.34⨯103N (其中:T 1为Ⅰ轴受到的转矩,d 1为齿轮1的直径)F r =F t βcos tan n a ⨯=2⨯103N (其中:αn 为齿轮的压力角,β为螺旋角)F a =F t ·tan β=1342N同理可求得Ⅱ轴、Ⅲ轴的直径和轴上齿轮的受力: Ⅱ轴 d 2≥42.4 mm 取d 2=45 mm 轴上齿轮的受力:F t =2700 N 、F r = 1023 N 、 F a =780 NⅢ轴 d 3≥63.7 mm 取d 3=65 mm 轴上齿轮的受力:F t =8340 N 、F r =3100 N 、 F a =1800 N (2) 校核轴上轴承的受力和轴承的寿命 Ⅰ轴1、求轴承受到的径向载荷F r1和F r2将轴系部件受到的空间力系分解为铅垂面和水平面的两个力系,如下图所示根据图示力的分析可知道:由图(b )得F r1v =5.1905.6625.661+⨯-⨯d Fa Fr =5.1905.6625.678145.661007.13+⨯-⨯⨯=170N F r2v =F r -F r1v =1070-170=900NF r1H =5.1905.665.66+F t =7.29⨯102F r2H =F r -F r1H =2820-729=2091F r1=2211Hr F F v r +=22900170+=748.6 NF r2=2222H r v r F F +=222091729+=2276.5 N 2 求两轴承的计算轴向力F a1和F a2对于70000AC 型轴承,按表13-7轴承的派生轴向力为F d =0.68⨯F r (5-8)F d1=0.68×F r1=0.68×748.6=509.6 N F d2=0.68×F r2=0.68×2276.5=1547.99 N 根据轴向力和轴承的安装方向分析可知,轴承2压紧:∴ F a1=F d1=509.6 NF a2=F a +F d1=1323 N3 求轴承的当量动载荷 11r a F F =6.7486.509=0.68=e(5-9)22r a F F =5.22761323=0.58<e 由表13-5分别进行查表或插值计算得径向载荷系数和轴向载荷系数为: 对与轴承1: X 1=1 ; Y 1=0 对轴承2: X 2=1 ; Y 2=0 因轴承运转中有轻微的冲击载荷,按照表13-6,f p =1.0~1.2则 P 1=f p(X 1F r1+Y 1F a1)=1.1×(1×748.6+0×2362)=823.46(5-10)P 2=f p (X 2F r2+Y 2F a22)=1.1×(1×2276.5+0)=2504.15 (5-11) 4 计算轴承的寿命L h =ε⎪⎪⎭⎫⎝⎛266010P C n =72060106⨯⨯315.250423500⎪⎭⎫ ⎝⎛=19131 h<28800 h(5-12)寿命不能满足工作要求,所以应选择中载系列,选用型号为7307AC,在次进行验证:L h ’=72060106⨯⨯398.259732800⎪⎭⎫ ⎝⎛=420839 h>28800 h(5-13)满足工作寿命的要求,所以轴承选用7307AC 系列。

机械设计轴的设计计算

机械设计轴的设计计算

机械设计轴的设计计算
机械设计轴的设计计算主要包括以下几个方面:
1. 轴的尺寸计算:根据所需的扭矩及转速计算轴的直径及轴长,选择合适的轴材料及表面加工方式。

2. 轴的强度计算:根据轴材料的抗拉强度、抗压强度、弹性模量等参数,计算轴的最大等效应力及安全系数。

3. 轴的转动稳定性计算:根据轴的几何形状、转动速度、转动方向等参数,计算轴的临界转速及转动稳定性。

4. 轴的支撑方式计算:根据轴的重量及受力情况,计算轴的支撑方式以及所需的轴承类型、尺寸及数量。

5. 轴的动态平衡设计:根据轴的转动速度、质量分布情况等参数,计算轴的动态不平衡力,并设计相应的平衡装置。

6. 轴的表面处理设计:根据轴的使用环境及要求,选择适当的表面处理方式,如镀铬、喷涂、硬化等,以提高轴的耐磨性及抗腐蚀性。

以上是机械设计轴的设计计算的主要内容,要根据具体情况进行细致的计算与设
计。

机械设计 轴的计算

机械设计 轴的计算

e k m ω
2
ω m
Fc
− 1
k mω
2
⇒ 1 时,y ⇒ ∞ 共振
k mω
2
⇒ 1 时,y ⇒ ∞,共振 ω c =
k g = y0 m
产生共振时的角速度(或转速) 产生共振时的角速度(或转速)称临界角速 度
ω (或临界转速 c
y0
nc =
30ωc
π

避免共振, 工作转速 避免共振,
n 不能接近临界转速。 不能接近临界转速。
[σ − 1 ]b
σ −1 = S
对于心轴, 对于心轴,T=0,
σ ca
M = ≤ [σ −1 ]b W
3、按安全系数法的精确校核计算 、按安全系数法的精确校核计算 Sσ Sτ S ca = ≥ S S σ2 + S τ2 σ −1 Sσ = kσ有效应力集中系数 Kσσ a +ψ σσ m ε σ 尺寸系数
m 3z3 n csin β3 = ar m z sinβ2 n2 2
n1
F1 a
3
nⅡ
F3 a
nⅢ
F4 r
4
F3 r
F2 t
· F
t3
F4 t
1
F1 r
F4 a
F2 r
· F1 t
注意: 注意:
F2 a
2

1、力画在啮合线 、力画在啮合线 附近; 附近; 2、标明各力符号; 、标明各力符号;
= 9 . 4 kW
n1 n3 = = 93 . 6 r / min i 6 P3 T3 = 9.55 × 10 = 959100 N ⋅ mm n3 2、求齿轮受力 Ft = 5000 N

机械课程设计轴的计算

机械课程设计轴的计算

五 轴的设计计‎算一、高速轴的设‎计1、求作用在齿‎轮上的力高速级齿轮‎的分度圆直‎径为d 151.761d mm =112287542339851.761te T F N d ⨯=== tan tan 2033981275cos cos1421'41"n re te F F N αβ=⋅=⨯=tan 3398tan13.7846ae te F F N β==⨯=。

2、选取材料可选轴的材‎料为45钢‎,调质处理。

3、计算轴的最‎小直径,查表可取0112A =331min 015.2811223.44576P d A mm n ==⨯=应该设计成‎齿轮轴,轴的最小直‎径显然是安‎装连接大带‎轮处,为使与带轮‎d Ⅰ-Ⅱ 相配合,且对于直径‎100d mm ≤的轴有一个‎键槽时,应增大5%-7%,然后将轴径‎圆整。

故取25d mm =Ⅰ-Ⅱ 。

4、拟定轴上零‎件的装配草‎图方案(见下图)5、根据轴向定‎位的要求,确定轴的各‎段直径和长‎度(1)根据前面设‎计知大带轮‎的毂长为9‎3mm,故取90L mm I-II =,为满足大带‎轮的定位要‎求,则其右侧有‎一轴肩,故取32d mm II-III =,根据装配关‎系,定35L mm II-III =(2)初选流动轴‎承7307‎A C ,则其尺寸为‎358021d D B mm mm mm ⨯⨯=⨯⨯,故35d mm d III-∨I ∨III-IX ==,III -I∨段挡油环取‎其长为19‎.5mm,则40.5L mm III-I∨=。

(3)III -I∨段右边有一‎定位轴肩,故取42d mm III-II =,根据装配关‎系可定100L mmIII-II =,为了使齿轮‎轴上的齿面‎便于加工,取5,44L L mm d mm II-∨I ∨II-∨III II-∨III ===。

(4)齿面和箱体‎内壁取a=16mm,轴承距箱体‎内壁的距离‎取s =8mm,故右侧挡油‎环的长度为‎19mm,则42L mm ∨III-IX =(5)计算可得123104.5,151,50.5L mm L mm L mm ===、(6)大带轮与轴‎的周向定位‎采用普通平‎键C 型连接‎,其尺寸为10880b h L mm mm mm ⨯⨯=⨯⨯,大带轮与轴‎的配合为76H r ,流动轴承与‎轴的周向定‎位是过渡配‎合保证的,此外选轴的‎直径尺寸公‎差为m6. 求两轴承所‎受的径向载‎荷1r F 和2r F带传动有压‎轴力P F (过轴线,水平方向),1614P F N =。

轴的设计计算

轴的设计计算

轴的设计计算轴的计算通常都是在初步完成结构设计后进行校核计算,计算准则是满足轴的强度和刚度要求。

一、轴的强度计算进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。

对于仅仅承受扭矩的轴(传动轴),应按扭转强度条件计算;对于只承受弯矩的轴(心轴),应按弯曲强度条件计算;对于既承受弯矩又承受扭矩的轴(转轴),应按弯扭合成强度条件进行计算,需要时还应按疲劳强度条件进行精确校核。

此外,对于瞬时过载很大或应力循环不对称性较为严重的轴,还应按峰尖载荷校核其静强度,以免产生过量的塑性变形。

下面介绍几种常用的计算方法:按扭转强度条件计算。

1、按扭转强度估算轴的直径对只受转矩或以承受转矩为主的传动轴,应按扭转强度条件计算轴的直径。

若有弯矩作用,可用降低许用应力的方法来考虑其影响。

扭转强度约束条件为:[]式中:为轴危险截面的最大扭剪应力(MPa);为轴所传递的转矩(N.mm);为轴危险截面的抗扭截面模量();P为轴所传递的功率(kW);n为轴的转速(r/min);[]为轴的许用扭剪应力(MPa);对实心圆轴,,以此代入上式,可得扭转强度条件的设计式:式中:C为由轴的材料和受载情况决定的系数。

当弯矩相对转矩很小时,C值取较小值,[]取较大值;反之,C取较大值,[]取较小值。

应用上式求出的值,一般作为轴受转矩作用段最细处的直径,一般是轴端直径。

若计算的轴段有键槽,则会削弱轴的强度,作为补偿,此时应将计算所得的直径适当增大,若该轴段同一剖面上有一个键槽,则将d增大5%,若有两个键槽,则增大10%。

此外,也可采用经验公式来估算轴的直径。

如在一般减速器中,高速输入轴的直径可按与之相联的电机轴的直径估算:;各级低速轴的轴径可按同级齿轮中心距估算,。

几种轴的材料的[]和C值[]2、按弯扭合成强度条件校核计算对于同时承受弯矩和转矩的轴,可根据转矩和弯矩的合成强度进行计算。

计算时,先根据结构设计所确定的轴的几何结构和轴上零件的位置,画出轴的受力简图,然后,绘制弯矩图、转矩图,按第三强度理论条件建立轴的弯扭合成强度约束条件:考虑到弯矩所产生的弯曲应力和转矩所产生的扭剪应力的性质不同,对上式中的转矩乘以折合系数,则强度约束条件一般公式为:式中:称为当量弯矩;为根据转矩性质而定的折合系数。

轴的设计计算(主动轴)

轴的设计计算(主动轴)

d1 =25 (mm ) , d 2 = d1 +2h=25+2×1.5=28 (mm )
考虑到该轴段上的密封件尺寸,取 d 2 =28 (mm )
轴承初选 6306 深沟球轴承。轴承宽度 B=19 (mm )
d 3 =30mm
d 4 =32mm
d 7 =30mm
d 6 =37mm
d 5 = d 4 +2h=32+2×(0.07~0.1)×37
联轴器处
4T = 22.64 <[ σ p ]=(100~120)MPa dhl
L=40mm
l=40- =36 h=7 l=40-4=36 h=7mm
σp =
4 × 43500 = 27.62 <[ σ p ]=(100~120)MPa 25 × 7 × 36
故所选键连接合适
3
则 从动轴 d ≥ c
P =(118~107) n
3
2.23 =19.55~17.73 490
考虑键槽 d×1.05≥18.62~20.53
该轴外端安装有联轴器,选用弹性套柱销联轴器
T
C
=KT=1.5×9550 2.23 =261.84
122
孔径为 25 (mm )
3 轴的结构设计 根据轴上零件的定位、装拆方便的需要,同时考虑到强度的原则,主动轴和从 动轴均设计为阶梯轴。 (1) 轴径确定
R VA = RVB =0.5 Ft =836.5N
M HC = 49.5 × 304.5 = 15073 ( N ⋅ mm)
M VC =49.5×836.5=41407 ( N ⋅ mm) 转矩 T=43500 ( N ⋅ m)
M C = M HC + M VC = 15073 2 + 41407 2 =44065 ( N ⋅ mm)

轴的设计计算及校核实例

轴的设计计算及校核实例

轴的设计计算及校核实例
轴是用来支撑旋转的机械零件,如齿轮、带轮、链轮、凸轮等。

轴的设计计算主要包括选材、结构设计和工作能力计算。

以下是一个轴的设计计算及校核实例:
1. 按扭矩初算轴径:选用45#调质,硬度217-255HBS。

根据()2表14-1、P245(14-2)式,并查表14-2,取c=115,得d≥115×(5.07/113.423)1/3mm=40.813mm。

考虑有键槽,将直径增大5%,则d=40.813×(1+5%)=4
2.854mm。

初选d=50mm。

2. 选择轴承:因轴承同时受有径向力和轴向力的作用,故选用单列角接触球轴承。

参照工作要求并根据,根据d=50mm,选取单列角接触球轴承7208AC型。

在进行轴的设计时,需要考虑多方面的因素,并进行详细的计算和校核。

如果你需要进行轴的设计计算,建议咨询专业的工程师或查阅相关设计手册。

轴的设计计算

轴的设计计算

轴的设计和计算需要考虑到以下因素:
1. 轴的材料及其特性,如弹性模量、屈服强度、硬度、疲劳极限等;
2. 轴的几何形状,如直径、长度、转角等;
3. 轴所承受的载荷类型、大小和方向,如弯曲载荷、剪切载荷、轴向载荷等;
4. 轴所处的工作环境,如温度、湿度、腐蚀等因素的影响。

轴的计算公式主要有以下几个:
1. 轴的直径计算公式:d=K*P^(1/3),其中d为轴的直径,K为系数,P为功率。

2. 轴的弯曲应力计算公式:σ=M*y/I,其中σ为弯曲应力,M为弯矩,y为轴截面上的距离,I为轴截面的惯性矩。

3. 轴的扭转应力计算公式:τ=T*r/J,其中τ为扭转应力,T为扭矩,r为轴半径,J为极限扭转惯性矩。

4. 轴的疲劳强度计算公式:S=Kf*S0,其中S为轴的疲劳强度,Kf为系数,S0为基本疲劳强度。

以上公式仅为轴的设计和计算中的一部分,实际应用中需要根据具体情况进行综合考虑和计算。

轴的计算设计说明

轴的计算设计说明

轴的设计与校核高速轴的计算。

(1)选择轴的材料选取45钢,调制处理,参数如下: 硬度为HBS =220抗拉强度极限σB =650MPa 屈服强度极限σs =360MPa 弯曲疲劳极限σ-1=270MPa 剪切疲劳极限τ-1=155MPa 许用弯应力[σ-1]=60MPa 二初步估算轴的最小直径由前面的传动装置的参数可知1n= 323.6 r/min;1p=6.5184(KW);查表可取OA=115;机械设计第八版370页表15-3==311minnpAdo 3323.66.518115⨯=31.26mm 三.轴的机构设计(1)拟定轴上零件的装配方案如图(轴1),从左到右依次为轴承、轴承端盖、小齿轮1、轴套、轴承、带轮。

(2)根据轴向定位的要求确定轴的各段直径和长度 1.轴的最小直径显然是安装带轮处的直径1d,取∏-I d=32 mm ,为了保证轴端挡圈只压在带轮上而不压在端面上,,故Ⅰ段的长度应比带轮的宽度略短一些,取带轮的宽度为50 mm ,现取47l mm Ⅰ=。

带轮的右端采用轴肩定位,轴肩的高度111.0~07.0dd h =,取h =2.5mm ,则Ⅲ-∏d=37 mm 。

轴承端盖的总宽度为20 mm ,根据轴承端盖的拆装及便于对轴承添加润滑脂的要求,取盖端的外端面与带轮的左端面间的距离l =30 mm ,故取∏l=50 mm.2.初步选责滚动轴承。

因为轴主要受径向力的作用,一般情况下不受轴向力的作用,故选用深沟球滚动轴承,由于轴Ⅲ-∏d=37 mm ,故轴承的型号为6208,其尺寸为=d 40mm ,=D 80mm,18=B mm.所以ⅣⅢ-d=ⅣⅢ-d=40mm ,ⅣⅢ-l=ⅧⅦ-l=18mm3.取做成齿轮处的轴段Ⅴ–Ⅵ的直径ⅥⅤ-d=45mm ,ⅥⅤ-l=64mm取齿轮距箱体内壁间距离a =10mm , 考虑到箱体的铸造误差, 4.在确定滚动轴承位置时,应距箱体内壁一段距离s , 取s =4mm ,则=-V IV l s+a =4mm +10mm =14mmⅤⅣ-d=48mm同理ⅦⅥ-l=s+a=14mm ,ⅦⅥ-d=43 mm至此,已经初步确定了各轴段的长度和直径 (3)轴上零件的轴向定位齿轮,带轮和轴的轴向定位均采用平键(详细的选择见后面的键的选择过程)(4)确定轴上的倒角和圆角尺寸参考课本表15-2,取轴端倒角为1×45°,各轴肩处的圆角半径R=1.2mm(四)计算过程1.根据轴的结构图作出轴的计算简图,如图,对于6208深沟球滚轴承的mm a 9=,简支梁的轴的支承跨距: L=32LL+=l llllⅧⅦⅦⅥⅥⅤⅤⅣⅣⅢ-----++++-2a=18+14+64+14+18-2⨯9=120mm1L=47+50+9=106mm ,2L=55 mm,3L=65mm2.作用在齿轮上的力d T F t 212==4203.1952⨯=916.6N==βαcos tan ntrFF333.6NN FF t a6.916==计算支反力水平方向的ΣM=0,所以055.110.2=-F F t H N ,F HN 2=458.3N=-65.110.1F F t NH 0,F NH 1=541.6N垂直方向的ΣM=0,有=-65.110.1F F r NV 0, FNV 1=197N =-55.110.2F Fr NV 0,FNV 2=166.8N计算弯矩 水平面的弯矩32LF MNH CH⨯==653.458⨯=29789.5mm N ⋅垂直面弯矩=⨯=⨯=55197211L F MNV CV 10840mm N ⋅=⨯=⨯=658.166322L F MNV CV 10840mm N ⋅合成弯矩1C M =122CV CH M M +=31700mm N ⋅ 2C M =222CV CH M M +=31700mm N ⋅根据轴的计算简图做出轴的弯矩图和扭矩图,可看出C 为危险截面,现将计算出的截面C 处的H V M M 、及M 的值列于下表:3.按弯扭合成应力校核轴的硬度进行校核时,通常只校核轴上承受最大弯距和扭距的截面(即危险截面C )的强度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

轴的设计计算【一】能力目标1.了解轴的功用、分类、常用材料及热处理。

2.能合理地进行轴的结构设计。

【二】知识目标1.了解轴的分类,掌握轴结构设计。

2.掌握轴的强度计算方法。

3.了解轴的疲劳强度计算和振动。

【三】教学的重点与难点重点:轴的结构设计难点:弯扭合成法计算轴的强度【四】教学方法与手段采用多媒体教学(加动画演示),结合教具,提高学生的学习兴趣。

【五】教学任务及内容任务知识点轴的设计计算1. 轴的分类、材料及热处理2. 轴的结构设计3. 轴的设计计算(一)根据承受载荷的情况,轴可分为三类1、心轴工作时只受弯矩的轴,称为心轴。

心轴又分为转动心轴(a)和固定心轴(b)。

2、传动轴工作时主要承受转矩,不承受或承受很小弯矩的轴,称为传动轴。

3、转轴工作时既承受弯矩又承受转矩的轴,称为转轴。

(二)按轴线形状分:1、直轴(1)光轴作传动轴(应力集中小)(2)阶梯轴优点:1)便于轴上零件定位;2)便于实现等强度2、曲轴另外还有空心轴(机床主轴)和钢丝软轴(挠性轴)——它可将运动灵活地传到狭窄的空间位置。

如牙铝的传动轴。

二、轴的结构设计轴的结构设计就是确定轴的外形和全部结构尺寸。

但轴的结构设计原则上应满足如下要求:1)轴上零件有准确的位置和可靠的相对固定;2)良好的制造和安装工艺性;3)形状、尺寸应有利于减少应力集中;4)尺寸要求。

(一)轴上零件的定位和固定轴上零件的定位是为了保证传动件在轴上有准确的安装位置;固定则是为了保证轴上零件在运转中保持原位不变。

作为轴的具体结构,既起定位作用又起固定作用。

1、轴上零件的轴向定位和固定:轴肩、轴环、套筒、圆螺母和止退垫圈、弹性挡圈、螺钉锁紧挡圈、轴端挡圈以及圆锥面和轴端挡圈等。

2、轴上零件的周向固定:销、键、花键、过盈配合和成形联接等,其中以键和花键联接应用最广。

(二)轴的结构工艺性轴的结构形状和尺寸应尽量满足加工、装配和维修的要求。

为此,常采用以下措施:1、当某一轴段需车制螺纹或磨削加工时,应留有退刀槽或砂轮越程槽。

2、轴上所有键槽应沿轴的同一母线布置。

3、为了便于轴上零件的装配和去除毛刺,轴及轴肩端部一般均应制出45º的倒角。

过盈配合轴段的装入端常加工出带锥角为30º的导向锥面。

4、为便于加工,应使轴上直径相近处的圆角、倒角、键槽、退刀槽和越程槽等尺寸一致。

(三)提高轴的疲劳强度轴大多在变应力下工作,结构设计时应尽量减少应力集中,以提高其疲劳强度。

1、结构设计方面轴截面尺寸突变处会造成应力集中,所以对阶梯轴相邻轴段直径不宜相差太大,在轴径变化处的过渡圆角半径不宜过小。

尽量避免在轴上开横孔、凹槽和加工螺纹。

在重要结构中可采用凹切圆角、过渡肩环,以增加轴肩处过渡圆角半径和减小应力集中。

为减小轮毂的轴压配合引起的应力集中,可开减载槽。

2、制造工艺方面提高轴的表面质量,降低表面粗糙度,对轴表面采用碾压、喷丸和表面热处理等强化方法,均可显著提高轴的疲劳强度。

(四)各轴段的直径和长度的确定1、各轴段直径确定a) 按扭矩估算所需的轴段直径d min ; b) 按轴上零件安装、定位要求确定各段轴径。

注意:①与标准零件相配合轴径应取标准植;②同一轴径轴段上不能安装三个以上零件。

2、各轴段长度① 与各轴段上相配合零件宽度相对应;②考虑零件间的适当间距——(特别)是转动零件与静止零件之间必须有一定的间隙。

三、轴的强度计算 (一)轴的扭转强度计算圆轴扭转的强度条件为][..ττ≤⨯==362010559d n PW T p由上式可得轴的直径计算公式:3362010559n PA n P d =⨯≥][..τ式中 A —计算常数,与轴的材料和承载情况有关上式计算求得的轴颈,对有一个键槽的轴段应增大3%,对有两个键槽的轴段应增大7%。

(二)按弯扭合成强度计算在轴的结构设计初步完成后,通常要对转轴进行弯扭合成强度校核。

对于钢制轴可按第三强度理论计算,强度条件为:be e d aT M WM ][.)(132210-≤+==σσ由上式可推得轴设计公式为:)(][.mm M d be3110-≥σe σ—当量应力(N/㎜2);M e —当量弯矩(N ·㎜),22)(aT M M e +=;M 为危险截面上的合成弯矩,)(mm N M M M V H •+=22,其中M H 、M V 分别为水平面上、垂直面上的弯矩。

W -轴危险截面弯曲截面系数,对圆截面W ≈0.1d 3。

α-折合系数。

对于不变的扭矩,3011.][][≈=+-bba σσ;对于脉动循环扭矩,59001.][][≈=-bba σσ;对于频繁正反转的轴,τ可视为对称循环交变应力,取α=1。

若扭矩变化规律不清,一般也按脉动循环处理;、b ][1-σb ][0σ、b ][1+σ—分别为对称循环、脉动循环及静应力状态下材料的许用弯曲应力当危险截面有键槽时,应将计算得轴径增大4%~7%。

(三)轴的刚度计算防止轴过大的弹性变莆而影响轴上零件的正常工作,要求控制其受载后的变形量不超过最大允许变形量。

1、弯曲刚度按材料力学公式计算出轴的挠度y 和偏转角θ挠曲线方程:EI X M dxy d )(22= 挠度:][y y ≤ 积分二次 偏转角:][θθ≤积分一次 [y]——轴的允许挠度,mm [θ]——轴的允许偏转角mm ,rad 2、扭转刚度——每米长的扭转角度扭转角][ϕϕ≤ °/mP GI TL=ϕ一般传动轴,许用扭转角m /1~5.0][︒︒=ϕ,精密传动轴:m /5.0~25.0][︒︒=ϕ (四)轴的振动稳定性及临界转速轴由于组织不均匀,加工误差等原因,质心会偏离轴线产生离心力,随着轴的旋转离心力(方向)会产生周期性变化→周期性的干扰力→弯曲振动(横向)→当振动频率与轴本身的弯曲自振频一致时→产生弯曲共振现象。

——较常见另外,当轴传递的功率有周期性变化时→扭转振动→扭转共振。

临界转速cn ——轴引起共振时的转速称为临界转速,在临界转速附近,轴将产生显著变形。

同型振动有多个临界转速,其中最低的叫一阶临界转速,其余的叫二、三阶临界转速。

工作转速n 低于一介临界转速n c1称为刚性轴 工作转速n 高于一介临界转速n c1称为挠性轴一般:刚性轴:185.0c n n < n c1、n c2——分别为一阶和二阶临界转速 挠性轴:2185.015.1c c n n n <<∴高速轴应使其工作转速避开相应的高阶临界转速。

提高轴的强度、刚度和减轻轴的重量的措施(补充) 四、轴的材料及选择轴的材料主要是碳素钢和合金钢。

碳素钢比合金钢价廉,对应力集中敏感性较小,应用较为广泛。

常用的碳素钢有30、40、45和50钢,其中以45钢应用最广。

为改善其机械性能,可进行正火或调质处理。

合金钢具有较好的机械性能,但价格较贵。

当载荷大,要求尺寸小,重量轻或有其它特殊要求的轴,可采用合金钢。

球墨铸铁容易获得复杂的形状,而且吸振性好,对应力集中敏感性低,适用于制造外形复杂的轴,如曲轴和凸轮轴等。

注意:①由于碳素钢与合金钢的弹性模量基本相同,所以采用合金钢并不能提高轴的刚度。

②轴的各种热处理(如高频淬火、渗碳、氮化、氰化等)以及表面强化处理(喷丸、滚压)对提高轴的疲劳强度有显著效果。

轴的常用材料及力学性能见表13.4 五、轴的设计1、选择轴的材料根据轴的工作要求,并考虑工艺性和经济性,选择合适的材料。

2、初步确定轴的直径可按扭转强度条件计算轴最细部分的直径,也可用类比法确定。

3、轴的结构设计根据轴上零件的数量、工作情况及装配方案,画出阶梯结构设计草图。

由轴最细部分的直径递推各段轴直径,相邻两段轴直径之差通常可取为5~10㎜。

各段轴的长度由轴上各零件的宽度及装配空间确定。

4、轴的强度校核首先对轴上传动零件进行受力分析,画出轴弯矩图和扭矩图,判断危险截面,然后对轴危险截面进行强度校核。

当校核不合格时,还要改变危险截面尺寸,进而修改轴的结构,直至校核合格为止。

因此,轴的设计过程是反复、交叉进行的。

小结:1、轴的分类,轴的常用材料及热处理。

2、轴的结构设计3、轴的强度计算。

作业与思考:1、轴按功用与所受载荷的不同分哪几种?常见的轴大多属于哪一种?2、轴的结构设计应从哪几个方面考虑?3、轴上零件的周向固定有哪些方法?采用键固定时应注意什么?2.1.1 概述轴是机械中非常重要的零件,用来支承回转运动零件,如带轮、齿轮、蜗轮等,同时实现同一轴上不同零件间的回转运动和动力的传递。

1. 轴的分类根据工作过程中轴的中心线形状的不同,轴可以分为:直轴和曲轴。

根据工作过程中的承载不同,可以将轴分为:•传动轴:指主要受扭矩作用的轴,如汽车的传动轴。

•心轴:指主要受弯矩作用的轴。

心轴可以是转动的,也可以是不转动的。

•转轴:指既受扭矩,又受弯矩作用的轴。

转轴是机器中最常见的轴。

根据轴的外形,可以将直轴分为光轴和阶梯轴;根据轴内部状况,又可以将直轴分为实心轴和空。

2. 轴的设计⑴ 轴的工作能力设计。

主要进行轴的强度设计、刚度设计,对于转速较高的轴还要进行振动稳定性的计算。

⑵ 轴的结构设计。

根据轴的功能,轴必须保证轴上零件的安装固定和保证轴系在机器中的支撑要求,同时应具有良好的工艺性。

一般的设计步骤为:选择材料,初估轴径,结构设计,强度校核,必要时要进行刚度校核和稳定性计算。

校核结果如不满足承载要求时,则必须修改原结构设计结果,再重新校核。

3. 轴的材料轴是主要的支承件,常采用机械性能较好的材料。

常用材料包括:•碳素钢:该类材料对应力集中的敏感性较小,价格较低,是轴类零件最常用的材料。

常用牌号有:30、35、40、45、50。

采用优质碳钢时,一般应进行热处理以改善其性能。

受力较小或不重要的轴,也可以选用Q235、Q255等普通碳钢。

•合金钢:对于要求重载、高温、结构尺寸小、重量轻等使用场合的轴,可以选用合金纲。

合金钢具有更好的机械性能和热处理性能,但对应力集中较敏感,价格也较高。

设计中尤其要注意从结构上减小应力集中,并提高其表面质量。

•铸铁:对于形状比较复杂的轴,可以选用球墨铸铁和高强度的铸铁。

它们具有较好的加工性和吸振性,经济性好且对应力集中不敏感,但铸造质量不易保证。

2.1.2 轴的结构设计根据轴在工作中的作用,轴的结构取决于:轴在机器中的安装位置和形式,轴上零件的类型和尺寸,载荷的性质、大小、方向和分布状况,轴的加工工艺等多个因素。

合理的结构设计应满足:轴上零件布置合理,从而轴受力合理有利于提高强度和刚度;轴和轴上零件必须有准确的工作位置;轴上零件装拆调整方便;轴具有良好的加工工艺性;节省材料等。

1. 轴的组成轴的毛坯一般采用圆钢、锻造或焊接获得,由于铸造品质不易保证,较少选用铸造毛坯。

相关文档
最新文档