钛及钛合金课件.
合集下载
钛合金介绍精品PPT课件
材料科学前沿
钛及钛合金
Titanium and Titanium Alloy
内容提要
一、 简介 二、纯钛 三、钛合金物理冶金基础
四、钛合金的发展与应用
一 、 简介
简介
1791年,英国牧师格累高尔发现了一种新元素。 1795年,法国化学家克拉普罗特以日耳曼神话中 女神坦的名字为它命名“Titanium”,译成中文就 是“钛”。从此,钛便进入了科学家的实验室。
仍保持良好的塑性及韧性)
➢耐腐蚀性(钝化层(TiO2),纳米尺度,室温下长大极慢) ➢吸气性能(储气、干燥)
纯钛特点
纯钛:一种银白色的金属
特点:
是很活泼的元素。
有很好的钝化性能,钝化膜很稳定,在许多环境中表现出 很好的耐蚀性。有“耐海水腐蚀之王”之称。
高温下,钛的化学活性很高,能与卤素、氧、氮、碳、硫 等元素发生剧烈反应。
α+β型钛合金的退火组织为α+β,以TC加顺序号表示其合金
的牌号。 合金同时含有β相稳定元素和α相稳定元素。组织以α相为主,β 相的数量通常不超过30%。 合金可通过淬火及时效进行强化,多在退火状态下使用。α+β型 钛合金的室温强度和塑性高于α型钛合金,生产工艺比较简单,通 过改变成分和选择热处理制度又能在很宽的范围内改变合金的性 能,应用比较广泛,尤以TC4用途最广,用量最多。
钛合金的分类
β型钛合金: 合金加入了大量的多组元β相稳定元素,同时还
加入α相稳定元素Al。应用的β型钛合金主要为亚稳定的β钛 合金,退火状态为α+β两相组织,将其加热到β单相区后淬火, 因α相来不及析出而得到的过饱和的β相,称为亚稳β相。
该类合金塑性好,易于冷加工成形,成形后可通过时 效处理,使强度提高;
钛及钛合金
Titanium and Titanium Alloy
内容提要
一、 简介 二、纯钛 三、钛合金物理冶金基础
四、钛合金的发展与应用
一 、 简介
简介
1791年,英国牧师格累高尔发现了一种新元素。 1795年,法国化学家克拉普罗特以日耳曼神话中 女神坦的名字为它命名“Titanium”,译成中文就 是“钛”。从此,钛便进入了科学家的实验室。
仍保持良好的塑性及韧性)
➢耐腐蚀性(钝化层(TiO2),纳米尺度,室温下长大极慢) ➢吸气性能(储气、干燥)
纯钛特点
纯钛:一种银白色的金属
特点:
是很活泼的元素。
有很好的钝化性能,钝化膜很稳定,在许多环境中表现出 很好的耐蚀性。有“耐海水腐蚀之王”之称。
高温下,钛的化学活性很高,能与卤素、氧、氮、碳、硫 等元素发生剧烈反应。
α+β型钛合金的退火组织为α+β,以TC加顺序号表示其合金
的牌号。 合金同时含有β相稳定元素和α相稳定元素。组织以α相为主,β 相的数量通常不超过30%。 合金可通过淬火及时效进行强化,多在退火状态下使用。α+β型 钛合金的室温强度和塑性高于α型钛合金,生产工艺比较简单,通 过改变成分和选择热处理制度又能在很宽的范围内改变合金的性 能,应用比较广泛,尤以TC4用途最广,用量最多。
钛合金的分类
β型钛合金: 合金加入了大量的多组元β相稳定元素,同时还
加入α相稳定元素Al。应用的β型钛合金主要为亚稳定的β钛 合金,退火状态为α+β两相组织,将其加热到β单相区后淬火, 因α相来不及析出而得到的过饱和的β相,称为亚稳β相。
该类合金塑性好,易于冷加工成形,成形后可通过时 效处理,使强度提高;
第七章 钛及钛合金
凝壳——自耗电极熔炼技术:
俄罗斯发展的一种类似于冷床炉的新型熔炼技术,其特点:
——能有效去除熔融金属中密度和熔点高于基体金属的颗粒;
——难熔金属组元可以纯金属的形式加入; ——可制备异型铸锭;
——同时可大量回收利用残钛;
——炉子造价比冷床炉的低,耗电量较小。
一次熔炼采用该工艺,二次采用真空自耗进行熔炼
TC21合金
西北有色金属研究院研制的高强韧损伤容限型钛合金
Ti-Al-Sn-Zr-Mo-Cr-Nb-Si 系α +β 两相钛合金
UTS = 1100 MPa, YS = 1000 MPa, EL = 8%, RA =12% KIC = 70 MPam, 疲劳裂纹扩展速率da/dN 同 Ti-6-4合金相当
☼ 氢处理细化钛合金的微观组织
结合塑性变形技术制备超细晶钛合金,使钛合金在较 低的变形温度和较高的变形速率下具有优异的超塑性性能。 600700C,如将Ti-6Al-4V中添加0.5wt%H, 合金晶粒尺 寸可降低至0.30.5m;变形温度为800C, 应变速率为 1.010-3s-1时,合金的延伸率将高达 6000%。
• 特点: -良好的机械性能,透声性能和冷成型性能
☼ 低成本钛合金
以廉价的合金化元素如Fe、Si等代替昂贵的V,Mo、 Nb等元素,实现原材料成本降低三分之一。
几种低成本钛合金的室温机械性能
Alloy Ti8LC UTS / MPa 1180 YS / MPa 1120 EL / % 16 RA / % 36 Alloy type near + Designation er NIN(China)
3. 热强性好 往钛合金中加入合金强化元素后,大大提高了钛合金的热稳定性和高
钛合金介绍 PPT课件
ቤተ መጻሕፍቲ ባይዱ
钛合▪金自高热温β处相稳理定基区冷础却下来, β相发生分解。
▪当转变温度T3时,转变终了得α+β相。 ▪当转变温度T2时,先是β→β+ω,此时ω为介 稳定相,再进一步转变为β+ω→ β+α+ω→β+α。
▪当转变温度为T1时,发生β→β+ω相变。 ▪三种情况下相应的硬度变化见图。ω相均匀细 小,析出明显强化合金,但一般同时引起严重 脆性。因此,ω相沉淀硬化是难以接受的。
钛合金的强韧化基础-α+β钛合金
2. α+β钛合金
➢Ti-6Al-4V是应用最广泛的α+β钛合金,其强度特性可通过控制α、 β二相的相对含量及金相形态而变化。退火态合金拉伸强度约 900MPa,而固溶时效态可以获得1200MPa。一般说来通过组织细 化和β相变控制,可以获得高强度。首先经α+β两相区热加工后控 制固溶处理,得到细而均匀分布的一次α相,再时效得到在前β相 区析出细的二次α相质点。细的等轴α结构还具有较高的塑性、疲 劳裂纹形成阻力和高温低周疲劳强度。
仍保持良好的塑性及韧性)
➢耐腐蚀性能(钝化层(TiO2),纳米尺度,室温下长大极慢) ➢吸气性能(储气、干燥)
纯钛特点
纯钛:一种银白色的金属
特点:
是很活泼的元素。
有很好的钝化性能,钝化膜很稳定,在许多环境中表现出 很好的耐蚀性。有“耐海水腐蚀之王”之称。
高温下,钛的化学活性很高,能与卤素、氧、氮、碳、硫 等元素发生剧烈反应。
▪再增加冷速,可以不发生相变得到室温介稳的 β相,或者得到β→α马氏体相变,得到α马氏体 相(当β稳定剂小于临界浓度时);在随后的 时效时,马氏体又可以分解析出细小β相。
钛合▪金自高热温β处相稳理定基区冷础却下来, β相发生分解。
▪当转变温度T3时,转变终了得α+β相。 ▪当转变温度T2时,先是β→β+ω,此时ω为介 稳定相,再进一步转变为β+ω→ β+α+ω→β+α。
▪当转变温度为T1时,发生β→β+ω相变。 ▪三种情况下相应的硬度变化见图。ω相均匀细 小,析出明显强化合金,但一般同时引起严重 脆性。因此,ω相沉淀硬化是难以接受的。
钛合金的强韧化基础-α+β钛合金
2. α+β钛合金
➢Ti-6Al-4V是应用最广泛的α+β钛合金,其强度特性可通过控制α、 β二相的相对含量及金相形态而变化。退火态合金拉伸强度约 900MPa,而固溶时效态可以获得1200MPa。一般说来通过组织细 化和β相变控制,可以获得高强度。首先经α+β两相区热加工后控 制固溶处理,得到细而均匀分布的一次α相,再时效得到在前β相 区析出细的二次α相质点。细的等轴α结构还具有较高的塑性、疲 劳裂纹形成阻力和高温低周疲劳强度。
仍保持良好的塑性及韧性)
➢耐腐蚀性能(钝化层(TiO2),纳米尺度,室温下长大极慢) ➢吸气性能(储气、干燥)
纯钛特点
纯钛:一种银白色的金属
特点:
是很活泼的元素。
有很好的钝化性能,钝化膜很稳定,在许多环境中表现出 很好的耐蚀性。有“耐海水腐蚀之王”之称。
高温下,钛的化学活性很高,能与卤素、氧、氮、碳、硫 等元素发生剧烈反应。
▪再增加冷速,可以不发生相变得到室温介稳的 β相,或者得到β→α马氏体相变,得到α马氏体 相(当β稳定剂小于临界浓度时);在随后的 时效时,马氏体又可以分解析出细小β相。
钛及钛合金组织特征PPT课件
金相明场 250×; 金相偏光 250×; 电镜明场 5000×
TA1,退火+ 焊接;焊缝区:片状α +原始β晶 界(晶内有孪晶)
浸蚀剂--氢氟酸:硝酸:水=1:1:3;
金相明场 250×; 金相偏光 250×; 电镜明场 5000×
2.2 TA7,典型组织介绍 TA7,1040℃/30分,水淬;针状α + 原始β晶界
等轴α +晶间β
等轴+针状 α +晶间β 等轴α +针状 α( 转变态β)
少量等轴α +针状 α+ β( 转变态β)
片状α( 转变态β)+ β 初 片状α( 转变态β)+ β +
生β晶界α24
初0℃
Ti-6Al-V合金的相转变图,MS:马氏体转 变 开 始 温 度 。 以 及 Ti-6Al-4V 合 金 从
TC4,1020℃/1hr 水淬;马氏体α’+原始β晶界
浸蚀剂----
氢氟酸:硝酸:水=1:6:193;
金相明场 金相相衬 电镜明场
250×; 250×; 5 0 0 0 ×;
TC4,1020℃/1hr,AC;针状α + 原始β晶界
TC4钛合金,1020℃/1hr 经空冷,针状+原始晶界. 金相明场 250×;相衬 250×;电镜明场 5000×. 浸蚀剂:氢氟酸:硝酸:水 =1:6:193
好
差
较快 慢 慢 最快
疲劳性能
低周 高周
较差
较好
高于 双态 高于 等轴
差
好 高于 等轴
好
差
差
52
金相明场 250×; 金相偏光 250×; 电镜明场 5000×
TA1,退火+ 焊接;焊缝区:片状α +原始β晶 界(晶内有孪晶)
浸蚀剂--氢氟酸:硝酸:水=1:1:3;
金相明场 250×; 金相偏光 250×; 电镜明场 5000×
2.2 TA7,典型组织介绍 TA7,1040℃/30分,水淬;针状α + 原始β晶界
等轴α +晶间β
等轴+针状 α +晶间β 等轴α +针状 α( 转变态β)
少量等轴α +针状 α+ β( 转变态β)
片状α( 转变态β)+ β 初 片状α( 转变态β)+ β +
生β晶界α24
初0℃
Ti-6Al-V合金的相转变图,MS:马氏体转 变 开 始 温 度 。 以 及 Ti-6Al-4V 合 金 从
TC4,1020℃/1hr 水淬;马氏体α’+原始β晶界
浸蚀剂----
氢氟酸:硝酸:水=1:6:193;
金相明场 金相相衬 电镜明场
250×; 250×; 5 0 0 0 ×;
TC4,1020℃/1hr,AC;针状α + 原始β晶界
TC4钛合金,1020℃/1hr 经空冷,针状+原始晶界. 金相明场 250×;相衬 250×;电镜明场 5000×. 浸蚀剂:氢氟酸:硝酸:水 =1:6:193
好
差
较快 慢 慢 最快
疲劳性能
低周 高周
较差
较好
高于 双态 高于 等轴
差
好 高于 等轴
好
差
差
52
金相明场 250×; 金相偏光 250×; 电镜明场 5000×
金属结构材料-钛合金课件
先进金属结构材料
—— 钛及钛合金
Titanium and Titanium Alloy
主要内容
第一部分 简介 第二部分 基本问题 第三部分 制备工艺 第四部分 商业纯钛与α钛合金 第五部分 α+β钛合金 第六部分 高温钛合金 第七部分 β钛合金
第一部分 简介
简介
u1791 年,英国牧师业余矿物学家 William Gregory 发现了一 种新元素:
u在双相α+β钛合金中,由于具有小的相尺寸、高的固溶度和Ti3Al沉 淀相的析出,孪晶变形模式几乎完全被抑制,但合金在低温下仍有 很好的塑性,主要是由于它们的相尺寸很小。
ubcc结构的β相在滑移之外也存在挛晶,但是β相中出现孪晶仅限于 单相状态,并随着固溶度的增加而减少。在完全热处理的β相合金 中,由于α颗粒的析出,孪晶完全被抑制,在这些合金中。时效前 进行变形可能出现孪晶。一些商用β相合金也可能形成应变诱发马 氏体来提高它们的变形能力,这种应变诱发马氏体的出现对成分很 敏感。
简介
u钛在地壳中的含量为0.6%,是仅次于铝、铁、镁排在第四位的 金属元素。遗憾的是,人们极少在地壳中发现高含钛量的矿石, 且从未发现过纯钛。由于制取金属纯钛的难度很大,所以钛的价 格很高。 u主要矿藏为钛铁矿(FeTiO3 )和金红石矿(TiO2 )。
u金属钛生产从1948年至今才有半个世纪的历史,它是伴随着航 空和航天工业而发展起来的新兴工业。它的发展经受了数次大起 大落,这是因为钛与飞机制造业有关的缘故。 u但总的说来,钛发展的速度是很快的,它超过了任何一种其他 有色金属的发展速度。这从全世界海绵钛工业发展情况可以看出: 海绵钛生产规模60年代为60kt/a ,70年代为1l0kt/a ,80年代为 130kt/a,到1992年已达140kt/a。
—— 钛及钛合金
Titanium and Titanium Alloy
主要内容
第一部分 简介 第二部分 基本问题 第三部分 制备工艺 第四部分 商业纯钛与α钛合金 第五部分 α+β钛合金 第六部分 高温钛合金 第七部分 β钛合金
第一部分 简介
简介
u1791 年,英国牧师业余矿物学家 William Gregory 发现了一 种新元素:
u在双相α+β钛合金中,由于具有小的相尺寸、高的固溶度和Ti3Al沉 淀相的析出,孪晶变形模式几乎完全被抑制,但合金在低温下仍有 很好的塑性,主要是由于它们的相尺寸很小。
ubcc结构的β相在滑移之外也存在挛晶,但是β相中出现孪晶仅限于 单相状态,并随着固溶度的增加而减少。在完全热处理的β相合金 中,由于α颗粒的析出,孪晶完全被抑制,在这些合金中。时效前 进行变形可能出现孪晶。一些商用β相合金也可能形成应变诱发马 氏体来提高它们的变形能力,这种应变诱发马氏体的出现对成分很 敏感。
简介
u钛在地壳中的含量为0.6%,是仅次于铝、铁、镁排在第四位的 金属元素。遗憾的是,人们极少在地壳中发现高含钛量的矿石, 且从未发现过纯钛。由于制取金属纯钛的难度很大,所以钛的价 格很高。 u主要矿藏为钛铁矿(FeTiO3 )和金红石矿(TiO2 )。
u金属钛生产从1948年至今才有半个世纪的历史,它是伴随着航 空和航天工业而发展起来的新兴工业。它的发展经受了数次大起 大落,这是因为钛与飞机制造业有关的缘故。 u但总的说来,钛发展的速度是很快的,它超过了任何一种其他 有色金属的发展速度。这从全世界海绵钛工业发展情况可以看出: 海绵钛生产规模60年代为60kt/a ,70年代为1l0kt/a ,80年代为 130kt/a,到1992年已达140kt/a。
《钛及钛合金》课件
1
钛合金材料的开发
近年来,随着人们对材料性能和应用领域的不断深入研究和探索,钛合金材料的 开发将会更加高效和精准。
2
制备工艺的优化
随着制造技术的不断进步,钛及钛合金的制备工艺和生产成本也会不断优化和降 低。
3
应用领域的扩大
除了传统的航空、医疗等领域,钛及钛合金材料还有更多的应用潜力和发展空间, 如军事、能源等领域。
《钛及钛合金》PPT课件
钛及钛合金是一种具有广泛应用前景的材料,在航空航天、医疗器械、3D打 印等领域得到了广泛的应用。
钛元素的特点
基本性质
钛是一种具有低密度、高强度、优异的耐腐蚀性和生物相容性的金属元素,是制造高科技产 品和高质量钢材的重要原材料。
生产工艺
钛元素的主要生产工艺包括克鲁塞法法等,随着工艺的不断升级发展,钛元素的生产成本逐 渐降低,材料性能也得到了进一步提升。
应用
钛元素广泛用于航空航天、医疗器械、军事等重要领域,市场需求不断扩大。
钛合金的特点
优异性能
钛合金具有高强度、低密度、优 异的耐腐蚀性和生物相容性,并 且还具有良好的机械性能和热处 理性能。
应用领域广泛
外观颜值高
钛合金广泛应用于汽车、自行车、 运动器材、医疗器械等领域,同 时还作为高端航空发动机、航空 器结构材料广泛使用。
钛合金不仅具有出色的物理性能, 而且具有独特的金属质感和光泽 度,非常适合用于制作高档手表 等工艺品。
钛及钛合金的缺点
1 昂贵
钛及钛合金价格较高,制造成本较高
Байду номын сангаас
2 制造难度大
钛及钛合金的制造难度比较大,需要采用特 殊的加工方法和工艺流程。
钛及钛合金的应用领域
第五章钛及钛合金的热处理ppt课件
有关,所以必须明确在各类中的β稳定系数值。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
5.1.2 钛的合金化
(1)α钛合金 此合金是指其退火组织以α钛为基体的单相固溶体
的合金。我国α钛合金的牌号为TA后加一个代表合 金序号的数字,如TA1、TA2、TA3等。 (2)近α钛合金 这类合金主要靠α稳定元素固溶强化,另加少量β 稳定元素,以使退火组织中有少量β相。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
5.2 钛的相变
5.2.1 同素异构转变 5.2.2 β相转变 (1)β相在快冷过程中的转变
1)马氏体相变 2)ω相变 3)淬火钛合金的亚稳定相图 (2)β相在慢冷过程中的转变 (3)β相共析反应和等温转变 5.2.3 时效过程亚稳相的分解 (1)六方马氏体α′的分解 (2)斜方马氏体α〞的分解 (3)ω相的分解 (4)亚稳定βm相的分解
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
5.2.1 同素异构相变
纯钛在固态有两种同素异晶体,即体心立方晶格
的β相和密排六方晶格的α相,在882.5℃发生下列
同素异构转变: α(密排六方)
5.1.2.1 钛与其他元素之间的作用 钛与其他合金元素之间的作用,取决于原子的电子
层结构、原子半径、晶格类型等诸因素。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
5.1.2 钛的合金化
(1)α钛合金 此合金是指其退火组织以α钛为基体的单相固溶体
的合金。我国α钛合金的牌号为TA后加一个代表合 金序号的数字,如TA1、TA2、TA3等。 (2)近α钛合金 这类合金主要靠α稳定元素固溶强化,另加少量β 稳定元素,以使退火组织中有少量β相。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
5.2 钛的相变
5.2.1 同素异构转变 5.2.2 β相转变 (1)β相在快冷过程中的转变
1)马氏体相变 2)ω相变 3)淬火钛合金的亚稳定相图 (2)β相在慢冷过程中的转变 (3)β相共析反应和等温转变 5.2.3 时效过程亚稳相的分解 (1)六方马氏体α′的分解 (2)斜方马氏体α〞的分解 (3)ω相的分解 (4)亚稳定βm相的分解
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
5.2.1 同素异构相变
纯钛在固态有两种同素异晶体,即体心立方晶格
的β相和密排六方晶格的α相,在882.5℃发生下列
同素异构转变: α(密排六方)
5.1.2.1 钛与其他元素之间的作用 钛与其他合金元素之间的作用,取决于原子的电子
层结构、原子半径、晶格类型等诸因素。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
第3章 钛及钛合金2
氮、氧、碳都提高α+ β/β相变温度,扩大α相区,属α稳定 元素。均可提高强度,急剧降低塑性,其影响程度按氮、氧、碳 递减。为了保证合金的塑性和韧性,工业钛合金中氢、氧、氮、 碳含量分别控制在0.015%、0.15%、0.05%,0.1%以下。低温用 钛及钛合金,由于氧、氮和碳提高塑-脆转化温度,应尽量降低 它们的含量,特别是氧含量。 微量铁和硅在固溶范围内与钛形成臵换固溶体,它们对钛的 性能影响没有间隙杂质元素那样强烈。作为杂质时,铁和硅的含 量分别要求小于0.3%和0.15%,但有时也作为合金元素加入。
美国军用飞机上各种材料用量占机体结构总量的百分比
机型 复合 材料 钛合金 铝合金 钢 F-16 3 2 83 5 YF-17 F/A-18 F/A-18 F/A-18 F/A-22 F-35 A/B C/D E/F 8 7 73 10 9.5 12 50 15 10 13 50 16 23 15 29 14 24 41 15 5 36 27 B-1 29 21 41 9 B-2 38 26 19 6 X-45A X-45B 50 90
第3章 钛及钛合金
3.1 概述 3.2 钛的提取和熔化 3.3 纯钛 3.4 钛合金
3.1 概述
钛源于Titans,即希腊神话中地球上大力士。 地壳中钛元素含量位列第四 (0.86%) ,居铝、铁、镁之后。 自然界中不存在纯钛,仅以氧化物存在,如FeTiO3、TiO2。 强度与钢相当,而密度几乎仅有钢的一半。
马赫数M>5时,蒙皮温度高达数千华氏 度,高超音速轰炸机用材问题非常突出。 即使早期研制的SR-71高空高速侦察机 (M=3),蒙皮温度已相当高,故钛合 金用量高达93%。
民用飞机的上各种材料用量的变化趋势:复合材料和钛合 金的用量不断增多。
美国军用飞机上各种材料用量占机体结构总量的百分比
机型 复合 材料 钛合金 铝合金 钢 F-16 3 2 83 5 YF-17 F/A-18 F/A-18 F/A-18 F/A-22 F-35 A/B C/D E/F 8 7 73 10 9.5 12 50 15 10 13 50 16 23 15 29 14 24 41 15 5 36 27 B-1 29 21 41 9 B-2 38 26 19 6 X-45A X-45B 50 90
第3章 钛及钛合金
3.1 概述 3.2 钛的提取和熔化 3.3 纯钛 3.4 钛合金
3.1 概述
钛源于Titans,即希腊神话中地球上大力士。 地壳中钛元素含量位列第四 (0.86%) ,居铝、铁、镁之后。 自然界中不存在纯钛,仅以氧化物存在,如FeTiO3、TiO2。 强度与钢相当,而密度几乎仅有钢的一半。
马赫数M>5时,蒙皮温度高达数千华氏 度,高超音速轰炸机用材问题非常突出。 即使早期研制的SR-71高空高速侦察机 (M=3),蒙皮温度已相当高,故钛合 金用量高达93%。
民用飞机的上各种材料用量的变化趋势:复合材料和钛合 金的用量不断增多。
钛及钛合金 课件
晶体结构:
原子半径: 密度: 熔点:
钛的特性
882.5度同素异构转变 (α-Ti↔β-Ti)。 与氧、氮、碳和氢剧烈反应。
价格昂贵。主要用于价格不是关键因素的先 进应用场合。 高强度和韧性。
化学性质
室温下钛比较稳定。
高温下活泼,熔化态能与大多数坩埚造型材料发生
作用。
高温下与卤素、氧、硫、碳、氮等进行强烈反应。
电渣精炼法
方坯作为电极, 其一端位于交 流电加热的电渣熔池中; 熔融金属与高温电渣反应,电渣 中还可加入合金元素用以调整合 金成分; 已熔化金属流经熔渣进入熔池而 被提纯,最终凝固成电渣精炼铸 锭; 精炼时,非金属杂质和熔渣发生 反应,熔融金属中的夹杂物被电 渣吸收去除。 属于非直接结晶,消除了中心结 晶孔,提高了均匀性
硅量以不超过α相最大固溶度为宜,一般为0.25 %左右。由于硅与钛的原子尺寸差别较大,在固 溶体中容易在位错处偏聚,阻止位错运动,从而 提高耐热性。 稀土: 提高合金耐热性和热稳定性。稀土的内氧化作用,
形成了细小稳定的RExOv颗粒,产生弥散强化。由 于内氧化降低了基体中的氧浓度,并促使合金中 的锡转移到稀土氧化物中,这有利于抑止脆性α2 相析出。此外,稀土还有强烈抑制β晶粒长大和 细化晶粒的作用,因而改善合金的综合性能。
钛在真空或惰性气氛下熔炼,如真空自耗电弧炉、
电子束炉、等离子熔炉等设备中熔炼。
钛在氮气中加热会发生燃烧,钛尘在空气中会发生
爆炸,所以钛材加热和焊接宜用氩气作保护气体。
钛在室温可吸收氢气,500℃以上吸气能力更强烈,
可作为高真空电子仪器的脱气剂;利用钛吸氢和放氢的特
性,可以作储氢材料。
钛在还原性酸(浓硫酸、盐酸、正磷酸)、氢氟酸、 氯气、热强碱、某些热浓有机酸及氧化铝溶液中 不稳定,会发生强烈腐蚀。另外,钛合金有热盐 应力腐蚀倾向。
钛及钛合金基本知识集锦PPT文档共75页
3.2 纯钛
纯钛的强度随温度的升高而降低,加热到250℃时抗拉强度 减小一半。500℃以下加热时断面收缩率变化很小,而伸长率却 连续下降;500℃以上,ψ和δ随温度提高而增加,接近转变温度 时,出现超塑性(δ>100%)。
纯钛有很好的低温塑性,特别是间隙元素含量很低的α型合 金适宜在低温下使用,如在火箭发动机或载人飞船上作超低温 容器。
3.2 纯钛
杂质元素对钛性能的影响 杂质元素主要有氧、氮、碳、氢、铁和硅。
前四种属间隙型元素,后二种属置换型元素,可以固溶在α相 或β相中,也可以化合物形式存在。
钛的硬度对间隙型杂质元素很敏感,杂质含量愈多,钛的硬 度就愈高。
综合考虑间隙元素对硬度的影响,引入氧当量:O当=O%+2N %十0.67%。
钛与生物体有很好相容性,而且无毒,适做生物工程材料。 钛在还原性酸(浓硫酸、盐酸、正磷酸)、氢氟酸、氯气、热 强碱、某些热浓有机酸及氧化铝溶液中不稳定,会发生强烈腐蚀 。另外,钛合金有热盐应力腐蚀倾向。 钛在550℃以下能与氧形成致密的氧化膜,具有良好的保护 作用。在538℃以下,钛的氧化符合抛物线规律。但在800℃以上 ,氧化膜会分解,氧原子以氧化膜为转换层进入金属晶格,此时 氧化膜已失去保护作用,使钛很快氧化。
3.2 纯钛 耐蚀性能:
钛的标准电极电位很低(E=-1.63V),但钛的致钝电位亦低, 故钛容易钝化。
常温下钛表面极易形成由氧化物和氮化物组成的钝化膜,它 在大气及许多浸蚀性介质中非常稳定,具有很好的抗蚀性。
在大气、海水、氯化物水溶液及氧化性酸(硝酸、铬酸等)和 大多数有机酸中,其抗蚀性相当于或超过不锈钢,在海水中耐蚀 性极强,可与白金相比,是海洋开发工程理想的材料。
钛的疲劳性能特点与钢类似,具有比较明显的物理疲劳极限, 纯钛的反复弯曲疲劳极限为0.6~0.80σb,钛的疲劳性能对金属表 面状态及应力集中系数比较敏感。
《钛及钛合金》课件
熔盐法是利用四氯化钛和镁在 高温下反应生成钛和镁的混合 物,再经分离、精炼得到纯钛
。
真空法是利用四氯化钛和氢气 在高温、真空条件下反应生成 钛和氯化氢,再经精炼得到纯
钛。
钛合金的熔炼工艺
钛合金的熔炼方法主要有真空熔 炼和电渣重熔两种。
真空熔炼是利用真空条件下的高 温熔炼技术,将各种金属元素熔
化并混合均匀,形成钛合金。
在此添加您的文本16字
轧制是将钛及钛合金的金属坯料在轧机中经过多道次的轧 制,使其逐渐变形、延伸,最终形成所需规格的板材、管 材等。
在此添加您的文本16字
挤压是将钛及钛合金的金属坯料放入挤压机中,通过施加 压力使其从模具孔中流出,形成所需形状和尺寸的型材。
在此添加您的文本16字
拉拔是将钛及钛合金的金属坯料在拉拔机中进行拉伸,使 其截面减小、长度增加,最终形成所需规格的棒材、动钛及钛合金领域的进步与发展。
感谢您的观看
THANKS
《钛及钛合金》ppt课件
目录
• 钛及钛合金简介 • 钛的物理与化学性质 • 钛合金的种类与特性 • 钛及钛合金的生产工艺 • 钛及钛合金的应用案例 • 未来展望与研究方向
01
钛及钛合金简介
钛的发现与特性
钛的发现
钛元素由英国化学家格雷戈尔于 1791年首先发现,而钛金属在19 世纪末才开始被用于工业生产。
钛的特性
钛是一种银白色的过渡金属,具 有低密度、高熔点、良好的耐腐 蚀性和优异的力学性能等特性。
钛合金的种类与特性
钛合金的种类
根据钛与其他元素的组合,钛合金可 以分为α型、β型和α+β型三类。
钛合金的特性
钛合金具有高强度、良好的耐腐蚀性 和疲劳性能,以及较低的弹性模量, 使其在航空、航天、医疗等领域得到 广泛应用。
第3章 钛及钛合金2
纯钛强度随温度升高而降低,加热到250℃时抗拉强度减小 一半。500℃以下加热时断面收缩率变化很小,而伸长率连续下 降;500℃以上,塑性随温度提高而增加,接近转变温度时,出 现超塑性(A>100%)。 纯钛有良好的低温塑性,特别是间隙元素含量很低的α型合 金适宜在低温下使用,如在火箭发动机或载人飞船上作超低温 容器。 钛的疲劳性能特点与钢类似,具有比较明显的物理疲劳极 限,纯钛的反复弯曲疲劳极限为0.6~0.8Rm,钛的疲劳性能对金 属表面状态及应力集中系数比较敏感。 钛的耐热性比铁和镍低。这与钛原子自扩散系数大和存在 同素异晶转变有关。钛的耐磨性较差,通过渗氮、碳、硼可提 高其耐磨性。
3.1 概述
钛源于Titans,即希腊神话中地球上大力士。 地壳中钛元素含量位列第四 (0.86%) ,居铝、铁、镁之后。 自然界中不存在纯钛,仅以氧化物存在,如FeTiO3、TiO2。 强度与钢相当,而密度几乎仅有钢的一半。
Rutile (TiO2)
Ilmenite (FeTiO3)
Titans
真空电弧重熔法
海绵钛与合金元素混合后液压成块状; 块状物焊接成熔化电极棒;
电极棒经二次或三次真空熔炼得到优质钛或钛合金锭。
电渣精炼法
方坯作为电极, 其一端位于交流 电加热的电渣熔池中;
熔融金属与高温电渣反应,电渣中 还可加入合金元素用以调整合金成 分; 已熔化金属流经熔渣进入熔池而被 提纯,最终凝固成电渣精炼铸锭; 精炼时,非金属杂质和熔渣发生反 应,熔融金属中的夹杂物被电渣吸 收去除。 属于非直接结晶,消除了中心结晶 孔,提高了均匀性
氮、氧、碳都提高α+ β/β相变温度,扩大α相区,属α稳定 元素。均可提高强度,急剧降低塑性,其影响程度按氮、氧、碳 递减。为了保证合金的塑性和韧性,工业钛合金中氢、氧、氮、 碳含量分别控制在0.015%、0.15%、0.05%,0.1%以下。低温用 钛及钛合金,由于氧、氮和碳提高塑-脆转化温度,应尽量降低 它们的含量,特别是氧含量。 微量铁和硅在固溶范围内与钛形成臵换固溶体,它们对钛的 性能影响没有间隙杂质元素那样强烈。作为杂质时,铁和硅的含 量分别要求小于0.3%和0.15%,但有时也作为合金元素加入。
有色金属及其合金-钛合金PPT
杂质元素对钛性能的影响
杂质元素主要有氧、氮、碳、氢、铁和硅。 氧、氮、碳、氢为间隙型元素;铁、硅为置换型元素,可以 固溶在α相或β相中,也可以化合物形式存在。 钛的硬度对间隙型杂质元素很敏感,杂质含量愈多,钛的硬 度就愈高。 综合考虑间隙元素对硬度的影响,引入氧当量:
O当=O%+2N%十0.67% 氧当量和硬度的关系为: HV=65+310·O0.5当。
钛的应用
航空航天、 海洋、化工、 生物医学材 料、运动器材
钛合金的生产
提取工艺 : Kroll 提取工艺
熔化工艺:
电渣精炼法Electroslag Refining (ESR) 真空电弧重熔法Vacuum Arc Remelting (VAR) 电子束熔炼 (EBM) 等离子熔炼(PAM) 感应凝壳熔炼法
加,其强度升高,塑性大幅度降低。
常温下钛的塑性比其他六方结构金属(镉、锌、镁) 要高得多。 原因是:滑移模型和晶体中各晶面的层错能有关,如层错能低, 则全位错易于分解为不全位错,以促进滑移的继续进行;钛的层 错能比基面小,原在基面上滑移的位错通过交滑移而转移到棱柱 面上,并可发生分解,这样基面上的滑移很快终止,而棱柱面上 的滑移则发挥着主导作用。反之,对于基面层错能比较低的金属, 如镉、锌、镁,则{0001}是主要滑移面。
钛的疲劳性能特点与钢类似,具有比较明显的物理疲劳极 限,纯钛的反复弯曲疲劳极限为0.6~0.8Rm,钛的疲劳性能对金 属表面状态及应力集中系数比较敏感。
钛的耐热性比铁和镍低。这与钛原子自扩散系数大和存在 同素异晶转变有关。钛的耐磨性较差,通过渗氮、碳、硼可提 高其耐磨性。
工艺性能
钛可进行锻造、轧制、挤压、冲压等各种压力加工;加热钢 材用的设备都可用于钛材加热,要求炉内气氛保持中性或弱氧化 性气氛,绝不允许使用氢气加热。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(6)导热系数及线胀系数均较低。其导热系数比 铁低4.5倍,使用时易产生温度梯度及热应力,不 过,线胀系数低可补偿因导热系数低带来的热应 力问题。
钛的熔点为1668℃,比铁、镍的肖高,比铝、镁 的熔点高1000℃以上。因此,作为轻金属结构材 料,钛合金具有比铝、镁合金好得多的热强性, 最高使用温度以达600℃。钛在氧化性气氛中极易 在表面与氧形成一层坚固的氧化物薄膜,是其在 氧化性酸、碱、盐介质,特别是在湿氯气和海水 中,具有优异的抗腐蚀性能。
全世界: 1955年 1975年 2万吨 7万吨
50000 45000 40000 35000 30000 25000 20000 15000 10000 5000 0
2006年 14万吨
年量/吨
1995年 1997年 1999年 2001年 2003年 2005年 2007年 年份
钛及钛合金发展至今,已有50多年历史,由于它 具有很高的比强度和耐蚀性,是世界各国大力发 展的轻金属材料。世界市场每年需求4~5万t钛及 钛合金。美国是最大的钛消费国。1994年用于军 事宇航约3200t,用于非军事商业宇航约7700t, 用于非宇航业约4800t,总共约15700t。日本则注 重发展钛的耐蚀性应用,1994年总共消费4241t, 耐蚀性商业纯钛占3773t,以应用其高比强度为主 的结构材料钛合金只占468t,其中宇航应用的钛 合金只占32. 7%,非宇航用钛合金占67.3%,这 其中又以消费品为主(占三分之二).
钛属于稀有金属,实际上钛并不稀有,其在地壳 中的丰度占第七位,占0.45%,远远高于许多常见 的金属。但由于钛的性质活泼,对冶炼工艺要求 高,使得人们长期无法制得大量的钛,从而被归 类为“稀有”的金属。用于冶炼钛的矿物主要有 钛铁矿(FeTiO3)、金红石(TiO2)和钙钛矿等, 也是钛的主要矿石,矿石经处理得到易挥发的四氯 化钛,再用镁还原而制得纯钛。
钛在还原性酸(浓硫酸、盐酸、正磷酸)、氢氟酸、 氯气、热强碱、某些热浓有机酸及氧化铝溶液中 不稳定,会发生强烈腐蚀。另外,钛合金有热盐 应力腐蚀倾向。 550℃以下钛与氧形成保护作用良好的致 密氧化膜。538℃以下,钛的氧化符合抛物线规 律。但在800℃以上,氧化膜分解,氧原子以氧 化膜为转换层进入金属晶格,此时氧化膜已失去 保护作用,使钛很快氧化。
耐蚀性能
ETi=-1.63V,而钛的致钝电位低,故钛易钝化。 常温下钛表面极介质中 非常稳定,具有很好的抗蚀性。 大气、海水、氯化物水溶液及氧化性酸 (硝酸、铬酸等)和大多数有机酸中,钛抗蚀性相 当于或超过不锈钢,在海水中耐蚀性极强,可与 白金相比,是海洋开发工程理想的材料。 钛与生物体相容性好,无毒,适做生物 工程材料。
钛的基本性质
(1)钛存在两种同素异构体α 及β 。 α -Ti在 882℃以下稳定,具有六方密排结构。 β -Ti稳定 于882℃~熔点1678℃,具有体心立方结构。 (2)钛的体积质量小(4.51g/cm3),比强度高, 熔点高,塑性好,虽然其强度随温度升高而下降, 但其比强度高的特性仍可保持到550~600℃。与 高强合金相比,相同强度水平可降低重量 40%以 上,因此在宇航上有巨大应用潜力。
(3)具有优良的耐蚀性,在室温下就能很快生成 一层具有极好保护性的钝化层(TiO2)。它仅有 纳米尺度,室温下长大极慢。许多介质中,钛的 耐蚀性极高;但在还原性介质中差一 些,不过可以通过合金化改善。 (4)钛的低温性能很好,在液氮温度下仍有 良好的机械性能,强度高而仍保持有良好的塑性 及韧性。 (5)弹性模量较低 (120GP),约为铁的 54%。
由于钛所具有的一系列优良性能,资源又很丰富, 钛的工业生产问世后,立即受到世界普遍高度重 视。1947年美国率先实现海绵钛生产工业化,当 年生产2吨海绵钛,1957年就发展到15000多 吨。日本1952年,前苏联1954年均相继开始了 海绵钛的生产。中国也于1958年开始了海绵钛的 试生产,现在已形成了完整的钛工业体系。当前, 世界上有钛工业的国家主要是美国、独联体、日 本、英国、中国和德国。
钛的特性
晶体结构: 原子半径: 密度: 熔点:
882.5度同素异构转变 (α-Ti↔β-Ti)。 与氧、氮、碳和氢剧烈反应。 价格昂贵。主要用于价格不是关键因素的先 进应用场合。 高强度和韧性。
化学性质
室温下钛比较稳定。 高温下活泼,熔化态能与大多数坩埚造型材料发生 作用。 高温下与卤素、氧、硫、碳、氮等进行强烈反应。 钛在真空或惰性气氛下熔炼,如真空自耗电弧炉、 电子束炉、等离子熔炉等设备中熔炼。 钛在氮气中加热会发生燃烧,钛尘在空气中会发生 爆炸,所以钛材加热和焊接宜用氩气作保护气体。 钛在室温可吸收氢气,500℃以上吸气能力更强烈, 可作为高真空电子仪器的脱气剂;利用钛吸氢和放氢的特 性,可以作储氢材料。
中国钛资源总量9.65亿吨,居世界之首,占世界 探明储量的38.85%,主要集中在四川、云南、广 东、广西及海南等地,其中攀西(攀枝花西昌) 地区是中国最大的钛资源基地,钛资源量为8.7 亿吨。 中国探明的钛资源分布在21个省(自治区、 直辖市)共108个矿区(图3.5.1及表3.5.4)。主 要产区为四川,次有河北、海南、广东、湖北、 广西、云南、陕西、山西等省(区)。
钛及钛合金
概述
TiO2
FeTiO3
钛源于Titans,即希腊神话中地球上大力士。 地壳中金属元素钛元素含量位列第四 (0.86%) ,居铝、 铁、镁之后。 自然界中不存在纯钛,仅以氧化物存在,如FeTiO3、 TiO2。 强度与钢相当,而密度几乎仅有钢的一半。
钛是英国科学家格内戈尔于1791年首先从钛铁矿石 中发现的,1795年德国化学家克拉普洛特也从金红 石中发现了这一元素,并命名为“钛”。由于钛的 化学活性高,在它被发现的120年后的1910年才首 次提炼出金属钛,1940年用镁还原法制得了海绵钛, 从此奠定了钛的工业生产方法的基础。