直线回归与相关分析
第十章 直线回归与相关分析
115 125 128 143 132 121 129 112 120 130 125.5
135 137 128 127 155 132 148 117 134 132 134.5
图10-2 NaCl含量对单位叶面积干物重影响的散点图
Y . X X
含义是:对于变量X的每一个值,都有一个Y 的分布,这个分布的平均数就是该线性函数。
ˆ a bX Y
回归截距 与x值相对应的依变量y的点估计值
此方程称为Y对X的直线回归方程(linear regression equation),画出的直线称为回归线 ( regression line)。
ˆ Y a bx
ˆi ) 2 L ( yi y
i 1 n
Y
最小
编号 1 2 3 4 5 血球体积x /mm3 45 52 56 48 42 红血球数y /106 6.53 6.30 9.52 7.50 6.99 6 7 8 9 10 编号 血球体积x /mm3 35 58 40 39 50 红血球数y /106 5.90 9.49 6.20 6.55 8.72
n n
整理后得:
an b xi yi i1 i1 n n n a xi b xi2 xi yi i1 i1 i1
解正规方程得:
x y ( x )( y ) / n b x ( x ) / n ( x x)( y y) = S S ( x x)
第二节:一元线性回归 1 散点图的绘制
2 一元正态线性回归模型 3 直线回归方程的参数估计和回归方 程的建立 4 直线回归的假设检验
5 直线回归的方差分析
6 直线回归的意义( 自学)
23第七章直线回归与相关分析
研究“一因一果”,即一个自变量与一 个依变量的回归分析称为一元回归分析; 研究“多因一果”,即多个自变量与一 个依变量的回归分析称为多元回归分析。 一元回归分析又分为直线回归分析与曲 线回归分析两种; 多元回归分析又分为多元线性回归分析 与多元非线性回归分析两种。
回归分析:揭示出呈因果关系的相关变 量间的联系形式,建立它们之间的回归方程, 利用所建立的回归方程,由自变量(原因)来预 测、控制依变量(结果)。
SS x ( 159.0444) 2
144.6356
249.5556 74.6670
所以
S yx
2 ˆ ( y y )
n2
74.6670 = 3.2660 (天) 92
【题一】下表为每1000 g土壤中所含NaCl 的不同克数(x),对植物单位叶面积干物质 (Y)的影响,试建立其回归方程。 土壤NaCl含量 x/g· kg-1 干重 y/mg· y bx
(7-3)式中的分子是自变量 x 的离均差与
依变量 y 的离均差的乘积和 ( x x )( y y ) ,
简称乘积和,记作 SP ,分母是自变量 x 的离 xy
均差平方和 ( x x )2,记作 SS x。
a 叫做样本回归截距,是总体回归截距α的 最小二乘估计值也是无偏估计值,是回归直线
资料如下表,建立 y 与 x 的直线回归方程。
表7-1 平均温度累积值(x)与一代三化螟盛发期(y)资料
年份 1956 1957 1958 1959 1960 1961 1962 1963 1964 累积温 x 35.5 34.1 31.7 40.3 36.8 40.2 31.7 39.2 44.2 盛发期 y 12 16 9 2 7 3 13 9 –1
第9章直线回归与相关分析(田间试验与统计分析 四川农业大学)
解正规方程组,得:
田间试验与统计分析
Field Experiment and Statistical Analysis
协同变异的大小和性质
均积
协方差
Copyright © 2019 Sichuan Agricultural University All Rights Reserved Producer:Dr. Liu Yongjian
1、作散点图
(月/日)
y, 5/30 20
一
代 三
5/25
15
化
螟 5/20 10
盛
发
期 5/15
5
田间试验与统计分析
Field Experiment and Statistical Analysis
5/10
0
yˆ 48.5485 1.0996x
5/5
-5
29
34
39
44
49
x,3月下旬至4月中旬平均温度累计值
Copyright © 2019 Sichuan Agricultural University All Rights Reserved Producer:Dr. Liu Yongjian
田间试验与统计分析
Field Experiment and Statistical Analysis
相关变量间的关系
田间试验与统计分析
田间试验与统计分析
Field Experiment and Statistical Analysis
图9-1 (x,y)散点图
Copyright © 2019 Sichuan Agricultural University All Rights Reserved Producer:Dr. Liu Yongjian
直线相关与回归分析
三、回归分析之作用: 1、可以找到关键少数“x” 2、可以对“y”进行预测 3、可以对“y”进行优化 4、可确定如何设置“x”以达到优化y的目的
四、直线回归 --是用直线回归方程表示两个数量变量间依存关 系的统计分析方法,属双变量分析的范畴。
五、回归关系的检验
又称回归方程的检验,其目的是检验求得的回 归方程在总体中是否成立,即是否样本代表的总体 也有直线回归关系。方法有以下两种: 1、方差分析 --其基本思想是将总变异分解为 SS回归和SS剩余,然后利用F检验来判断回归方程 是ห้องสมุดไป่ตู้成立。 2、t检验--其基本思想是利用样本回归系数b 与总体均数回归系数进行比较来判断回归方程是否 成立,实际应用中因为回归系数b的检验过程较为复 杂,而相关系数r的检验过程简单并与之等价,故一般用 相关系数r的检验来代替回归系数b的检验。
九、案例分析 某公司测得其产品厚度(X)与抗击力(Y) 的关系有如下数据:
请判定X,Y之间线性关系是否显著?
解:
2、计算--相关系数是x,Y的离均差积和lxy除 以X的离均差平方和lxx与Y的离均差平方和lyy之积的 算术平方根的商。故此相关系数又被称为积差相关 系数。
3、相关关系的检验标准 因变量y与自变量x之间是否存在相关关系,在 求回归方程的过程中并不能回答,因为对任何无规 律的试验点,均可配出一条线,使该线离各点的误 差最小。为检查所配出的回归方程有无实际意义, 可以用相关关系,或称相关系数检验法。 在实际应用中,判断r值与1接近到何程度时, 才认为x与y是相关的,或者说,所配出的回归方程 才是有意义的,需要对照相关系数临界值表来判断, 当计算的相关系数r的绝对值大于表中显著性水平为 0.05和相应的自由度f=n-2下的临界值r0.05,f时,则表 示y与x是显著相关的。如显著性水平取0.01,r计算> r0.01,f时,则表示y与x有非常显著的相关关系。
直线相关和回归分析
第二节 直线回归
一、线性回归的概念
目的:
在因变量Y和自变量X之间建立一个数 学模型,根据这个模型可以根据自变量的变 动预测因变量的变动。
区别于函数关系和统计关系
❖函数关系: 两变量的数量表现在一定条件下是完全确 定的。
如: 圆的面积和半径的关系S r2
❖统计关系(相关关系):两变量的数量表 现尽管存在着密切关系,但却不是完全确 定的。 如:成本和利润的关系
简单线性回归模型
样本线性回归方程
Yˆ a bX
Yˆ 为给定X 时Y 的估计值。
a 为回归直线在 Y 轴上的截距
即x 取0时,y 的平均估计值
➢ a >0,表示直线与纵轴的交点在原点的上方 ➢ a < 0,则交点在原点的下方 ➢ a = 0,则回归直线通过原点
b为回归系数,即直线的斜率
➢ b>0,直线从左下方走向右上方,Y 随 X 增大
16
0.206
0.317 0.400 0.468 0.542 0.590 0.631 0.678
17
0.197
0.308 0.389 0.456 0.529 0.575.378 0.444 0.515 0.561 0.602 0.648
…
…
…
…
…
…
而增大
➢ b<0,直线从左上方走向右下方,Y 随 X 增大
而减小
➢ b=0,表示直线与 X 轴平行,X 与Y 无直线关
系
b 的统计学意义是:X 每增加(减)一个单位,Yˆ
平均改变b个单位
建立 线性回归模型的步骤
1、确定研究的问题
2、设样本回归模型(如: Y a )bx
3、搜集样本资料(数据资料) 4、估计未知参数(计算统计量) 5、得到样本回归方程 6、用模型预测因变量
直线相关与回归分析
第七章 多元回归及相关
第一节 多元线性回归的基本概念
事物间的相互联系往往是多方面的,在很多情 况下对应变量y 发生影响的自变量往往不止一个 。 多元线性回归的目的就是用一个多元线性回归方 程表示多个自变量和1个应变量间的关系。
yˆ b0 b1x1 b2x2 bi xi bmxm
直线回归相关分析的注意事项:
2. 在进行直线回归前应绘制散点图,有直 线趋势时,才适宜作直线回归分析。散 点图还能提示资料有无异常点。
3. 直线回归方程的适用范围一般以自变量 的取值范围为限。
直线回归相关分析的注意事项:
4. 对同一组资料作回归和相关分析, 其相关系数和回归系数的显著性检验结果完 全相同。由于相关系数的显著性检验结果可 直接查表,比较方便;而回归系数的显著性 检验计算复杂,故在实际应用中常用相关系 数的显著性检验结果代替回归系数的显著性 检验。
第六节 多元回归在医学中的应用
1.一。根据较易测得的自变量推算不易测得的应变量 如:用身高, 体重推算体表面积 。
二。确定各自变量xi取不同值时,y的正常值范围 如:建立一个由身高,体重推算心象面积的多元
回归方程,利用此方程就可分别求出身高, 体重取不同 值的组合时,心象面积的正常值范围。
三。预测预报 如:建立心肌梗塞预报方程或脑卒中预报方程。
逐步回归分析方法示意:
X和Y的离均差积和
x x 2 x2 x2 n
X的离均差平方和
相关系数的显著性检验
H0 : 0 H1 : 0
sr
r tr sr
1 r2 n2
df n 2
样本相关系 数的标准误
查t界值表, 得P值
例6.1 极谱法和碘量法测定水中溶解氧的含 量,两法的测得值是否有相关性?
统计学中直线相关与回归的区别与联系
统计学中直线相关与回归的区别与联系在统计学中,直线相关和回归是两个相关的概念,但又有一些区别和联系。
区别:
1. 定义:直线相关是指两个变量之间的线性关系,即随着一个变量的增加,另一个变量也以一定的比例增加或减少。
回归分析是一种统计方法,用于建立一个或多个自变量与因变量之间的关系模型。
2. 目的:直线相关主要关注变量之间的关系和相关程度,通过相关系数来衡量。
而回归分析旨在通过建立数学模型来预测或解释因变量的变化,以及评估自变量对因变量的影响。
3. 变量角色:在直线相关中,两个变量没有明确的自变量和因变量的区分,它们之间的关系是对称的。
而在回归分析中,通常有一个或多个自变量作为预测因变量的因素。
联系:
1. 线性关系:直线相关和回归分析都假设变量之间存在线性关系,即可以用直线或线性模型来描述它们之间的关系。
2. 相关系数:直线相关中使用相关系数来度量变量之间的相关程度。
回归分析中也使用相关系数,但更多地关注回归模型的参数估计和显著性检验。
3. 数据分析:直线相关和回归分析都是常用的数据分析方法,在实际应用中经常同时使用。
直线相关可以帮助我们了解变量之间的关系和趋势,而回归分析可以进一步建立模型和进行预测。
总之,直线相关和回归分析是统计学中两个相关但又有区别的概念。
直线相关关注变量之间的线性关系和相关程度,而回归分析则更关注建立模型和预测变量之间的关系。
在实际应用中,它们常常相互补充使用,以帮助我们理解和解释数据。
[课件]第八章 直线回归与相关分析PPT
(2)F检验:
U 176 . 4 F ( n 2 ) ( 5 2 ) 4 . 96 Q 106 . 6
因为 F , 4 . 96 F 10 . 13 0 . 05 ( 1 , 3 ) .05 。说明小白鼠体重和日龄间 所以, p 0 的直线关系不显著。
相关分析(correlation analysis)3
研究“一因一果”,即一个自变量与一个依 变量的回归分析称为一元回归分析;
直线回归分析 曲线回归分析
研究“多因一果”,即多个自变量与一个依 变量的回归分析称为多元回归分析。
多元线性回归分析
多元非线性回归分析
第二节:直线回归
Linear Regression
回归和相关分析结果仅适用于自变量的试验取值 范围。
9
2. 进行直线回归分析时应符合的基本条件 (基本假定) (1)x是没有误差的固定变量;而y是随机 变量,具有随机误差。 (2)x的任一值都对应着一个y的总体,且 呈正态分布。
(3)随机误差是相互独立的,且呈正态分
布。
10
对两个变量间的线性关系的显著性进行检验时, 采用的方法是 F 检验或 t 检验。 直线回归中,只有一个自变量,所以回归平方和 的自由度为1,离回归平方和的自由度为n-2 。 1. 计算回归平方和U和离回归平方和Q:
序号 日龄 x 体重 y 1 6 12 2 9 17 3 12 22 4 15 25 5 18 29
13
(一)求回归方程: (1)由观测值计算6个一级数据
n 5
x 6 9 12 15 18 60 x 6 9 12 15 18 810
第十五章--直线相关与直线回归分析
n
5
Lyy
2
Y Y
Y2
Y 2 =27.86-112 =3.66
n
5
Lxy
X X
Y Y
XY
25 6
❖ 1.绘制散点图 有相关关系,再作回归分析 ❖ 2.计算回归系数
41
❖ (1)编制回归系数计算表:求基础数据
X 75
Y 11
X 2 1375
Y 2 27.86
XY 194.25
42
(2)计算离均差平方和及离均差积和
Lxx
2
XX
X2
X 2 =1375-752 =250
tr
r
n2 1-r 2
=n-2=12-2=10 t=7.73,查t值表P436, t0.05(10) 2.228
上述计算t=7.73>2.228,由t所推断的P值小于0.05,按
=0.05水准拒绝H0 ,接受H1, r为正值,说明唾液
药物浓度与血液药物浓度存在正相关关系。
23
相关一定有内在联系吗?
5
第一节 直 线 相 关 分 析
Linear Correlation
6
1.直线相关概念
❖ 概念:描述和推断两个(事件、现象)正态 变量(x、y)总的变化趋势上协同变化规律性 的密切程度和方向(但又非确定的函数关系) 的统计分析方法。
❖ 协同变化:同增同减,此增彼减
7
2.直线相关的特点:
❖ 两变量同时进入数据分析; ❖ 两变量不区别为原因变量和结果变量,
20
(3)直 线 相 关 系 数 的 假 设 检 验
❖ 上例中的相关系数r等于0. 9256,说明了12名癫痫病人的唾 液药物浓度与血液药物浓度之间存在相关关系。但是,这12 名癫痫病人只是总体中的一个样本,由此得到的相关系数会 存在抽样误差。
直线相关与回归分析的区别和联系
直线相关与回归分析的区别和联系
1、区别
(1)资料要求不同相关要求两个变量是双变量正态分布;回归要求因变量Y服从正态分
布,而自变量X是能精确测量和严格控制的变量。
(2)统计意义不同相关反映两量变间的伴随关系,这种关系是相互的、对等的,不一定
有因果关系;回归则反映两变量间的依存关系,有自变量和因变量之分,一般将“因”
或较易测定、变异较小者定为自变量。
这种依存关系可能是因果关系,也可能是从属关系。
(3)分析目的不同相关分析的目的是把两变量间直线关系的密切程度及方向用一统计
指标表示出来;回归分析的目的则是把自变量与因变量的关系用函数公式定量表达出来。
2、联系
(1)变量间关系的方向一致对同一资料,其r与b的正负号一致。
(2)假设检验等价对同一样本,而这的概率值相同
(3)r与b值可相互转换。
(4)用回归解释相关相关系数的平方成为决定系数,是回归平方和与总的离均差平均和之比,故回归平方和是引入相关变量后总平方和减少的部分,其大小取决
于r2。
回归平方和越接近总平方和,则r2越接近1,说明引入相关的效果越好;
反之,则说明引入相关的效果不好或意义不大。
第 1 页共1 页。
生物统计学:第七章 直线回归与相关分析
特别要指出的是:利用直线回归方程进行预 测或控制时,一般只适用于原来研究的范围,不 能随意把范围扩大,因为在研究的范围内两变量 是直线关系,这并不能保证在这研究范围之外仍 然是直线关系。若需要扩大预测和控制范围,则 要有充分的理论依据或进一步的实验依据。利用 直线回归方程进行预测或控制,一般只能内插, 不要轻易外延。
(三)、相关系数的显著性检验
统计学家已根据相关系数r显著性t检验法计算出了 临界r值并列出了表格。 所以可以直接采用查表法对相 关系数r进行显著性检验。
先根据自由度 n-2 查临界 r 值 ( 附表8 ), 得 r0.05(n2) ,r0.01(n2)。若|r|< r0.05(n2),P>0.05,则相 关系数r不显著,在r的右上方标记“ns”;若 r0.05(n2) ≤|r|< r0.01(n2) ,0.01<P≤0.05,则相关系数 r 显 著,在r的右上方标记“*”;若|r|≥ r0.01(n2) ,P ≤ 0.01, 则相关系数 r 极显著,在 r 的右上方标记 “**”。
第七章 直线回归与相关分析
在试验研究中常常要研究两个变量间的关系。 如:人的身高与体重、作物种植密度与产量、食品价格与需
求量的关系等。 两个关系 依存关系:依变量Y随自变量X变化而变化。
—— 回归分析 互依关系:依变量Y与自变量X间的彼此关系.
—— 相关分析
一 直线回归
(一)、直线回归方程的建立 对于两个相关变量x和y,如果通过试验或调查 获得它们的n对观测值: (x1,y1),(x2,y2),……,(xn,yn) 为了直观地看出x和y间的变化趋势,可将每一 对观测值在平面直角坐标系描点,作出散点图。
y)2 y)2
SPxy 2 SSxSS y
SPxy SS x
直线相关与回归分析
第九章:直线回归依变量y 的实际观测值总是带有随机误差,因而依变量y 的实际观测值yi 可用自变量x 的实际观测值xi 表示为:i i i x y εβα++= (i=1,2, …, n)x 为可以观测的一般变量(也可以是可以观测的随机变量); y 为可以观测的随机变量;i 为相互独立,且都服从N (0,σ2)的随机变量。
在x 、y 直角坐标平面上可以作出无数 条直线,我们把所有直线中最接近散点图中全部散点的直线用来表示x 与y 的直线关系,这条直线称为回归直线。
设回归直线的方程为: bx a y +=ˆ ( 其中,a 是α的估计值,b 是β的估计值。
)xxy SS SPx x y y x x n x x n y x xy b =---=--=∑∑∑∑∑∑∑222)())((/)(/))((x b y a -=式中的分子是自变量x 的离均差与依变量y 的离均差的乘积和))((∑--y y x x ,简称乘积和,记作xySP ,分母是自变量x 的离均差平方和∑-2)(x x ,记作SS X,a 叫做样本回归截距,是回归直线与y 轴交点的纵坐标,当x=0时,y ˆ=a ;b 叫做样本回归系数,表示x 改变一个单位,y 平均改变的数量;b 的符号反映了x 影响y 的性质,b 的绝对值大小反映了x 影响y 的程度; yˆ叫做回归估计值,是当x 在在其研究范围内取某一个值时,y 值平均数x βα+的估计值。
例题:在四川白鹅的生产性能研究中,得到如下一组关于雏鹅重(g )与70日龄重(g)的数据,试建立70日龄重(y)与雏鹅重(x)的直线回归方程。
表8-1 四川白鹅雏鹅重与70日龄重测定结果 (单位:g )1、作散点图 以雏鹅重(x )为横坐标,70日龄重(y )为纵坐标作散点图,见图8-3。
2、计算回归截距a ,回归系数b ,建立直线回归方程,首先根据实际观测值计算出下列数据:5.9812/1182/===∑n x x 8333.272012/32650/===∑n y y()()00.168512/1182118112/222=-=∑-=∑n x x SS x00.36585123265011823252610))((=⨯-=-=∑∑∑ny x xy SP xy()()67.83149112/3265089666700/222=-=∑-=∑n y y SS y 进而计算出b 、a : 7122.2100.168536585===xxy SS SP b1816.5825.987122.218333.2720=⨯-=-=x b y a得到四川白鹅的70日龄重y 对雏鹅重x 的直线回归方程为:x y7122.211816.582ˆ+= 二、直线回归的偏离度估计偏差平方和2)ˆ(∑-yy 的大小表示了实测点与回归直线偏离的程度,因而偏差平方和又称为离回归平方和。
第八章直线相关与回归分析
第十章一元回归与相关分析概述:许多问题需要研究多个变量之间的关系,例如生物的生长发育速度就与温度,营养,湿度等许多因素有关。
相关关系:两变量X,Y均为随机变量,任一变量的每一可能值都有另一变量的一个确定分布与之对应。
回归关系:X是非随机变量(如施肥)或随机变量(如穗长),Y是随机变量,对X的每一确定值x i都有Y的一个确定分布与之对应。
区别:1.相关中的两个变量地位对称,互为因果;回归中X是自变量,Y是因变量。
两种意义不同,分析的数学概念与推导过程不同,但如果使用共同标准即使y的残差平方和最小(最小二乘法),可得到相同的参数估计式。
因此主要讨论X为非随机变量(不包含有随机误差)的情况,所得到的参数估计式也可用于X为随机变量的情况。
2.分析目的不同。
回归分析是建立X与Y之间的数学关系式,用于预测;而相关分析研究X与Y两个随机变量之间的共同变化规律,例如当X增大时Y如何变化,以及这种共变关系的强弱。
分类:从两个变量间相关(或回归)的程度分三种:(1)完全相关。
一个变量的值确定后,另一个变量的值可通过公式求出(函数关系);生物学研究中不太多见。
(2)不相关。
变量之间完全没有任何关系。
一个变量的值不能提供另一个变量的任何信息。
(3)统计相关(不完全相关)。
介于上述两情况之间。
知道一个变量的值通过某种公式就可以提供另一个变量的均值的信息。
一个变量的取值不完全决定另一个变量的取值,但可或多或少地决定它的分布。
科研中最常遇到。
研究“一因一果”,即一个自变量与一个依变量的回归分析称为一元回归分析;研究“多因一果”,即多个自变量与一个依变量的回归分析称为多元回归分析。
一元回归分析又分为直线回归分析与曲线回归分析两种;多元回归分析又分为多元线性回归分析与多元非线性回归分析两种。
对两个变量间的直线关系进行相关分析称为直线相关分析;研究一个变量与多个变量间的线性相关称为复相关分析;研究其余变量保持不变的情况下两个变量间的线性相关称为偏相关分析。
第七章 直线回归与相关分析
ˆ a bx y
(6-2)
其中, a 是α的估计值,b是β的估计值。
主 页退 出 上一张 下一张
建立 样本线性回归方程的方法 最小二乘法
实际观察值与样本回归线上
的点的距离的平方和最小
y
n
i1
yi yi
n 2 i i 1
函数关系 有精确的数学表达式 (确定性的关系) 直线回归分析 一元回归分析 变量间的关系 因果关系 曲线回归分析 (回归分析) 多元线性回归分析 多元回归分析 相关关系 多元非线性回归分析 (非确定性的关系) 简单相关分析—— 直线相关分析 平行关系 复相关分析 (相关分析) 多元相关分析 偏相关分析
2
(x,y) y=a+bx y-y y-y y
ˆ y) 2 (y y ˆ ) 2 2 (y ˆ y)(y y ˆ) (y
ˆ y )( y y ˆ ) b( x x )( y y ) b( x x ) (y bSPxy b 2 SS x ( SP SP 2 ) SP ( ) SS x 0 SS x SS x
多因一果,多元回归分析 多个自变量与一个依变量的回归分析,分为 多元线性回归分析与多元非线性回归分析两种。
回归分析的任务: 揭示出呈因果关系的相关变量间的联系形 式,建立它们之间的回归方程,利用所建立的 回归方程,由自变量(原因)来预测、控制依 变量(结果)。 回归分析主要包括: 找出回归方程;检验回归方程是否显著; 通过回归方程来预测或控制另一变量。
2
a、b应使回归估计值与实际观测值的误差平方和最小,即:
ˆ )2 ( y a bx) 2 最小 Q (y y
直线回归与相关分析PPT课件
变量
关系
反)
性质:正(负)相关——方向一致(相
相关
一元直线相关(简单相关)
第9页/共72页
将计算回归方程为基础的统计分析方法称为回 归分析,将计算相关系数为基础的统计分析方 法称为相关分析。
原则上两个变数中Y含有试验误差而X不含试验 误差时着重进行回归分析;Y和X均含有试验误
差时则着重去进行相关分析。
• 已知: b=-1.0996,
第29页/共72页
yˆ a bx
yy
SSy ( y y)2 [(y yˆ) x
SSy ( y y)2 [(y yˆ) ( yˆ y)]2
[( y yˆ)2 2( y yˆ)( yˆ y) ( yˆ y)2 ]
( y yˆ)2 2 ( y yˆ)( yˆ y) ( yˆ y)2
• b2
(x x)2 b2[
x2 (
x)2 n
]
b2 SS x
b
(x
x)(
y
y)
b[
xy
x
n
y
]
bSP
[ (x x)( y y)]2 (x x)2
[
xy
x
n
y
x2
( x)2
n
]2
SP 2 SS x
第35页/共72页
• ∴ S2回=SdSf回回
sy x
=SS回 ,
Q n2
SS2d离Sf离=离
第4页/共72页
2. 自变数与依变数
回归关系(因果关系)
两个变数间的关系若具有原因和反应(结果)的性质,则称这 两个变数间存在因果关系,并定义原因变数为自变数(independent
variable),以 X 表示;定义结果变数为依变数(dependent variable), 以 Y 表示。
第7章 直线回归与相关分析
y y ( x x)
y x
总体资料直线回 归的数学模型
总体回归截踞
总体回归系数 随机误差
y ( x x)
总体回归截踞 总体回归系数 随机误差
α:它是y的本底水平,即x对y没有任何作用时,y的数量 表现。 βx:它描述了因变量y的取值改变中,由y与自变量x的线 性关系所引起的部分,即可以由x直接估计的部分。 误差:它描述了因变量y的取值改变由x以外的可能与y有 关的随机和非随机因素共同引起的部分,即不能由 x直接 估计的部分。
ˆ y) ( y y ˆ) ( y y) ( y
2 2
2
回归平方和 U
离回归平方和 Q
ss
y
U Q
ˆ y ) 2 [ y b ( x x ) y ]2 U (y b 2 ( x x) b 2 ss x bsp ( sp ) 2
2 sy /x
2
sy / x SSx
回归系数的标准误
b 2 b t ( ) 2 sb sb
2
2 2 2
2
sb
sy / x SSx
b SSx b t 2 2 s y / x / SSx sy / x
2
U b
2
ss bsp
x
(sp)
2
ss
x
U t F Q /(n 2)
相关关系
X身高
Y体重
在大量测量各种身高人群的体重时会发现,虽然在同样身高 下,体重并不完全一样。但在每一身高下,都有一个确定的 体重分布与之相对应;
X体重
Y身高
在大量测量各种体重人群的身高时会发现,虽然在同样体重 下,身高并不完全一样。但在每一体重下,都有一个确定的 身高分布与之相对应;
第九章 直线回归与相关分析
ˆ L1 = y − t0.05 s y = 19.0645 − 2.447 × 2.1603 = 13.7782 ˆ L2 = y + t0.05 s y = 19.0645 + 2.447 × 0.8559 = 24.3508
第三节 直线相关
一、相关系数和决定系数 如果两个变量间呈线性关系,又不需要由x来估计 如果两个变量间呈线性关系,又不需要由 来估计 y,只需了 和y相关以及相关的性质,可通过计算 相关以及相关的性质, ,只需了x和 相关以及相关的性质 x和y相关程度和性质的统计数-相关系数来进行 相关程度和性质的统计数- 和 相关程度和性质的统计数 研究。 研究。 相关系数r为 相关系数 为: SP
ˆ L1 = y − t0.05 s y = 19.0645 − 2.447 × 0.8559 = 16.9701 ˆ ˆ L2 = y + t0.05 s y = 19.0645 + 2.447 × 0.8559 = 21.1589 ˆ
(四)单个y值的置信区间
单个y观测值的标准误为: 单个 观测值的标准误为: 观测值的标准误为
2
ˆ L1 = y − t a s y ˆ ˆ L2 = y + t a s y ˆ
根据例1,估计出黏虫孵化历期平均温度为 ℃ 根据例 ,估计出黏虫孵化历期平均温度为15℃时, 历期天数为多少( 置信区间)。 历期天数为多少(取95%置信区间)。 置信区间
x = 15 df = n − 2 = 8 − 2 = 6 ˆ y = a + bx = 57.04 + (−2.5317) × 15 = 19.0645 sy = sy / x ˆ 1 ( x − x )2 1 (15 − 16.8375) 2 + = 1.9835 × + = 0.8559 n SS x 8 55.1788
直线回归与相关分析
第6页,共65页。
第7页,共65页。
第8页,共65页。
一、确定曲线类型的方法
1 专业知识、经验或文献确定曲线类型
单细胞生物生长初期符合指数函数增长,但若考虑到生长
一定时间后,后期生长受到抑制,其生长曲线变成“S”形。 酶促反应动力学中的米氏方程是一种双曲线。
第36页,共65页。
由于 SS 1 X12,SS 2 X22, ,SS m Xm 2; S1P2 X1X2, ,S1Pm X1Xm,SP 2m X2Xm, ; S1Py X1Y,SP 2y X2Y, ,SP my XmY;
则可得如下方程组:
b1SP1 b2SP12 bm SP1m SP1y
曲线回归方程
经尺度转换的新变量及参数
y´
x´
a´
ˆy=(a+bx)/x y´=yx
ˆy=1/(a+bx) y´=1/y
ˆy=x/(a+bx) y´=x/y
ˆy=ax+bx2 y´=y/x
ˆy=a+blnx
x´=lnx
ˆy=a+blgx
x´=lgx
ˆy=axb
y´=lny
x´=lnx a´=lna
ˆy=aebx
A-1 A=I(单位矩阵)
第39页,共65页。
由Ab=K 得b=A-1K:
b1 c11 c12
b2
c21
c22
bm cm1 cm2
c1m SP1y c2m SP2y
cmm
SPny
由此可见,求偏回归系数建立多元线性回归方程,首先
数据分析的直线回归与相关分析的特点介绍
数据分析的直线回归与相关分析的特点介绍
我们为大家收集整理了关于数据分析的直线回归与相关分析的特点,以方便大家参考。
直线回归与相关分析的概念和要点
1.两种分析方法的异同点
研究在专业上有一定联系的两个变量之间是否存在直线关系以及如何求得直线回归方程等问题,需进行直线相关和回归分析。
从研究的目的来说,若仅仅为了了解两变量之间呈直线关系的密切程度和方向,宜选用线性相关分析;若仅仅为了建立由自变量推算因变量的直线回归方程,宜选用直线回归分析。
从资料所具备的条件来说,作相关分析时要求两变量都是随机变量(如:人的身长与体重、血硒与发硒);作回归分析时要求因变量是随机变量,自变量可以是随机的,也可以是一般变量(即可以事先指定变量的取值,如:用药的剂量)。
在统计学教科书中习惯把相关与回归分开论述,其实在应用时,当两变量都是随机变量时,常需同时给出这2种方法分析的结果;另外,若用计算器实现统计分析,可用对相关系数的检验取代对回归系数的检验(理由见下节),胀方便地达到了化繁为简的目的。
故本书把这2个内容放在一起讲解。
2.散布图在这两种分析中的作用。
第10章 直线回归与相关分析
回归方程的基本条件(性质): 回归方程的基本条件(性质): 性质1 性质1 性质2 性质2 性质3 性质3
ˆ 最小; Q = ∑( y − y)2 = 最小;
ˆ ∑( y − y) = 0
; 。
回 归 直 线 通 过 点 (x, y)
2
ˆ Q = ∑( yi − yi ) = ∑[ yi − (a + bxi )]
二、直线回归的显著性检验
回归关系的假设测验: 回归关系的假设测验: 对于样本的回归方程,必须测定其来自无 对于样本的回归方程,必须测定其来自无 直线回归关系总体的概率大小。只有当这种概 直线回归关系总体的概率大小。 率小于0.05或0.01时,我们才能冒较小的危 或 率小于 时 险确认其所代表的总体存在着直线回归关系。 险确认其所代表的总体存在着直线回归关系。 这就是回归关系的假设测验 。 回归关系的假设测验有两种方法: 测验或F 回归关系的假设测验有两种方法:t测验或F测验
由于x变数的实测区间为[31.7,44.2], 由于x变数的实测区间为[31.7,44.2], [31.7 在应用=48.5-1.1x于预测时,需限定x 在应用=48.5-1.1x于预测时,需限定x的区间 =48.5 于预测时 为[31.7,44.2];如要在x<31.7或>44.2的 [31.7,44.2];如要在x 31.7或 44.2的 区间外延,则必须有新的依据。 区间外延,则必须有新的依据。
整理后可得: 整理后可得:
na + ( ∑ xi )b = ∑ yi ( ∑ xi ) a + ( ∑ x i ) b = ∑ x i y i
2
上式叫做a与b的正规方程组 正规方程组。 正规方程组
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黏虫孵化历期平均温度与历期天数关系图
编辑ppБайду номын сангаас 14
若我们增加每一NaCl浓度下的观测次数,其散点图如下:
(可见其平均值更趋近于一条直线)
编辑ppt 15
平均数有一个特性,即在各种离差平方和中,以距平均数 的离差平方和最小。我们把观测值与回归估计值之间的离 差平方和最小时的回归线作为最好的回归线。其方法为最 小二乘法
X体重
Y身高
在大量测量各种体重人群的身高时会发现,虽然在同 样体重下,身高并不完全一样。但在每一体重下,都 有一个确定的身高分布与之相对应;
身高与体重之间存在相关关系。
第二节:直线回归 Linear Regression
一、直线回归方程的建立
例:土壤内NaCl含量对植物的生长有很大影响,NaCl含 量过高,将增加组织内无机盐的累积,抑制植物生长。下 表中的数据是每1000g土壤中所含NaCl的不同克数(X), 对植物单位叶面积干物重的影响。
x
y
施肥量 (可以严格地人为控制)
产量
自变量(independent variable) 因变量(dependent variable)
如果对x的每一个可能的值,都有随机变量y 的一个分布相对应,则称随机变量y对变量x 存在回归(regression)关系。
相关关系
X身高
Y体重
在大量测量各种身高人群的体重时会发现,虽然在同 样身高下,体重并不完全一样。但在每一身高下,都 有一个确定的体重分布与之相对应;
如果对于变量X的每一个可能的值xi,都有随机变量Y的一个yi 与之对应,则称随机变量Y对变量X存在回归关系。
为了确定相关变量之间的关系,首先应该收集一些数据,这 些数据应该是成对的,然后在直角坐标系上描述这些点,这 一组点集称为散点图。
为了研究父亲与成年儿子身高 之间的关系,卡尔.皮尔逊测量 了1078对父子的身高。把 1078对数字表示在坐标上, 如图。用水平轴X上的数代表 父亲身高,垂直轴Y上的数代 表儿子的身高,1078个点所 形成的图形是一个散点图。它 的形状象一块橄榄状的云,中 间的点密集,边沿的点稀少, 其主要部分是一个椭圆。
不同NaCl含量对单位叶面积干物重的影响
NaCl含量X(g/kg) 0 0.8 1.6 2.4 3.2 4.0 4.8
干重Y(mg/dm2) 80 90 95 115 130 115 135
编辑ppt 11
散点图如下
140
130
120
110
100
90
80
70
0
0.8
1.6
2.4
3.2
4
4.8
我们描绘散点的目的:(1)两变量之间的关系是否密切,能否用X来 估计Y;(2)两变量之间的关系是呈线性或某种曲线;(3)是否 存在某个点偏离过大;(4)编是辑否ppt存在其他规律。
第一节:回归与相关的概念
因果关系
相
一个变量的变化受另一个 变量或几个变量的制约
关
回归分析(regression analysis)
变 量 互依关系
两个以上变量之间共同受 到另外因素的影响
相关分析(编c辑opptrrelation analysis)
8
因果关系 一个变量的变化受另一个变量或几个变
量的制约
温度与幼虫孵化 人类的年龄与血压 身高与胸围、体重 溶液的浓度与OD值
相关关系:当一个或几个相互联系的变量取一定的数值时 ,与之相对应的另一变量的值虽然不确定,但它仍按某种规 律在一定的范围内变化。变量间的这种相互关系,称为具有 不确定性的相关关系
生物学中,研究两变量间的关系,主要是为了探求两变量的 内在联系,或者是从一个变量X去推测另一个随机变量Y.例 如,我们希望通过施肥量X去推测Y
直线相关与 回归分析
两变量或多变量之间的关系,总起来可分为两类,一类是函数关系,确 定关系的例子,在生物界中是极少见的。 生物中,大量存在的情况是:一种变量受另一种变量的影响,两者之间既有 关系,但又不存在完全确定的函数关系。知道其中一种变量,并不能精 确求出另一变量。下面请同学们举几个例子。 单位面积的施肥量、播种量和产量三者之间的关系。 树木胸径与树木高度的关系。 人类血压与年龄的关系。 玉米的穗长与穗重的关系。 人的身高与体重的关系。
散点图(scatter diagram)
两个变量间关系的性质(正向协同变化或 负向协同变化)和程度(关系是否密切) 两个变量间关系的类型(直线型或曲线型) 是否有异常观测值的干扰
4 3 2 1
123456 4 3 2 1
123456 4 3 2 1
123456
正向直线关系 负向直线关系
曲线关系
定性研究
而回归直线是指所有直线中最接近散点图中全部散点
的直线。设样本直线回编归辑p方pt 程为: yˆ abx 16
回归直线在平面坐标系中的位置取决于a,b的取值。
yˆ abx y
最小二乘法
n
(method of least square)
( y yˆ )2
1
最小
编辑ppt 17
天数(天)
40 yˆ5.7 03 92.3 53x17
30
20
11.8-----20.4
10
0 10 12 14 16 18 20 22
温度(℃)
用x估计y,存在随机误差,必须根据回归的数学模型 对随机误差进行估计,并对回归方程进行检验。
编辑ppt 18
直线回归方程(linear regression equation)
自变量
Y^ =a+bx
斜率(slope) 回归系数(regerssion coefficient)
截距(intercept) 回归截距
与x值相对应的依变量y的点估计值
yˆ abx
y
b=0
a>0,b>0 a=0
a>0,b<0
a<0,b>0
0
x
直线回归的假设检验
是否真正存在线性关系 回归关系是否显著 因此,求出回归方程后须作统计检验,称回归显著性检验。
不同NaCl含量对单位叶面积干物重的影响 方差分析表
12
例:黏虫孵化历期平均温度与历期天数
变温量度1
变天量数2
X
Y
平均温度(℃) 历期天数(d)
11.8
30.1
14.7
17.3
15.6
16.7
16.8
13.6
17.1
11.9
18.8
10.7
19.5
8.3
20.4
6.7编辑ppt
收集数据
散点图
13
天数(天)
40
yˆ abx
30
20
10
0 10 12 14 16 18 20 22