因式分解公式法(平方差公式)

合集下载

平方差公式的运用

平方差公式的运用

两个数的平方差,等于这两个 数的和与这两个数的差的积
a 2 - b 2 = ( a + b )( a - b )
观察平方差公式的项、符号、指数有什么特点?
★左边:两个数的平方差 ①两项,②符号相反,③平方
★右边:这两个数的和与这两个数的差的积
试一试
a2 - b2= (a + b) (a - b)
作业
必做题: P149的2题 P150的4题
选做题 P150的B组
温馨提示:能提公因式的,要先提 公因式,再进行下一步的分解。
把下列4.各解:式因式分解
原式=[(x+y+z)+(x-y-z)]×[(x+y+z)- (x-y-z)]
1)( x + z )²- ( y + z )²
=2 x ( 2 y + 2 z)
2)4( a + b)=²4-x23(5.y解(+a:z-) c)² 3) 41原a.解式³:-=[4(xa+z)+(y2原+.原解式z):式]=[([x2=+(4aza+)-(b(ay)²]+-²-z1[))5]=(a4-ac)(]a²+1)(a-1) 4)(x + y=(x++yz+)2²z)-(x(-xy)=–[2(ya+–b)z+ 5)(²a-c)][2(a+b)- 5(a-c)]
=(7a+2b-5c)(-3a+2b+5c)
拓展提升
1、若a、b、c是三角形的三边长且满足
(a+b)2-(a+c)2=0,则此三角形是( )
A、等腰三角形

因式分解-平方差公式

因式分解-平方差公式

(1)
1 36
=( ±
1 6
)2 ;
(3)9m2 = ( ± 3m )2;
(2) 0.81=(± 0.9 )2; (4) 25a2b2=(± 5ab )2;
(5) 4(a-b)2=[ ± 2(a-b) ]2;
(6)
1 16
(x+y)2=[
±
1 4
(x+y) ]2。
首页 上页 下页
将下面的多项式分解因式
判断、下列多项式能否用平方差公式分
解因式?说说你的理由。
(2x)2
2x
+
(1)4x2+y2 y
不能用平方 差分解因式
(2) 4x2-(-y)2 √
(3) -4x2-y2 -(4x2+y2) (4) -4x2+y2 √
(5) a2-4 √
(6) a2+3 不能
知识探索
2、口答下列各题: (1) a2-1=( a )2-( 1 )2
(2) 公式右边: (是分解因式的结果)
★分解的结果是两个数的和乘以两个数 的差的形式。
你对平方差公式认识有多深?
a2-b2=(a+b)(a-b)
△2- 2=(△+ )(△- )
首2-尾2=(首+尾)(首-尾)
1a 4b 25
1 4
a2
-
16 b2 25
=
1 2
a
+
4 5
b
1 2
a
-
4 5
b
拓展训练1:因式分解
1.-25x2y2+100 2.4(a-b)2-9(2a+3b)2 3.(2a-b)2-9a2 4.(x2+3x)2-(x+1)2

用平方差公式分解因式

用平方差公式分解因式
2.用平方差公式因式分解步骤:
一变、二分解
课外作业
1:教材P 2: 练习册
反过来又如何?
a2-b2 = (a+b)(a-b)
2、你能把分解因式吗?
x2-25
a2-b2 = (a+b)(a-b)
观察上面的式子,你发现其有何特征?
左边是两数的平方差,右边是 两数和与它们差的积。
填空:
(1)a2-16=a2-( 4 )2 =(a+ 4)(a- 4 )
(2)64-b2=( 8)2-b2
拓展训练1:因式分解
1.-125x2y2+4 2.4(a-b)2-9(2a+3b)2 3.(2a-b)2-9a2 4.(x2+3x)2-(x+1)2
拓展训练2:利用因式分解计算
1.10122-9882
2.73×1452-1052×73
3.1522-522
2842-162
课堂小结
1.平方差公式:a2-b2 = (a+b)(a-b)9来自3.x2y2-16y2
例2:把下列各式分解因式:
1.(x+y)2-(x-y)2
2.9(a+b)2-4(a-b)2
练一练2:
1.(x-2)2-9
2.(x+a)2-(y-b)2
3.-25(a+b)2+4(ab)2
例3:求圆环绿地的面积
35m 15m
练一练3:如图,在边长为 16.4厘米的正方形纸片的4 个角各剪去一边长为1.8厘米 的正方形,求余下纸片的面积
数学家陈景润的故事
1966年屈居于六平方米小屋的陈景润,借一盏昏暗的煤油灯, 伏在床板上,用一支笔,耗去了几麻袋的草稿纸,居然攻克了世界 著名数学难题“哥德巴赫猜想”中的(1+2),创造了距摘取这颗数 论皇冠上的明珠(1+ 1)只是一步之遥的辉煌。他证明了“每个大偶 数都是一个素数及一个不超过两个素数的乘积之和”,使他在哥德 巴赫猜想的研究上居世界领先地位。这一结果国际上誉为“陈氏定 理”,受到广泛征引。这项工作还使他与王元、潘承洞在1978年 共同获得中国自然科学奖一等奖。他研究哥德巴赫猜想和其他数论 问题的成就,至今,仍然在世界上遥遥领先。世界级的数学大师、 美国学者阿 •威尔(A Weil)曾这样称赞他:“陈景润的每一项工作, 都好像是在喜马拉雅山山巅上行走。

人教版八年级数学上册课件:14.3.2因式分解(公式法-平方差公式)

人教版八年级数学上册课件:14.3.2因式分解(公式法-平方差公式)
--因式分解的平方差公式
你学了什么方法进行分解因式?
把下列各式因式分解:
(1) ax - ay = a( x – y ) (2) 9a2 - 6ab+3a =3a(a-2b+1) (3) 3a(a+b)-5(a+b) =(a+b)(3a - 5) (4) ax2 - a3 =a(x2-a2) =a(x+a)(x-a) (5) 2xy2 - 50x =2x(y2-25) =2x(y+5)(y - 5)
个整体,加括号
熟记公式 a2 b2 (a b)(a b)
把下列式子分解因式
(x p)2 (x q)2
a² - b²= ( a + b)( a - b )
(1)a2-1
=( a )2-( 1 )2
(2)x4y2-4
=( x2y )2-( 2 )2
(3) 9 x2-0.01y2
49
=( 3
=(x+2)(x-2) =(3+y)(3-y)
(3) 1-a2
(4) 4x2-y2
=(1+a)(1-a) =(2x+y)(2x-y)
把下列各式分解因式
(1) 1-25x2
解: 1-25x2
=12-(5x)2
把两项写成平方的形式,
=(1+5x)(1-5x) 找出a和b。底数既有数
字还有字母,需要看成一
7
x )2-( 0.1y )2
(4)0.0001-121x2源自=( 0.01 )2-( 11x )2
因式分解:
1、 – a4 + 16 2、 4(a+2)2 - 9(a - 1)2 3、 (x+y+z)2 - (x-y-z)2

因式分解-平方差公式

因式分解-平方差公式

知识探索
2、口答下列各题: (1) a2-1=( a )2-( 1 )2 (2) x4y2-4= ( x2y )2-( 2 )2 (3) 0.49x2-0.01y2=( 0.7x )2-( 0.1y )2
(4) 0.0001-121x2=( 0.01 )2-( 11x )2 3、能用平方差公式因式分解的多项式有 何特征?①有且只有两个平方项; ②两个平方项异号;
)
是 否 否
把下列各式进行因式分解 1. a3b3-a2b-ab ab(a2b2-a-1)
2. -9x2y+3xy2-6xy -3xy(3x-y+2)
在横线内填上适当的式子,使等式成立: (1)(x+5)(x-5)= (2)(a+b)(a-b)= (3) x2-25 = (x+5)( (4) a2-b2 = (a+b)( x2-25 a2-b2 x-5 a-b ; ; ); )。
2
2
= (a ▲ + b )( a b) ▲
(1)公式左边:(是一个将要被分解因式的多项式)
★被分解的多项式含有两项,且这两项异号, 并且能写成( )2-( )2的形式。
(2) 公式右边:
(是分解因式的结果)
★分解的结果是两个底数的和乘以两个底数 的差的形式。
你对平方差公式认识有多深?
2 2 a -b =(a+b)(a-b)
进一步分解因式。
4.分解因式要彻底。要注意每一个因式的形式要最简,
直到不能再分解为止。
小试身手
把下列各式分解因式:
(1) (2) 2 2 2 解:(1) 36-25x =6 -(5x) =(6+5x)(6-5x) (2) 16a2-9b2 =(4a)2-(3b)2 =(4a+3b)(4a-3b)

§ 4.3(1)运用公式法-平方差

§ 4.3(1)运用公式法-平方差

15:18
13
例2 .把下列各式分解因式
(1)9(m + n)2 - (m - n)2
(2)2x3 - 8x
(3)a4-b4
15:18
14
(1)9(m+n)2-(m-n)2
解:9(m+n)2-(m-n)2
=[3(m+n)]2-(m-n)2 =[3(m+n)+(m-n)][3(m+n)-(m-n)]
15:18
有公因式先 提公因式, 然后再进一 步分解因式
16
(3)解:a4-b4 =(a2-b2)(a2+b2) =(a+b)(a-b)(a2+b2)
通过做第(3)小题你总结出什么吗? 分解因式一直到不能分解为止.所以分解 后一定检查括号内是否能继续分解.
15:18
17
当多项式的各项含有公因式 时,通常先提出这个公因式,然后
(3)x2 - (a + b - c)2;
(4)-16x2 + 81y2
15:18
23
解:(4) -16x2 + 81y2 = 81y 2-16x2 = (9y)2-(4x)2 = (9y+4x)(9y-4x)
北师大版八年级数学下册
§4.3 运用公式法(1) ——平方差公式
15:18
1
1.平方差公式
(1)整式乘法 (a+b)(a-b)=a2-b2 如:(x+5)(x-5) = x2-52=x2-25
(2)因式分解. a2-b2=(a+b)(a-b) 如x2-25 = x2-52=(x+5)(x-5) 9x2-y2 = (3x)2-y2=(3x+y)(3x-y)

因式分解(平方差公式)

因式分解(平方差公式)
平方差公式:
整式乘法
(a+b)(a-b) = a²- b²
两个数的平方差, 等于这两个数的和 与这两个数的差的 a²- b² = (a+b)(a-b) 积
因式分解
因式分解
因式分解
情景导入
1.把下列各式写成完全平方的形式: 如:36x2y4=( 6xy2) 2 (11a) 2 (7a2) 2 (1)121a 2= ______, (2) 49a4 = __________;
反思总结
1.具备什么特征的多项式是平方差式?
答:一个多项式如果是由两项组成,两部分是两个 式子(或数)的平方,并且这两项的符号为异号. 2.运用a2-b2=(a+b)(a-b)公式时,如何区分a、b?
答:平方前符号为正,平方下的式子(数)为a 平方前符号为负,平方下的式子(数)为b
情景导入
计算 a4 -81
解: a4 -81 = (a2+9)(a2-9)
= (a2+9)(a+3) (a-3)
情景导入
计算: 4( a + b )² - 25( a -c )²
解:4( a + b )² - 25( a -c )² =[2(a+b)]² -[5(a-c)]² =[2(a+b)+ 5(a-c)][2(a+b) - 5(a-c)] =(7a+2b-5c)(2b -3a+5c)
式分解因式。
2
例1.把下列各式分解因式
9 x²- — 1 y4 (1)16a² - 1 (2) -m² n² +4x² (3) — 25 16 1.解:原式= (4a)² -1² = (4a+1)(4a-1) 2.解:原式=4x2-m ² n² =(2x) ² -(mn) ² =(2x+mn)(2x-mn)

因式分解的十二种方法及多项式因式分解的一般步骤

因式分解的十二种方法及多项式因式分解的一般步骤

因式分解的十二种方法及多项式因式分解的一般步骤因式分解是代数学中的重要概念,它在数学中有广泛的应用。

根据不同的多项式,我们可以采用不同的因式分解方法,下面将介绍因式分解的十二种常用方法,并概述多项式因式分解的一般步骤。

1.公因式提取法(提取公因式):如果一个多项式中的每一项都可以被一个公因式整除,那么可以将这个公因式提取出来。

2.提取平方差公式法:利用平方差公式将多项式转化成两个平方差的形式,然后再进行因式分解。

3.提取完全平方公式法:利用完全平方公式将多项式转化成两个完全平方的形式,然后再进行因式分解。

4.因式分解公式法:在代数中,有很多已知的因式分解公式,如两个数的和的平方,两个数之差的平方等等。

5.分组法:将多项式根据其中一种规律进行分组,然后再进行因式分解。

6.十字相乘法:将多项式用十字形进行展示,然后利用观察十字上的乘积与和的关系进行因式分解。

7.平方差型多项式的配方:将平方差型多项式转化成配方的形式,然后再进行因式分解。

8.其他初等代数的性质:如差平方、和立方等等,利用这些性质进行因式分解。

9.部分分式法:对于分式形式的多项式,可以通过部分分式法将其分解成简单的分式,然后再进行因式分解。

10.变换法:将多项式进行恰当的变换,使之能够被其他的因式分解方法处理,然后再进行因式分解。

11.其他特殊的因式分解方法:如柯西公式、勾股定理等等。

12.已知因数的整除法:对于已知因数的情况,可以通过整除法进行因式分解。

综合上述的因式分解方法,我们可以得到一般的多项式因式分解的步骤:1.首先,检查多项式是否有公因式。

如果有,则提取公因式。

2.如果多项式是一个平方差型,则使用提取平方差公式法进行因式分解。

3.如果多项式是一个完全平方型,则使用提取完全平方公式法进行因式分解。

4.如果多项式是其他已知的因式分解公式形式,则使用相应的公式进行因式分解。

5.如果以上方法都不适用,则可以尝试使用分组法、十字相乘法、平方差型多项式的配方等方法进行因式分解。

因式分解公式

因式分解公式

因式分解——公式法学习指导1.代数中常用的乘法公式有:平方差公式:(a+b)(a-b)=a2-b2完全平方公式:(a±b)2=a2±2ab+b22.因式分解的公式:将上述乘法公式反过来得到的关于因式公解的公式来分解因式的方法,主要有以下三个公式:平方差公式:a2-b2=(a+b)(a-b)完全平方公式:a2±2ab+b2=(a±b)23.①应用公式来分解因式的关键是要弄清各个公式的形式和特点,也就是要从它们的项数系数,符号等方面掌握它们的特征。

②明确公式中字母可以表示任何数,单项式或多项式。

③同时对相似的公式要避免发生混淆,只有牢记公式,才能灵活运用公式。

④运用公式法进行因式分解有一定的局限性,只有符合其公式特点的多项式才能用公式法来分解。

因式分解公式的结构特征。

1.平方差公式:a2-b2=(a+b)(a-b)的结构特征1)公式的左边是一个两项式的多项式,且为两个数的平方差。

2)公式的右边是两个二项式的积,在这两个二项式中有一项a是完全相同的,即为左边式子中被减数a2的底数,另一项b和-b是互为相反数,即b 是左边式子中减数b2的底数。

3)要熟记1——20的数的平方。

2、完全平方公式:a2±2ab+b2=(a±b)2的结构特征.1)公式的左边是一个三项式,首末两项总是平方和的形式,中间项的符号有正有负,当为正号(负号)时右边的两项式中间符号为正(为负),2ab中的“2”是一个固定的常数。

2)公式的右边是两数和或差的平方形式。

3)要确定能不能应用完全平方公式来分解,先要看两个平方项,确定公式中的a和b在这里是什么,然后看中间一项是不是相当于+2ab或-2ab,如果是的,才可以分解为两数和或差的平方形式。

初学时中间的过渡性步骤不要省掉。

考点讲解利用因式分解与整式乘法之间的关系,把乘法公式反过来,就是因式分解的公式。

运用公式法分解因式的关键是要弄清各个公式的形式和特点,熟练地掌握公式,难点是灵活运用公式进行因式分解。

12.5.因式分解-平方差公式

12.5.因式分解-平方差公式
(1)公式左边:(是一个将要被分解因式的多项式)
★被分解的多项式含有两项,且这两项异号, 并且能写成( )2-( )2的形式。
(2) 公式右边: (是分解因式的结果)
★分解的结果是两个底数的和乘以两个底数 的差的形式。
a2 - b2= (a + b) (a - b)
下列多项式能转化成( )2-( m2 -1 = m2 -12 (2)4m2 -9 = (2m)2 -32 (3)4m2+9 不能转化为平方差形式
(4)x2 -25y 2 = x2 -(5y)2 (5) -x2 -25y2 不能转化为平方差形式 (6) -x2+25y2 = 25y2-x2 =(5y)2 -x2
铺路之石
填空:
平方差公式:
整式乘法
(a + b)(a - b) = a2 - b2
两个数的和与两个数的差的乘积, 等于这两个数的平方差。
a2 - b2 = (a+ b)( a - b)
因式分解
两个数的平方差,等于这两个数 的和与这两个数的差的乘积.
a 2 ▲- b 2 = ( a ▲+ b )( a -▲ b )
华师版 ·数学 ·八年级(上)
把-9x2y+6xy2-3xy分解因式 -3xy(3x-2y+1)
比一比
• 比一比,看谁算的又快又准确!
322-312
5.52-4.52
知识探索
平方差公式:
(a+b)(a-b)=a2-b2
a2-b2= (a+b)(a-b)
整式乘法 因式分解
这种分解因式的方法称为公式法。
(1) 1 =(
36
1 6
)2 ;
(3)9m2 = ( 3m )2;

因式分解(提公因式法、公式法)

因式分解(提公因式法、公式法)

因式分解讲义一、概念因式分解:把一个多项式化成几个整式乘积的形式,叫做把这个多项式因式分解。

二、因式分解方法1、提公因式法ma+mb+mc=m(a+b+c)公因式:一个多项式每项都含有的相同因式,叫做这个多项式各项的公因式。

公因式确定方法:(1)系数是整数时取各项最大公约数。

(2)相同字母(或多项式因式)取最低次幂。

(3)系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

2、公式法(1)平方差公式:即两个数的平方差,等于这两个数的和与这两个数的差的积。

(2)完全平方公式:即两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和 (或差)的平方。

口诀:首平方,尾平方,积的二倍放中央。

同号加、异号减,符号添在异号前。

公式法小结:(1)公式中的字母可代表一个数、一个单项式或一个多项式。

(2)选择公式的方法:主要看项数,若多项式是二项式可考虑平方差公式;若多项式是三项式,可考虑完全平方公式。

(3)完全平方公式要注意正负号。

【典型例题】1、下列从左到右是因式分解的是( )A. x(a-b)=ax-bxB. x 2-1+y 2=(x-1)(x+1)+y 2C. x 2-1=(x+1)(x-1)D. ax+bx+c=x(a+b)+c2、若2249a kab b ++可以因式分解为2(23)a b -,则k 的值为______3、已知a 为正整数,试判断2a a +是奇数还是偶数?4、已知关于x 的二次三项式2x mx n ++有一个因式(5)x +,且m+n=17,试求m ,n 的值5、将多项式3222012a b a bc -分解因式,应提取的公因式是( )A 、abB 、24a bC 、4abD 、24a bc6、已知(1931)(1317)(1317)(1123)x x x x -----可因式分解为()(8)ax b x c ++,其中a ,b ,c 均为整数,则a+b+c 等于( ) A 、-12 B 、-32 C 、38 D 、727、分解因式(1)6()4()a a b b a b +-+ (2)3()6()a x y b y x --- (3)12n n n x x x ---+(4)20112010(3)(3)-+- (5)ad bd d -+; (6)4325286x y z x y -(10)(a -3)2-(2a -6) (11)-20a -15ax; (12)(m +n )(p -q )-(m +n )(q +p )8、先分解因式,再计算求值(1)22(21)(32)(21)(32)(12)(32)x x x x x x x -+--+--+ 其中x=1.5(2)22(2)(1)(1)(2)a a a a a -++--- 其中a=189、已知多项式42201220112012x x x +++有一个因式为21x ax ++,另一个因式为22012x bx ++,求a+b 的值10、若210ab +=,用因式分解法求253()ab a b ab b ---的值11、下列各式中,能用平方差公式分解因式的是( )A 、22x 4y +B 、22x 2y 1-+C 、224x y -+D 、224x y --12、分解下列因式(1)2312x - (2)2(2)(4)4x x x +++- (3)22()()x y x y +--(4)32x xy - (5)2()1a b -- (6)22229()30()25()a b a b a b ---++(7)2522-b a ; (8)229161b a +-; (9)22)()(4b a b a +--(10)22009201120101⨯- (11)22222100999897...21-+-++-13、若n 为正整数,则22(21)(21)n n +--一定能被8整除14、)10011)(9911()411)(311)(211(22222--⋅⋅⋅---15、在多项式①22x 2xy y +- ②22x 2xy y -+- ③22x xy+y + ④24x 1+4x +,(5)2161a +中,能用完全平方公式分解因式的有( )16、A 、①② B 、②③ C 、①④ D 、②④16、222)2(4)________(y x y x -=++ 222)(88)_______(8y x y x +=++。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
2
( a b )( a b )
结论: 公式中的a、b无论表示数、单项式、还是多 项式,只要被分解的多项式能转化成平方差 的形式,就能用平方差公式因式分解。
3(m n) (m n)
(3)4 x 9 xy
3
2
2
解:原式
x(4 x 9 y ) x(2 x 3 y )( 2 x 3 y )
下列多项式能转化成( )2-( )2的形式吗?如果 能,请将其转化成( )2-( )2的形式。 (1) m2 -81 = m2 -92 (2) 1 -16b2 = 12-(4b)2 (3) 4m2+9 不能转化为平方差形式
(4) a2x2 -25y 2 = (ax)2 -(5y)2
(5) -x2 -25y2 不能转化为平方差形式
2
(4) p 1 ( p 1)( p 1)
4
2 2
2
( p 1)( p 1)( p 1)
分解因式需“彻底”!
能力提升
例2.分解因式:
4 (1) (2m n) 2 25 2 2 解:原式 ( ) (2m n) 2 5 2 2 ( 2m n) ( 2m n) 5 5 2 2 ( 2m n)( 2m n) 5 5
( × )
( × )
a2和b2的符号相反
2.分解因式:
(1) 9 4 x (2 x 3)( 2 x 3) 1 2 1 1 2 2 (2) x y z ( xy z )( xy z ) 4 2 2 2 2 (3)0.25q 121 p (0.5q 11 p)(0.5q 11 p)
范例学习
例1.分解因式:
(1)25 16 x 2 2 解:原式 5 (4 x)
2
1 2 (2)9a b 4
2
解:原式
(5 4 x)(5 4 x)
先确定a和b
1 2 (3a ) ( b) 2 1 1 (3a b)(3a b) 2 2
2
落实基础
1.判断正误:
4 4 2
2.简便计算:
(1)565 435
2
2
1 2 1 2 (2)(65 ) (34 ) 2 2
利用因式分解计算
联系拓广
例3.如图,在一块长为a的正方形纸片的四角,各剪去一个边长 为b的正方形.用a 与b表示剩余部分的面积,并求当a=3.6, b=0.8时的面积. 解:a2-4b2
=(a+2b)(a-2b)cm2 当a=3.6,b=0.8时,
原式=(3.6+2×0.8) (3.6-2×0.8)
=5.2×2 =10.4cm2
问题解决
• 如图,大小两圆的圆心相同,已知它们的半径分别 是R cm和r cm,求它们所围成的环形的面积。如果 R=8.45cm,r=3.45cm呢? ( 3.14) 解: R2- r2 = (R+r)(R-r)cm2
2
方法:
先考虑能否用提取公因式法,再考虑能否用 平方差公式分解因式。
结论: 分解因式的一般步骤:一提二套 多项式的因式分解要分解到不能再分解为止。
巩固练习 1.把下列各式分解因式:
(1)( m a) (n b)
2 2 2 2 2 2
2 2
(2)49(a b) 16(a b) (3)( x y ) 4 x y (4)3ax 3ay
第四章 因式分解
3 公式法(一) 平方差公式
复习回顾
填空: (1)(x+5)(x-5) = (2)(3x+y)(3x-y)=
x –25 9x –y
2 2 2
; ;
2 2
(3)(3m+2n)(3m–2n)=
9m –4n .
它们的结果有什么共同特征? 2
(a b)(a b) a b
2
尝试将它们的结果分别写成两个因式的乘积: (x+5)( x-5) x 2 25 __________ __________ __; (3x+y)( 3x-y) 9 x 2 y 2 __________ __________ _;
(1) x y ( x y)( x y); 2 2 (2) x y ( x y)( x y); 2 2 (3) x y ( x y)( x y); 2 2 (4) x y ( x y)( x y).
2 2
( × )
( √

当R=8.45,r=3.45时, 原式=(8.45+3.45) ×(8.45-3.45) ×3.14 =186.83cm2
自主小结
从今天的课程中,你学到了哪些知识? 掌握了哪些方法?
(1)有公因式(包括负号)则先提取公因式; (2)整式乘法的平方差公式与因式分解的平方差公式是互逆关系; (3)平方差公式中的a与b既可以是单项式,又可以是多项式;
作业
• 完成课本习题 • 拓展作业: 你能尝试运用今天所学的知识解决下面 的问题吗 你知道992-1能否被100整除吗?
再攀高峰
如图,在边长为6.8cm 正方形钢板上,挖去4个边 长为1.6cm的小正方形,求 剩余部分的面积。
把括号看作一个整体
解:原式 3(m n)2 (m n) 2
(2)9(m n) (m n)
2
2
3(m n) (m n)3(m n) (m n) (4m 2n)( 2m 4n) 4(2m n)( m 2n)
a b
3m+2n)( 3m–2n) . 9m 2 4n 2 ( __________ __________
探究新知 谈谈你的感受。 将多项式 a b 进行因式分解
2 2
(a b)(a b) a b
2
2
整式乘法
a b (a b)(a b)
2 2
因式分解
整式乘法公式的逆向变形得到分解因式的方法。 这种分解因式的方法称为运用公式法。
说一说 找Байду номын сангаас征
b a ▲
2
2
(a ▲ b )( a b) ▲
(1)公式左边:(是一个将要被分解因式的多项式)
★被分解的多项式含有两项,且这两项异号, 并且能写成( )2-( )2的形式。
(2) 公式右边:
(是分解因式的结果)
★分解的结果是两个底数的和乘以两个底数 的差的形式。
试一试 写一写
相关文档
最新文档