数值分析实验报告2

合集下载

数值分析综合实验报告

数值分析综合实验报告

一、实验目的通过本次综合实验,掌握数值分析中常用的插值方法、方程求根方法以及数值积分方法,了解这些方法在实际问题中的应用,提高数值计算能力。

二、实验内容1. 插值方法(1)拉格朗日插值法:利用已知数据点构造多项式,以逼近未知函数。

(2)牛顿插值法:在拉格朗日插值法的基础上,通过增加基函数,提高逼近精度。

2. 方程求根方法(1)二分法:适用于函数在区间内有正负值的情况,通过不断缩小区间来逼近根。

(2)Newton法:利用函数的导数信息,通过迭代逼近根。

(3)不动点迭代法:将方程转化为不动点问题,通过迭代逼近根。

3. 数值积分方法(1)矩形法:将积分区间等分,近似计算函数值的和。

(2)梯形法:将积分区间分成若干等分,用梯形面积近似计算积分。

(3)辛普森法:在梯形法的基础上,将每个小区间再等分,提高逼近精度。

三、实验步骤1. 拉格朗日插值法(1)输入已知数据点,构造拉格朗日插值多项式。

(2)计算插值多项式在未知点的函数值。

2. 牛顿插值法(1)输入已知数据点,构造牛顿插值多项式。

(2)计算插值多项式在未知点的函数值。

3. 方程求根方法(1)输入方程和初始值。

(2)选择求解方法(二分法、Newton法、不动点迭代法)。

(3)迭代计算,直到满足精度要求。

4. 数值积分方法(1)输入被积函数和积分区间。

(2)选择积分方法(矩形法、梯形法、辛普森法)。

(3)计算积分值。

四、实验结果与分析1. 插值方法(1)拉格朗日插值法:通过构造多项式,可以较好地逼近已知数据点。

(2)牛顿插值法:在拉格朗日插值法的基础上,增加了基函数,提高了逼近精度。

2. 方程求根方法(1)二分法:适用于函数在区间内有正负值的情况,计算简单,但收敛速度较慢。

(2)Newton法:利用函数的导数信息,收敛速度较快,但可能存在数值不稳定问题。

(3)不动点迭代法:将方程转化为不动点问题,收敛速度较快,但可能存在初始值选择不当的问题。

3. 数值积分方法(1)矩形法:计算简单,但精度较低。

数值分析实验报告2

数值分析实验报告2

实验报告实验项目名称函数逼近与快速傅里叶变换实验室数学实验室所属课程名称数值逼近实验类型算法设计实验日期班级学号姓名成绩512*x^10 - 1280*x^8 + 1120*x^6 - 400*x^4 + 50*x^2 - 1并得到Figure,图像如下:实验二:编写程序实现[-1,1]上n阶勒让德多项式,并作画(n=0,1,…,10 在一个figure中)。

要求:输入Legendre(-1,1,n),输出如a n x n+a n-1x n-1+…多项式。

在MATLAB的Editor中建立一个M-文件,输入程序代码,实现勒让德多项式的程序代码如下:function Pn=Legendre(n,x)syms x;if n==0Pn=1;else if n==1Pn=x;else Pn=expand((2*n-1)*x*Legendre(n-1)-(n-1)*Legendre(n-2))/(n);endx=[-1:0.1:1];A=sym2poly(Pn);yn=polyval(A,x);plot (x,yn,'-o');hold onend在command Windows中输入命令:Legendre(10),得出的结果为:Legendre(10)ans =(46189*x^10)/256 - (109395*x^8)/256 + (45045*x^6)/128 - (15015*x^4)/128 + (3465*x^2)/256 - 63/256并得到Figure,图像如下:实验三:利用切比雪夫零点做拉格朗日插值,并与以前拉格朗日插值结果比较。

在MATLAB的Editor中建立一个M-文件,输入程序代码,实现拉格朗日插值多项式的程序代码如下:function [C,D]=lagr1(X,Y)n=length(X);D=zeros(n,n);D(:,1)=Y';for j=2:nfor k=j:nD(k,j)=(D(k,j-1)- D(k-1,j-1))/(X(k)-X(k-j+1));endendC=D(n,n);for k=(n-1):-1:1C=conv(C,poly(X(k)));m=length(C);C(m)= C(m)+D(k,k);end在command Windows 中输入如下命令:clear,clf,hold on;k=0:10;X=cos(((21-2*k)*pi)./22); %这是切比雪夫的零点Y=1./(1+25*X.^2);[C,D]=lagr1(X,Y);x=-1:0.01:1;y=polyval(C,x);plot(x,y,X,Y,'.');grid on;xp=-1:0.01:1;z=1./(1+25*xp.^2);plot(xp,z,'r')得到Figure ,图像如下所示:比较后发现,使用切比雪夫零点做拉格朗日插值不会发生龙格现象。

数值分析实验报告--实验2--插值法

数值分析实验报告--实验2--插值法

1 / 21数值分析实验二:插值法1 多项式插值的震荡现象1.1 问题描述考虑一个固定的区间上用插值逼近一个函数。

显然拉格朗日插值中使用的节点越多,插值多项式的次数就越高。

我们自然关心插值多项式的次数增加时, 是否也更加靠近被逼近的函数。

龙格(Runge )给出一个例子是极著名并富有启发性的。

设区间[-1,1]上函数21()125f x x=+ (1)考虑区间[-1,1]的一个等距划分,分点为n i nix i ,,2,1,0,21 =+-= 则拉格朗日插值多项式为201()()125nn ii iL x l x x ==+∑(2)其中的(),0,1,2,,i l x i n =是n 次拉格朗日插值基函数。

实验要求:(1) 选择不断增大的分点数目n=2, 3 …. ,画出原函数f(x)及插值多项式函数()n L x 在[-1,1]上的图像,比较并分析实验结果。

(2) 选择其他的函数,例如定义在区间[-5,5]上的函数x x g xxx h arctan )(,1)(4=+=重复上述的实验看其结果如何。

(3) 区间[a,b]上切比雪夫点的定义为 (21)cos ,1,2,,1222(1)k b a b ak x k n n π⎛⎫+--=+=+ ⎪+⎝⎭(3)以121,,n x x x +为插值节点构造上述各函数的拉格朗日插值多项式,比较其结果,试分析2 / 21原因。

1.2 算法设计使用Matlab 函数进行实验, 在理解了插值法的基础上,根据拉格朗日插值多项式编写Matlab 脚本,其中把拉格朗日插值部分单独编写为f_lagrange.m 函数,方便调用。

1.3 实验结果1.3.1 f(x)在[-1,1]上的拉格朗日插值函数依次取n=2、3、4、5、6、7、10、15、20,画出原函数和拉格朗日插值函数的图像,如图1所示。

Matlab 脚本文件为Experiment2_1_1fx.m 。

可以看出,当n 较小时,拉格朗日多项式插值的函数图像随着次数n 的增加而更加接近于f(x),即插值效果越来越好。

数值分析实验报告二

数值分析实验报告二

数值实验报告二一、实验名称解线性方程组的列主元素高斯消去法和LU 分解法二、实验目的通过数值实验,从中体会解线性方程组选主元的必要性和LU 分解法的优点,以及方程组系数矩阵和右端向量的微小变化对解向量的影响。

三、实验内容解下列两个线性方程组(1) ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--11134.981.4987.023.116.427.199.103.601.3321x x x (2) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----15900001.582012151526099999.23107104321x x x x 四、算法描述1、 列主元素高斯消去法记: ij ij a a =1)( (i, j = 1,2,3n )i i b b =1)( (i = 1,2,3n )消元过程:对于k = 1,2,3n(1) 选行号k i ,使)()(max k i ni k k k i k k a a ≤≤=。

(2) 交换)(k kj a 与)(k j i k a (j = k, k+1,k+2n )以及)()(k i k k k b b 与所含的数值。

(3)对于i = k, k+1,k+2n ,计算)()(k kkk ik ik a a m =)()()1(k kj ik k ij k ij a m a a -=+ (j = k, k+1,k+2n ))()()1(k k ik k i k i b m b b -=+回代过程:)(n nnn n a b x = )()1)()(/(k kk j n k j k kj k k k a x a a x ∑+=-= (k = n-1, n-2, n-3 1 )在此算法中的)(k k i k a 称为第k 个列主元素,它的数值总要被交换到第k 个主对角线元素的位置上。

2、 LU 分解法通过MATLAB 自有的函数,把系数矩阵A 分解成A=LU ,其中:L 是下三角矩阵,U 是上三角矩阵,这时方程组Ax=b 就可以分解成两个容易求解的三角形方程组Ly=b ,Ux=y 。

数值分析积分实验报告(3篇)

数值分析积分实验报告(3篇)

第1篇一、实验目的本次实验旨在通过数值分析的方法,研究几种常见的数值积分方法,包括梯形法、辛普森法、复化梯形法和龙贝格法,并比较它们在计算精度和效率上的差异。

通过实验,加深对数值积分理论和方法的理解,提高编程能力和实际问题解决能力。

二、实验内容1. 梯形法梯形法是一种基本的数值积分方法,通过将积分区间分割成若干个梯形,计算梯形面积之和来近似积分值。

实验中,我们选取了几个不同的函数,对积分区间进行划分,计算积分近似值,并与实际积分值进行比较。

2. 辛普森法辛普森法是另一种常见的数值积分方法,它通过将积分区间分割成若干个等距的区间,在每个区间上使用二次多项式进行插值,然后计算多项式与x轴围成的面积之和来近似积分值。

实验中,我们对比了辛普森法和梯形法的计算结果,分析了它们的精度差异。

3. 复化梯形法复化梯形法是对梯形法的一种改进,通过将积分区间分割成多个小区间,在每个小区间上使用梯形法进行积分,然后计算所有小区间积分值的和来近似积分值。

实验中,我们对比了复化梯形法和辛普森法的计算结果,分析了它们的精度和效率。

4. 龙贝格法龙贝格法是一种通过外推加速提高计算精度的数值积分方法。

它通过比较使用不同点数(n和2n)的积分结果,得到更高精度的积分结果。

实验中,我们使用龙贝格法对几个函数进行积分,并与其他方法进行了比较。

三、实验步骤1. 编写程序实现梯形法、辛普森法、复化梯形法和龙贝格法。

2. 选取几个不同的函数,对积分区间进行划分。

3. 使用不同方法计算积分近似值,并与实际积分值进行比较。

4. 分析不同方法的精度和效率。

四、实验结果与分析1. 梯形法梯形法在计算精度上相对较低,但当积分区间划分足够细时,其计算结果可以接近实际积分值。

2. 辛普森法辛普森法在计算精度上优于梯形法,但当积分区间划分较细时,计算量较大。

3. 复化梯形法复化梯形法在计算精度上与辛普森法相当,但计算量较小。

4. 龙贝格法龙贝格法在计算精度上优于复化梯形法,且计算量相对较小。

数值分析Runge现象计算实验

数值分析Runge现象计算实验

数值分析实验报告(02)一、实验目的通过上机绘制Runge 函数图像,理解高次插值的病态性质。

二、实验内容在区间[-1,1]上分别取n=10,n=20用两组等距节点对龙格(Runge)函数21()125f x x =+作多项式插值,对每个n 值分别画出()f x 和插值函数的图形。

三、编程思路(相关背景知识、算法步骤、流程图、伪代码)四、程序代码(Matlab 或C 语言的程序代码)function yt=Untitled8(x,y,xt)%UNTITLED5 ´Ë´¦ÏÔʾÓйش˺¯ÊýµÄÕªÒª% ´Ë´¦ÏÔʾÏêϸ˵Ã÷n=length(x);ny=length(y);if n~=nyerror('²åÖµ½ÚµãxÓ뺯ÊýÖµy²»Ò»ÖÂ');endm=length(xt);yt=zeros(1,m);for k=1:nlk=ones(1,m);for j=1:nif j~=klk=lk.*(xt-x(j))/(x(k)-x(j));endend ;yt=yt+y(k)*lk;endn=input('n=');x=linspace(-1,1,n);y=1./(1+25.*x.^2);xf=linspace(-1,1,100);yf=1./(1+25.*xf.^2)xl=xf;yl=Untitled8(x,y,xf);plot(xf,yf,'-b',xl,yl,'-r')五、数值结果及分析(数值运行结果及对结果的分析)当n=10时当n=20六、实验体会(计算中出现的问题,解决方法,实验体会)出现符号错误,代码函数变量不明重新输入,查询错误,找到并改正编码需要认真仔细,一定要头脑清晰,避免出现一些低级错误。

数值分析实验报告模板

数值分析实验报告模板

数值分析实验报告模板篇一:数值分析实验报告(一)(完整)数值分析实验报告12345篇二:数值分析实验报告实验报告一题目:非线性方程求解摘要:非线性方程的解析解通常很难给出,因此线性方程的数值解法就尤为重要。

本实验采用两种常见的求解方法二分法和Newton法及改进的Newton法。

利用二分法求解给定非线性方程的根,在给定的范围内,假设f(x,y)在[a,b]上连续,f(a)xf(b) 直接影响迭代的次数甚至迭代的收敛与发散。

即若x0 偏离所求根较远,Newton法可能发散的结论。

并且本实验中还利用利用改进的Newton法求解同样的方程,且将结果与Newton法的结果比较分析。

前言:(目的和意义)掌握二分法与Newton法的基本原理和应用。

掌握二分法的原理,验证二分法,在选对有根区间的前提下,必是收敛,但精度不够。

熟悉Matlab语言编程,学习编程要点。

体会Newton使用时的优点,和局部收敛性,而在初值选取不当时,会发散。

数学原理:对于一个非线性方程的数值解法很多。

在此介绍两种最常见的方法:二分法和Newton法。

对于二分法,其数学实质就是说对于给定的待求解的方程f(x),其在[a,b]上连续,f(a)f(b) Newton法通常预先要给出一个猜测初值x0,然后根据其迭代公式xk?1?xk?f(xk) f'(xk)产生逼近解x*的迭代数列{xk},这就是Newton法的思想。

当x0接近x*时收敛很快,但是当x0选择不好时,可能会发散,因此初值的选取很重要。

另外,若将该迭代公式改进为xk?1?xk?rf(xk) 'f(xk)其中r为要求的方程的根的重数,这就是改进的Newton 法,当求解已知重数的方程的根时,在同种条件下其收敛速度要比Newton法快的多。

程序设计:本实验采用Matlab的M文件编写。

其中待求解的方程写成function的方式,如下function y=f(x);y=-x*x-sin(x);写成如上形式即可,下面给出主程序。

数值分析实验报告2——Runge现象

数值分析实验报告2——Runge现象

数值分析课程实验报告——插值逼近题目一.Runge 函数的插值1. Runge 函数Runge 函数的表达式为:21()125R x x =+ 其在[-1,1]区间上的函数图像如图1.1。

在课程学习中我们知道,对Runge 函数进行高次插值时有可能在两端出现不收敛的情况,即Runge 现象。

下面将分别用四种不同的插值方法在[-1,1]区间上对Runge 函数进行插值,并分析是否产生Runge 现象,比较插值效果。

图1.1.Runge 函数在[-1,1]区间的函数图像2.Newton 插值首先根据课本上的Newton 插值算法进行编程(代码略)。

核心思想就是用符号变量进行中间运算,以便将最终的插值函数用符号表达式表示出来,并进一步生成图像。

此处插值节点选择为等距插值节点,即:0.1(0,1,2,,)i x ih i =-+= (20)其中h=0.1。

插值曲线与原曲线的对比如图1.2(蓝色为原曲线,红色为插值曲线)。

从图中看出,在区间中部,二者吻合较好;但在区间两端二者则产生了明显偏差,甚至可以达到一个非常大的数值(e20量级)。

因此,在等距节点的20次Newton 插值下,产生了明显的Runge 现象。

图1.2.Newton 插值曲线与原曲线对比3. Lagrange 插值此处同样是根据Lagrange 插值的具体算法进行编程。

但插值节点不再是等距分布,而是如下形式:21cos()(0,1,2,,)42i i x i π+==…20 插值曲线与原曲线的对比如图1.3(蓝色为原曲线,红色为插值曲线)。

从图中看出,插值曲线与原曲线吻合的很好,没有产生明显的Runge 现象。

对比产生了明显Runge 现象的20次Newton 插值,Lagrange 插值的最高次数虽然也是20,但由于此处的插值节点不是等距分布的(事实上,此处采用的插值节点正是Chebyshev 多项式的零点),而是中间疏两边密,因此两侧较密的节点很好地抑制了Runge 现象。

数值分析实验报告5篇

数值分析实验报告5篇

误差分析实验1.1(问题)实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。

对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。

通过本实验可获得一个初步体会。

数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。

病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。

问题提出:考虑一个高次的代数多项式)1.1()()20()2)(1()(201∏=-=---=k k x x x x x p显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。

现考虑该多项式的一个扰动)2.1(0)(19=+x x p ε其中ε是一个非常小的数。

这相当于是对(1.1)中19x 的系数作一个小的扰动。

我们希望比较(1.1)和(1.2)根的差别,从而分析方程(1.1)的解对扰动的敏感性。

实验内容:为了实现方便,我们先介绍两个Matlab 函数:“roots ”和“poly ”。

roots(a)u =其中若变量a 存储n+1维的向量,则该函数的输出u 为一个n 维的向量。

设a 的元素依次为121,,,+n a a a ,则输出u 的各分量是多项式方程01121=+++++-n n n n a x a x a x a的全部根;而函数poly(v)b =的输出b 是一个n+1维变量,它是以n 维变量v 的各分量为根的多项式的系数。

可见“roots ”和“poly ”是两个互逆的运算函数。

;000000001.0=ess );21,1(zeros ve = ;)2(ess ve =))20:1((ve poly roots +上述简单的Matlab 程序便得到(1.2)的全部根,程序中的“ess ”即是(1.2)中的ε。

实验要求:(1)选择充分小的ess ,反复进行上述实验,记录结果的变化并分析它们。

数值分析实验报告

数值分析实验报告

数值实验题1实验1.1 病态问题实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。

对数值方法的研究而言,所谓坏问题是指问题本身对扰动敏感,反之属于好问题。

本实验通过对一个高次多项式方程的求解,初步认识病态问题。

实验内容:考虑一个高次的代数多项式201()(1)(2)(20)()k p x x x x x k ==---=-∏ (E.1.1)显然该多项式的全部根为1,2,…,20,共计20个,且每个根都是单重的(也称为简单的)。

现考虑该多项式的一个扰动 19()0p x x ε+=, (E.1.2)其中,ε是一个非常小的数。

这相当于是对方程(E.1.1)中x 19的系数作一个小的扰动。

比较方程(E.1.1)和方程(E.1.2)根的差别,从而分析方程(E.1.1)的解对扰动的敏感性。

实验步骤与结果分析:(一) 实验源程序function t_charpt1_1% 数值实验1.1病态问题% 输入:[0 20]之间的扰动项及小的扰动常数 % 输出:加扰动后得到的全部根 clcresult=inputdlg({'请输入扰动项:在[0 20]之间的整数:'},'charpt 1_1',1,{'19'}); Numb=str2num(char(result));if((Numb>20)|(Numb<0))errordlg('请输入正确的扰动项:[0 20]之间的整数!');return;endresult=inputdlg({'请输入(0 1)之间的扰动常数:'},'charpt 1_1',1,{'0.00001'}); ess=str2num(char(result)); ve=zeros(1,21); ve(21-Numb)=ess;root=roots(poly(1:20)+ve);x0=real(root); y0=imag(root); plot(x0',y0', '*');disp(['对扰动项 ',num2str(Numb),'加扰动',num2str(ess),'得到的全部根为:']); disp(num2str(root));(二)实验结果分析(1)对于x19项的扰动ess,不同的取值对应的结果如下所示。

数值分析实验报告2

数值分析实验报告2

实验报告一、实验名称复合梯形求积公式、复合辛普森求积公式、龙贝格求积公式及自适应辛普森积分。

二、实验目的及要求1. 掌握复合梯形求积计算积分、复合辛普森求积计算积分、龙贝格求积计算积分和自适应辛普森积分的基本思路和步骤.2. 培养Matlab 编程与上机调试能力. 三、实验环境计算机,MATLAB 软件 四、实验内容1.用不同数值方法计算积分94ln 10-=⎰xdx x 。

(1)取不同的步长h 。

分别用复合梯形及复合辛普森求积计算积分,给出误差中关于h 的函数,并与积分精确指比较两个公式的精度,是否存在一个最小的h ,使得精度不能再被改善。

(2)用龙贝格求积计算完成问题(1)。

(3)用自适应辛普森积分,使其精度达到10-4。

五、算法描述及实验步骤1.复合梯形公式将区间[a,b]划分为n 等份,分点x k =a+ah,h=(b-a)/h,k=0,1,...,n ,在每个子区间[x k ,x k +1](k=0,1,...,n-1)上采用梯形公式(1.1),得)]()([2)(b f a f ab dx x f b a+-≈⎰ (1.1) )]()(2)([2)]()([211110b f x f b f hx f x f h T n k k k n k k n ++=+=∑∑-=+-= (1.2)),(),(12)(''2b a f h a b f R n ∈--=ηη(1.3) 其中Tn 称为复合梯形公式,Rn 为复合梯形公式的余项。

2.复合辛普森求积公式将区间[a,b]划分为n 等份,在每个子区间[x k ,x k +1](k=0,1,...,n-1)上采用辛普森公式(1.4),得)]()2(4)([6b f ba f a f ab S +++-=(1.4) )]()(2)(4)([6)]()()([611102/112/11b f x f x f b f hx f x f x f h S n k k n k k k k n k k n +++=++=∑∑∑-=-=+++-= (1.5) ),(),()2(180)()4(4b a f h a b f R n ∈-=ηη (1.6)其中Sn 称为复合辛普森求积公式,Rn 为复合辛普森求积公式的余项。

工程数学—数值分析实验报告(二)

工程数学—数值分析实验报告(二)

工程数学—数值分析实验报告(二)2010年11月13日郑州轻工业学院 机电工程系制冷与低温专业 10级研究生 王哲一.实验目的通过本实验了解学习特征值的内涵和幂法是求方阵的最大特征值及对应特征向量的一种迭代法。

利用幂法求方阵的最大特征值及对应特征向量的一种迭代法,等等。

主要了解掌握幂法的几种加速法,来求解特征值与特征向量。

培养编程与上机调试能力及应用数学软件(excel ,Matlab ,Linggo )等实现这几种方法。

二.幂法具体理论设An 有n 个线性无关的特征向量v 1,v 2,…,v n ,对应的特征值1,2,…,n ,满足基本思想:因为{v1,v2,…,vn}为Cn 的一组基,所以有:∑∑====ni ikini i i kk v A av a A xA 11)0()(∑∑==+==ni ii kik ni i k iiv a v a v a 21111λλλ])([21111∑=+=ni i i ki k v a v a λλλ若a 1=0,则因舍入误差的影响,会有某次迭代向量在v 1方向上的分量不为0迭代下去可求得及对应特征向量的近似值。

111111111111111)0(1)0()max()max()max()max()max()max(λλλλλ==≈---v a v a v a v a xAx A k kk kk k注:若A 的特征值不满足条件,幂法收敛性的分析较复杂但若。

则定理结论仍成立。

此时不同初始向量的迭代向量序列一般趋向于的不同特征向量。

三.用幂法求⎪⎪⎪⎭⎫ ⎝⎛=361641593642A的最大模特征值及对应特征向量1.利用excel 来求解特征值和特征向量矩阵A2 4 63 9 15 416 36计算区k x k|x k | max(x k ) y k0 1 11 1 1 1 1 1 1 1 112 27 56 12 27 56 56 0.21428571429 0.48214285714 12 8.3571428571 19.982142857 44.571428571 8.3571428571 19.982142857 44.571428571 44.571428571 0.1875 0.44831730769 13 8.1682692308 19.597355769 43.923076923 8.1682692308 19.597355769 43.923076923 43.923076923 0.1859676007 0.44617447461 14 8.1566330998 19.573473074 43.882661996 8.1566330998 19.573473074 43.882661996 43.882661996 0.18587370795 0.44604115118 15 8.1559120206 19.571991484 43.880153251 8.1559120206 19.571991484 43.880153251 43.880153251 0.185******** 0.4460328881 16 8.1558673562 19.571899699 43.879997817 8.1558673562 19.571899699 43.879997817 43.879997817 0.185******** 0.4460323763 17 8.1558645901 19.571894014 43.879988191 8.1558645901 19.571894014 43.879988191 43.879988191 0.185******** 0.44603234461 18 8.155864418819.57189366243.8799875948.155864418819.57189366243.87998759443.8799875940.185********0.4460323426512.利用Matlab 来求解特征值和特征向量 function y = maxa(x) k=1;n=length(x); for i=2:nif (abs(x(i))>abs(x(k))), k=i; end; end; y=x(k);A=[2,4,6;3,9,15;4,16,36]; x0=[1;1;1]; y=x0/maxa(x0) x1=A*ywhile(abs(maxa(x1)-maxa(x0)))>0.001 x0=x1;y=x0/maxa(x0) x1=A*yend; ymaxa(x1)四.幂法的迭代公式:加速方法⎪⎩⎪⎨⎧==+)()1()()()()max(k k k k k Ay x x xy)2(1)()1()2(2)1()2()2()max()max(2)max()]max()[max()max(+∆+++++=+---k k k k k k k x x xxx xλ1.Aitken 加速法步骤:)2()2()2()1()1()1()0()0()0()max()max()max(+++→→→→→→→→→k k k yxxyx xyxx计算)max()max(2)max()]max()[max()max()()1()2(2)1()2()2()2(1k k k k k k k x x xxx x+---=++++++λ五.用幂法求方阵A 的最大模特征值,并用Aitkem 加速法⎪⎪⎪⎭⎫ ⎝⎛---=20101350144A1.利用excel 来解决幂法求方阵A 的最大模特征值,并用Aitkem 加速法矩阵A-414 0 -5 13 0 -10 2计算区 k x k |x k |max(x k ) λy k 0 1 1 1 1 1 1 1 1 1 1 1108110811010.80.1 2 7.2 5.4 -0.8 7.2 5.4 0.8 7.2 7.8644067797 1 0.75-0.11111111111 3 6.5 4.75-1.2222222222 6.5 4.751.2222222222 6.5 6.2666666667 10.73076923077 -0.188******** 4 6.23076924.5 -1.3760686.23076924.5 1.37606836.23076926.062510.7222222-0.220850308 3761 308 761 308 2222 480115 6.11111111114.3888888889-1.44170096026.11111111114.38888888891.44170096026.11111111116.015384615410.71818181818-0.235914702586 6.05454545454.3363636364-1.47182940526.05454545454.33636363641.47182940526.05454545456.003831417610.71621621622-0.24309494687 6.0270270274.3108108108-1.48618989366.0270270274.31081081081.48618989366.0270270276.000956937810.71524663677-0.246587560828 6.01345291484.298206278-1.49317512166.01345291484.2982062781.49317512166.01345291486.000239177210.71476510067-0.248305780859 6.00671140944.2919463087-1.49661156176.00671140944.29194630871.49661156176.00671140946.000059790710.71452513966-0.2491565616710 6.00335195534.2888268156-1.49831312336.00335195534.28882681561.49831312336.00335195536.000014947510.71440536013-0.2495794240411 6.00167504194.2872696817-1.49915884816.00167504194.28726968171.49915884816.00167504196.000003736910.71434552051-0.2497900732112 6.00083728724.2864917667-1.49958014646.00083728724.28649176671.49958014646.00083728726.000000934210.71431561323-0.2498951520713 6.00041858524.286102972-1.49979030416.00041858524.2861029721.49979030416.00041858526.000000233610.71430066271-0.2499476132914 6.0002092784.2859086153-1.49989522666.0002092784.28590861531.49989522666.0002092786.000000058410.71429318824-0.2499738187615 6.00010463534.2858114471-1.49994763756.00010463534.28581144711.49994763756.00010463536.000000014610.7142894512-0.249986913342.利用Matlab来解决幂法求方阵A的最大模特征值,并用Aitkem加速法幂法A=[-4,14,0;-5,13,0;-1,0,2];x0=[1;1;1];k=1y=x0/maxa(x0)x1=A*ywhile(abs(maxa(x1)-maxa(x0)))>0.01x0=x1;k=k+1maxa(x0)y=x0/maxa(x0)x1=A*yend;Aitkem加速A=[-4,14,0;-5,13,0;-1,0,2];l1=0;k=1x0=[1;1;1];y0=x0/maxa(x0)x1=A*y0;y1=x1/maxa(x1)x2=A*y1;y2=x2/maxa(x2)l0=maxa(x2)-(maxa(x2)-maxa(x1))^2/(maxa(x2)-2*maxa(x1) + maxa(x0))while (abs(l1-l0))>0.01x0=x1;x1=x2;l1=l0;k=k+1x2=A*y2maxk=maxa(x2)y2=x2/maxkl0=maxa(x2)-(maxa(x2)-maxa(x1))^2/(maxa(x2)-2*maxa(x1)+maxa(x0))end;六.实验体会1.通过实验,我更加掌握利用幂法求方阵的最大特征值及对应特征向量的一种迭代法;2.利用各种加速法求方阵的最大特征值及对应特征向量的一种迭代法;3.在试验过程中更进一步了解excel,Matlab解线性方程的方便性以及它的强大功能,相信这对以后的学习和工作都有很大的帮助。

数值分析实验报告--实验2--插值法

数值分析实验报告--实验2--插值法

1 / 21数值分析实验二:插值法1 多项式插值的震荡现象1.1 问题描述考虑一个固定的区间上用插值逼近一个函数。

显然拉格朗日插值中使用的节点越多,插值多项式的次数就越高。

我们自然关心插值多项式的次数增加时, 是否也更加靠近被逼近的函数。

龙格(Runge )给出一个例子是极著名并富有启发性的。

设区间[-1,1]上函数21()125f x x=+ (1)考虑区间[-1,1]的一个等距划分,分点为n i nix i ,,2,1,0,21 =+-= 则拉格朗日插值多项式为201()()125nn ii iL x l x x ==+∑(2)其中的(),0,1,2,,i l x i n =是n 次拉格朗日插值基函数。

实验要求:(1) 选择不断增大的分点数目n=2, 3 …. ,画出原函数f(x)及插值多项式函数()n L x 在[-1,1]上的图像,比较并分析实验结果。

(2) 选择其他的函数,例如定义在区间[-5,5]上的函数x x g xxx h arctan )(,1)(4=+=重复上述的实验看其结果如何。

(3) 区间[a,b]上切比雪夫点的定义为 (21)cos ,1,2,,1222(1)k b a b ak x k n n π⎛⎫+--=+=+ ⎪+⎝⎭(3)以121,,n x x x +为插值节点构造上述各函数的拉格朗日插值多项式,比较其结果,试分析2 / 21原因。

1.2 算法设计使用Matlab 函数进行实验, 在理解了插值法的基础上,根据拉格朗日插值多项式编写Matlab 脚本,其中把拉格朗日插值部分单独编写为f_lagrange.m 函数,方便调用。

1.3 实验结果1.3.1 f(x)在[-1,1]上的拉格朗日插值函数依次取n=2、3、4、5、6、7、10、15、20,画出原函数和拉格朗日插值函数的图像,如图1所示。

Matlab 脚本文件为Experiment2_1_1fx.m 。

可以看出,当n 较小时,拉格朗日多项式插值的函数图像随着次数n 的增加而更加接近于f(x),即插值效果越来越好。

数值分析拟合实验报告(3篇)

数值分析拟合实验报告(3篇)

第1篇一、实验目的本次实验旨在通过数值分析方法对一组已知数据点进行拟合,掌握线性插值、多项式插值、样条插值等方法的基本原理和实现过程,并学会使用MATLAB进行数值拟合。

二、实验内容1. 线性插值线性插值是一种简单的插值方法,适用于数据点分布较为均匀的情况。

其基本原理是通过两个相邻的数据点,利用线性关系拟合出一条直线,然后通过该直线来估算未知的值。

2. 多项式插值多项式插值是一种较为精确的插值方法,通过构造一个多项式函数来逼近已知数据点。

其基本原理是利用最小二乘法求解多项式的系数,使得多项式在已知数据点上的误差最小。

3. 样条插值样条插值是一种更灵活的插值方法,通过构造一系列样条曲线来逼近已知数据点。

其基本原理是利用最小二乘法求解样条曲线的系数,使得样条曲线在已知数据点上的误差最小。

三、实验步骤1. 线性插值(1)在MATLAB中输入已知数据点,如:x = [1, 2, 3, 4, 5];y = [2, 4, 6, 8, 10];(2)使用MATLAB内置函数`linspace`生成插值点:xi = linspace(1, 5, 100);(3)使用MATLAB内置函数`interp1`进行线性插值:yi = interp1(x, y, xi, 'linear');(4)绘制插值曲线:plot(xi, yi, 'b-', x, y, 'ro');2. 多项式插值(1)在MATLAB中输入已知数据点,如:x = [1, 2, 3, 4, 5];y = [2, 4, 6, 8, 10];(2)使用MATLAB内置函数`polyfit`求解多项式系数:p = polyfit(x, y, 3);(3)使用MATLAB内置函数`polyval`进行多项式插值:yi = polyval(p, xi);(4)绘制插值曲线:plot(xi, yi, 'b-', x, y, 'ro');3. 样条插值(1)在MATLAB中输入已知数据点,如:x = [1, 2, 3, 4, 5];y = [2, 4, 6, 8, 10];(2)使用MATLAB内置函数`spline`进行样条插值:yi = spline(x, y, xi);(3)绘制插值曲线:plot(xi, yi, 'b-', x, y, 'ro');四、实验结果与分析1. 线性插值线性插值方法简单易行,但精度较低,适用于数据点分布较为均匀的情况。

数值分析实验报告

数值分析实验报告

数值分析实验报告一、实验目的数值分析是一门研究用计算机求解数学问题的数值方法及其理论的学科。

本次实验的目的在于通过实际操作和编程实现,深入理解和掌握数值分析中的常见算法,提高运用数值方法解决实际问题的能力,并对算法的精度、稳定性和效率进行分析和比较。

二、实验环境本次实验使用的编程语言为 Python,使用的开发工具为 PyCharm。

实验所依赖的主要库包括 NumPy、Matplotlib 等。

三、实验内容(一)函数逼近与插值1、拉格朗日插值法通过给定的离散数据点,构建拉格朗日插值多项式,对未知点进行函数值的估计。

2、牛顿插值法与拉格朗日插值法类似,但采用了不同的形式和计算方式。

(二)数值积分1、梯形公式将积分区间划分为若干个梯形,通过计算梯形面积之和来近似积分值。

2、辛普森公式基于抛物线拟合的方法,提高积分近似的精度。

(三)线性方程组求解1、高斯消元法通过逐行消元将线性方程组化为上三角形式,然后回代求解。

2、 LU 分解法将系数矩阵分解为下三角矩阵 L 和上三角矩阵 U,然后通过两次前代和回代求解。

(四)非线性方程求解1、二分法通过不断将区间一分为二,逐步缩小根所在的区间,直到满足精度要求。

2、牛顿迭代法利用函数的切线来逼近根,通过迭代逐步收敛到根的近似值。

四、实验步骤(一)函数逼近与插值1、拉格朗日插值法定义计算拉格朗日基函数的函数。

根据给定的数据点和待求点,计算插值多项式的值。

输出插值结果,并与真实值进行比较。

2、牛顿插值法计算差商表。

构建牛顿插值多项式。

进行插值计算和结果分析。

(二)数值积分1、梯形公式定义积分区间和被积函数。

按照梯形公式计算积分近似值。

分析误差。

2、辛普森公式同样定义积分区间和被积函数。

运用辛普森公式计算积分近似值。

比较与梯形公式的精度差异。

(三)线性方程组求解1、高斯消元法输入系数矩阵和右端项向量。

进行消元操作。

回代求解方程。

输出解向量。

2、 LU 分解法对系数矩阵进行 LU 分解。

工程数值分析实验报告(3篇)

工程数值分析实验报告(3篇)

第1篇一、实验目的本次实验旨在通过数值分析的方法,对工程实际问题进行建模、求解和分析。

通过学习数值方法的基本原理和算法,提高解决实际工程问题的能力。

二、实验内容1. 线性方程组的求解2. 矩阵特征值与特征向量的计算3. 函数插值与曲线拟合4. 数值微分与积分三、实验步骤1. 线性方程组的求解(1)编写程序实现高斯消元法、克劳斯消元法和列主元素法(2)设计输入界面,用户输入增广矩阵的行和列,填写系数及常数项(3)分别运用三种方法求解线性方程组,比较求解结果的正确性、数值稳定性和计算效率2. 矩阵特征值与特征向量的计算(1)编写程序实现幂法、QR算法和逆幂法(2)设计输入界面,用户输入矩阵的行和列,填写矩阵元素(3)分别运用三种方法计算矩阵的特征值与特征向量,比较求解结果的准确性和计算效率3. 函数插值与曲线拟合(1)编写程序实现拉格朗日插值、牛顿插值和样条插值(2)设计输入界面,用户输入函数的自变量和函数值,选择插值方法(3)分别运用三种方法进行函数插值,比较插值结果的准确性和光滑性4. 数值微分与积分(1)编写程序实现有限差分法、龙格-库塔法和辛普森法(2)设计输入界面,用户输入函数的导数或积分的上下限,选择数值方法(3)分别运用三种方法进行数值微分和积分,比较求解结果的准确性和计算效率四、实验结果与分析1. 线性方程组的求解通过实验,我们发现列主元素法在求解线性方程组时具有较好的数值稳定性,计算效率也较高。

而高斯消元法和克劳斯消元法在处理大型稀疏矩阵时存在一定的困难。

2. 矩阵特征值与特征向量的计算实验结果表明,QR算法和逆幂法在计算矩阵特征值与特征向量时具有较高的准确性和计算效率。

幂法在处理大型稀疏矩阵时表现出较好的性能。

3. 函数插值与曲线拟合在函数插值和曲线拟合实验中,样条插值方法具有较好的准确性和光滑性。

拉格朗日插值和牛顿插值方法在处理简单函数时表现良好,但在处理复杂函数时可能存在精度问题。

数值分析实验报告doc

数值分析实验报告doc

数值分析实验报告篇一:数值分析实验报告(一)(完整)数值分析实验报告12345篇二:数值分析实验报告数值分析实验报告课题一:解线性方程组的直接方法1.实验目的:1、通过该课题的实验,体会模块化结构程序设计方法的优点;2、运用所学的计算方法,解决各类线性方程组的直接算法;3、提高分析和解决问题的能力,做到学以致用;4、通过三对角形线性方程组的解法,体会稀疏线性方程组解法的特点。

2.实验过程:实验代码:#include "stdio.h"#include "math.h"#includeusing namespace std;//Gauss法void lzy(double **a,double *b,int n) {int i,j,k;double l,x[10],temp;for(k=0;k {for(j=k,i=k;j {if(j==k)temp=fabs(a[j][k]);else if(temp {temp=fabs(a[j][k]);i=j;}}if(temp==0){cout return;}elsefor(j=k;j {temp=a[k][j];a[k][j]=a[i][j];a[i][j]=temp;}temp=b[k];b[k]=b[i];b[i]=temp;}for(i=k+1;i {l=a[i][k]/a[k][k];for(j=k;j a[i][j]=a[i][j]-l*a[k][j]; b[i]=b[i]-l*b[k];}}if(a[n-1][n-1]==0){cout return;}x[n-1]=b[n-1]/a[n-1][n-1];for(i=n-2;i>=0;i--)temp=0;for(j=i+1;j temp=temp+a[i][j]*x[j]; x[i]=(b[i]-temp)/a[i][i];}for(i=0;i {printf("x%d=%lf\t",i+1,x[i]);printf("\n");}}//平方根法void pfg(double **a,double *b,int n) {int i,k,m;double x[8],y[8],temp;for(k=0;k {temp=0;for(m=0;m temp=temp+pow(a[k][m],2); if(a[k][k] return;a[k][k]=pow((a[k][k]-temp),1.0/2.0); for(i=k+1;i {temp=0;for(m=0;m temp=temp+a[i][m]*a[k][m]; a[i][k]=(a[i][k]-temp)/a[k][k];}temp=0;for(m=0;m temp=temp+a[k][m]*y[m];y[k]=(b[k]-temp)/a[k][k];}x[n-1]=y[n-1]/a[n-1][n-1];for(k=n-2;k>=0;k--){temp=0;for(m=k+1;m temp=temp+a[m][k]*x[m];x[k]=(y[k]-temp)/a[k][k];}for(i=0;i {printf("x%d=%lf\t",i+1(转自:小草范文网:数值分析实验报告),x[i]);printf("\n");}}//追赶法void zgf(double **a,double *b,int n){int i;double a0[10],c[10],d[10],a1[10],b1[10],x[10],y[10];for(i=0;i {a0[i]=a[i][i];if(i c[i]=a[i][i+1];if(i>0)d[i-1]=a[i][i-1];}a1[0]=a0[0];for(i=0;i {b1[i]=c[i]/a1[i];a1[i+1]=a0[i+1]-d[i+1]*b1[i];}y[0]=b[0]/a1[0];for(i=1;i y[i]=(b[i]-d[i]*y[i-1])/a1[i];x[n-1]=y[n-1];for(i=n-2;i>=0;i--)x[i]=y[i]-b1[i]*x[i+1];for(i=0;i {printf("x%d=%lf\t",i+1,x[i]);printf("\n");}}int main(){int n,i,j;double **A,**B,**C,*B1,*B2,*B3;A=(double **)malloc(n*sizeof(double)); B=(double **)malloc(n*sizeof(double));C=(double **)malloc(n*sizeof(double));B1=(double *)malloc(n*sizeof(double));B2=(double *)malloc(n*sizeof(double));B3=(double *)malloc(n*sizeof(double));for(i=0;i {A[i]=(double *)malloc((n)*sizeof(double));B[i]=(double*)malloc((n)*sizeof(double));C[i]=(double*)malloc((n)*sizeof(double)); }cout cin>>n;cout for(i=0;i for(j=0;j篇三:数值分析实验报告(包含源程序)课程实验报告课程实验报告。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验名称 插值法实验目的(1)学习并熟练掌握MA TLAB 语言的编程;(2)通过课程实习能够应用MATLAB 软件来计算函数的插值,了解函数插值方法。

实验原理牛顿差商形式多项式P(x)=f(x0)+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+…+f[x0,x1,x2…xn](x-x0)…(x-xn-1) 牛顿插值多项式的余项 Rn(x)=f[x0,x1,x2…xn]wn+1(x) 实验题目{1}已知函数在下列各点的值为i x 0.2 0.4 0.6 0.8 1.0 ()i f x 0.98 0.92 0.81 0.64 0.38试用4次牛顿插值多项式()4P x 及三次样条函数()Q x (自然边界条件)对数据进行插 值。

用图给出{(,i i x y ),i x =0.2+0.08i ,i=0,1,11,10},()4P x 及()Q x 。

①实验过程x1=[0.2 0.4 0.6 0.8 1.0];y1=[0.98 0.92 0.81 0.64 0.38]; n=length(y1); c=y1(:);for j=2:n %求差商 for i=n:-1:jc(i)=(c(i)-c(i-1))/(x1(i)-x1(i-j+1)); end endsyms x df d ;df(1)=1;d(1)=y1(1);for i=2:n %求牛顿差值多项式 df(i)=df(i-1)*(x-x1(i-1)); d(i)=c(i-1)*df(i); endP4=vpa(sum(d),5) %P4即为4次牛顿插值多项式,并保留小数点后5位数 pp=csape(x1,y1, 'variational');%调用三次样条函数 q=pp.coefs;q1=q(1,:)*[(x-.2)^3;(x-.2)^2;(x-.2);1]; q1=vpa(collect(q1),5)q2=q(1,:)*[(x-.4)^3;(x-.4)^2;(x-.4);1]; q2=vpa(collect(q2),5)q3=q(1,:)*[(x-.6)^3;(x-.6)^2;(x-.6);1];q3=vpa(collect(q3),5)q4=q(1,:)*[(x-.8)^3;(x-.8)^2;(x-.8);1];q4=vpa(collect(q4),5)%求解并化简多项式②运行结果P4 =- 0.20833333333212067373096942901611*x^4 - 0.20833333333212067373096942901611*x^3 + 0.15833*x^2 + 0.96833*x + 0.782q1 =- 1.3392857142898719757795333862305*x^3 + 0.80357*x^2 - 0.40714285714057041332125663757324*x + 1.04q2 =- 1.3392857142898719757795333862305*x^3 + 1.6071*x^2 - 0.8892857142927823588252067565918*x + 1.1643q3 =- 1.3392857142898719757795333862305*x^3 + 2.4107*x^2 - 1.6928571428579743951559066772461*x + 1.4171q4 =- 1.3392857142898719757795333862305*x^3 + 3.2143*x^2 - 2.8178571428288705646991729736328*x + 1.8629③问题结果4次牛顿差值多项式()4P x = 0.98*x - 0.3*(x - 0.2)*(x - 0.4) - 0.625*(x - 0.2)*(x - 0.4)*(x - 0.6) - 0.20833*(x - 0.2)*(x - 0.4)*(x - 0.8)*(x - 0.6) + 0.784三次样条差值多项式()Q x ={2}2.在区间[-1,1]上分别取n=10.20用两组等距节点对龙格函数f(x)=22511x+)做多项式及三次样条差值,对每个n 值,分别画出差值函数及f(x)的函数. 龙格图函数做多项式function L=lagrange(a,b,a0) syms x n=length(a) L=0.0 for i=1:n l=b(i); for j=1:i-1l=l.*(x-a(j))/(a(i)-a(j)); endfor j=i+1:nl=l.*(x-a(j))/(a(i)-a(j)); endL=L+l;simplify(L);endL=collect(L)L=vpa(L,6)L=subs(L,'x',a0);endclear allsubplot(1,2,1);a=linspace(-1,1,10);b=1./(1+25.*a.^2);L=Lagrange(a,b)b0=subs(L,'x',a);plot(a,b0,'rs')hold onplot(a,b)title('n=10ʱµÄ²åÖµº¯Êý'); subplot(1,2,2);a=linspace(-1,1,20);b=1./(1+25.*a.^2);L=Lagrange(a,b)b0=subs(L,'x',a);plot(a,b0,'rs');hold on;plot(a,b)title('n=20ʱµÄ²åÖµº¯Êý');图像:三次样条插值函数插值程序:subplot(1,2,1);a=linspace(-1,1,5);b=1./(1+25.*a.^2);a0=linspace(-1,1,10);b0=spline(a,b,a0);plot(a,b,'rs',a0,b0)hold onplot(a,b,'G')title('n=10时的插值函数'); subplot(1,2,2);a=linspace(-1,1,5);b=1./(1+25.*a.^2);a0=linspace(-1,1,20);b0=spline(a,b,a0);plot(a,b,'rs',a0,b0)hold onplot(a,b,'G')title('n=20时的插值函数');图像:y{3}下列数据点的插值x 0 1 4 9 16 25 36 49 64y 0 1 2 3 4 5 6 7 8可以得到平方根函数的近似,在区间[0,64]上作图.(1)用这9个点作8次多项式插值Ls(x).(2)用三次样条(第一边界条件)程序求S(x).从得到结果看在[0,64]上,哪个插值更精确;在区间[0,1]上,两种插值哪个更精确?①实验过程(1)拉格朗日插值多项式,求解程序如下syms x l;x1=[0 1 4 9 16 25 36 49 64];y1=[0 1 2 3 4 5 6 7 8];n=length(x1);Ls=sym(0);for i=1:nl=sym(y1(i));for k=1:i-1l=l*(x-x1(k))/(x1(i)-x1(k));endfor k=i+1:nl=l*(x-x1(k))/(x1(i)-x1(k));endLs=Ls+l;endLs=simplify(Ls) %为所求插值多项式.输出结果为Ls =-(x*(143*x^7 - 29260*x^6 + 2366546*x^5 - 97191380*x^4 + 2171047879*x^3 - 26340674360*x^2 + 166253376432*x - 577880352000))/435891456000(2)三次样条插值,程序如下x1=[0 1 4 9 16 25 36 49 64];y1=[0 1 2 3 4 5 6 7 8];x2=[0:1:64];y3=spline(x1,y1,x2);p=polyfit(x2,y3,3); %三条拟和函数S=p(1)+p(2)*x+p(3)*x^2+p(4)*x^3 %得到S(x)输出结果为:S =(1998674665313721*x^3)/2251799813685248+(4552380473376719*x^2)/180143985 09481984-(4798224608945675*x)/1152921504606846976+4576150135846985/1475739525 89676412928(3)在区间[0,64]上,分别对这两种插值和标准函数作图,plot(x2,sqrt(x2),'b',x2,y2,'r',x2,y3,'y')蓝色曲线为y=函数曲线,红色曲线为拉格朗日插值函数曲线,黄色曲线为三次样条插值曲线可以看到蓝色曲线与黄色曲线几乎重合,因此在区间[0,64]上三次样条插值更精确。

在[0,1]区间上由上图看不出差别,不妨代入几组数据进行比较,取x4=[0:0.2:1] x4=[0:0.2:1];sqrt(x4) %准确值subs(Ls,'x',x4) %拉格朗日插值spline(x1,y1,x4) %三次样条插值运行结果为ans =0 0.4472 0.6325 0.7746 0.8944 1.0000ans =0 0.2504 0.4730 0.6706 0.8455 1.0000ans =0 0.2429 0.4630 0.6617 0.8403 1.0000 从这几组数值上可以看出在[0,1]区间上,拉格朗日插值更精确。

数据拟合和最佳平方逼近。

相关文档
最新文档