初中数学勾股定理优质课PPT课件
合集下载
勾股定理数学优秀ppt课件
实际应用
在建筑、工程等领域,经常需要利用勾股定理求解直角三角形的边长问题,如计算梯子抵墙 时的长度等。
判断三角形类型问题
判断是否为直角三角形
01
若三角形三边满足勾股定理公式,则该三角形为直角三角形。
判断直角三角形的直角边和斜边
02
在直角三角形中,斜边是最长的一边,通过勾股定理可以判断
哪条边是斜边,哪条边是直角边。
06
总结回顾与展望未来
关键知识点总结回顾
勾股定理的定义和表达式
在直角三角形中,直角边的平方和等于斜边的平方,即a²+b²=c²。
勾股定理的证明方法
通过多种几何图形(如正方形、梯形等)的面积关系来证明勾股定 理。
勾股定理的应用场景
在几何、三角学、物理学等领域中广泛应用,如求解三角形边长、 角度、面积等问题。
勾股定理与其他数学定理关系探讨
与三角函数关系
勾股定理是三角函数的基础,通 过勾股定理可以推导出正弦、余 弦、正切等三角函数的基本关系。
与向量关系
在向量空间中,勾股定理可以表示 为两个向量的点积等于它们模长的 平方和,这进一步揭示了勾股定理 与向量的紧密联系。
与几何图形关系
勾股定理在几何图形中有着广泛的 应用,如求解直角三角形、矩形、 菱形等图形的边长、面积等问题。
勾股定理是数学中的基本定理之一, 也是几何学中的基础概念,对于理 解三角形、圆等几何形状的性质具 有重要意义。
历史发展及应用
历史发展
勾股定理最早可以追溯到古埃及时期,但最为著名的证明是由 古希腊数学家毕达哥拉斯学派给出的。在中国,商高在周朝时 期就提出了“勾三股四弦五”的勾股定理的特例。
应用
勾股定理在几何、三角、代数、物理等多个领域都有广泛应用, 如求解三角形边长、角度、面积等问题,以及力学、光学等领 域的计算。
在建筑、工程等领域,经常需要利用勾股定理求解直角三角形的边长问题,如计算梯子抵墙 时的长度等。
判断三角形类型问题
判断是否为直角三角形
01
若三角形三边满足勾股定理公式,则该三角形为直角三角形。
判断直角三角形的直角边和斜边
02
在直角三角形中,斜边是最长的一边,通过勾股定理可以判断
哪条边是斜边,哪条边是直角边。
06
总结回顾与展望未来
关键知识点总结回顾
勾股定理的定义和表达式
在直角三角形中,直角边的平方和等于斜边的平方,即a²+b²=c²。
勾股定理的证明方法
通过多种几何图形(如正方形、梯形等)的面积关系来证明勾股定 理。
勾股定理的应用场景
在几何、三角学、物理学等领域中广泛应用,如求解三角形边长、 角度、面积等问题。
勾股定理与其他数学定理关系探讨
与三角函数关系
勾股定理是三角函数的基础,通 过勾股定理可以推导出正弦、余 弦、正切等三角函数的基本关系。
与向量关系
在向量空间中,勾股定理可以表示 为两个向量的点积等于它们模长的 平方和,这进一步揭示了勾股定理 与向量的紧密联系。
与几何图形关系
勾股定理在几何图形中有着广泛的 应用,如求解直角三角形、矩形、 菱形等图形的边长、面积等问题。
勾股定理是数学中的基本定理之一, 也是几何学中的基础概念,对于理 解三角形、圆等几何形状的性质具 有重要意义。
历史发展及应用
历史发展
勾股定理最早可以追溯到古埃及时期,但最为著名的证明是由 古希腊数学家毕达哥拉斯学派给出的。在中国,商高在周朝时 期就提出了“勾三股四弦五”的勾股定理的特例。
应用
勾股定理在几何、三角、代数、物理等多个领域都有广泛应用, 如求解三角形边长、角度、面积等问题,以及力学、光学等领 域的计算。
《勾股定理》课件
《勾股定理》PPT课件
欢迎来到《勾股定理》PPT课件!跟随我一起探索这一古老而神奇的数学定理, 了解它的定义、历史、应用和证明方法。
什么是勾股定理
勾股定理是解决直角三角形边长关系的数学定理。它关联了三角形的三边, 为许多现实生活和科学领域提供了重要的应用基础。
勾股定理的历史发展
1
中国古代
古代中国数学家首次发现了勾股定理的特殊情形,应用于土地测量和农业。
于理解。
归纳法证明
利用归纳法和数学归纳原理,证明勾股定理 对于任意正整数的直角三角形都成立。
代数法证明
运用代数运算和平方差公式,将直角三角形 的边长代入公式,推导出勾股定理的等式。
勾股定理与形的关系
勾股定理与圆形密切相关,可推导出圆的周长、半径、直径等与直角三角形 边长之间的关系。
勾股定理的推广
勾股定理在直角三角形的应用
勾股定理可用于求解直角三角形的任一边长,或计算三角形的周长、面积和 角度,帮助解决实际问题,如建筑、航海和测绘。
勾股定理的证明方法
1
几何法证明
2
通过构图和几何推理,演示直角三角形中各 条边与角度之间的关系,从而证明勾股定理。
3
巧妙证明
4
介绍一些有趣的巧妙证明方法,如使用数学 图形和变换,让勾股定理变得更加直观和易
2
古希腊
古希腊数学家毕达哥拉斯将已知的勾股定理完善为通用公式,为后世的发展奠定 了基础。
3
现代
勾股定理在现代数学和科学领域扮演着重要角色,为三角学、几何学和物理学等 提供了关键工具。
勾股定理的定义
勾股定理表明在一个直角三角形中,三条边的长度满足a²+ b²= c²,其中c是斜边,a和b是两个直角边。
欢迎来到《勾股定理》PPT课件!跟随我一起探索这一古老而神奇的数学定理, 了解它的定义、历史、应用和证明方法。
什么是勾股定理
勾股定理是解决直角三角形边长关系的数学定理。它关联了三角形的三边, 为许多现实生活和科学领域提供了重要的应用基础。
勾股定理的历史发展
1
中国古代
古代中国数学家首次发现了勾股定理的特殊情形,应用于土地测量和农业。
于理解。
归纳法证明
利用归纳法和数学归纳原理,证明勾股定理 对于任意正整数的直角三角形都成立。
代数法证明
运用代数运算和平方差公式,将直角三角形 的边长代入公式,推导出勾股定理的等式。
勾股定理与形的关系
勾股定理与圆形密切相关,可推导出圆的周长、半径、直径等与直角三角形 边长之间的关系。
勾股定理的推广
勾股定理在直角三角形的应用
勾股定理可用于求解直角三角形的任一边长,或计算三角形的周长、面积和 角度,帮助解决实际问题,如建筑、航海和测绘。
勾股定理的证明方法
1
几何法证明
2
通过构图和几何推理,演示直角三角形中各 条边与角度之间的关系,从而证明勾股定理。
3
巧妙证明
4
介绍一些有趣的巧妙证明方法,如使用数学 图形和变换,让勾股定理变得更加直观和易
2
古希腊
古希腊数学家毕达哥拉斯将已知的勾股定理完善为通用公式,为后世的发展奠定 了基础。
3
现代
勾股定理在现代数学和科学领域扮演着重要角色,为三角学、几何学和物理学等 提供了关键工具。
勾股定理的定义
勾股定理表明在一个直角三角形中,三条边的长度满足a²+ b²= c²,其中c是斜边,a和b是两个直角边。
《勾股定理》PPT优质课件(第1课时)
A. 3
B.3
C. 5
D.5
E
课堂检测
基础巩固题
1. 若一个直角三角形的两直角边长分别为9和12,则斜边的
长为( C)
A.13
B.17
C. 15
D.18
2.若一个直角三角形的斜边长为17,一条直角边长为15,则
另一直角边长为( A )
A.8
B.40
C.50
D.36
3.在Rt△ABC中,∠C=90°,若a︰b=3︰4,c=100,则 a= _6_0___,b = __8_0___.
课堂检测
4.如图,所有的四边形都是正方形,所有的三角形都是直角三角 形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面 积之和为_____4_9_____cm2 .
C D
B A
7cm
课堂检测
能力提升题
在Rt△ABC中,AB=4,AC=3,求BC的长.
解:本题斜边不确定,需分类讨论:
当AB为斜边时,如图,BC 42 32 7;
形,拼成一个新的正方形.
探究新知 剪、拼过程展示:
b
a ca
朱实
b 朱实 黄实朱实
c 〓b
ba
朱实
a
M a P bb
N
探究新知 “赵爽弦图”
c
朱实
b
朱实
黄实 朱实
a
朱实
证明:∵S大正方形=c2, S小正方形=(b-a)2,
∴S大正方形=4·S三角形+S小正方形,
探究新知
毕达哥拉斯证法:请先用手中的四个全等的直角三角形按图 示进行拼图,然后分析其面积关系后证明吧.
因此设a=x,c=2x,根据勾股定理建立方程得 (2x)2-x2=152,
《勾股定理》PPT课件 图文共36页文档
Thank you
பைடு நூலகம்
《勾股定理》PPT课件 图文
56、死去何所道,托体同山阿。 57、春秋多佳日,登高赋新诗。 58、种豆南山下,草盛豆苗稀。晨兴 理荒秽 ,带月 荷锄归 。道狭 草木长 ,夕露 沾我衣 。衣沾 不足惜 ,但使 愿无违 。 59、相见无杂言,但道桑麻长。 60、迢迢新秋夕,亭亭月将圆。
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
பைடு நூலகம்
《勾股定理》PPT课件 图文
56、死去何所道,托体同山阿。 57、春秋多佳日,登高赋新诗。 58、种豆南山下,草盛豆苗稀。晨兴 理荒秽 ,带月 荷锄归 。道狭 草木长 ,夕露 沾我衣 。衣沾 不足惜 ,但使 愿无违 。 59、相见无杂言,但道桑麻长。 60、迢迢新秋夕,亭亭月将圆。
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
人教版八年级下册课件 17.1.3 勾股定理 (共19张PPT)
C D
B A
C+D
A+B A+B+C+D
E
古代笑话
截竿进城
某人拿一根竹竿想进城,可是竹竿太长了,横竖都进不 了城。这时,一位老人给他出了个主意,把竹竿截成两 半……
探究1:
一个门框尺寸如图所示,一块长3m,宽 2.2m的薄木板能否从门框内穿过?为什么?
5 2.236 2.2 D
C
3m
2m
A 2.2m 1m
B
实际问题
数学问题
木板能否进门? 求AC? 比较木板宽与斜边AC长度的大小
勾股定理
AC≥2.2能进,AC<2.2不能进
探究2:
一个3m长的梯子AB,斜靠在一竖直的墙AO 上, 这时AO的距离为2.5m, 如果梯子的顶端A沿 墙下滑0.5m,那么梯子底端B也外移0.5m吗?
分析:DB=OD-OB,求
1.如图,分别以Rt △ABC三边为边向 外作三个正方形,其面积分别用S1、 S2、S3表示,容易得出S1、S2、S3之 间有的关系式为
S1 S2 S3
C
S3
A
S2
B
S1
2.如图,所有的四边形都是正方形,所有 的三角形都是直角三角形,其中最大的正 方形E的边长为7cm,求正方形A,B,C, D的面积的和.
C
2 3
2
3
B 3 D 1 A
拓展提高
4.一个圆柱状的杯子,由内部测得其底面直径为 4cm,高为10cm,现有一支12cm的吸管任意斜放 于杯中,则吸管 露出杯口外. (填“能”或 能 “不能”)
4 10 116 10.78 12
2 2
10
4
《九章算术》:有一个水池, 水面是一个边长为10尺的正方 形,在水池正中央有一根芦苇, 它高出水面1尺,如果把这根 芦苇拉向水池一边的中点,它 的顶端恰好到达池边的水面, 请问这个水的深度与这根芦苇 的长度各是多少?
B A
C+D
A+B A+B+C+D
E
古代笑话
截竿进城
某人拿一根竹竿想进城,可是竹竿太长了,横竖都进不 了城。这时,一位老人给他出了个主意,把竹竿截成两 半……
探究1:
一个门框尺寸如图所示,一块长3m,宽 2.2m的薄木板能否从门框内穿过?为什么?
5 2.236 2.2 D
C
3m
2m
A 2.2m 1m
B
实际问题
数学问题
木板能否进门? 求AC? 比较木板宽与斜边AC长度的大小
勾股定理
AC≥2.2能进,AC<2.2不能进
探究2:
一个3m长的梯子AB,斜靠在一竖直的墙AO 上, 这时AO的距离为2.5m, 如果梯子的顶端A沿 墙下滑0.5m,那么梯子底端B也外移0.5m吗?
分析:DB=OD-OB,求
1.如图,分别以Rt △ABC三边为边向 外作三个正方形,其面积分别用S1、 S2、S3表示,容易得出S1、S2、S3之 间有的关系式为
S1 S2 S3
C
S3
A
S2
B
S1
2.如图,所有的四边形都是正方形,所有 的三角形都是直角三角形,其中最大的正 方形E的边长为7cm,求正方形A,B,C, D的面积的和.
C
2 3
2
3
B 3 D 1 A
拓展提高
4.一个圆柱状的杯子,由内部测得其底面直径为 4cm,高为10cm,现有一支12cm的吸管任意斜放 于杯中,则吸管 露出杯口外. (填“能”或 能 “不能”)
4 10 116 10.78 12
2 2
10
4
《九章算术》:有一个水池, 水面是一个边长为10尺的正方 形,在水池正中央有一根芦苇, 它高出水面1尺,如果把这根 芦苇拉向水池一边的中点,它 的顶端恰好到达池边的水面, 请问这个水的深度与这根芦苇 的长度各是多少?
(精选幻灯片)勾股定理ppt课件
2 2 22
“总统证法”. 比较上面二式得 c2=a2+b2
16
1.求下列图中表示边的未知数x、y、z的值.
81 144
144 169
z
625 576
①
②
③
17
做一做:
A
625
P
C
B
400
P的面积 =___2_2__5________ AB=_2__5_______ BC=__2_0_______
b c
a2+b2=c2吗?
• 1881年,伽菲尔 德就任美国第二
A b 1 E aB ∵ S梯形ABCD= 2 a+b2
十任总统.后来, 1
人们为了纪念他 对勾股定理直观、 简捷、易懂、明
= (a2+2ab+b2) 2
又∵ S梯形 ABCD=S
AED+S
EBC+S
CED
了的证明,就把 这一证法称为
1 1 11 = ab+ ba+ c2= (2ab+c2)
33
34
C A
(2)在图2-2中,正 方形A,B,C中各含 有多少个小方格?它 们的面积各是多少?
B C
图2-1
A
(3)你能发现图2-1 中三个正方形A,B, C的面积之间有什么
B 图2-2
关系吗?
(图中每个小方格代表一个单位面积) SA+SB=SC
即:两条直角边上的正方形面积之和等于
斜边上的正方形的面积
3
s1 s2
s3
返 拼回 图 4
合作 & 交S流1+☞S2=S3
a等²+腰a直²=角c三²角形两直角边
“总统证法”. 比较上面二式得 c2=a2+b2
16
1.求下列图中表示边的未知数x、y、z的值.
81 144
144 169
z
625 576
①
②
③
17
做一做:
A
625
P
C
B
400
P的面积 =___2_2__5________ AB=_2__5_______ BC=__2_0_______
b c
a2+b2=c2吗?
• 1881年,伽菲尔 德就任美国第二
A b 1 E aB ∵ S梯形ABCD= 2 a+b2
十任总统.后来, 1
人们为了纪念他 对勾股定理直观、 简捷、易懂、明
= (a2+2ab+b2) 2
又∵ S梯形 ABCD=S
AED+S
EBC+S
CED
了的证明,就把 这一证法称为
1 1 11 = ab+ ba+ c2= (2ab+c2)
33
34
C A
(2)在图2-2中,正 方形A,B,C中各含 有多少个小方格?它 们的面积各是多少?
B C
图2-1
A
(3)你能发现图2-1 中三个正方形A,B, C的面积之间有什么
B 图2-2
关系吗?
(图中每个小方格代表一个单位面积) SA+SB=SC
即:两条直角边上的正方形面积之和等于
斜边上的正方形的面积
3
s1 s2
s3
返 拼回 图 4
合作 & 交S流1+☞S2=S3
a等²+腰a直²=角c三²角形两直角边
勾股定理--PPT课件
(3)美国总统证法:
D
C
bc
c
a
Aa
bD
∵S梯形ABCD=1/2(a+b)(a+b)
=1/2ab×2+1/2 c²
∴a²+b²=c²
(4)我来试一试
b
a
ab
a c
a
cb
ca
bc c
bc
a
a
b
a
b b
S=1/2ab×4+ c²=1/2ab ×4+ a²+b² a²+b²=c²
例1:已知:在Rt△ABC中, ∠C=90°,AB=c,AC=b,BC=a.
作业:
1、已知三角形三边为5、6、7,求 △ABC面积
A A
a
c
a
45°
Cb
BC
c
30°
b
B
a : b : c =1:1: 2
a :b:c =1: 3 :2
实践与探索
1、判断题:
1)、直角三角形三边a,b,c一定满足下面的式子:
a²+b²=c²
(X )
2)、直角三角形的两边长分别是3和4,则另一边是5
(X )
பைடு நூலகம்
3)、若△ABC的三边长是a=7,b=24,c=25,则△ABC
是直角三角形
(√ )
4)、 △ABC是三边之比为1:1:√2 ,则△ABC是直角
三角形
(√ )
5)、等边三角形高为2 √3cm,则它的边长是3cm (X )
2、探究下面三个圆面积之间的关系
S1 S2
cb a
S3
∵ a²+b²=c² ∴ S1=S2+S3
《勾股定理》PPT优质课件(第3课时)
A•
2 3 C4
也可以使OA=2, AB=3,同样可
以求出C点.
探究新知
方法点拨 利用勾股定理表示无理数的方法: (1)利用勾股定理把一个无理数表示成直角边是两个正 数的直角三角形的斜边. (2)以原点为圆心,以无理数斜边长为半径画弧与数轴 存在交点,在原点左边的点表示是负无理数,在原点右边 的点表示是正无理数.
解:S△ABC
33
1 1 2 2
1 23 2
1 13 2
7. 2
课堂检测
拓广探索题
若△ABC三边的长分别为 5a,2 2a, 17a (a>0),请利用图中的正
方形网格(每个小正方形的边长为a)画出相应的△ABC,并求
出它的面积.
A
解:如图, AB a2 2a2 5a,
B
BC 2a2 2a2 2 2a,
得x2+ 42=(8-x)2, 解得 x=3. 即EC的长为3cm.
D E FC
链接中考
如图,在平面直角坐标系中,A(4,0),B(0,3), 以点A为圆心,AB长为半径画弧,交x轴的负半轴于点C, 则点C坐标为__(-_1_,__0_)__.
课堂检测
基础巩固题
1.小明学了利用勾股定理在数轴上作一个无理数后,于是在数轴
巩固练习
如图,在5×5正方形网格中,每个小正方形的边 长均为1,画出一个三角形的长分别为 2 、2、10 . 解:如图所示. A C
B
探究新知
知识点 4 利用勾股定理在折叠问题中求线段的长度
如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折 叠,使点B落在CD边上的B′处,点A的对应点为A′,且B′C=3, 求AM的长.
巩固练习
《勾股定理》PPT
综合题:3.如图,在△ABC中,AD⊥BC,∠B=45°,∠C=30°,AD=1,求 △ABC的周长.
小贴士
为什么叫勾股定理这个名称呢? 在中国古代,人们把弯曲成直角的手臂的上半部分称 为“勾”,下半部分称为“股”.我国古代学者把直角三 角形较短的直角边称为“勾”,较长的直角边称为 “股”,斜边称为“弦”.由于命题1反映的正好是直 角三角形三边的关系,所以叫做勾股定理.
勾
股
勾2+股2=弦2 国外又叫毕达哥拉斯定理
当BC为斜边时,如图,BC 42 32 5.
B B
4
3
C 图 A
4
A
3
图
C
归纳 当直角三角形中所给的两条边没有指明是斜边或 直角边时,其中一较长边可能是直角边,也可能是斜 边,这种情况下一定要进行分类讨论,否则容易丢解.
当堂练习
1.下列说法中,正确的是
( C)
A.已知a,b,c是三角形的三边,则a2+b2=c2
新知应用
例1 如图,在Rt△ABC中, ∠C=90°.
(1)若a=b=5,求c;
B
(2)若a=1,c=2,求b.
a
解:(1)在Rt△ABC中, ∠C=90°
C
c a2 b2 52 52 50 5 2;
c
A
b
(2)在Rt△ABC中, ∠C=90°
b c2 a2 22 12 3.
注意:1.看好哪个角是直角,选择正确的公式来求边长
C
问题2 图中正方形A、B、C所围成的等腰直角三角 形三边之间有什么数量关系?
AB C
S正方形A S正方形B S正方形C
一直角边2 +
另一直角边2 =
斜边2
小贴士
为什么叫勾股定理这个名称呢? 在中国古代,人们把弯曲成直角的手臂的上半部分称 为“勾”,下半部分称为“股”.我国古代学者把直角三 角形较短的直角边称为“勾”,较长的直角边称为 “股”,斜边称为“弦”.由于命题1反映的正好是直 角三角形三边的关系,所以叫做勾股定理.
勾
股
勾2+股2=弦2 国外又叫毕达哥拉斯定理
当BC为斜边时,如图,BC 42 32 5.
B B
4
3
C 图 A
4
A
3
图
C
归纳 当直角三角形中所给的两条边没有指明是斜边或 直角边时,其中一较长边可能是直角边,也可能是斜 边,这种情况下一定要进行分类讨论,否则容易丢解.
当堂练习
1.下列说法中,正确的是
( C)
A.已知a,b,c是三角形的三边,则a2+b2=c2
新知应用
例1 如图,在Rt△ABC中, ∠C=90°.
(1)若a=b=5,求c;
B
(2)若a=1,c=2,求b.
a
解:(1)在Rt△ABC中, ∠C=90°
C
c a2 b2 52 52 50 5 2;
c
A
b
(2)在Rt△ABC中, ∠C=90°
b c2 a2 22 12 3.
注意:1.看好哪个角是直角,选择正确的公式来求边长
C
问题2 图中正方形A、B、C所围成的等腰直角三角 形三边之间有什么数量关系?
AB C
S正方形A S正方形B S正方形C
一直角边2 +
另一直角边2 =
斜边2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一 剪拼图法证明
b b
c a
b
c b
a
a
a
a
b
赵爽弦图
勾股定理:
如果直角三角形两条直角边长分别为a、b, 斜边长为c,那么a2+b2=c2 .
A
bc CaB
勾 股
证明方法二 面积恒等法证明
a bc
ac b
b S大正方形= (a+b)2
c
a S大正方形= S小正方形+ 4 S直角三角形
A
4
C
B
3
① 斜边=
分类讨论 A 4 C3 B 32 42 ② 直5 角边=
42 32 7
4.如图,图中所有的三角形都是直角三角形,四边形都是正 方形.已知正方形A,B,C,D的面积分别是3 ,4,1,3
,求最大正方形E的面积.
B A
C D
勾股树
E
H
E
公就知DA 元知道C前道许P 和多约大中的载应3勾约总高的0B用股0公结低第0勾数元出差一年大商记I 股组前了.位,约高载定,2勾可与古在就在0理如股以勾巴公提《0公欧给,30术说股比元出周,年4元几出他,,定伦前“髀,5,前里一们.用禹理人1勾算大3德个1还来是有经三世0禹巨勾0确世关》、纪在年著股定界的中股,治,《定两上人.四古水周几理处有.、希的朝何的水史弦腊实数公汉明原证位记五数践学元时了本明”学家2期勾》.世,家,股中纪刘定的徽理东证.
2
c a2 b2 12 22 5
C 1B
② 已知b = 2, c = 4, 求a .
A
a c2 b2 42 22 2 3
4 2
C
B
2. 在RtΔABC中, ∠B = 90º, 已知a = 2, b = 5, 求c .
A
c b2 a2 52 22 21
5
B2
C
3. 在RtΔABC中,两条边的长度分别是3和 4, 求另一边的长度.
在探索勾股定理的过程中,你有什么感悟和欣赏.
C B
A
H
D C
E
A
P
I B
c
a
b
a bc
ac b
b
c
a
cb a
GQ
F
放眼未来,华罗庚曾设想:向太空发射一种图形,因为这种图形在几千年前 就已经被人类所认识,如果外星人是“文明人”,也必定认识这种图形.
如图,以直角三角形各边为直径向外作半圆,则半圆A,B,C的面积关系为
=c2+ 4×
1
ab
2
c
b
∴ (a+b)2 = c2+ 4×
1
2ab
a2 + 2ab+b2 = c2+ 2ab
a
∴ a2 + b2 = c2
证明方法三 毕达哥拉斯证法
a bc
b
b
c
a
a
ac b
cb b
a
b
a a
b a
学以致用
A
1. 在RtΔABC中, ∠C = 90º
① 已知a = 1, b = 2, 求c.
C c
b B
aA
根据勾股定理, a2 + b2=c2,
C
圆的面积公式c:
S=πr2
aA
,
b
得到半圆A,B,C的面积关系 B
为SA+SB=SC.
数形结合
从直角三角形的各边向外作正方形能否推广到从 各边向外作等边三角形(正n边形)吗?
C c aA b
B
C c aA b
B
C caA b
B
C
ca A b
B
GQ
前3000年
F
前2000年
前1000年
公元元年
1000年
2000年
B
前2500年
前1500年
前500年
500年
1500年
a
c
朱实
大建滥.朱约筑后实C公宏的朱黄实实元伟土朱前的地b实2金时5字,0A0塔也年公毕规大《作和应,元达律约周出测用古前哥的公髀了量过埃拉证5元算详尼勾世及斯明2学为前经细罗股纪0人就.家大02》注河定,在2公5大会内释年泛理古0开会会年的和在希发,徽,勾证北腊表就的赵股明京数了以图爽定.召学这赵案对理开家一爽.的弦国图际作数
作业:
(1)整理课堂上所提到的勾股定理的证明方法; (2)教材28页,1、2、3 (3)通过上网等方式查找勾股定理的有关史料、趣事及 其他证明方法.
谢谢聆听
b b
c a
b
c b
a
a
a
a
b
赵爽弦图
勾股定理:
如果直角三角形两条直角边长分别为a、b, 斜边长为c,那么a2+b2=c2 .
A
bc CaB
勾 股
证明方法二 面积恒等法证明
a bc
ac b
b S大正方形= (a+b)2
c
a S大正方形= S小正方形+ 4 S直角三角形
A
4
C
B
3
① 斜边=
分类讨论 A 4 C3 B 32 42 ② 直5 角边=
42 32 7
4.如图,图中所有的三角形都是直角三角形,四边形都是正 方形.已知正方形A,B,C,D的面积分别是3 ,4,1,3
,求最大正方形E的面积.
B A
C D
勾股树
E
H
E
公就知DA 元知道C前道许P 和多约大中的载应3勾约总高的0B用股0公结低第0勾数元出差一年大商记I 股组前了.位,约高载定,2勾可与古在就在0理如股以勾巴公提《0公欧给,30术说股比元出周,年4元几出他,,定伦前“髀,5,前里一们.用禹理人1勾算大3德个1还来是有经三世0禹巨勾0确世关》、纪在年著股定界的中股,治,《定两上人.四古水周几理处有.、希的朝何的水史弦腊实数公汉明原证位记五数践学元时了本明”学家2期勾》.世,家,股中纪刘定的徽理东证.
2
c a2 b2 12 22 5
C 1B
② 已知b = 2, c = 4, 求a .
A
a c2 b2 42 22 2 3
4 2
C
B
2. 在RtΔABC中, ∠B = 90º, 已知a = 2, b = 5, 求c .
A
c b2 a2 52 22 21
5
B2
C
3. 在RtΔABC中,两条边的长度分别是3和 4, 求另一边的长度.
在探索勾股定理的过程中,你有什么感悟和欣赏.
C B
A
H
D C
E
A
P
I B
c
a
b
a bc
ac b
b
c
a
cb a
GQ
F
放眼未来,华罗庚曾设想:向太空发射一种图形,因为这种图形在几千年前 就已经被人类所认识,如果外星人是“文明人”,也必定认识这种图形.
如图,以直角三角形各边为直径向外作半圆,则半圆A,B,C的面积关系为
=c2+ 4×
1
ab
2
c
b
∴ (a+b)2 = c2+ 4×
1
2ab
a2 + 2ab+b2 = c2+ 2ab
a
∴ a2 + b2 = c2
证明方法三 毕达哥拉斯证法
a bc
b
b
c
a
a
ac b
cb b
a
b
a a
b a
学以致用
A
1. 在RtΔABC中, ∠C = 90º
① 已知a = 1, b = 2, 求c.
C c
b B
aA
根据勾股定理, a2 + b2=c2,
C
圆的面积公式c:
S=πr2
aA
,
b
得到半圆A,B,C的面积关系 B
为SA+SB=SC.
数形结合
从直角三角形的各边向外作正方形能否推广到从 各边向外作等边三角形(正n边形)吗?
C c aA b
B
C c aA b
B
C caA b
B
C
ca A b
B
GQ
前3000年
F
前2000年
前1000年
公元元年
1000年
2000年
B
前2500年
前1500年
前500年
500年
1500年
a
c
朱实
大建滥.朱约筑后实C公宏的朱黄实实元伟土朱前的地b实2金时5字,0A0塔也年公毕规大《作和应,元达律约周出测用古前哥的公髀了量过埃拉证5元算详尼勾世及斯明2学为前经细罗股纪0人就.家大02》注河定,在2公5大会内释年泛理古0开会会年的和在希发,徽,勾证北腊表就的赵股明京数了以图爽定.召学这赵案对理开家一爽.的弦国图际作数
作业:
(1)整理课堂上所提到的勾股定理的证明方法; (2)教材28页,1、2、3 (3)通过上网等方式查找勾股定理的有关史料、趣事及 其他证明方法.
谢谢聆听